
Algorithms for Hub Label Optimization

Maxim Babenko1, Andrew V. Goldberg2,
Anupam Gupta3, and Viswanath Nagarajan4

1 Department of Mechanics and Mathematics, Moscow State Univerity; Yandex.
2 Microsoft Research Silicon Valley

3 Carnegie Mellon University and Microsoft Research SVC.
4 IBM T.J. Watson Research Center.

Abstract. Cohen et al. developed an O(logn)-approximation algorithm
for minimizing the total hub label size (`1 norm). We give O(logn)-
approximation algorithms for the problems of minimizing the maximum
label (`∞ norm) and minimizing `p and `q norms simultaneously.

1 Introduction

Modern applications, such as computing driving directions and other location-
based services, require very fast point-to-point shortest path algorithms. Al-
though Dijkstra’s algorithmsolves this problem in near-linear time [14] on di-
rected and in linear time on undirected graphs [16], some applications require
sublinear distance queries. This motivates preprocessing-based algorithms, which
yield sublinear queries on some graph classes (e.g., [10, 13]). In particular, Gavoille
et al. [13] introduced distance labeling algorithms. These algorithms precompute
labels for each vertex such that the distance between any two vertices s and t
can be computed using only their labels.

A prominent case of this paradigm is hub labeling (HL): the label of v consists
of a collection of vertices (the hubs of v) with their distances from v. Hub labels
satisfy the cover property : for any two vertices s and t, there exists a vertex w
on the shortest s–t path that belongs to both the label of s and the label of t.
Given this information, distance queries are easy to implement: for two vertices
v and w, we compute the sums of the v-u and u-w distances over vertices u in
the intersection of the labels of v and w, and return the minimum value found.

Cohen at al. [9] gave an O(log n)-approximation algorithm for the smallest-
size labeling, where n denotes the number of vertices and the size of the labeling
is the sum of the number of hubs in the vertex labels. (This also minimizes the
average label size.) The algorithm uses an elegant reduction to the set-cover
problem [8]. At each step, the algorithm solves a maximum density subgraph
problem, which can be done exactly using parametric flows [12] or by a faster
approximation algorithm [15]. HL leads to the fastest implementation of the
point-to-point shortest path queries in road networks [1], and works well on
some other network types [2]. This motivates further theoretical study of HL.

In this paper we consider approximation algorithms for the optimization
problem of producing small labels. Since minimizing the average label size may
potentially lead to imbalanced solutions where the label of some vertices are

relatively large, a natural objective is to minimize the maximum HL size, which
determines the worst-case query time. We give a polynomial time algorithm that
finds an O(log n) approximation of the maximum label size, where n is the size
of the graph. Our algorithm is based on reducing the HL problem to a non-
standard set covering problem, where the objective is to cover all the elements
using sets in such a way that no element is covered too often. Our algorithm is
combinatorial, and is based on exponential cost functions, as in [4] and many
other contexts.

If we consider a vector whose components correspond to the number of vertex
hubs, then the total label size is the `1norm of this vector and the maximum
label size is the `∞ norm. This brings a natural generalization of the above
problems, that of optimizing the `p norm of this vector. Our second result is an
O(log n)-approximation algorithm for this more general problem. This is also a
combinatorial algorithm, where we naturally use degree-p polynomials instead
of exponential cost functions, as in [5].

In applications, there are multiple criteria that one would like to be good
for—one wants to simultaneously minimize the total label size (i.e., the space
needed to store the labels) and the maximum label size (i.e., the worst-case query
time). This is a bi-criteria optimization problem, with the optimal solutions on
the Pareto-optimal curve. E.g., suppose that there is a labeling with total label
size T1 and maximum label size T∞ (e.g., a labeling on the Pareto curve). Our
third result is a polynomial-time algorithm to find a labeling with the total
label size O(T1 log n) and the maximum label size O(T∞ log n). In fact, our
techniques easily extend to a more general result: a logarithmic approximation
to the problem of maintaining k moments of the label sizes. Specifically, given
any set P = {p1, p2, . . . , pk}, and values Ti such that there exists a labeling
whose `pi norm is at most Ti for each pi ∈ P , we can find a labeling whose `pi
norm is at most O(k log n) · Ti for all pi ∈ P .

1.1 Related Work

There is much work on minimizing multiple norms of a vector. For some prob-
lems, one can find a single solution that is simultaneously good against the
best solution for each `p norm individually. E.g., Azar et al. [7] considered the
restricted-assignment machine scheduling problem, and gave a solution which 2-
approximates the best solution for each `p norm; this was extended and improved
by [6, 3]. In some settings, it is possible to get better bounds for `p norm mini-
mization for different values of p: e.g., [5] show p-competitive online algorithms
for minimizing the `p norms of machine loads. However, the low-load set covering
problem has a hardness of Ω(log n) for all p, which means new techniques would
be needed to get better approximations for HL.

2 Definitions and Notation

In the HL problem, we are given a graph G = (V,E) with a distinguished
shortest path Pij between each pair of vertices i, j ∈

(
V
2

)
. A hub labeling (HL) is

an assignment of labels Li ⊆ V for each vertex i ∈ V such that for any i, j ∈ V ,
we have some vertex u ∈ Li ∩ Lj that lies on the path Pij . For the purposes
of this paper, the graph can be directed or undirected, and the path Pij can
be an arbitrary path—we will not use the fact that it is a shortest i-j path. If
we consider the vector L = (L1, L2, . . . , Ln), then we are interested in finding
labelings with small `p norms: ‖L‖p := (

∑n
i=1 L

p
i)

1/p and ‖L‖∞ := maxi∈V Li.
We assume p ∈ [1, log n], since `logn approximates all higher `p norms to within
constant factors.

We will reduce HL to a low-load set-covering problem (LSC), which is defined
as follows. As in the usual set cover problem, we are given a set system (U,F),
where F = {S1, S2, . . .} is a collection of subsets of the universe U with N
elements. A sub-collection C ⊆ F is a set cover if ∪S∈CS = U , every element of
U is contained in some set in C. The elements in U are either relevant (denoted
by R ⊆ U) or irrelevant (those in U \ R): for any relevant element e ∈ R,
let AC(e) = #{S ∈ C | e ∈ S} be the load of element e under this set cover
C, the number of sets in C that contain e. (Imagine the irrelevant elements to
always have load 0.) For any p ∈ [1,∞), the `p norm of the loads is ‖AC‖p =
(
∑
e∈RAC(e)

p)1/p; the `∞ norm is ‖AC‖∞ = maxe∈RAC(e). To reiterate: we
have to cover all the elements, relevant or otherwise, but we count the load only
for the relevant elements.

Our algorithms use approximate max-density oracles. A max-density oracle
takes costs ce for relevant elements e ∈ R and a set X ⊆ U of elements already

covered, and outputs a set S ∈ F that minimizes
∑
e∈S∩R ce
|S\X| . In Section 3.2 we

show how to implement the oracle for LSC instances arising from HL.

3 Application to Shortest Path Labels

Our motivating application is HL `p norm optimization. We show a reduction
from the label optimization problem to LSC and an implementation of an ap-
proximate max-density oracle for the corresponding LSC problem.

3.1 From Labels to Set Covers

We model an instance I of HL as the following instance I ′ of LSC.

– The elements are all {i, j} pairs, and all vertices — i.e., U :=
(
V
2

)
∪ V . The

elements of V are relevant and the elements of
(
V
2

)
are irrelevant.

– For each vertex x ∈ V , let Qx be the set of pairs {i, j} ∈
(
V
2

)
such that

x ∈ Pij . For any set of pairs Q ⊆
(
V
2

)
, let V (Q) denote the vertices that

lie in at least one of these pairs—i.e., V (Q) = ∪{i,j}∈Q{i, j}. Now for each
x ∈ V , for each Q ⊆ Qx, add the set Q ∪ V (Q) to the collection F . Note
that this may give us exponentially many sets.

– The problem is to compute a set cover C ⊆ F minimizing the `p norm ‖AC‖p
(which only involves the load on relevant elements, i.e. vertices).

Lemma 1. Minimizing the `p norm of an instance I of HL is equivalent to
minimizing the `p norm of the corresponding instance I ′ of LSC.

Proof. Given a solution for I, construct a solution for I ′ as follows. For each
x ∈ V , take Sx ⊆

(
V
2

)
to be the pairs that x “covers” in this solution—i.e.,

pairs {i, j} such that x lies in Li ∩ Lj and also on the path Pij . Picking the
sets Sx ∪ V (Sx), one for each x, we get a cover C for I ′. If the label of i does
not contain x, then i 6∈ V (Sx). Thus only the vertices x in the label of i can
contribute to AC(i), and therefore AC(i) ≤ |Li|.

Given a solution C to I ′, we construct a label L for I as follows. If I ′ contains
a set (Q ∪ V (Q)) for some Q ⊆ Qx, then add x to Li for all i ∈ V (Q). Since all
pairs in U are covered by C, for each pair {i, j}, the labels Li and Lj intersect
at some vertex of Pij . For every vertex i, we add x to Li only if there is a set
(Q∪V (Q)) ∈ C with Q ⊆ Qx that covers i (i.e. i ∈ V (Q)). Thus |Li| ≤ AC(i). ut

3.2 Max-Density Oracle

In this section we show how to construct approximate max-density oracles for
the LSC instances I ′ obtained via a reduction from HL. Recall that there are
costs ci ≥ 0 for all i ∈ V (relevant elements). Let us divide U into UP (the pairs
in V), and UV (the vertices in V); recall that UV are the relevant elements. For
any set S ⊆ U , we now use SP := S ∩ UP and SV := S ∩ UV .

Lemma 2. Solving minS∈F

∑
v∈SV

cv

|SP \XP | gives a 3-approximate max-density oracle.

Proof. For any T ⊆ U , we have T = TP ∪TV . By the structure of our sets, if some
pair {i, j} ∈ TP then it must be the case that {i, j} ⊆ TV . Hence, V (TP) ⊆ TV .
Moreover, |TP ∪ V (TP)| ≤ 3|TP |, since each pair in TP can contribute at most
both its endpoints to V (TP). Combining these facts, we get |TP | ≤ |T | ≤ 3|TP |.
This implies the lemma. ut

Recall that the Cohen et al. [9] algorithm approximates the `1 norm of
the labels. Their algorithm uses a subroutine for the maximum density subgraph
problem. We use a subroutine for the weighted variant of the problem: given a
non-negative cost function c : V → R+, the density of a graph H is µ(H) =
|E(H)|
c(V (H)) . Note that µ(H) is undefined if c(V (H)) = 0. In this case if |E(H)| = 0

we define µ(H) = 0, and otherwise µ(H) =∞. The maximum density subgraph
problem is to find a vertex-induced subgraph of maximum density. This can
be solved exactly using network flow [12]. In the full version, we describe a
generalization of the faster 2-approximation algorithm [15] for the unit-weight
maximum density subgraph to the weighted case.

Fix v ∈ V and a set X ⊆ U of covered elements. We define the v-center
graph Gv as follows. The vertex set of Gv is V . Two vertices i, j are connected
in Gv iff the pair {i, j} 6∈ X and Pi,j 3 v, i.e., if v covers the pair.

Lemma 3. We can reduce minS∈F

∑
v∈SV

cv

|SP \XP | to n weighted maximum density

subgraph problems.

Proof. Let S′ be some set of vertices. Suppose that we add a vertex v to the
labels of all vertices in S′. Then the edges in the subgraph of Gv induced by
S′ correspond to previously uncovered {i, j} pairs that become covered. So the
maximum density subgraph of Gv yields the set that minimizes the desired
expression over the sets that correspond to v. The result follows by minimizing
over all v (i.e., solving n weighted maximum density subgraph problems). ut

A ρ-approximate solution to the weighted maximum subgraph problem gives
a ρ-approximate minimum. Note that the results of this section extend to di-
rected graphs. In this case the center graphs will become bipartite, as in [9].

4 The `∞ case: Minimizing the Maximum Load

In this section we investigate the problem of finding LSC C that approximately
minimizes the maximum load of any relevant element in U . Recall that we have
to cover the irrelevant elements (those in U \ R), even though we do not care
about the load on them. Suppose that we know the optimal load u = ‖AC∗‖∞;
we can enumerate over all the possible values of u. We show a combinatorial
greedy-like algorithm that achieves ρ = O(logN), where N = |U |.

Since the family F may consist of an exponential number of sets, and it may
not be possible to look over all sets to find the best one, we assume that we have
an α-approximate max-density oracle through which we access the set system.

Theorem 1. There exists a combinatorial algorithm that makes at most n calls
to an α-approximate max-density oracle, and finds a set cover C with element
loads AC(e) ≤ O(α logN) · ‖AC∗‖∞.

The algorithm is a multiplicative-weights algorithm. It proceeds in rounds,
where one set is added in each round. Let ε = 1/(8α). Let At(e) be the number
of times a relevant element e ∈ R has been covered at the beginning of round t;
at the very beginning of the process we have A1(e) = 0 for all e ∈ R. Define the
round-t cost of elements e ∈ R as ct(e) := (1 + ε)At(e)/u ·

(
(1 + ε)1/u − 1

)
; so the

round-t cost of set S is ct(S) :=
∑
e∈S∩R(1 + ε)At(e)/u ·

(
(1 + ε)1/u − 1

)
.

Note the sum is only over the relevant elements in S. The algorithm is simple:
consider the beginning of round t, when t−1 sets have already been picked, and
let Xt be the elements already covered at this time. (Hence X1 = ∅.) If all
elements have not yet been covered (i.e., if Xt 6= U), use the α-approximate
max-density oracle with costs ct(S) and the set Xt to obtain the next set.

For the analysis, define the potential at the beginning of round t to be Φ(t) :=∑
e∈R(1 + ε)At(e)/u. The potential at the beginning of round 1 is Φ(1) = N .

Lemma 4. If we pick set S in round t, then Φ(t+ 1)− Φ(t) = ct(S).

Proof. By the definition of the potential,

Φ(t+ 1)− Φ(t) =
∑
e∈R

(1 + ε)At+1(e)/u −
∑
e∈R

(1 + ε)At(e)/u

=
∑

e∈S∩R
(1 + ε)(At(e)+1)/u − (1 + ε)At(e)/u =

∑
e∈S∩R

(1 + ε)At(e)/u
(

(1 + ε)1/u − 1
)

which is ct(S) by the definition of the round-t cost. ut

Lemma 5. At any round t, there exists a set S with cost-to-coverage ratio
ct(S)
|S\Xt| ≤

Φ(t)
|U\Xt| · 2ε.

Proof. The round-t cost of all the sets in the set cover C∗ is∑
S∈C∗

ct(S) =
∑
S∈C∗

∑
e∈S∩R

(1 + ε)At(e)/u ·
(

(1 + ε)1/u − 1
)

(1)

=
∑
e∈R

[
(1 + ε)At(e)/u ·

(
(1 + ε)1/u − 1

)
·

∑
S∈C∗:e∈S

1

]
≤
∑
e∈R

(1 + ε)At(e)/u · 2ε/u · u ≤ Φ(t) · 2ε. (2)

(The equality in (1) uses the definition of ct(S), and (2) used u ≥ 1 and ε ≤ 1/4
and hence (1 + ε)1/u ≤ 1 + (ε/u)(1 + ε + ε2 + · · ·) ≤ 1 + 2ε/u.) Since |U \Xt|
universe elements are not yet covered, and we could have chosen all the sets in
C∗ to cover these remaining elements at cost

∑
S∈C∗ ct(S), there exists some set

whose cost-to-coverage-ratio is at most Φ(t) · 2ε/(|U \Xt|). ut

Let us partition the rounds into phases: phase i begins in round t if the
number of uncovered elements is at most N/2i for the first time at the beginning
of round t. Hence phase 0 begins with round 1 (when the number of uncovered
elements is N/20 = N) and ends at the point we have covered half the elements,
etc. Note that some phases contain no rounds at all.

Lemma 6. If rounds a and b are the first and last rounds of some phase i, then
Φ(b+ 1) ≤ 2 · Φ(a).

Proof. Consider the beginning of some round t ∈ {a, a+ 1, . . . , b} in phase i. By
Lemma 5 there exists a set with cost-to-coverage-ratio is at most Φ(t) · 2ε/(|U \
Xt|). Moreover, the α-approximate max-density oracle finds a set whose cost-

to-coverage ratio at most α times as much; i.e., at most 2αε Φ(t)
|U\Xt| ≤

1
4

Φ(t)
|U\Xt| ,

using the definition of ε = 1/(8α).
Since the potential Φ(t) is non-decreasing, and |U \ Xt| ≥ N/2i+1 in this

phase, this last expression is at most 1
4
Φ(b+1)
N/2i+1 . Moreover, we cover at most N/2i

elements in this phase, so the total cost incurred is at most 1
2Φ(b + 1). By

Lemma 4, the total cost incurred in the phase equals the change in potential, so
Φ(b+ 1)− Φ(a) ≤ (1/2) · Φ(b+ 1). This proves the lemma. ut

Proof of Theorem 1: We claim the potential at the end of the algorithm
is at most N2. Indeed, using Lemma 6, the potential at most doubles in each
phase, whereas the number of yet-covered elements at least halves. Hence, at

the end of phase log2N , there are strictly less than N/2log2N = 1 elements (i.e.,
zero elements) remaining; the potential is at most 2log2N · Φ(1) = N2.

Suppose the last round in which we pick a set is f−1. Then for the final poten-
tial to be at mostN2, it must be the case that for each e ∈ U , (1+ε)Af (e)/u ≤ N2.
This means that Af (e) ≤ u log1+ε(N

2) = O(logN)u/ε = O(α logN)u. ut

5 Simultaneous `1 and `∞ Norm Approximation

We can extend the results of Section 4 to find a set cover that simultaneously
has small maximum load and small average load. In this case, suppose we are
given non-negative values T and u such that there exists a set cover C∗ with∑
e∈RAC∗(e) ≤ T , and also AC∗(e) ≤ u for all relevant elements e ∈ R. We want

to find a cover C such that ‖AC‖1 ≤ T ·O(α logN), and ‖AC‖∞ ≤ u ·O(α logN).

For the algorithm, we use definitions of ct(e), ct(S), Φ(t), etc., from Section 4,
but redefine ε to be 1

24α . We define the d-cost as de = 1 for e ∈ R; so d(S) :=
|S ∩R| for any set S. The algorithm changes as follows: in round t, we now use
the α-approximate density oracle to pick a set S (approximately) minimizing
the “combined” ratio

ct(S) + ε(Φ(t)/T) · d(S)

|S \Xt|
. (3)

For the analysis, consider the beginning of round t, and call a set S t-light

if d(S)
|S\Xt| ≤

2T
|U\Xt| , and t-heavy otherwise. Let C∗h denote the t-heavy sets in C∗,

and C∗l := C∗ \ C∗h the light sets.

Lemma 7. The number of elements from U \Xt covered by t-heavy sets in C∗
is at most 1

2 |U \Xt|.

Proof. The fraction of the remaining elements that any t-heavy set S covers is
|S\Xt|
|U\Xt| ≤

d(S)
2T . Hence, the total fraction of remaining elements that t-heavy sets

in C∗ cover is
∑
S∈C∗h

|S\Xt|
|U\Xt| ≤

∑
S∈C∗h

d(S)
2T ≤ 1/2. The last inequality is because∑

S∈C∗h
d(S) ≤

∑
S∈C∗ |S ∩R| ≤ T . ut

We can now modify Lemma 5 to say the following:

Lemma 8. At any round t, there exists a t-light set S with cost-to-coverage

ratio ct(S)
|S\Xt| ≤

Φ(t)
|U\Xt| · 4ε.

Proof. Let z := |U \Xt| denote the number of universe elements not yet covered.
Choosing all t-light sets in C∗ at cost

∑
S∈C∗l

ct(S), we would cover at least z/2

elements (by Lemma 7), hence there exists some set whose cost-to-coverage-ratio
is at most 2

z ·
∑
S∈C∗l

ct(S) ≤ 2
z ·
∑
S∈C∗ ct(S) ≤ 2

z ·Φ(t) ·2ε. using the calculations

as in Lemma 5. ut

By Lemma 8, we infer there exists a set S whose combined cost-per-coverage
is

ct(S) + ε(Φ(t)/T) · d(S)

|S \Xt|
≤ Φ(t) · 4ε+ ε(Φ(t)/T) · 2T

|U \Xt|
=
Φ(t) · 6ε
|U \Xt|

.

Our α-approximate density oracle finds a set St with combined-cost-per-coverage
at most α · 6ε ·Φ(t)/|U \Xt| = 1

4Φ(t)/|U \Xt|. Since the combined cost is a sum
of non-negative quantities, we get

ct(St)

|St \Xt|
≤ 1

4

Φ(t)

|U \Xt|
and

d(St)

|St \Xt|
≤ 1

4ε

T

|U \Xt|
. (4)

The bound on ct(St)/|St \Xt| can be used in the same fashion as in Section 4 to
show that the potential function at most doubles during a phase, and there are at
most log2N phases, so the maximum load is at most O(α logN) · u. Moreover,
the d-cost incurred in any phase i is at most (N/2i) · 1

4ε ·
T

N/2i+1 = 1
2ε · T .

Summing over all log2N phases, and using ε = 1/(24α), we get the total d-cost
is
∑
S∈C |S ∩R| = ‖AC‖1 ≤ (12α log2N) · T .

Application to Shortest-Path Labelings. To use this result for shortest-path label-
ings, we would again use the same reduction and the same max-distance oracle
as in Section 3. We can try all the polynomially many guesses for u and T .

6 Minimizing `p Norms

We now turn to approximating `p norms of the element loads for p ∈ [1, logN].
Specifically, we want a set cover C with the `p-norm of the loads ‖AC‖p only
logarithmically larger than ‖AC∗‖p for any other set cover C∗. (Recall that the
vectors AC and AC∗ are only defined on the relevant elements.) The round-t costs
are now cp,t(e) := (At(e) + 1)p −At(e)p for e ∈ R; so

cp,t(S) :=
∑

e∈S∩R
((At(e) + 1)p −At(e)p),

(the sum being only over the relevant items), and the algorithm picks a set that

(approximately) minimizes
cp,t(S)
|S\Xt| . Again, Xt is the set of elements covered prior

to round t. At(e) is the load of element e at the beginning of round t. To make the
analysis easier, we set A1(e) = p for all relevant elements e ∈ R. The potential
function is now a polynomial: Φp(t) :=

∑
e∈RAt(e)

p. It immediately follows that
if we pick set St in round t, Φp(t+1)−Φp(t) = cp,t(St). Initially Φp(1) = |R| ·pp;
we will have to deal with this issue.

Lemma 9. For b := (e − 1) and any t,
∑
S∈C∗ cp,t(S) ≤ b · p · Φp(t)(p−1)/p ·

‖AC∗‖p .

Proof. By the definition of cp,t(·), we know that∑
S∈C∗

cp,t(S) =
∑
S∈C∗

∑
e∈S∩R

((At(e) + 1)p −At(e)p) ≤
∑
S∈C∗

∑
e∈S∩R

(e− 1) pAt(e)
p−1,

(which follows from Fact 1 below and the observation that At(e) ≥ A1(e) ≥ p)

= (e− 1) p
∑
e∈R

[
At(e)

p−1
∑

S∈C∗:e∈S
1

]
= (e− 1) p

∑
e∈R

At(e)
p−1AC∗(e)

≤ (e− 1) p ‖At‖p−1p ‖AC∗‖p (by Hölder’s inequality)

≤ (e− 1) p · Φ(t)(p−1)/p · ‖AC∗‖p

Note that we used the fact that we initialized A1(e) ≥ p. ut

Fact 1 For any real r ≥ 1 and x ≥ r, (x+ 1)r − xr ≤ (e− 1) r xr−1.

Proof. Observe that (x+ 1)r − xr = xr((1 + x−1)r − 1), thus

xr
∞∑
j=1

(
r

j

)
x−j ≤ xr

∞∑
j=1

rj

j!
x−j ≤ xr r

x

∞∑
j=1

(r/x)j−1

j!
≤ r xr−1

∞∑
j=1

1

j!
≤ (e−1) r xr−1,

where we used the inequality x ≥ r. ut

Corollary 1. At any time t, there exists a set S with
cp,t(S)
|S\Xt| ≤

2b·p·Φp(t)(p−1)/p·‖AC∗‖p
|U\Xt| .

Hence the max-density algorithm picks a set with cost-to-coverage ratio at most
α times that.

Proof. If there exists a set in C∗ that satisfies the above property, we are done.
Hence imagine that no set in C∗ satisfies it. Then∑

S∈C∗

|S \Xt|
|U \Xt|

≤
∑
S∈C∗

cp,t(S)

2b · p · Φp(t)(p−1)/p · ‖AC∗‖p
≤ 1

2
,

where the last inequality is from Lemma 9. But since all elements in U need to
be covered by C∗, this quantity is at least 1, a contradiction. ut

Lemma 10. For C produced by the algorithm, ‖AC‖p ≤ O(α logN) · ‖AC∗‖p.

Proof. We define phase i ∈ {0, 1, . . . , log2N} to consist of rounds t where |U \
Xt| ∈ (N

2i+1 ,
N
2i]. Let β := 2α b p. Let t∗ denote the last round where Φp(t

∗)1/p ≤
4β‖AC∗‖p, and let i∗ denote the phase containing t∗. Note the starting potential
was Φp(1) = |R| · pp ≤ |R|βp ≤ βp‖AC∗‖pp; hence t∗ ≥ 1.

Consider any phase i ≥ i∗, and let I (resp., F) denote the values of Φp at the
start (resp., end) of phase i. By our choice of t∗ and hence of i∗, it follows that
F 1/p ≥ Φp(t

∗ + 1)1/p > 4β‖AC∗‖p. Moreover, the cost-to-coverage ratio of sets

picked in phase i is at most
β·F (p−1)/p·‖AC∗‖p

N/2i+1 (using Corollary 1), and at most

N/2i elements are covered in this phase. Consequently the total cost incurred
during phase i is at most 2β ·F (p−1)/p · ‖AC∗‖p; moreover, this total cost equals
the increase in potential, F − I. We can rewrite the resulting inequality as:

I
1
p ≥ F

1
p

(
1− 2β‖AC∗‖p

F
1
p

) 1
p

≥ F
1
p · e

−4β‖AC∗‖p

p·F
1
p ≥ F

1
p ·

(
1− 4β‖AC∗‖p

p · F
1
p

)
.

The second inequality above uses 1 − x ≥ e−2x for 0 ≤ x ≤ 1/2; the final
inequality is by ey ≥ 1 + y for all y. This gives us that F 1/p− I1/p ≤ 4β

p · ‖AC∗‖p
for any phase i ≥ i∗. Now summing over all such phases i ≥ i∗ (there are at
most log2N of them), we obtain Φp(final)1/p − Φp(t∗)1/p ≤ 4β

p · log2N · ‖AC∗‖p.
This uses the fact that round t∗ lies in phase i∗ and Φp(·) is monotone non-
decreasing. Finally, using Φp(t

∗) ≤ 4β‖AC∗‖p and that β = 2α b p, we have

Φp(final)1/p ≤ (4β
p log2N + 4β) · ‖AC∗‖p = (4α b (log2N + p)) · ‖AC∗‖p. Since

p ≤ logN , this completes the proof. ut

Note that minimizing `∞ is within constant factors of minimizing `logN , so
the result subsumes that of Section 4. Moreover, this algorithm does not require
us to enumerate over guesses of the optimum load u.

7 Multiple Norms Simultaneously

The approach of the previous section naturally extends to give solutions that are
good with respect to multiple `p norms; we now show how to handle two norms.
Specifically, given p, q ∈ [1, logN], we want to find a cover C with ‖AC‖p ≤
O(α logN)‖AC∗‖p and ‖AC‖q ≤ O(α logN)‖AC∗‖q, where C∗ is some intended
“optimal” cover. We assume we know values P,Q such that ‖AC∗‖p ≈ P and
‖AC∗‖q ≈ Q.

We define the round-t costs cp,t and cq,t as in (6), and the potentials Φp(t)
and Φq(t) as in (6). We initialize the loads A1(e) to max{p, q} ≤ logN , and run
the algorithm where picking the set S minimizing the “combined” ratio:

1

|S \Xt|
·
(

cp,t(S)

p · Φp(t)(p−1)/p · P
+

cq,t(S)

q · Φq(t)(q−1)/q ·Q

)
(5)

Lemma 11. At any time t, there exists a set S such that for both r ∈ {p, q},

cr,t(S)

|S \Xt|
≤ 3b · r · Φr(t)(r−1)/r · ‖AC∗‖r

|U \Xt|
.

Proof. Suppose each set S ∈ C∗ fails the inequality corresponding to either p or
q or both, and say C∗p , C∗q ⊆ C∗ denote the corresponding sets. Then∑

r∈{p,q}

∑
S∈C∗r

|S \Xt|
|U \Xt|

≤
∑

r∈{p,q}

∑
S∈C∗r

cr,t(S)

3b · r · Φr(t)(r−1)/r · ‖AC∗‖r
≤ 1

3
+

1

3
,

where the last inequality uses Lemma 9. But since all elements in U are covered
by C∗, this should be at least 1, a contradiction. ut

Hence at each step t, there exists some set where the combined ratio objective
function (5) for the algorithm has value at most 6b

|U\Xt| . Thus the algorithm

will pick set St with objective function value at most α times greater, which

guarantees a set St with
cr,t(St)
|S\Xt| ≤ α · 6b·r·Φr(t)

(r−1)/r·‖AC∗‖r
|U\Xt| for both r ∈ {p, q}.

Finally, the analysis from Lemma 10 carries over virtually unchanged for both
p, q, the only difference being the definition β := 6bαr instead of 6.

The above algorithm extends to finding LSC that is within an O(αk logN)
factor of k different targets with respect to k different `p norms p1, p2, . . . , pk.

7.1 Non-existence of Simultaneous Optimality

In this section we construct a family of graphs for which no labeling can be
simultaneously near-optimal for the total label size T ∗ and the maximum label
size A∗. For any labeling with the total size T and the maximum size M , either
T is polynomially bigger than T ∗ or M is polynomially bigger than M∗.

For a parameter k, the (undirected) graph has three sets of vertices, A =
{a1, a2, . . . , ak}, B = {b1, b2, . . . bk2}, and C = {cij | i ∈ [k2], j ∈ [k]}, of size
k, k2, and k3, respectively. Every vertex in A is connected to all vertices in
B. Vertices in C are partitioned into k2 groups of size k each. For every i, the
partition Ci = {cij | j ∈ [k]} corresponds to the vertex bi ∈ B. Each vertex in B
is connected to all k vertices in its group in C. There are no other edges in the
graph. All edges have length 1, except for the edges from a1 to B, which are of
length 1− ε. The total number of vertices of the graph is n = Θ(k3).

Observe that the shortest paths in the graph are as follows:

– For vertices a, a′ ∈ A, and every b ∈ B, the path a, b, a′ is a shortest a-a′

path. For any vertex a ∈ A, b ∈ B, the edge (a, b) is a shortest path. For any
a ∈ A and c ∈ Ci, the path a, bi, c is the unique shortest path.

– For vertices b, b′ ∈ B, the path b, a1, b
′ is the unique shortest path. For any

i, the unique shortest path between vertex bi ∈ B and any c ∈ Ci is the edge
(bi, c); for any c ∈ Ci′ 6= Ci, the path bi, a1, bi′ , c is the unique shortest path.

– For vertices c, c′ in the same group Ci, the path c, bi, c
′ is the unique shortest

path. For c ∈ Ci and c′ ∈ Cj 6= Ci, the path c, bi, a1, bj , c
′ is the unique

shortest path.

An O(k3)-size labeling is as follows. Each vertex is in its own label. In ad-
dition, every vertex in A has all vertices in B in its label. Every vertex in B
contains a1 in its label. Every vertex c ∈ C has a1 in its label; moreover, if c
belongs to group Ci it has the corresponding vertex bi ∈ B its label. The total
label size is k · (k2 + 1) + 2 · k2 + 3 · k3 = O(k3). In this labeling, the vertices in
A have labels of size k2 + 1.

There is a different labeling with the maximum label size O(k). Each vertex
is in its own label. In addition, every vertex in the graph has all vertices of A
in its label. Moreover, if c belongs to group Ci it has the corresponding vertex
bi ∈ B its label. The total size of this labeling is Ω(k4).

Now consider a labeling L with the total size T and the maximum size M .
For a vertex a ∈ A, consider shortest paths to all vertices in C. The number of
vertices c ∈ C for which an a–c shortest path contains a vertex of L(a) different
from a is at most kM . Therefore labels of k3−kM vertices in C must contain a.
Thus T ≥ k(k3−kM), or T +k2M ≥ k4. Hence, if T = o(k4), then M = Ω(k2),
and if M = o(k2), then T = Ω(k4). Therefore T or M is a factor Ω(n1/3) away
from the corresponding optima.

Acknowledgments We thank Amos Fiat and Haim Kaplan for interesting dis-
cussions. A. Gupta thanks Microsoft Research Silicon Valley, IBM T.J. Watson
Research Center, and the IEOR Department at Columbia University for their
generous hospitality.

References

1. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A Hub-Based Labeling
Algorithm for Shortest Paths on Road Networks. In Proc. SEA’11, LNCS vol. 6630,
pages 230–241, 2011.

2. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical Hub
Labelings for Shortest Paths. In Proc. ESA’12, LNCS vol. 7501, pages 24–35, 2012.

3. V.S.A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. A unified
approach to scheduling on unrelated parallel machines. JACM, 56(5):28–31, 2009.

4. J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM,
44(3):486–504, 1997.

5. B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter.
Load balancing in the lp norm. In FOCS, pages 383–391, 1995.

6. Y. Azar and A. Epstein. Convex programming for scheduling unrelated parallel
machines. In STOC’05, pages 331–337, 2005.

7. Y. Azar, L. Epstein, Y. Richter, and G. J. Woeginger. All-norm approximation
algorithms. J. Algorithms, 52(2):120–133, 2004.

8. V. Chvátal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

9. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and Distance
Queries via 2-hop Labels. SIAM J. Comput., 32, 2003.

10. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering Route Planning
Algorithms. In Algorithmics of Large and Complex Networks, LNCS vol. 5515,
pages 117–139, 2009.

11. U. Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652,
1998.

12. G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A Fast Parametric Maximum Flow
Algorithm and Applications. SIAM J. Comput., 18:30–55, 1989.

13. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance Labeling in Graphs.
Journal of Algorithms, 53:85–112, 2004.

14. A. V. Goldberg. A Practical Shortest Path Algorithm with Linear Expected Time.
SIAM Journal on Computing, 37:1637–1655, 2008.

15. G. Kortsarz and D. Peleg. Generating Sparse 2-Spanners. J.Alg., 17:222–236, 1994.
16. M. Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights

in Linear Time. JACM, 46:362–394, 1999.

