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Abstract

In virtually all machine learning applica-
tions, hyper-parameter tuning is required
to maximize predictive accuracy. Such
tuning is computationally expensive, and
the cost is further exacerbated by the
need for multiple evaluations (via cross-
validation or bootstrap) at each config-
uration setting to guarantee statistically
significant results. This paper presents
a simple, general technique for improv-
ing the efficiency of hyper-parameter tun-
ing by minimizing the number of resam-
pled evaluations at each configuration.
We exploit the fact that train-test samples
can easily be matched across candidate
hyper-parameter configurations.  This
permits the use of paired hypothesis tests
and power analysis that allow for statis-
tically sound early elimination of subop-
timal candidates to minimize the number
of evaluations. Results on synthetic and
real-world datasets demonstrate that our
method improves over competitors for
discrete parameter settings, and enhances
state-of-the-art techniques for continuous
parameter settings.

1 Introduction

Supervised machine learning techniques are increasingly be-
ing used as black-box components by engineers who expect
them to produce high-accuracy predictions automatically. A
key obstacle to this is the sensitivity of learning algorithms to
hyper-parameter settings, also known as the model selection
problem. To maximize accuracy on a particular dataset, one
typically needs to identify optimal, domain-specific values
for some set of algorithm-specific variables. Learning rates,
regularization coefficients and pre-processing options are all
examples of parameters that have significant impact on accu-
racy, and hence must be tuned by practitioners by performing
repeated experiments on validation sets.

However, the variance inherent in machine learning experi-
ments present a challenge to efficient hyper-parameter search.

Due to the stochastic nature of training and testing on fi-
nite datasets, each candidate hyper-parameter configuration
must be evaluated on multiple samples from the source dis-
tribution in order to identify a statistically meaningful opti-
mum. Cross-validation and bootstrap are the most popular
sampling-based approaches for estimating statistical signifi-
cance. These methodologies inevitably increase the compu-
tational cost of experiments, amplifying the number of eval-
uations for each considered hyper-parameter configuration.
This amplification persists with any of the many techniques
for global optimization that can be employed to intelligently
search the space of potential configurations, such as sequen-
tial model-based (e.g., Bayesian) optimization, and directed,
random or evolutionary search methods. Hence, all of these
approaches can benefit from eliminating unnecessary resam-
pled evaluations at every candidate point.

Two lines of prior research are relevant for developing so-
lutions for this problem when there is a finite set of candidate
hyper-parameter configurations. Maron and Moore| [[1994]
proposed Hoeffding Races for early elimination of under-
performing candidates in a leave-one-out validation setting.
An alternative approach has been pursued by multi-armed
bandit algorithms, where upper bounds are employed to favor
promising candidates and account for confidence in accuracy
estimates from repeated evaluations [Lai and Robbins} |1985}
Auer et al.,[2002albl |Gittins et al., 2011]].

However, these approaches assume that each sample for
every configuration is constructed either independently or ad-
versarially. In the context of hyper-parameter optimization,
such rigid assumptions are unnecessary if samples chosen for
cross-validation or bootstrap folds are consistent across con-
figurations. Then, evaluation results can be compared using
stronger statistical tests for matched samples, leading to sig-
nificant efficiency improvements.

We demonstrate that these improvements can be reaped by
incorporating paired hypothesis tests with hyper-parameter
search techniques for both discrete and continuous parame-
ter spaces. For the discrete case, we show that paired tests
allow us to identify winners much more efficiently than the
standard racing or multi-armed bandit strategies that do not
take matched-pairing into account. For continuous hyper-
parameter spaces, paired tests can be organically integrated
inside search techniques such as Nelder-Mead, a classic
simplex-search algorithm, resulting in reaching the optimum



with much fewer evaluations than full cross-validation, and
actually improving convergence of the overall algorithm. The
efficiency gains achieved with our algorithm are illustrated by
experimental results on real and synthetic datasets.

2 Problem Definition

Hyper-parameter tuning for machine learning is a stochas-
tic optimization problem. The stochasticity arises from the
fact that train and test sets are finite samples (typically as-
sumed to be i.i.d.) from an underlying joint distribution of
data points and prediction targets, as well as from possible
randomness in the learning algorithm itself. Let 6 denote
the hyper-parameters of the learning algorithm, X a random
variable representing the source(s) of stochasticity, and g(-)
a performance metric chosen by the user for the prediction
task at hand. For binary classification, g(-) may be the area
under ROC curve (AUC), and for regression ¢(-) may be the
negative mean squared loss. The problem of hyper-parameter
tuning can then be defined as:

0" = mng [9(6, X)]. ()

For the moment, assume that the only source of stochasticity
is the data itself, so that X represents simply the data dis-
tribution. Since the true mean for this unknown distribution
cannot be computed directly, the empirical mean is optimized
over random samples { X ("), ..., X(™}, an approach known
as sample average approximation [Srebro and Tewari, [2010]:

1 .
hl ()
max — % g0, X'\"). )

In the hyper-parameter tuning process, the i-th sample X ()
can be made identical for all candidate values of . For ex-
ample, this is true in the case of cross-validation or bootstrap
starting from the same initial random seed, generating the
same sequence of training and validation datasets from an
initial training set. In this work, we demonstrate that such
tying of evaluation subsets enables /azy hyper-parameter tun-
ing, where the optimal 6* can be found without performing
all n evaluations for every candidate, resulting in significant
computational savings.

We note that the evaluation of g(-) is carried out in two
steps. First, the learning algorithm determines the model pa-
rameters (let’s call them \) via a modeling objective function
f(+) evaluated on the trainig data X7 . The learned model is
then evaluated on a validation set Xy, under the metric g(-).

Ao = argmaxE[f(A X7:0)] ()
0" = argméaxE[g(Q,)\Z,Xv)]. “4)

Here, X1, Xy, as well as the optimization of Eq. (3) may all
be stochastic. Hence the empirical average of ¢(-) should be
computed over samples of all three. In practice, people of-
ten forgo cross-validation inside the grid search loop because
it is computationally expensive. This may be justifiable if
the variance of the evaluations is low—a possibility when the
validation or hold-out set is large, g(-) is itself an empirical
average over the validation set, and there is no stochasticity

within the learning procedure (Eq. (3)). In general, however,
one should perform cross-validation or bootstrapping to ac-
count for the variance of the estimates of g(-).

Another notable challenge in this optimization problem is
that there is no gradient information: f(-) and g(-) repre-
sent black-box learning procedure whose output cannot be
expressed as a closed-form function of hyper-parameters.
Hence, existing approaches to hyper-parameter optimization
are “gradient-free” algorithms that either approximate the
uphill direction via simplex search (e.g., Nelder-Mead), or
model the evaluation (response) surface with a surrogate
function (e.g., Gaussian Process optimization) [Conn ef al.|
2009]]. Thus, finite-difference variants of stochastic gradient
methods are not competitive for this problem, as they require
many iterations to converge due to noise in the gradient ap-
proximations.

3 Lazy Paired Hyper-Parameter Tuning
(LaPPT)

In this section, we demonstrate that performing full cross-
validation on all X (9)’s is not necessary if hypothesis testing
is embedded in the search algorithm, so that the only evalu-
ations performed are those that are statistically necessary to
identify leading configurations.

3.1 Background: Statistical Hypothesis Testing

The classic example of an application for statistical hypoth-
esis testing is the two-sample location test, where one ob-
serves two samples X and Y, each of size n and drawn from
two distributions from the same family with possibly differ-
ent locations (medians or means). Let yx and py denote
the true means and 7 = px — py their difference. The null
hypothesis Hy may assert that 7 = 0, while the alternative
hypothesis 7, may test for 7 > 0, 7 < 0, or 7 # 0. If
the distributions are Gaussian and the samples are matched,
ie., X and Y contain the same individuals under two dif-
ferent “treatments,” then the matched-pairs t-test can decide
whether to accept or reject the null hypothesis while guaran-
teeing a false positive rate. The test computes the t-statistic
Tx_y = #%, where fix-y = ) ;(z; — yi)/n and

6% _y = >, (@i —yi) — fix—y)?/(n — 1) are, respectively,

the sample mean and variance of the matched differences.
Under the null hypothesis, Tx _y follows the Student’s t-
distribution with n — 1 degrees of freedom. Let T,,_; denote
the cdf of this distribution.

The statistical hypothesis testing procedure [Lehmann and
Romano| [2005]] explicitly controls for the probability of false
positives (Type I error): it would only reject the null hypothe-
sis when the probability of observing the statistic falls below
a given threshold « (the significance level). Let ¢,, denote the
a-th quantile of the Student’s t-distribution, i.e., T(t,) = a.
If the alternate hypothesis is {7 > 0}, then we would reject
Ho and accept Hq if Tx—y > t1_q4.

The false negative probability (Type II error) can be con-
trolled by increasing the number of evaluations at each point
in a procedure known as power analysis. The power of a sta-
tistical test is the probability that it correctly rejects Ho when



H; is true. Suppose H; = {7 > 0}. Then the power of the
matched-pairs t-test may be written as:

P (Reject Ho | Hyistrue) =P (Tx_y > t1_o |7 > 0)

T T
=P (Tx_ — >ti_qg—————|7>0
( Y ey /vn T O’XfY/\/ﬁ| )
T
=1 Tn—l(tl—a (5)

Let 5 denote the acceptable false negative rate. Given 3 and
a value for 7, we can compute the necessary sample size to

guarantee that the probability of a false negative is below (3
when the test accepts the null hypothesis. This can be used to
determine how many additional evaluations to make at each
hyper-parameter configuration.

3.2 Lazy Paired Tuning for Discrete
Hyper-parameters

Algorithm 1: Finite Lazy Paired Parameter Tuning

Input: C = {6, ...0,}: Setof candidate hyper-parameter
configurations

Input: «a: Significance level

Input: 5: False negative rate

Input: n,: Number of initial evaluations

Input: (X7, Xv,),...,(Xr,, Xv,): Sequence of training
and validation sets

Output: 6*: Best configuration

fori=1...mdo
for/=1...n9do
| Rie = 9(0:, X1, Xvy)

while |C| > 1 do
for 0, € C do
for 0; # 0; € C do
result = LazyPairedTCompare(R;, R;, o, 3)
if result < 0 then C' = C\6;
else if result > 0 then C = C\0;

return C

For hyper-parameter spaces that are discreet and hence
have no structure to exploit directly, selecting the best con-
figuration can be viewed as a race over a sequence of rounds
corresponding to fold evaluations [Maron and Moore, |1994]).
In each round, some candidates are eliminated, and further
evaluations are scheduled for the others. At the beginning of
a round, all current candidates are compared pairwise. If a
test accepts the alternate hypothesis that candidate ¢ performs
worse than j, then ¢ is eliminated Conversely, if the test ac-
cept the null hypothesis of equal performance, we compute
the number of evaluations needed to guarantee that they are

'Since we are performing multiple hypothesis tests simultane-
ously, one may be concerned with the false discovery rate inherent
in multiple testing. One possible remedy is to apply the standard
Bonferroni correction [Shaffer, [1995]] or one of its derivatives. This
controls the number of false rejections of the null hypothesis, mak-
ing it less likely that we eliminate promising candidates early on.

indeed equal under an acceptable false negative rate BE] At
the end of the round, inferior configurations are eliminated,
and more evaluations are scheduled in batch for the remaining
candidates. Alternatively, evaluations can be added in mini-
batches, with re-testing done at the end of every mini-batch.
Alg. [I] contains an outline of the batch evaluation procedure.

Algorithm 2: LazyPairedTCompare

Input: X, Y: Paired observations

Input: «: Significance level

Input: 5: False negative rate

Input: MaxN: Maximum number of observations

Output: 0 {ux = pyv} 1 {ux > pv} —1 {px < py} ws.
«

n = min(|Y], |X|)
Tx_y 1= —PX=Y _
Gx_y/Vn
laj2 = /2-th quantile of Student’s T distribution
t1—a/2 = (1 — o/2)-th quantile of Student’s T distribution

// X<Y
/] X>Y

if T'x _y <t,/2 then return —1
elseif Tx _y > t;_,/2 then return 1
else

if n = MaxN then return 0

n' := PowerAnalysis (T'x—v, 3)

if n’ > n then

X', Y’ :=Get (n" — n) more samples of X and Y’
L return LazyPairedTCompare(X', Y')

else return 0

Algorithm 3: Lazy Paired Nelder-Mead (LaPPT-NM)
., 04}, objective function

7g(9d)}

Input: Initial simplex {60, 01, . .
9(0), evaluations {g(6o), g(61), ...
Output: A local maximum of g(-)

Define all comparisons of g(6) using LazyPairedTCompare
Run Nelder-Mead algorithm

3.3 Lazy Paired Tuning for Infinite
Hyper-parameters in Nelder-Mead
Optimization

When the hyperparameter space is metric and continuous,

we can combine lazy paired tuning with a global optimiza-

tion routine such as direct search [[Conn et al., [2009]. As
an illustration, we demonstrate such an integration with the

Nelder-Mead algorithm [Nelder and Mead, |1963]], a classic

direct simplex search technique that continues to enjoy wide

popularity for hyper-parameter tuning (e.g., see [Dror et al.}

2011]).

Nelder-Mead (NM) operates sequentially, starting out with

a simplex of d + 1 initialization points (for d parameters).

>The power analysis in Eq. requires having an estimate of
7, the expected difference in performance. We use the observed
difference in the current round.



Let {6p,01,...,04} represent the simplex vertices, ranked
from worst to best by their value on the response surface,
9(00),...,9(04). At each step, NM tries to move 6, the
worst performing point, toward or beyond the rest of the
simplex. It does so via line search from 6, towards 6, =
S>%, 6;/d, the centroid of the rest of the simplex.

We incorporate lazy tuning into classic Nelder-Mead by
replacing all the comparison steps with the LAZYPAIREDT-
COMPARE algorithm detailed in Alg. 2] Evaluations are
added until the test decision can guarantee the desired false
positive and false negative probabilities.

4 Related Work

A number of methods have been proposed to address the
search aspect of the hyper-parameter tuning problem as
efficient alternatives to exhaustive grid search (which un-
fortunately continues to be routinely employed in prac-
tice). Representative technique families include random
search [Bergstra and Bengiol [2012], sequential model-based
optimization [Brochu et al., 2010, Hutter et al., [2011]], direct
search [Luersen et al., 2004|, evolutionary search [Hansen
and Ostermeier, [1996] and structured search [Yang and
Rahimi, 2011]. Use of these techniques assumes standard
resampled evaluations at each potential configuration in the
search space. Hence, all of these methods can benefit
from eliminating unnecessary resampling steps. /(Conn et al.
[2009], |Brochu et al.| [2010], |Spall| [2003]] all present com-
prehensive overviews of solutions from adjacent communi-
ties that studied the problem. More generally, the problem of
searching for optima of a function with probabilistic output
falls under the category of stochastic optimization, where pre-
viously proposed approaches include, e.g., probabilistic hill
climbing [Greiner, |1992]].

On the cost-saving front, |[Krueger er al| [2012]] pro-
posed to speed up cross-validation by sequentially evaluat-
ing the hyper-parameter candidates on a growing sequence of
datasets. At each step, a set of sub-optimal performers are
eliminated. The statistical elimination tests are in the same
spirit as our setup. But they approach the problem from the
angle of fast evaluation on smaller datasets, and hence have
to contend with the possibility of losing track of the true op-
timum configuration when starting from very small datasets.

Hoeffding Racing [Heidrich-Meisner and Igel, [2009,
Maron and Moore} |1994] tackles the problem of model selec-
tion on a finite grid by comparing confidence intervals around
the sample means of model performance. The race utilizes the
Hoeffding or Bernstein inequalities to provide concentration
bounds around the means. More performance samples are
added until the bounds tighten to the point where a clear win-
ner emerges. However, it is well-known that these concentra-
tion bound can be quite loose, hence many evaluations may be
required before one hyperparameter setting may be declared
the winner. The advantage of these bounds is that they are
uniform against all alternatives, which is useful when each
parameter setting much be compared against all other set-
tings. This is applicable in the discrete hyper-parameter space
setting, where Hoeffding Racing may be combined with grid
search or random search methods.

The discrete parameter space setting is also closely related
to the multi-armed bandits problem [Lai and Robbins) [1985}
Auer et al.l [2002alb, Gittins ef all 2011]. A variety of sam-
pling strategies exist with different assumptions on the struc-
ture of the payoffs and relationship between the arms. We
compare against two classic heuristics: UCB and EXP3. Re-
cent work on dueling bandits [Yue ef al.,[2012] examines the
setting where the bandits are pitched against one another, a
pair at a time. This similates the testing scenario of produc-
tion machine learning systems such as a search engine ranker,
but does not fit as well to the hyper-parameter tuning and
cross-validation setting.

Strens and Moore| [2002] proposed using paired compar-
isons in policy search for reinforcement learning. The search
procedure evaluates a number of candidate policies where
paired samples may be obtained by, for example, fixing the
random number sequence of the simulations. While closely
related to the scenario of hyper-parameter search, they do not
take advantage of power analysis to determine the number of
necessary evaluations.

5 [Evaluation

In this section, we evaluate the efficiency of LaPPT on real
and synthetic problems in both discrete and continuous hyper-
parameter spaces.

5.1 Discrete hyper-parameter spaces

We compare LaPPT to standard approaches for discrete-space
search: Hoeffding Racing and most popular multi-armed ban-
dit strategies, UCB1 and EXP3. In this section, we shift
to terminology used in multi-armed bandit literature: each
hyper-parameter configuration corresponds to an arm, pulling
which is synonymous with evaluating the learner on the next
fold. Let the random varaible R € [0, 1] denote reward (the
learner’s predictive performance), and R, its empirical mean
after n observations.

Random: select an arm uniformly at random at each pull.

Hoeffding Race: The Hoeffding states that
P (Rn —E[R] > e) < exp (—2€%/n), implying that,
with probability greater than 1 — ¢, the true mean of
the learner’s performance lies in the interval R, =+
v/ —log(€)/2n. At each round, the race eliminates can-
didates whose performance upper bound is below an-
other candidate’s lower bound. Each of the remaining
candidates obtains another evaluation, and the best con-
figuration for the round is taken to be the one yield-

ing the highest empirical mean. In our experiments,
e =0.01.

UCBI1: The classic UCBI1 policy evaluates the configuration
with the maximum Hoeffding upper bound, where ¢ is
set to decrease over time. Namely, at time £, UCB1 plays
the arm arg maxy Rk}t,l + /plogt/ny—1, where
Ry,4—1 denotes the empirical average reward for the k-
th arm at time ¢ — 1, ng 4 the number of times this
arm has been played thus far, and p is a parameter set
to 0.2 in our experiments. This corresponds to setting

inequality
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Figure 2: Average regret of LaPPT vs. other sampling strate-
gies on Bernoulli bandits with tied rewards.

e = O(1/t*) in the Hoeffding inequality. Unlike the
Hoeffding Race, UCB does not eliminate candidates,
thereby reducing the risk of falsely eliminating a good
candidate.

EXP3: The EXP3 policy maintains a probability distribution
based on the cumulative reward accrued at each arm. At
time ¢, it pulls the k-th arm with probability proportional
to pr.+ = exp (S —1), where S; ;1 := Zt 'R, i 1S
the cumulative reward for the i-th arm up to tlme t—1
and 7 is a free parameter set to 0.2 in our experiments.
The estimated reward R; ; is taken to be 1 if the i-th
arm is pulled on round j, and 1 — % otherwise (an
unbiased estimate of the unobserved reward).

For all experiments on finite space tuning, we set o = 0.1
and 8 = 0.6 for the paired-T testing and power analysis.

We first perform a sanity check using Bernoulli bandits.
We construct 100 bandits, each generating binary rewards
with success probability 05 sampled uniformly from (0, 1).
To simulate the matched-pairs evaluation setting, the rewards
of the bandits are tied so that the random seed for the i-th
pull is the same across all arms. Formally, the reward for the
i-th pull of the k-th arm is 1(r; < 6), with r; being sam-
pled uniformly at random and held to be the same across all

k. We repeat the trial 100 times, each time going up to a
maximum of 3000 total evaluations/arm-pulls. Our primary
performance measure is simple regret:

|0 — 0"

6=
where 0, is the (true) expected reward of the chosen arm at
time ¢, and 0% is the expected reward of the best arm.

Results of racing on Bernoulli bandits are shown in Fig. 2}
Not surprisingly, the random strategy does not learn over
time: the arm it chooses after 3000 evaluations is no more
likely to be the best arm. UCB is the second-to-worst
performer, bested by Hoeffding Racing, EXP3 and LaPPT.
EXP3 and LaPPT are the overall winners with closely match-
ing results. An in-depth inspection of the results reveals that
EXP3 selects a non-optimal arm 5 times out of 100 trials,
whereas LaPPT is only wrong once, but selects a wrong arm
whose true reward is worse than the those of EXP3’s mis-
takes. So LaPPT has larger mean and variance in terms of
average regret, but is wrong fewer times.

Another notable trend is that both Hoeffding Racing and
LaPPT are much more aggressive than EXP3 at the begin-
ning of the game, starting with much lower average regret
given very few arm pulls. This is due to our greedy start-
game strategy: we give all arms 3 evaluations to start with,
before eliminating any candidates. During the initial phase,
we select the arm with the best empirical average reward so
far to compare against the optimal arm. This is the same as
the simple strategy of performing 1, 2, or 3 evaluations of
each configuration and selecting the empirical best.

Next, we evaluate the performance of the algorithms for
actual hyper-parameter tuning. We utilize three popular UCI
datasets chosen to span a variety of data characteristics and
learning tasks, with corresponding predictive accuracy met-
rics: Adult Census (binary classification, AUC), Housing (re-
gression, L1 error), and Waveform (multiclass classification,
cross-entropy). Learning is performed with task-appropriate
variants of gradient tree boosting 2001], vary-
ing four key hyper-parameters: gradient boosting learning
rate, number of trees, maximum number of leaves per tree,
and minimum number of instances per leaf. We also experi-
mented with Logistic Regression as the base learner and ob-
served analogous results, hence omitted.
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Figure 1: Average regret of LaPPT vs. other sampling strategies on a finite hyperparameter space.
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Figure 3: Reward statistics for tied Bernoulli bandits vs. learning scenarios. (a) The solid blue line is the sorted true expected
reward of the Bernoulli bandits. The pink dashed lines show the empirical means + the standard deviations. (b—d) contain
quantile box plots of the raw rewards at each hyper-parameter configuration, sorted by the mean performance over all folds. In
each box-and-whiskers plot, the central mark indicates the median, the edges of the box indicate the 25th and 75th percentiles,

and the whiskers extend to the minimum and maximum values.

To simulate the setting of the discrete hyper-parameter
space, we randomly sample 100 parameter configurations
corresponding to 100 arms, and perform 50-fold cross-
validation at each configuration. We use the negative L1 error
rate and cross-entropy, and we rescale all metrics to the [0, 1]
range, so that accuracy on the i-th fold corresponds to the
reward from the ¢-th pull of an arm. The reward is only re-
vealed when the configuration is selected for evaluation. If
a selected configuration has no more remaining unevaluated
cross-validation folds, we re-calculate the best arm using the
current set of evaluations.

As shown in Fig. [3] the reward distributions on real exper-
iments are very different from that of Bernoulli bandits. For
Bernoulli bandits, the expected reward p is uniformly sam-
pled from (0,1) with variance equal to p(1 — p). Fig.[3[a)
shows the sorted true rewards, the empirical means, and the
standard deviation envelope. The elliptical shape of the enve-
lope demonstrates that the variance is smallest for extreme
values of p. As designed, the rewards are uniformly dis-
tributed between O and 1. In contrast, for cross-validation

results from real learning experiments, a significant portion
of settings produced accuracy that are close to optimal (i.e.,
about half of the configurations for Adult Census are within
5% of the optimal configuration). In addition, reward distri-
bution over evaluations at each arm is more Gaussian than
Bernoulli. As we shall see, the difference in reward distribu-
tions results in very different behaviors of the algorithms.
Hyper-parameter tuning results on cross-validation evalua-
tions are presented in Fig. [T with log-scale y-axis highlight-
ing differences between the algorithms’ final solutions. The
performances are similar on all three datasets, and below we
use the numbers from the Adult Census dataset when dis-
cussing the specifics. As before, the Random strategy does
not learn. EXP3 behaves very differently from before and
is now the second slowest learner, only better than Random.
It starts out with a lot of explorations, presumably because
there are a large number of close-to-optimal configurations.
After about 200 evaluations, EXP3 starts to get closer to op-
timal, but much more slowly than the other strategies. UCB
starts out with one evaluation per configuration (which we



do not count when evaluating regret), and thereafter performs
on-par with Hoeffding Racing, both reaching an average re-
gret of 0.002 by the end. LaPPT and Hoeffding Racing uses
the same selection strategy during the initial warm-up phase,
hence are indistinguishable from each other at the beginning.
After 300 evaluations (3 per configuration), LaPPT starts to
compare the candidates using matched pairs t-tests and dis-
cards the statistical losers. It does so very quickly and is able
to find the best configuration in 90 out of 100 trials, taking
on average fewer than 425 evaluations. In all but 6 trials,
LaPPT narrows down to only one candidate. In comparison,
Hoeffding Racing is unable to eliminate any candidate within
700 evaluations. This is due to the looseness of the Hoeffding
bound and the fact that the mean rewards are closely clustered
together. We note that when we run the experiments beyond
700 evaluations, Hoeffding Racing and UCB do eventually
obtain the optimal candidate, and LaPPT sometimes pays the
price for aggressive elimination when it eliminates the wrong
one. However, given that evaluation of learning algorithms
could be expensive, such long evaluation horizon is often not
practical, and it is really the regret one achieves with few eval-
uations that is important. To that end, the greedy strategy of
evaluating each arm once or twice and picking the one with
the best empirical average is a reasonable strategy. But as we
can see, the more sophisticated strategies do provide a gain
when fine tuning is important.

5.2 Continuous hyper-parameter space

To investigate the predictive and computational performance
of LaPPT in combination with Nelder-Mead, we demon-
strate their use on Adult Census with the same four hyper-
parameters: number of trees, learning rate, maximum number
of leaves per tree, and minimum number of instances per leaf.
Area under ROC curve (AUC) is the metric to optimize, and
we report results on running experiments with bootstrap.

The central conjecture of the proposed approach is that lazy
evaluation improves the efficiency of the Nelder-Mead algo-
rithm for stochastic functions while maintaining predictive
accuracy. To test it, we first compare the optimization qual-
ity of classic Nelder-Mead (with 20 bootstrap rounds) with
that of LaPPT Nelder-Mead (with up to 20 bootstrap rounds,
evaluated only if required). Fig. @] shows a heatmap of the
optimal true AUC over the learning rate and the number of
leaves. (The AUC value at each point is the maximum over
the other hyper-parameters.) The figure overlays the locations
of optima found in 20 runs of LaPPT Nelder-Mead and clas-
sic Nelder-Mead, demonstrating that LaPPT-NM can find the
same optima as NM, but, as we shall see, much faster.

In Fig. [5] we compare the total number of train-test eval-
uations, the number of iterations of Nelder-Mead, and the
accuracy at the final optimum for Nelder-Mead and LaPPT
Nelder-Mead with varying test power 3. These results
demonstrate that LaPPT Nelder-Mead significantly improves
the efficiency of hyper-parameter search while still identify-
ing the optimal hyper-parameter settings. Furthermore, we
note that the algorithm not only reduce the number of evalua-
tions, but, more importantly, also results in faster convergence
due to faster onset of the inside contraction and shrinkage it-
erations, which occurs when the test is able to judge minor

variations in g(-) to be statistically insignificant. Note that
these results directly imply that LaPPT-NM is faster than NM
in wall-clock run-time.
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Figure 4: Locations of optima found by 20 runs of Nelder-
Mead vs. LaPPT Nelder-Mead
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Figure 5: Efficiency of classic and LaPPT Nelder-Mead

6 Conclusions

In this paper, we present a simple and general technique for
improving the efficiency of hyper-parameter search in super-
vised machine learning. Tying train-test resampling during
bootstrap or cross-validation allows utilizing paired hypoth-
esis tests and power analysis to limit the number of resam-
pled evaluations. The approach is shown to be effective em-
pirically on discrete hyper-parameter spaces where it out-
performs bandit-based methods, and on continuous hyper-
parameter spaces where it can be easily integrated with meth-
ods such as Nelder-Mead, improving their speed of conver-
gence in addition to reducing the number of train-test evalua-
tions.
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