Steering User Behavior
With Badges

Dan Huttenlocher
Cornell Computer Science Department
and Cornell NYC Tech

Joint work with Ashton Anderson, Jon Kleinberg, Jure Leskovec
Badges

• Have long history
 – Military medals, scouting, primary school, loyalty programs

• Not explicitly competitive
 – Contrast with ranking-based prizes

• Increasingly common online
 – Encouraging participation/contribution
 – Recognizing skills/achievement
 – Some backlash, ‘badge measles’
Social Psychology of Badges

- Broad range of possible individual value to earning badges [Antin and Churchill, 2011]
 - Goal setting
 - Instruction
 - Reputation
 - Status/Affirmation
 - Group identification
Badges and User Behavior

• Do badges affect user engagement and can we better characterize how?
 – Overall level of participation
 – Engagement in certain types of activities

• Can we help site designers define useful badges and systems if badges?

• In this work
 – Develop a model
 – Investigate in context of StackOverflow
 – Consider badge placement problem
Connected components in a graph with 100 million nodes

I am trying to get the list of connected components in a graph with 100 million nodes. For smaller graphs, I usually use the `connected_components` function of the Networkx module in Python which does exactly that. However, loading a graph with 100 million nodes (and their edges) into memory with this module would require ca. 110GB of memory, which I don't have. An alternative would be to use a graph database which has a connected components function but I haven’t found any in Python. It would seem that Dex (API: Java, .NET, C++) has this functionality but I'm not 100% sure. Ideally I'm looking for a solution in Python. Many thanks.

1 Answer

SciPy has a `connected components` algorithm. It expects as input the adjacency matrix of your graph in one of its sparse matrix formats and handles both the directed and undirected cases.

Building a sparse adjacency matrix from a sequence of \((i, j)\) pairs `adj_list` where \(i\) and \(j\) are (zero-based) indices of nodes can be done with
Assumptions and Goals of Model

- Assume badges have value to users.
- Assume each user has a preferred mix of actions, with a cost to deviate from that mix.
- A user trades off between the preferred mix and the goal of winning the badge.
- Want to understand effects of badges on overall engagement level and in “steering” user actions.
The Model

• A population of users and a site designer, with a fixed set of user actions

 Ask Q
 Answer Q
 Vote on Q
 .
 .
 .
The Action Space

- Action types A_1, A_2, ... form space denoting number of actions of each type
User Model

- User has a preferred distribution, \(p \), over action types.
- At each time step user picks a probability distribution, \(p' \), and samples an action from it.
- User incurs utility penalty for deviating from preferred distribution:
 \[g(p, p') = \| p - p' \|_2^2 \]
- User survives to next step with probability \(\Theta \) (generally \(\Theta=0.99 \)).
Badges

• Set of badges, B, each b is subset of cells in action space and has value (utility) V_b
Utility Function

• User’s utility composed of 3 parts
 – Value from badges won
 – Cost of deviating from \(p \)

\[
f(a) = \sum_{b \text{ won}} V_b + \theta [p_a^1 \cdot f(a_1 + 1, a_2) + p_a^2 \cdot f(a_1, a_2 + 1)] - g(p, p_a)
\]

Expected utility of next state
Optimization: One Targeted Dimension

- Use dynamic programming to solve
- No reward for deviating from \(p \) past boundary
- Before boundary select \(p_a \) to maximize expected utility
- Collapses along A2 dimension
 - 1D problem, solve from boundary back to origin
1D Example

- Level of targeted activity accelerates towards boundary

Example: badge at 25 type A_1 actions
Optimization: Two Targeted Dimensions

Solve directly

1D case

of type A_2 actions

of type A_1 actions
2D Example

- Acceleration toward badge boundary
A Limitation of the Model

• Return to baseline, p, after achieving badges
• Does not allow for possible de-motivating effect of achieving a badge
• In practice an external incentive can lower a person’s intrinsic incentive/preference
 – E.g., paying for blood donations can reduce the number of donors
• Possible extension, but not seen in our data
StackOverflow Badges

• Extensive use of badges

Peter Mortensen

5,214

6 27 62

• Consider two cumulative badges

• Electorate
 User votes on 600 questions

• Civic Duty
 User votes 300 times
Civic Duty, 300 votes (Silver)

- Qualitatively consistent with model
 - Acceleration towards boundary
 - Increased targeted activity level and overall

Note: aligned by day earned

For people active +/- 60 days from earning
Electorate, 600 Q Votes (Gold)

- Again qualitatively consistent
 - Single targeted dimension shows not only increased overall level but also tradeoff
Badge Placement Problem

• How should designers “place” cumulative badges to achieve desired effects?
 – E.g., frequent flyer mile status levels, votes on StackOverflow

• Define yield to be fraction of actions over lifetime on targeted dimension
 – Placement to maximize yield

User votes on ??? questions
Placing a Single Badge

• Best yielding placements are those which are quite challenging for users to achieve
 – For $\Theta=0.99$ expect only 5 targeted actions for $p^1=0.05$ yet optimal badge at 75
Two Badges on Single Dimension

• Highest yield when badges placed relatively equally apart (illustration for Θ=.99)
Relative Badge Values

- For two badges with fixed total value, best to split value equally

\[V_{b_1} = 100 - V_{b_2} \]
Conclusions

• Introduced model of user behavior
 – Predicts users increase overall engagement and steer distribution actions to achieve badges
• Observe qualitative predictions in StackOverflow data
• Introduced badge placement problem
• Many questions
 – Where value in badges comes from
 – Competition and scarcity in badges
 – Analogies with offline domains
 – Badge system design