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Mining meaningful structures from data

A Multimedia (images, videos, speech, music, text, etc.)
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time series measurements, etc.)
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Learning Representations

A Key ideas:

I Unsupervised Learnind-earnstatistical structure or
correlationof the data fromunlabeleddata (and some

labeled data)

I Deep LearningLearnmultiple levelsof representation of
Increasingcomplexity/abstraction.

I Thelearned representations can be usedfagturesin
supervisedandsemisupervisedsettings
A 1 will also talk about how to go beyond supervisec
(or semisupervised) problems, such as:
I Weakly supervisedearning
I Structured output prediction




Unsupervised learning witsparsity
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Learning object representations

A Learning objects and parts in images

A Large image patches contain interesting highe
level structures.

I E.g., object parts and full objects

A Challenge: higldimensionalityand spatial
correlations
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ConvolutionaRBM (CRBMgmL 2009

C2NJ GkF At (S M FOWBE2t AYy3IQQ y2RS 60

/ 4 Max—poollng layeP

Detection layeH

Hldden nodes (binary)

\O(C)\f GSNIY ¢6SAIKGaA ¢

M / Input dataV )

ARBM (probabilistic mode

AConvolutional structure

subj. to Y hF.<1,vky AProbabilistic mapooling
(.)€ "eell(y)” 6aYdzidza t SEC

P(v,h) o« exp (Z hf;“,j(Wk * U)i,j)

0,0,k



Convolutionabeep belief networks illustratior
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Learning objecpart decomposition

Faces v Elephants Chairs




Applications

A ClassificatiomicML 2009, NIPS 2009, ICCV 2011, Comm.
ACM 2011)

A Verification(cvrr 2012)
A Image alignmeniNIPs 2012)

A The algorithm is applicable to other domains,
such as audigNIPS 2009)
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Ongoing Work

A Investigating theoretical connections and efficie
training (ICCV 2011)

A Robust feature learning with weak supervision
(ICML 2013)

A Representation learning with structured outputs
(CVPR 2013)

A LearningnvariantrepresentationgiCmL 2009; NIPS
2009; ICML 2012)

A Multi-modal featurelearningacmL 2011)
A Lifelong representation learningsTAST 2012)
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Ongoing Work

A Investigating theoretical connections and
efficient training (ICCv 2011)

A Robust feature learning with weak supervision
(ICML 2013)

A Representatiorlearning with structured outputs
(CVPR 2013)
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Theoretical Connections and Efficient Trainn

A Connections between unsupervised learning methods

I Clustering vs. distributed representation [Coates, Lee, Ng,
AISTATS 2011]

I Can we develop better learning algorithms using the links?

A Explore theconnections between mixture models and
RBMS.

_ Softmax Activation Convolutional
GMM ~ | Gaussian RBI\/I< constrained RBM t pehasiBil < sparse RBM

I We provide anefficient training method for RBMs via the
connection.

I Thisis the first work showing that RBMs can be trained so the
they are no worse than Gaussian Mixture models (GMMSs).

A Stateof-the-art results on object classification tasks.
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Spherical Gaussian Mixtures Is equivalen
to RBM with softmax constraints

Softmax
Gaussian RBM
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Relaxing the constraints

_ Softmax Activation
Sl ~ | Gaussian RBM™ constrained RBM

P(v.h) = % exp(—E(v, h))
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Relaxing the constraints

_ | Softmax Activation
GMM | = | Gaussian RBM® | constrained RBMm T | SParse RBM

P(v.h) = % exp(—E(v, h))
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Experiments Analysis

[ICCV 2011
A Effect ofsparsityto the classification performance (Caltech 101
74 ‘ | ‘
72
70
368?
% 66|
; 64
; 62
S 6o |
BB -@-sparse RBM (w/ init) |
——sparse RBM (w/o init)
56_ . P R e KMeaﬂS -
GMM
541 : ‘ ' ‘
1 2 3 4 5 6

o

I The sparsity > 1/K showed the best CV accuracy.

A Practical guarante¢hat the sparse RBM lead to comparable or bette
classification performance than Gaussian mixtures.
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Ongoing Work

A Investigating theoretical connections and efficie
training (ICCV 2011)

A Robust feature learning with weak supervision
(ICML 2013)

A Representation learning with structured outputs
(CVPR 2013)

18



Learning from scratch

A Unsupervised feature learning
I Powerful indiscoveringfeatures from unlabeled data.

I However, not all patterns (or data) are equally important.

A When data contains lots of distracting factors, learning meaningful
representations can be challenging.

A Feature selection
I Powerful inselectingfeatures from labeled data.

I However, it assumes existence of discriminative features.
A There may not be such features at hand.
A We develop goint model for feature learning and
feature selection

I allows to learnask-relevant highlevel featuresusing
(weak) supervision
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Experiment

A Learning from noisy handwritten digits with

PGBM

Learned taskelevant
hidden unit weights:
mostly pen-strokes

Noisy digit images
(mnistbackimage)

"

Learned taskrrelevant
hidden unit weights:
noisy patterns

Inferred
switch variables
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