Berkeley Data Analytics Stack (Beyond Spark & Shark)

Ion Stoica
UC Berkeley
What is Big Data used For?

Reports, e.g.,
 » Track business processes, transactions

Diagnosis, e.g.,
 » Why is user engagement dropping?
 » Why is the system slow?
 » Detect spam, worms, viruses, DDoS attacks

Decisions, e.g.,
 » Personalized medical treatment
 » Decide what feature to add to a product
 » Decide what ads to show

Data is only as useful as the decisions it enables
Data Processing Goals

Low latency (interactive) queries on historical data: enable faster decisions
 » E.g., identify why a site is slow and fix it

Low latency queries on live data (streaming): enable decisions on real-time data
 » E.g., detect & block worms in real-time (a worm may infect 1mil hosts in 1.3sec)

Sophisticated data processing: enable “better” decisions
 » E.g., anomaly detection, trend analysis
One Reaction

Specialized models for some of these apps
 » Google Pregel for graph processing
 » Impala for interactive queries
 » Iterative MapReduce
 » Storm for streaming

Problem:
 » Don’t cover all use cases
 » How to *compose* in a single application?
Our Goals

Support *batch*, *streaming*, and *interactive* computations…

… and make it easy to compose them

Easy to develop *sophisticated* algorithms
Approach: Leverage Memory

Memory bus >> disk & SSDs

Many datasets fit into memory
» The inputs of over 90% of jobs in Facebook, Yahoo!, and Bing clusters fit into memory
» 1TB = 1 billion records @ 1 KB

Memory density (still) grows with Moore’s law
» RAM/SSD hybrid memories at horizon
Approach: Increase Parallelism

Reduce work per node \(\rightarrow\) improves latency

Techniques:
- Low latency parallel scheduler that achieve high locality
- Efficient recovery from failures and straggler mitigation
- Optimized parallel communication patterns (e.g., shuffle, broadcast)
Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution

Enable stages & jobs to share data efficiently

How?
» Resilient Distributed Datasets (RDDs): in-memory fault-tolerant storage abstraction
» Low latency scheduler
» Efficient communication patterns
Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution

Enable stages & jobs to share data efficiently

How?
 » Resilient Distributed Datasets (RDDs): in-memory fault-tolerant storage abstraction
 » Low latency scheduler
 » Efficient communication patterns
Resilient Distributed Datasets (RDDs)

How to ensure fault tolerance?

RDDs: restricted form of shared memory
 » Immutable, partitioned sets of records
 » Can only be built through coarse-grained, deterministic operations (map, filter, join, …)

Use lineage
 » Log one operation to apply to many elements
 » Recompute any lost partitions on failure
RDD Recovery

map\((f) \) group-by\((g) \) filter\((h) \)

Input file
RDD Recovery

Input file

map(f) group-by(g) filter(h)
RDD Recovery

map(f) group-by(g) filter(h)

Input file
Generality of RDDs

Surprisingly, RDDs can express many parallel algorithms
 » These naturally apply the same operation to many items

Unify many current programming models
 » Data flow models: MapReduce, Dryad, SQL, …
 » Specialized models for iterative apps: Pregel, iterative MapReduce, GraphLab, …

Support new apps that these models don’t
PageRank Performance

![Bar chart showing iteration time (s) vs. number of machines for Hadoop and Spark. The chart indicates that Hadoop has a significantly higher iteration time compared to Spark, especially as the number of machines increases.](chart.png)
Other Iterative Algorithms

- **K-Means Clustering**
 - Time per Iteration: 155 seconds
 - Hadoop: 4.1 seconds
 - Spark: 0.96 seconds

- **Logistic Regression**
 - Time per Iteration: 110 seconds
 - Hadoop: 4.1 seconds
 - Spark: 0.96 seconds
Spark: Narrow Waist of BDAS

- Spark Streaming
- BlinkDB
- Shark SQL
- Graph X
- MLbase
- ML library
- HDFS
- S3

Domain specific frameworks
Execution Engine
Storage
Spark: Narrow Waist of BDAS
Existing Streaming Systems

Continuous processing model
» Each node has long-lived state
» For each record, update state & send new records

State is lost if node dies!

Making stateful stream processing fault-tolerant is challenging
Spark Streaming

Run a streaming computation as a **series of very small, deterministic batch jobs**

Divide live stream into batches of X seconds

Spark treats each batch of data as RDDs

Return results in batches

Diagram:

- Live data stream
- Batches of X seconds
- Spark Streaming
- Spark
- Processed results
How Fast Can It Go?

Can process over **60M records/s (6 GB/s)** on 100 nodes at **sub-second** latency

Maximum throughput for latency under 1 sec
How Fast Can It Recover?

Two second batches

Recovers from faults/stragglers within 1 second

Sliding WordCount on 10 nodes with 30s checkpoint interval
Shark: Hive over Spark

Up to 100x faster when data in memory
Up to 5-10x faster even when data on disk
What Is Next?
Trade between result **accuracy** and **response time**

Why?
» In-memory processing doesn’t guarantee interactive processing
 • E.g., ~10’s sec just to scan 512 GB RAM!
 • Gap between memory capacity and transfer rate increasing
BlinkDB: Approximate Computations
Key Insight

Don’t always need **exact** answers

Input often **noisy**: exact computations do **not** guarantee exact answers

Error often acceptable if **small** and **bounded**

Best scale
± 0.5lb error

Speedometers
± 2.5 % error
(edmunds.com)

OmniPod Insulin Pump
± 0.96 % error
(www.ncbi.nlm.nih.gov/pubmed/22226273)
BlinkDB Challenges

How to estimate error bounds for arbitrary computations?

How do you know that technique you used is actually working?
 » Not trivial to check assumptions under which these estimates hold
 » Many assumptions are sufficient, not necessary
What Is Next? Graph X

GraphLab API on top of Spark
Leverage Spark’s fault tolerance
What Is Next? MLlib/MLbase

MLlib: Highly scalable ML library
MLbase: Declarative approach to ML
Summary

Spark: narrow waist of BDAS
 » Unifies batch, streaming, and interactive comp.
 » Ability to execute sub-second parallel jobs
 » Enable job’s stages and jobs to share in-memory data

Future work
 » Sophisticated computations (Graph X, MLbase)
 » Trade accuracy, speed, and cost (BlinkDB)

Vibrant open source community
 » Used by tens of companies (e.g., Yahoo!, Intel, Twitter…)
 » 60+ contributors from 17+ companies