Three Assertions about Interactive Machine Learning

Xiaojin Zhu

Department of Computer Sciences
University of Wisconsin-Madison

jerryzhu@cs.wisc.edu
2013
Assertion 1: Humans can be modeled with statistical learning theory

- Unifying math behind cognitive science and machine learning
Example 1a: Human Rademacher Complexity

(grenade, A), (meadow, A), (skull, B), (conflict, B), (queen, B)
Example 1a: Human Rademacher Complexity

(grenade, A), (meadow, A), (skull, B), (conflict, B), (queen, B)

- “learning random labels” \((x_1, \sigma_1) \ldots (x_n, \sigma_n)\)

- Rademacher complexity (similar to VC dimension)

\[
Rad_n(F) \approx \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_i \hat{f}(x_i) \right|
\]

... of our mind!

- Larger Rademacher complexity \(\rightarrow\) worse generalization error bound (overfitting) [ZRG NIPS09]
Example 1b: Human Semi-Supervised Learning

- Humans learn supervised first, then
- \ldots decision boundary shifts to distribution trough in test data
- Can be explained by a variety of semi-supervised machine learning models [GRZ ToCS13]
Example 1c: Human Active Learning

Passive learning \(\inf_{\hat{\theta}_n} \sup_{\theta \in [0,1]} \mathbb{E}[|\hat{\theta}_n - \theta|] \geq \frac{1}{4} \left(\frac{1+2\epsilon}{1-2\epsilon} \right)^2 \epsilon \frac{1}{n+1} \)

Active learning \(\sup_{\theta \in [0,1]} \mathbb{E}[|\hat{\theta}_n - \theta|] \leq 2 \left(\sqrt{\frac{1}{2}} + \sqrt{\epsilon(1 - \epsilon)} \right)^n \)

<table>
<thead>
<tr>
<th>noise</th>
<th>(\epsilon = 0)</th>
<th>(\epsilon = 0.05)</th>
<th>(\epsilon = 0.1)</th>
<th>(\epsilon = 0.2)</th>
<th>(\epsilon = 0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assertion 2: There is a theoretically optimal way to teach

Human teaches machine (interactive ML)
Machine teaches human (education)
Example 2: 1D threshold function

- Passive learning \((x_i, y_i) \overset{iid}{\sim} p\), risk \(\approx O\left(\frac{1}{n}\right)\)

- Active learning risk \(\approx \frac{1}{2^n}\)

- Minimum teaching: \(n = 2\). (teaching dimension)

- Alternatively: easy to hard (curriculum learning, fading, parentese)
A formula for optimal teaching

1. World: $p(x, y \mid \theta^*)$, loss function $\ell(f(x), y)$
2. Learner: makes prediction $f(x \mid \text{data})$
3. Teacher:
 - clairvoyant, knows everything above
 - can only teach by examples (x, y)
 - goal: choose the least-effort teaching set $D = (x, y)_{1:n}$ to minimize the learner’s future loss (risk):

\[
\min_D \mathbb{E}_{\theta^*}[\ell(f(x \mid D), y)] + \text{effort}(D)
\]

- if the future loss approaches Bayes risk, D is a teaching set and n is the (generalized) teaching dimension

[KZM NIPS11, Z arXiv13]
Assertion 3: Even when human teachers are not optimal, they are not \textit{iid}

\dots and machine learners should take advantage of that non-\textit{iid}ness.
Example 3: Feature Volunteering (Interactive ML)

[JZSR ICML13]
Example 3: Sampling with Reduced Replacement

Probability \propto Size
Example 3: Sampling with Reduced Replacement

Probability \propto Size
Example 3: Sampling with Reduced Replacement

Probability \propto \text{Size}
Example 3: Sampling with Reduced Replacement

Probability \propto Size
Example 3: Sampling with Reduced Replacement

<table>
<thead>
<tr>
<th>Domain</th>
<th>Reference Distributions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SWIRL</td>
<td>Equal</td>
<td>Schapire</td>
</tr>
<tr>
<td>sports</td>
<td>0.865</td>
<td>0.847</td>
<td>0.795</td>
</tr>
<tr>
<td>movies</td>
<td>0.733</td>
<td>0.733</td>
<td>0.725</td>
</tr>
<tr>
<td>webkb</td>
<td>0.463</td>
<td>0.444</td>
<td>0.429</td>
</tr>
</tbody>
</table>
References

R. Castro, C. Kalish, R. Nowak, R. Qian, T. Rogers, and X. Zhu.
Human active learning.

B. R. Gibson, T. T. Rogers, and X. Zhu.
Human semi-supervised learning.

Learning from human-generated lists.
In The 30th International Conference on Machine Learning (ICML), 2013.

How do humans teach: On curriculum learning and teaching dimension.

Human Rademacher complexity.
Three Assertions

1. Humans can be modeled with statistical learning theory.
2. There is a theoretically optimal way to teach.
3. Even when human teachers are not optimal, they are not iid.
Capacity

VC-dimension

- F: a family of binary classifiers
- VC-dimension $VC(F)$: size of the largest set that F can shatter
- With probability at least $1 - \delta$,

$$\sup_{f \in F} R(f) - R_n(f) \leq 2\sqrt{2 \frac{VC(F) \log n + VC(F) \log \frac{2e}{VC(F)}}{n} + \log \frac{2}{\delta}}.$$

- $R(f)$: error of f in the future
- $R_n(f)$: error of f on a training set of size n
Rademacher complexity

\[\sigma_1, \ldots, \sigma_n : P(\sigma_i = 1) = P(\sigma_i = -1) = \frac{1}{2} \]

Rademacher complexity

\[\text{Rad}_n(F) = \mathbb{E}_{\sigma,x} \left(\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_i f(x_i) \right| \right) . \]

With probability at least \(1 - \delta\),

\[\sup_{f \in F} \left| R_n(f) - R(f) \right| \leq 2\text{Rad}_n(F) + \sqrt{\frac{\log(2/\delta)}{2n}} . \]
Machine learning \rightarrow human learning

- f: you categorize x by $f(x)$
- F: all the classifiers in your mind
- $R_n(f)$: how did you do in class
- $R(f)$: how well can you do outside class
- Capacity: can we measure it in humans?
 - $VC(F)$: too brittle (find one dataset of size n) and combinatorial (verify shattering)
 - Others may behave better, e.g., $Rad_n(F)$
Overfitting indicator

- \hat{e} test set error, $\hat{\hat{e}}$ training set error
- generalization error bound holds
- actual overfitting tracks bound (nice but not predicted by theory)

The study of capacity may
- constrain cognitive models
- understand groups differ in age, health, education, etc.
Human semi-supervised learning, the other way around

Human unsupervised learning first

trough peak uniform converge

... influences subsequent (identical) supervised learning task
Human teacher behaviors

<table>
<thead>
<tr>
<th>strategy</th>
<th>boundary</th>
<th>curriculum</th>
<th>linear</th>
<th>positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>“graspability” ((n = 31))</td>
<td>0%</td>
<td>48%</td>
<td>42%</td>
<td>10%</td>
</tr>
<tr>
<td>“lines” ((n = 32))</td>
<td>56%</td>
<td>19%</td>
<td>25%</td>
<td>0%</td>
</tr>
</tbody>
</table>