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Low-distortion Inference of Latent Similarities from a Multiplex Social Network∗
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Abstract

Much of social network analysis is — implicitly or ex-
plicitly — predicated on the assumption that individ-
uals tend to be more similar to their friends than to
strangers. Thus, an observed social network provides a
noisy signal about the latent underlying “social space:”
the way in which individuals are similar or dissimilar.
Many research questions frequently addressed via so-
cial network analysis are in reality questions about this
social space, raising the question of inverting the pro-
cess: Given a social network, how accurately can we
reconstruct the social structure of similarities and dis-
similarities?

We begin to address this problem formally. Ob-
served social networks are usually multiplex, in the
sense that they reflect (dis)similarities in several differ-
ent “categories,” such as geographical proximity, kin-
ship, or similarity of professions/hobbies. We assume
that each such category is characterized by a latent
metric capturing (dis)similarities in this category. Each
category gives rise to a separate social network: a ran-
dom graph parameterized by this metric. For a concrete
model, we consider Kleinberg’s small world model and
some variations thereof. The observed social network is
the unlabeled union of these graphs, i.e., the presence or
absence of edges can be observed, but not their origins.
Our main result is a near-linear time algorithm which
reconstructs each metric with provably low distortion.

1 Introduction

Much of social network analysis is, implicitly or explic-
itly, predicated on the assumption that people tend to
be more similar to their friends than to strangers. While
many tasks — such as analyzing power and centrality,
trading and exchange, or understanding and influenc-
ing the diffusion of viruses or information — rely cru-
cially on the precise network structure, many others —
such as link prediction, identification of communities,
or marketing to friends of past buyers — use network
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structure as a noisy signal about an underlying social
similarity space. To illustrate this insight differently,
consider altering a social network data set by removing
links between “dissimilar” pairs of individuals, and in-
serting instead links between “similar” (but previously
unconnected) pairs. If this change makes the analysis
task easier, rather than impossible, then the analysis
task is really about the “social structure” — the la-
tent similarities and dissimilarities between individuals
— rather than about the actual network structure.

Given the abundance of important problems natu-
rally phrased in terms of social structure (discussed in
more detail below), it is a natural goal to explicitly re-
construct social structures from a given social network.
Knowing the social structure may also be of indepen-
dent interest, as it sheds light on the forces governing
social link formation.

The task of inferring social structure in this sense
is made non-trivial by the following two obstacles.
First, despite a general tendency for friends to be
more similar than strangers, many friends are still
sufficiently different from each other to look essentially
random. Second, and perhaps more fundamentally,
social networks are multiplex [15, 39, 51]: they tend
to be the union of multiple often independent relations
among the same actors. For instance, friendships could
result from physical proximity, similarity of occupation,
kinship, similarities of hobbies, etc. If individuals are
very similar in even one such attribute, they are more
likely to be connected.

The main contribution of this paper is a near-linear
time algorithm for reconstructing the latent social struc-
ture with provably low distortion. The model explicitly
produces a union of graphs, one for each category, and
an important feature of the algorithm is that it sepa-
rates the different graphs from each other. We also pro-
vide two extensions which, respectively, further improve
the distortion, and partially address the issue of data
scarcity (i.e., very small node degrees). The algorithms
in this paper are based on, and significant extensions of,
a natural idea that is widely used in practice: nodes are
likely to be close if they share many common neighbors.

An overview of the model. We posit a latent
space model (described in detail in Section 2) for the
generation of social networks akin to models widely used
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in the mathematical sociology, statistics, and computer
science communities [12, 20, 23, 24, 25, 27, 31, 41, 43,
44, 47] (see also the survey [50, pages 15–21]).

The model is based on two widely accepted tenets
about social networks (e.g., [8, 37]). First, people are
more likely to have ties with those who are similar
to them, but also have many ties to others who are
dissimilar.1 Second, multiple social dimensions (such
as geography, occupation, kinship, hobbies, etc.) can
independently lead to interactions and the formation of
ties.

We call the social dimensions along which people
can be (dis)similar (social) categories, to avoid confu-
sion with the geometric dimensions of individual met-
ric spaces. Each category is given by a metric space
Di, i = 1, . . . ,K; together, the Di define the social dis-
tances between the individuals. Each of the n individ-
uals occupies a point in each of the categories. For con-
creteness, and in accordance with much of the preceding
literature, we assume that each category is a Euclidean
space of known dimensionality [23, 24, 27, 31, 41, 43],
and that the density of the points corresponding to indi-
viduals is nearly uniform [24, 27, 43]. Furthermore, we
assume that the categories have small local correlation.
The “local correlation” of two categories is the maximal
overlap between any two small balls in those categories.
(See Equation (2.1) in Section 2.)

Each category independently gives rise to a social
network Gi, modeled as a random graph whose edge dis-
tribution is parameterized by the corresponding metric
space Di. Specifically, we use a slight variation of Klein-
berg’s small-world model [27], in which edge probabili-
ties decrease polynomially in Di(u, v). For our purposes,
the key feature of the model is that the probability of
shorter links is much higher, but long-range links also
appear with a significant probability; this captures the
first tenet. The algorithm observes the union G =

⋃
i Gi

of the individual networks Gi (on the same node set),
but does not learn which particular network(s) Gi an
edge belonged to. This captures the second tenet; only
the existence, but not the social “origins,” of ties can
be observed.2 The algorithm’s goal is to use G to recon-
struct the individual metrics Di with small distortion,

1The model is agnostic about whether this similarity is caused

more by homophily [32, 38] (the tendency to form ties with those

who are similar) or by social influence [36, 42] (the tendency to
become similar to one’s associates).

2Our model does not include any information such as demo-

graphics, location, wall posts, or communications which would
frequently be available to social networking sites [5]. Our goal
here is to understand at a fundamental level how much informa-

tion on social structures can be inferred algorithmically from the
observed social network alone.

with high probability (over the random network genera-
tion process).

Importantly, social similarity spaces in general tend
not to be metrics (see, e.g., [10]), in the sense that the
triangle inequality fails to hold. The main reason is
the presence of multiple social categories. For example,
one’s co-worker and one’s relative could be very dissimi-
lar to one another, even though the individual is similar
to both. The inclusion of a union or minimum in the
model is crucial to capture this.

Algorithms and results. Our main contribution is
a near-linear time algorithm, called the Amoeba algo-
rithm, which infers all individual categories with prov-
ably low distortion, with high probability. The following
theorem captures the result slightly informally.

Theorem 1.1. (informal) If the K metric spaces Di
are locally sufficiently different, and the average node
degrees are at least Ω(K3 log2 n), then with high prob-
ability, the Amoeba algorithm, in near-linear time, re-
constructs metrics D′i such that D′i approximates Di with
constant multiplicative distortion (and at most polyloga-
rithmic additive error).

That this approximate reconstruction should be
possible at all — regardless of the running time — is
somewhat surprising. One might think a priori that
after combining two social networks, there would simply
be no way to tease them apart.

In other words, a priori, the challenge appears to
be information-theoretical (does the network contain
enough information for distance reconstruction with any
provable guarantees?) as much as computational. We
also remark that even the single-category version was
raised by Kleinberg [29] as an open question; we answer
the reconstruction question in the positive even for
multiple categories.

The Amoeba algorithm, we well as all other al-
gorithms in this paper, is broadly based on a heuris-
tic widely used in practice (e.g., in Facebook, or see
[2, 33, 43, 46]): edges (u, v) are more likely to be between
friends in a category if they are “supported” by many
common neighbors of u and v in that category. How-
ever, to deal with multiple categories, low node degrees,
or to sharpen the distance estimates, the basic idea of
counting common neighbors needs to be extended sig-
nificantly.

The Amoeba algorithm, presented and analyzed in
detail in Section 3, consists of two stages. In a first
stage, individual edges are pruned if they do not have
enough common neighbors, a direct implementation of
the common neighbors heuristic.3 In the second stage,

3Sarkar et al. [43] showed that under a model similar to
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which we call the Amoeba stage, basic estimates of the
individual categories are constructed one by one. Each
iteration starts with a polylog-sized clique in the graph
computed by the first stage, which is then expanded one
edge at a time: an edge (u, v) is added to a category only
when enough of u’s neighbors lie in a small ball around
v according to the current estimate of the category.
The basic idea is that any sufficiently large clique must
be sufficiently close in one category. The clique then
bootstraps further iterations, in that a node u with
many edges to a small ball around v must itself be
close to v. While this intuition is straightforward, each
iteration loses accuracy, so it takes a delicate proof to
show that this refined version of the common neighbors
heuristic guarantees low distortion.

We improve the main result in the following two
directions. The first direction (Sections 4.1 and 4.2)
focuses on improving the distortion using long-range
links, which are now treated as an additional data source
rather than an obstacle to be pruned. We improve the
distortion from a multiplicative constant to a factor
1 + o(1), using a post-processing phase (run after the
Amoeba algorithm) which we call Two-Ball Algorithm.
This is a variation of the common neighbors heuristic
where instead of common neighbors of two nodes (u, v),
the algorithm counts links between two node sets. The
node sets are low-radius balls around u and v according
to the initial distance estimates. This result requires a
stronger notion of low correlation between categories.
Under a stronger uniform density conditions, the Two-
Ball Algorithm can be applied recursively, yielding unit
distortion (with at most polylogarithmic additive error).

Second (in Section 4.3), we deal with the issue of
data scarcity, which in our setting translates to low
node degrees. In the low (constant) node degree regime,
the common neighbors heuristic is uninformative, and
it instead becomes necessary to count disjoint constant-
length paths for a suitably chosen constant. Combin-
ing the new initial pruning phase with a subsequent
Two-Ball Algorithm requires a much more careful anal-
ysis, which shows that all sufficiently long edges can
be treated as mutually independent given the pruned
graph. We recover (essentially) all our results for the
single-category case; extending the results to multiple
categories remains a direction for future work.

These additional results are briefly described in
Section 4; detailed proofs can be found in the full version
of this paper [1].

Our algorithms are modular: a pre-processing step
(counting common neighbors, or the low-degree algo-

ours (but using edge probabilities that decrease exponentially

with distance), counting common neighbors leads to an accurate
distance estimate for a single-category social network.

rithm of Section 4.3) prunes away very long edges. The
Amoeba step separates different metrics and constructs
initial distance estimates (though we have not adapted
the algorithm and analysis to low node degrees). Fi-
nally, the Two-Ball Algorithm and its recursive version
can be used to further improve the distortion in indi-
vidual categories.

Discussion of the model. Our modeling goal is not to
define a model of social networks capturing all of their
features; this would be a formidable/impossible task for
which there is much research but not much consensus.
Instead, we aim for generally accepted modeling choices
which capture in a clean way the main algorithmic chal-
lenges inherent in rigorous distance reconstruction. In
particular, our main goal was to capture the two con-
ceptual obstacles to distance reconstruction: links be-
tween dissimilar individuals, and multiple social cate-
gories. Nevertheless, we discuss some particular model-
ing choices in more detail.

1. In Kleinberg’s small-world model [27, 26, 29, 18],
a version of which we adapt as a generative model
for individual categories, the probability for an edge
between two nodes to exist decreases polynomially in
the nodes’ distance. Naturally, many other distributions
lead to distance-based random graphs [7].

Much of the past work in the statistics community
[23, 24, 31, 41, 43] assumed that the edge probabilities
were logit-linear in the distance, i.e., that log( p

1−p ) is lin-

ear in D(u, v). Since long-range links are thus exponen-

tially unlikely (p = e−αD(u,v)

1+e−αD(u,v) ), the reconstruction task
becomes much easier. More importantly, to the extent
that precise distributions have been empirically tested,
remarkable fits have been found [3, 5, 34] with Klein-
berg’s inverse polynomial distribution [27, 28].4 Fur-
thermore, our main constant-distortion result holds for
a much more general class of distributions, including
logit-linear distributions.

2. The choice of Euclidean spaces with near-uniform
density. Both choices (Euclidean and near-uniform) are
ubiquitous in past work5 [20, 23, 24, 25, 27, 31, 41, 43],
and are made mostly for technical convenience; they
allow us to separate the conceptual difficulty of teasing
apart different metrics and inferring distances with low
distortion from the technical difficulty of dealing with
arbitrary metric spaces. We believe that future work

4However, links that appear long could plausibly be short in

another metric; whether inverse polynomial distributions remain
prevalent when multiple metrics are considered is an interesting

— although difficult — direction for future empirical work.
5In many respects, our kind of latent space models deteriorate

if node densities can be highly non-uniform [19].
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will achieve similar results for more general metric
spaces or related structures, in particular, ultrametrics
[12, 28, 47], which are another popular choice of latent
metric spaces.

3. The choice of a union or minimum to combine
individual metrics. This choice is clearly a simplification
of reality: individuals are more likely to form ties if they
share similarities in multiple dimensions, e.g., they work
in the same field and live in the same town. Our model
is supposed to capture in the cleanest way the difficulty
of separating edges originating from different categories,
and is certainly a better approximation to reality than
widely used models treating the social structure as one
metric space.

Our model is closely related to (and a slight gen-
eralization of) a notion of social distance proposed by
Watts, Dodds, and Newman [53], which treats the social
distance as the minimum of distances in multiple met-
rics. To the extent that past work explicitly discussed
models of multiple categories, it was also based on the
minimum [23, pp. 337, 348], [47, p. 335]. A generaliza-
tion to more realistic models is a natural direction for
future work.

4. We capture a notion of “independence” between
categories by requiring that small balls in different cate-
gories have small overlap. Even without restrictions on
computational resources, some assumption about “in-
dependence” is clearly necessary: if categories could be
extremely similar, then no low-distortion reconstruction
seems possible. It is an interesting direction for future
work whether a few isolated violations of the condition
permit low-distortion reconstruction in all but the af-
fected areas of the metric spaces.

Our condition is significantly weaker than requiring
probabilistic independence. Several past papers (using
a single metric space) assumed that nodes were placed
independently and uniformly at random over some space
[24, 43]; such a model of individual categories would im-
ply our “small intersection” condition with high proba-
bility. In fact, we show (see the full paper for details)
that with high probability, the “small intersection” con-
dition holds even when nodes are placed adversarially,
and their names are permuted randomly. We also re-
mark that while in reality, we will frequently observe
high correlation between “categories” (such as work and
hobbies), this could be construed as a sign that the cate-
gories should be chosen differently, in order to represent
the latent traits that manifest themselves in choices of
both occupations and hobbies.

Applications. Our work provides two natural recon-
struction abilities: separating edges by categories, and
reconstructing individual categories with low distortion.

Both of them have multiple useful applications.
Important industrial applications for social network

information include improving ad placement (social ad-
vertising), web search results (social search), and prod-
uct recommendations. These applications are of vital
importance for some of the major players on the Web.
A key commonality of all three applications is that they
use the behavior of friends (clicking, searching, purchas-
ing) to predict the behavior of an individual. Yet, two
recent studies [21, 35] undertaking a quantitative evalu-
ation of the predictive power of social links for purchases
and click behavior have found at best mixed evidence.

This apparent conundrum is resolved by noticing
that many links are long-range, and short-range links
may be short in an irrelevant category for the predic-
tion task. Indeed, a recent data-driven study by Tang
and Liu [52] has shown that social link-based classifiers
perform much better when edges are labeled with cate-
gories in which they are short. We conjecture that such
classifiers would improve even further if instead of edges,
the actual social distance between nodes were used.

The ability to separate social categories also enables
the automatic detection of circles of friends from differ-
ent contexts in social networking sites. This automatic
detection has been cited as one of the main selling points
of Google+, and is at the heart of the startup Katango.
In this sense, our work provides some theoretical un-
derpinnings for this fast-growing facet of the social net-
working market. Separating edges by categories has the
additional benefit that one can identify when edges are
short in more than one category, which could enable the
automatic detection of close friends [54, 55].

Another natural application is the discovery of “so-
cial communities” [9, 16, 17, 13, 45]. One might argue
that the plethora of different network community de-
tection objectives and heuristics is largely a result of
stating the objectives and algorithms in terms of the
graph structure, when the goal is really to identify clus-
ters in the metric spaces. Since the social space is rarely
explicitly modeled or related to the network, the connec-
tion between the objective function and the actual de-
sired object is absent. Explicitly reconstructing the so-
cial space would constitute the first step toward a more
sound community identification algorithm. The pres-
ence of multiple categories in the model will naturally
give rise to overlapping communities as well. Indeed,
some of the work on reconstructing Euclidean spaces
in the statistics community [23, 31] is explicitly moti-
vated by the desire to identify communities, and builds
community structure into a Bayesian prior.

Social distances can also be used to predict unob-
served or potential social links. Link prediction has been
studied in [2, 12, 33, 43, 46]. Unobserved or poten-
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tial links are most likely present between node pairs at
small distances; hence, once distances are known, miss-
ing links can be predicted easily [12, 43]. Indeed, ex-
plaining why popular heuristics, such as counting com-
mon neighbors, work in practice [2, 33, 46] was the
main motivation for Sarkar et al. [43] to study latent
Euclidean spaces.

Related work. Due to space constraints, an in-depth
discussion of related work is deferred to the full paper.

A lot of recent work [5, 12, 20, 23, 24, 25, 31, 41,
44, 47] uses Bayesian Models or Maximum Likelihood
Estimation to reconstruct metric spaces (mostly, but
not exclusively, Euclidean). These papers do not model
multiple categories, and they do not come with any
guarantees on the quality of approximation of the
inferred metric; in addition, their inference problems are
often not tractable, and heuristics without guarantees
even on likelihood or probability are used. The most
notable exception is the work of Sarkar, Chakrabarti,
and Moore [43], who are motivated by the goal of
explaining why simple heuristics for link prediction,
such as counting common neighbors, are successful.
As part of their analysis, they show that for a single
category with logit-linear edge probabilities, counting
common neighbors gives accurate distance estimates.

There are conceptual similarities between the
present paper and simultaneous independent work by
Arora et al. [4] and Balcan et al. [6]. Their goal is to
reconstruct overlapping community structure with prov-
able guarantees. They posit latent set-based structures
which can be interpreted as 0-1 metrics. Interestingly,
they also require a “limited overlap” condition, and
some of the algorithmic ideas used are similar. How-
ever, the reconstructed objects are different, and there
is no analogue in their work to our post-processing steps
and the algorithms we design for dealing with low de-
grees.

2 Definitions and Preliminaries

We define a formal model for the latent social space
that gives rise to observed social networks. In general,
it will not be a metric space: it naturally possesses
multiple social dimensions, and proximity in just one
of those dimensions (e.g., geography or occupation)
usually means that individuals are “close.”

First, we define a basic model of a single social met-
ric space. We then discuss how to extend the concept
to multiple metrics; in particular, we formalize a notion
of metric spaces being sufficiently “independent.”

Throughout, V is a ground set of n nodes. For a
metric D, we use the standard notion of balls: B(u, r) =
{v | D(u, v) ≤ r}. We liberally use O(·) notation to

simplify the presentation. In theorem statements, the
constants in O(·) can depend on the constants in our
setting. Elsewhere, the constants in O(·) are absolute,
unless noted otherwise.

Most of our results are with high probability, with
respect to the randomness in the graph generation
process. By this, we mean that the success probabilities
are 1 − n−c, where the constant c ≥ 1 is large enough
to allow all needed applications of the Union Bound
(over polynomially many events). By a slight abuse
of notation, we will write with high probability for
probability 1 − n−c, without explicitly specifying the
constant c ≥ 1.

A model for one social category. A single cate-
gory of the latent space is modeled essentially as a d-
dimensional Euclidean space. More precisely, V is a
subset of the d-dimensional torus6, i.e., the nodes lie
in [0, R]d for some R, and the distance between x, y ∈
[0, R]d is D(x, y) = (

∑
i(min(|xi−yi|, R−|xi−yi|))p)1/p.

We require that the node density be nearly uniform, in
the following sense: any unit cube in the torus contains
between one and CUD nodes, for some known constant
CUD ≥ 1. (Since CUD is always a constant, we some-
times hide CUD factors in O(·) notation.) For some of
our results, we also want to use the actual lattice struc-
ture as a reference: We refer to the graph of integer
points from [0, R]d with edges between all pairs at dis-
tance D(x, y) ≤ 1 as the toroidal grid.

If nodes u, v are at distance r = D(u, v), then the
edge (u, v) is present independently of other edges, with
probability f(r) = min(1, Csgksg r

−d). Here, Csg =
Θ( 1

logn ) is a normalization constant chosen to ensure
that the expected average node degree is 1 whenever
ksg = 1. Then, ksg is a parameter controlling the
expected average node degree. When Csgksg ≤ 1, the
expected average degree is exactly ksg; otherwise, the
dependence of the node degree on ksg is sublinear and
strictly monotone. We call ksg the target degree, even
though strictly speaking, it does not equal the average
degree. Following the literature (e.g., [27, 28]), we
focus on the cases ksg = O(1) and ksg = polylog(n).
We use Esg to denote the edge set obtained from this
distribution, and G(V,Di) for the random graph model,
which we call the single-category social graph.

When ksg ≥ 1/Csg, all edges of length at most 1 are
present in Esg with probability 1. Otherwise, even to
ensure connectivity of the social graph, one must insert
a suitable “local edge set” separately. (For instance,
much of the literature on small-world networks assumes

6Prior work deals with a d-dimensional grid, which is somewhat

undesirable, as there is an asymmetry between the nodes on the
border and on the inside.
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that the d-dimensional grid is always part of the graph.)
This issue is discussed in more detail in Section 4.3, in
the context of low node degrees.

Our main result easily extends to a more general
model in which, for a suitably large R = polylog(n),
an edge (u, v) of length r = D(u, v) is present with
probability at least f(r) for all r < R, and with
probability smaller than f(r) for all r ≥ R. We omit
this generalization for ease of presentation.

Multiple social categories. When multiple so-
cial categories give rise to edges independently (such
as work-related, geography-related, and hobby-related
friends), we model the observed social network as the
union of the graphs generated by the individual cat-
egories. Formally, each social category is a single-
category social graph Gi = G(V,Di) with near-uniform
density for i = 1, . . . ,K, and the edge sets of the Gi are
mutually independent. K is a (small) constant. Balls
with respect to the category-i metric are denoted by
Bi(u, r). A multi-category social graph is obtained by

taking the union of all edges, i.e., Esg =
⋃K
i=1E

(i)
sg . Tak-

ing the union is analogous to defining the social distance
as the minimum over the categories; in particular, the
social space thus defined is not a metric.

The different categories may have different param-
eters, such as the target degree or number of dimen-
sions. If the target degrees are vastly different, then one
category could be completely “drowned out” by other,
denser, categories, which would make it impossible to
observe its structure. Therefore, we assume that the

target degrees k
(i)
sg of the categories are within a known

constant factor of one another. We define the target
degree of the multi-category social graph as the average

ksg = 1
K ·
∑
i k

(i)
sg .

Local Disjointness of Categories. In order to be
able to distinguish the edges arising from different cat-
egories, it is necessary that the underlying metrics of
different categories be sufficiently different. We capture
this intuition by requiring that any pair of small balls
in two different categories be sufficiently different: for-
mally, the Local Category-Disjointness condition states
that for any two balls Bi(u, r), Bi′(u

′, r′) in distinct cat-
egories i 6= i′, with r, r′ = O(polylog(n)),

|Bi(u, r) ∩Bi′(u′, r′)| ≤ O(log n).(2.1)

This condition suffices for our main result; some
of the extensions require a similar but stronger local
condition called Scale-R Category-Disjointness, which
will be introduced in Section 4.2. The Local Category-
Disjointness condition is not overly strong; for in-
stance, we prove (details to be found in the full pa-
per) that both Local Category-Disjointness and Scale-R

Category-Disjointness hold with high probability when
node identifiers within each category are randomly per-
muted.

Input and output. Since our model has several
parameters, we need to be precise about what is known
to the algorithm. Most importantly, in terms of the
social network, only the union Esg of all social network
edges is revealed to the algorithm; the division into

individual categories E
(i)
sg is not given.

We assume that the algorithm knows how many
embeddings it needs to construct, and into what spaces.
More formally, this means that K (the number of
categories), di (the number of dimensions), and Ri (the
sizes of the tori) are known to the algorithm. The
average target degree ksg can be estimated from the
expected degree, and by Chernoff Bounds, such an
estimate will be within 1 ± O(n−1/2) of the correct
value with high probability. According to the model, the

individual target degrees k
(i)
sg lie within a constant factor

of ksg, and we assume that this constant factor is also
known to the algorithm. To simplify presentation, we

assume that the target degrees k
(i)
sg and the dimensions

di are the same for all categories i, and that ksg is
known.

We also assume that the upper bound CUD on
the number of points in any unit cube is known to
the algorithm. Knowing CUD and the other model
parameters, the normalization constant Csg = Θ( 1

logn )
can also be computed to within a constant factor.

The goal of the algorithm is to output metrics D′i
that approximate the original Di. If the output satisfies

σD(u, v) ≤ D′(u, v) ≤ δD(u, v) + ∆

for all node pairs u, v, then we say that D′i estimates Di
with contraction σ, expansion δ and additive error ∆.
The multiplicative distortion of D′i is then δ/σ. If we
mention no multiplicative distortion (or contraction),
then we implicitly refer to the case of distortion (con-
traction) 1. We do not require that D′i itself be a di-
dimensional Euclidean metric, only that it approximate
Di with low distortion.

Chernoff bounds. In many places, we bound tail de-
viations using standard Chernoff Bounds. Specifically,
we use the following version, which can be found, e.g.,
in [14, pages 6–8].

Theorem 2.1. (Chernoff Bounds) Let X be the
sum of independent random variables distributed in
[0, 1], and let µ′ ≥ µ = E[X]. Then the following hold:

Prob [ |X − µ| > δµ ] ≤ e−µ δ
2/3 (∀ δ > 0)(2.2)

Prob [X > (1 + δ)µ′ ] ≤ e−µ
′ δ2/3 (∀ δ ∈ (0, 1)).(2.3)
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3 The main result

In this section, we present our main result, an algorithm
for distance reconstruction for multiple categories with
constant distortion.

Theorem 3.1. Consider a multi-category social graph
with Csgksg = Ω(log n), near-uniform density and Local
Category-Disjointness. There is an algorithm that with
high probability reconstructs distances in each category
with constant expansion, no contraction, and polylog(n)
additive error. Moreover, such distance estimates (as
spanner graphs or as distance labels) can be computed
in time O(npolylog(n)).

3.1 Overview and intuition

We begin with a high-level overview of the algorithm
and the intuition for the proof, before discussing the
different stages in detail in individual subsections. Re-

call that the algorithm’s input is the set Esg =
⋃
iE

(i)
sg

of edges from all categories. For the entire section, we
assume that the average node degree is high enough:
Csgksg = Ω(16dK3 log n) for a sufficiently large constant
in Ω(·). Let rloc = Θ((Csgksg)1/d) be the local radius:
by definition of the generative model, all edges between
node pairs (u, v) at distance D(u, v) ≤ rloc are in Esg

with probability 1. We define the pruning radius to be
rpru = Θ(rlocK

2/d).
The algorithm proceeds in multiple stages. Each

of these stages makes use of the (random) long-range
edges. To avoid stochastic dependencies between the
stages, we can randomly partition the edges of Esg into
a constant number of sets. Each stage then makes use
of its own set. Since the nodes’ degrees are high enough,
this does not affect the high-probability guarantees. For
ease of notation, we will not explicitly talk about the
partitions for the remainder of this section. All results
in this section hold with high probability.

In the first stage, called the Two-Hop Test, the
algorithm produces a pruned set Epru (which need not
be a subset of Esg), with the following guarantee for all
node pairs (u, u′):

• If u, u′ are at distance at most rloc in (at least) one
category i, then (u, u′) ∈ Epru.

• If u, u′ are at distance at least rpru in all categories
i, then (u, u′) /∈ Epru.

Thus, the guarantee is that all short edges are
present, and all sufficiently long edges are absent. The
algorithm makes no guarantees for node pairs in the
intermediate distance range.

To achieve this pruning, the Two-Hop Test counts
the number of 2-hop paths (common neighbors) between

(u, u′), and compares it to a carefully chosen threshold.
Similar to what Sarkar et al. [43] showed for the single-
category case and the logit-linear edge probabilities, our
analysis shows that this simple heuristic can provide
provable distortion guarantees under the small-world
model, even in the more difficult case of multiple
categories.

In the second stage, called Amoeba stage, the algo-

rithm covers Epru with individual edge sets E
(i)
amb (which

need not be disjoint); the set E
(i)
amb corresponds to cate-

gory i. The key property we prove is that whenever u, v
are at distance at most rloc in category i, then (u, v) ∈
E

(i)
amb, whereas (u, v) /∈ E(i)

amb whenever u and v are at
distance at least ramb = Θ(rpruK

3/d) = Θ(rlocK
5/d).

Again, for the intermediate range, the algorithm makes
no guarantees about the presence or absence of edges.
This guarantee implies that the shortest-path metric of

E
(i)
amb gives an embedding of Di with constant multi-

plicative distortion O(K5/d) for all node pairs at dis-
tance at least rloc, and poly-logarithmic additive distor-
tion for all node pairs at distance at most rloc.

The algorithm constructs the edge sets E
(i)
amb one

by one. For each i, it begins by finding a poly-
logarithmically large clique in Epru that is sufficiently

spread out in all previously constructed E
(j)
amb. (We

show using the Local Category-Disjointness condition
that the node set of this clique will have diameter at
most 4rpru in some category i). Starting from this
clique, as long as possible, it adds edges (u, v) that
are “supported” by enough edges (in Esg) between v’s

neighborhood in E
(i)
amb and u. The key part of our

analysis is to show that this process will indeed add all
sufficiently short edges (and in particular end up having
added all nodes), while excluding all edges that are long
in category i.

Throughout this section, we frequently count the
number of edges in Esg between two node sets (one
of which may be a single node). We usually calculate
the expectation, and then invoke Chernoff Bounds to
guarantee that the number of edges is within the desired
range. The expectation or desired number of edges will
be (at least) logarithmic, allowing the application of
Chernoff Bounds.

3.2 Pruning stage: the Two-Hop Test

For a node pair u, v, let MΛ(u, v) be the number of
two-hop u-v paths in Esg, i.e., the number of common
neighbors of u and v in Esg. The Two-Hop Test is as
follows:

for each pair (u, u′), accept if MΛ(u, u′) ≥MΛ,

reject otherwise.
(3.4)
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We define the threshold as MΛ = Θ(ksgCsg), where the
constant in Θ(·) can be calculated explicitly from the
known parameters. Henceforth, let Epru be the set of
all accepted node pairs.

Lemma 3.1. With high probability, the Two-Hop Test
accepts all node pairs of distance at most rloc in some
category, and rejects all node pairs whose distance is at
least rpru in all categories.

Proof. The proof is based on a careful decomposition
of the metric space into intersections of rings around u
and u′, allowing a sufficiently accurate estimate of the
number of their common neighbors.

We begin by proving the positive (acceptance) part.
If u, u′ are at distance Di(u, u′) ≤ rloc, then they
are close enough such that the balls Bi(u, rloc) and
Bi(u

′, rloc) overlap in a (dimension-dependent) constant
fraction of their nodes. Counting the size of this overlap,
and using that rloc = Θ((ksgCsg)1/d), we get that

|Bi(u, rloc) ∩Bi(u′, rloc)| ≥ Ω(2−d|Bi(u, rloc)|)
≥ Ω(2−dΘ((ksgCsg)1/d)d)

≥ Ω(ksgCsg),

for a sufficiently large constant in the definition of rloc.
In the original model, each edge between u or u′ and a
node in Bi(u, rloc)∩Bi(u′, rloc) is present with probabil-
ity 1. Even if the edge set is randomly partitioned into
a constant number of edge sets for the different stages
of the algorithm, both u and u′ will have edges to each
node in Bi(u, rloc)∩Bi(u′, rloc) independently with con-
stant probability. An application of the Chernoff Bound
therefore guarantees that MΛ(u, u′) > Ω(ksgCsg) with
high probability, and MΛ = Ω(ksgCsg) for a suitably
chosen constant.

For the second part of the lemma (rejection), fix two
nodes u, u′ such that Di(u, u′) > rpru for all categories i.
Consider two categories i, i′ (i = i′ is possible), and let

Si,i′ be the set of all nodes v such that (u, v) ∈ E(i)
sg and

(u′, v) ∈ E
(i′)
sg . We prove a high-probability bound of

O(Csgksg/K
2) on |Si,i′ | for a suitably small (absolute)

constant in the O(·). A union bound over all K2 pairs
i, i′ then implies the claim.

We define a sequence of concentric rings of expo-
nentially increasing radius around u, as follows:

R0 = Bi(u, rpru/2)

Rj = Bi(u, 2
j/d · rpru/2) \Bi(u, 2(j−1)/d · rpru/2)

= {v | Di(u, v) ∈ (2(j−1)/d · rpru/2, 2j/d · rpru/2)},
for each j ≥ 1.

So Rj is the set of nodes at distance roughly 2j/d ·rpru/2
from u in category i. Likewise, we define the concentric
rings around u′, with respect to category i′:

R0 = Bi′(u
′, rpru/2)

Rj = Bi′(u
′, 2j/d · rpru/2) \Bi′(u′, 2(j−1)/d · rpru/2)

for each j ≥ 1.

The rings {Rj}j≥0 form a disjoint cover of V , as do
the rings {R′j}j≥0. To bound the size of Si,i′ , we bound
Si,i′ ∩Rj ∩R′j′ for all j, j′ ≥ 0.

First consider the case j = j′ = 0. For i = i′,
R0 and R′0 are disjoint by definition, and for i 6= i′,
the Local Category-Disjointness condition ensures that
|R0 ∩R′0| = O(log n).

Next, we consider the case j ≥ j′, j ≥ 1. (The case
j′ ≥ j, j′ ≥ 1 is symmetric.) We write r = 2j/d · rpru/2

and r′ = 2j
′/d · rpru/2. By definition of the edge

generation model, the probability that v ∈ Rj has

an edge to u in E
(i)
sg is at most Csgksg(r/21/d)−d =

2Csgksgr
−d, while the probability that v ∈ R′j′ has an

edge to u′ in E
(i′)
sg is at most 2Csgksg(r′)−d, or at most 1

if j′ = 0. The presence of these edges is independent of
one another. Because Rj∩R′j′ is contained in Bi′(u

′, r′),

it can contain at most CUD(r′)d = O((r′)d) nodes.7

Thus, both for the case j′ = 0 and j′ > 0, we obtain
that

E
[
|Si,i′ ∩Rj ∩R′j′ |

]
≤ O

(
(Csgksg)2 r−d(r′)−d(r′)d

)
≤ O

(
(Csgksg)2 (2j/d · rpru/2)−d

)
≤ O

(
(Csgksg)2 2d r−dpru · 2−j

)
.

We now first sum over all j ≥ j′ (using that
∑
j≥j′ 2

−j =

O(2−j
′
)), and then over all j′, to obtain that∑

j,j′: j+j′>0

E
[
|Si,i′ ∩Rj ∩R′j′ |

]
≤ O((Csgksg)2 2d r−dpru).

By choosing rpru = Θ(rlocK
2/d) with a suitably large

(absolute) constant, we can cancel out the 2d term and
obtain an arbitrarily small absolute constant γ in the
O(·) term. Recalling that rloc = Θ((Csgksg)1/d) and
adding the at most O(log n) nodes (with some absolute
constant) in Si,i′ ∩R0 ∩R′0, we see that

E [|Si,i′ |] ≤ O(γCsgksg/K
2) +O(log n).

Applying Chernoff Bounds, we obtain that with
high probability, |Si,i′ | = O(γ Csgksg/K

2 + log n), and

7Recall that we include CUD terms in O(·).
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a union bound over all i, i′ now shows that with high
probability we have

MΛ(u, v) = O(γ Csgksg +K2 log n) < MΛ

(when Csgksg is large enough and γ small enough),
which means that (u, v) will be rejected.

For the remainder of this section, we condition on
the high probability event of Lemma 3.1, i.e., we assume
that Epru contains all edges of length at most rloc (in
at least one category) and no edges whose length would
exceed rpru in all categories.

Notice that in the single-category case (K = 1), the
result of Lemma 3.1 by itself already gives an expansion
of rpru/rloc = Θ(1), no contraction, and additive error
polylog(n). We simply estimate D(u, v) by the length
of the shortest u-v path in the pruned graph, multiplied
by rpru. Lemma 3.2 analyzes the distortion for a single
category, and will also be used for the multi-category
case. The lemma requires the unit-disk graph to be a
good approximation of the metric space, a property that
is obvious for near-uniform density sets in Rd.

Lemma 3.2. Let (V,D) be a metric space. Let G be a
graph on V that includes all node pairs at distance at
most r and no node pairs at distance more than r′, for
some r′ > r ≥ 1. Let DG be the shortest-paths metric of
G. Let Dsp be the shortest-paths metric of the unit disk
graph on (V,D), and assume that Dsp(u, v) ≤ cD(u, v)
for all node pairs (u, v), for some constant c. Then

D(u, v) ≤ r′ · DG(u, v) ≤ cr′

r · D(u, v) + r′.

In words, r′ · DG reconstructs D with expansion cr′

r , no
contraction, and additive error r′.

Proof. Fix a node pair (u, v), and let ρ be a shortest
u-v path in G. By the triangle inequality, D(u, v) is
a lower bound on the total metric length of ρ, which
in turn is at most r′DG(u, v), because each hop in
G has length at most r′. So D(u, v) ≤ r′DG(u, v).
Now, let P be a shortest u-v path in Dsp. Any two
nodes on P that are within r hops from one another
are connected by an edge in G. Therefore, G contains

a u-v path of at most d |P |r e hops, which implies that

DG(u, v) ≤ dD
sp(u,v)
r e ≤ 1 + cD(u,v)

r .

3.3 Amoeba stage: map edges to categories

We now define the Amoeba stage of the algorithm. The
Amoeba stage consists of K iterations i = 1, . . . ,K: in
each successive iteration i, a new category is identified
(and re-numbered as category i), and some edges in Epru

are mapped to this category. These edges constitute

the edge set E
(i)
amb. Eventually, each edge e ∈ Epru is

mapped to at least one category.
The Amoeba stage is summarized in Algorithm 1.

Each iteration i consists of an initialization phase, in
which we find a suitable clique in Epru, and a growth

phase, in which we grow E
(i)
amb one edge at a time. We

think of this process as growing the amoeba.
In Algorithm 1 and the subsequent analysis thereof,

we use the following notation. For a subset S ⊆ V , let

diamj(S) be its diameter in E
(j)
amb. Let Γ(v,E) denote

the (1-hop) neighborhood of node v in the edge set E.
We call the clique C from iteration i the seed clique for
category i. The condition (3.5) is called the Amoeba
Test: more precisely, edge (u, v) passes the test if and
only if (3.5) is satisfied.

Algorithm 1 The Amoeba algorithm.

Output. Estimated social distance D′i, for each cate-
gory i = 1, . . . ,K.
Parameters. Numbers (MΛ,Mamb, Namb, ramb).

Pruning Stage. Let MΛ(u, u′) be the number of
common neighbors of u and u′ in Esg.

Epru ← {(u, u′) ∈ V × V : MΛ(u, u′) ≥MΛ}.

Amoeba Stage. For each iteration i = 1, . . . ,K,

1. Initialization phase. Find any clique C ⊆ V in Epru

such that |C| ≥ Namb, and diamj(C) ≥ log2(n) for
each category j = 1, . . . , i− 1.
Initialize Eamb = C × C.

2. Growth phase. While there exists an edge (u, v) ∈
Epru \ Eamb such that

Esg contains at least Mamb edges

between u and Γ(v,Eamb),
(3.5)

pick any such edge and insert it into Eamb.

3. Set E
(i)
amb = Eamb. Let D′i be the shortest-paths

metric of E
(i)
amb, multiplied by ramb.

Notation. Recall that diamj(S) is the diameter of

a subset S ⊆ V in E
(j)
amb, and Γ(v,E) denotes the

(1-hop) neighborhood of node v in the edge set E.
Condition (3.5) is called the Amoeba Test.

The Amoeba stage is parameterized by numbers
(Mamb, Namb, ramb). We set Namb = Θ((rloc/2)d) and
Mamb = Θ(Namb/(8

dK2)) for suitable constants in Θ(·).
We define ramb = γamb ·K3/d ·rpru for a sufficiently large
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absolute constant γamb, and call it the amoeba radius.8

3.4 Analysis of the Amoeba stage

An edge (u, v) ∈ Epru is called i-long if Di(u, v) >
ramb, and i-short if Di(u, v) ≤ rloc. An edge set
Eamb ⊆ Epru is an i-amoeba iff (V,Eamb) contains no
i-long edges, and it contains a clique of at least Namb

nodes whose category-i diameter is at most 4rpru.
The high-level outline of the correctness proof for

Amoeba is as follows. We will prove by induction on i

that each edge set E
(i)
amb captures (at least) all i-short

edges (renumbering the categories appropriately), and
does not include any i-long edges.

The induction step requires that the algorithm be
able to reconstruct another category i while there is an
uncovered edge. Thereto, we show that Eamb remains
an i-amoeba throughout the algorithm. We break
the induction step into multiple lemmas capturing the
following four key points:

• The seed clique C of size Namb exists in Epru.

• All edges in C have sufficiently small length.

• No i-long edge passes the Amoeba Test.

• If there is an i-short edge not yet added to Eamb,
at least one such edge passes the Amoeba Test.

Lemma 3.3. If there is an edge e not included in any

E
(j)
amb, then Epru contains a clique of at least Namb nodes

whose diameter in E
(j)
amb is at least log2(n) for all j < i.

Proof. Let e ∈ Epru be an edge not included in E
(j)
amb

for all j < i, and let i be a category it belongs to.
For an arbitrary node u, consider B = Bi(u, rloc/2).
Because Di(v, v′) ≤ rloc for all v, v′ ∈ B, the set B
forms a clique in Epru. Furthermore, because of the
near-uniform density of category i, B has Θ((rloc/2)d) =
Θ(Csgksg) = Ω(K3 log n) nodes, for a sufficiently large
constant in the Ω(·).

For any j < i, the Local Category-Disjointness
condition condition implies that |Bj(u, ramb · log2(n))∩
B| ≤ O(log n). Thus, there is at least one node
v ∈ B \ Bj(u, ramb · log2(n)). Because each edge in

E
(j)
amb has length at most ramb in category j, this means

that Dj(u, v) > log2(n); in particular, B cannot have

diameter less than log2(n) in E
(j)
amb. Since this holds

for all j, B is a candidate for seed clique i, and the
algorithm thus guarantees progress.

8Recall that ksgCsg = Ω(16dK3 logn) with a sufficiently large
constant. In particular, if ksgCsg = Θ(16dK3 logn), then the

parameters are Namb = Θ(8dK3 logn), Mamb = Θ(K logn) and
ramb = Θ(K8 logn)1/d.

Lemma 3.4. Let C be a clique in Epru of size |C| >
Ω(K3 log n), for a sufficiently large constant in Ω(·).
Then, there exists a category i such that Di(u, v) ≤
4rpru for all u, v ∈ C.

Proof. Fix an arbitrary w ∈ C. Because each edge
(u, v) ∈ Epru satisfies Di(u, v) ≤ rpru for some category
i, there is a category i such that for at least |C|/K nodes
v ∈ C, we have Di(w, v) ≤ rpru. Fix such a category i,
and let S be the set of all v ∈ C with Di(w, v) ≤ rpru.
If S = C, then we are done.

Otherwise, consider a node u ∈ C \ S. For each
node v ∈ S, there is a category i′ with Di′(u, v) ≤ rpru.
In particular, there must be a category i′ such that
Di′(u, v) ≤ rpru for at least |C|/K2 > Ω(log n) nodes
v ∈ S, with a large enough constant in Ω(·). Fix such
a category i′, and let S′ be the set of nodes v ∈ S with
Di′(u, v) ≤ rpru. Because S′ ⊆ Bi(w, rpru)∩Bi′(u, rpru),
the assumption i′ 6= i would contradict the Local
Category-Disjointness condition. Hence i′ = i, and u
is at distance at most 2rpru from w in category i. Since
this argument holds for every u ∈ C \S, we have proved
that C has diameter at most 4rpru in category i.

Lemma 3.5. Assume that Eamb ⊆ Epru contains no i-
long edge, and let u, v be nodes with (u, v) ∈ Epru and
Di(u, v) > ramb. Then, with high probability, (u, v) does
not pass the Amoeba Test.

Proof. We bound the number of edges between u and
Γ(v,Eamb) in two parts: by the number of edges
between u and Bi(v, rpru), and the number of edges
between u and Γ(v,Eamb) \Bi(v, rpru).

First, |Γ(v,Eamb) \ Bi(v, rpru)| ≤ O(K log n). The
reason is that any node w ∈ Γ(v,Eamb)\Bi(v, rpru) must
be at distance at most rpru from v in some category j 6= i
(because (v, w) ∈ Epru), so w ∈ Bj(v, rpru)∩Bi(v, ramb).
Now, the Local Category-Disjointness condition implies
that there can be at most O(log n) such nodes w for any
fixed j, and thus at most O(K log n) total.

Next, we consider nodes w ∈ Bi(v, rpru). By the
Local Category-Disjointness condition for Bi(v, rpru) ∩
Bj(u, ramb), there can be at most O(log n) such nodes
w at distance at most ramb from u in category j, for a
total of O(K log n) nodes.

All other nodes w ∈ Bi(v, rpru) are at distance
at least ramb from u in all categories j 6= i, and
at distance at least ramb − rpru ≥ ramb/2 from u
in category i. Thus, the probability for the edge
(u,w) to exist in any one category j is at most q =
O(Csgksgr

−d
amb) = O(Csgksg/(γ

d
ambK

3) · r−dpru). Summing
over all w ∈ Bi(v, rpru) and all categories gives us at
most qK|Bi(v, rpru)| = O(Csgksg/(γ

d
ambK

2)) edges in
expectation, and Chernoff Bounds prove concentration.
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Adding the at most O(K log n) edges of the first two
types, and recalling that γamb is a suitably large con-
stant and Csgksg = Ω(K3 log n) with a large constant,
we see that with high probability, the total number of
edges between u and Γ(v,Eamb) is less than Mamb, so
the edge (u, v) does not pass the Amoeba Test.

Lemma 3.6. Let Eamb be an i-amoeba that does not
include all i-short edges. Then, w.h.p., there exists an
edge (u, v) ∈ Epru that is accepted by the Amoeba Test.

Proof. First notice that because the Amoeba Test only
counts edges from u to a neighborhood of v, it is
monotone in the following sense: if the edge e passes
for some current edge set Eamb, then it also passes
for any E′amb ⊇ Eamb. We will define an ordering
e1, e2, . . . of all edges in category i such that with high
probability, e` will pass the Amoeba Test whenever
C ∪ {e1, . . . , e`−1} ⊆ Eamb. Thus, Amoeba, starting
from C, can always make progress when considering the
lowest-numbered edge e` not yet included. (Notice that
this does not require the algorithm to actually know the
ordering.)

Let C be the clique in (V,Eamb) of size at least Namb

whose existence is guaranteed by the definition of an i-
amoeba. C ⊆ Bi(w, 2rpru) for some w, and Bi(w, 2rpru)
can be covered by O((rpru/rloc)d) = O(K2) balls of
radius rloc/2, at least one of which must therefore
contain a sub-clique C ′ ⊆ C of at least Namb/K

2 nodes.
Let v0 be the center of such a ball Bi(v

′, rloc/2).
First, all edges between u ∈ Bi(v0, rloc/2) and

v ∈ C ′ will pass the Amoeba Test, because (u,w) is
i-short for all w ∈ C ′ ⊆ Γ(v,Eamb) (implying that the
edge (u,w) is in Epru), and |C ′| ≥ Namb/K

2 ≥Mamb.
Second, because each v ∈ Bi(v0, rloc/2) is now

connected to all of C ′ in Eamb, the exact same argument
applies to all node pairs u, v ∈ Bi(v0, rloc/2).

Third, we use induction on r, showing that once
all edges in Bi(v0, r) have been included, all edges in
Bi(v0, r + 1) will be included next in some order. For
the base case, we use r = rloc/2. Let u be any node in
Bi(v0, r + 1) \ Bi(v0, r), and w a node “close to u on
the line from v0 to u.” More formally, w is a node with
Di(v0, w) ≤ r − rloc/4 and Di(u,w) ≤ rloc/4 + O(1).
The existence of w follows by the near-uniform density
assumption.

By near-uniform density, B′ = Bi(w, rloc/4) con-
tains at least Ω(2−dNamb) nodes, and by induction hy-
pothesis, all nodes of B′ are neighbors of v. Further-
more, Esg contains edges between u and all w with con-
stant probability, so using Chernoff Bounds, with high
probability, the pair (u, v) will pass the Amoeba Test
for all v ∈ B′, inserting all these edges. Once all i-short
edges between u ∈ Bi(v0, r + 1) and v ∈ Bi(v0, r) have

been inserted, the i-short edges between the remaining
pairs u, v ∈ Bi(v0, r + 1) will be inserted by the follow-
ing argument. Node u has i-short edges to all nodes in
B′ (which are already in Eamb), so Di(v, w) ≤ 2rloc for
all w ∈ B′. Thus, each edge from v to w ∈ B′ is in-
cluded with probability at least p = Ω(Csgksg2−dr−dloc ),
and there are at least |B′| ≥ Ω(4−drdloc) such nodes,
implying that the expected number of edges between v
and the neighborhood of u is at least Ω(8−dCsgksg). By
Chernoff Bounds, we obtain concentration results, and
because Mamb ≤ Θ(8−dCsgksg), the edge (u, v) will be
included with high probability.

The algorithm will thus terminate with i-amoebae

E
(i)
amb, i = 1, . . . ,K. The distance Di(u, v) is now

estimated as the shortest-path distance between u and

v in E
(i)
amb, multiplied by ramb. By Lemma 3.2, this

gives constant expansion ramb/rloc = Θ(K5/d), no
contraction, and additive error ramb.

3.5 Efficient implementation

We outline how to implement the Amoeba algorithm in
near-linear time. The first (and perhaps most surpris-
ing) step is quickly finding the seed clique. Then, we
need to execute each Amoeba step in (amortized) po-
lylogarithmic time. The resulting algorithm computes

the graph E
(i)
amb for each category i in near-linear time.

Recall that E
(i)
amb is a constant-distortion spanner for

Di, in the sense that its shortest-path metric approx-
imates Di. Once we have a spanner, we can compute
succinct distance labels by adapting a hierarchical bea-
coning technique from prior work on distance labeling
and routing schemes (e.g. [22, 11, 48, 49]). We next
describe each of these steps in more detail.

Finding the seed clique. By suitably adjusting the
threshold MΛ, the Two-Hop Test can be modified to
accept all node pairs that are within distance r′loc =
3 rpru in some category, and to reject all node pairs
that are at distance at least r′pru = Θ(K2/d r′loc) in
all categories. We run the Amoeba algorithm on the
pruned graph E′pru obtained by this modified Two-Hop
Test. Let r′amb be the corresponding Amoeba radius.
To produce the seed cliques for E′pru, we use the original
Two-Hop Test in the way described below.

Consider the original Two-Hop Test, and let Epru be
the corresponding pruned graph. Let N(u) denote the
1-hop neighborhood of node u in Epru, including u itself.
For a node set S, define N(S) to be the intersection
N(S) ,

⋂
u∈S N(u). We focus on such intersections for

node sets S ⊆ N(u) of size |S| = K.
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Lemma 3.7. For any node u and category i, there exists
a set S ⊆ N(u) of size K such that the intersection
N(S) contains at least Namb nodes, has diameter at
most 3 rpru in category i, and diameter at least R =
r′amb log2(n) in all other categories.

Proof. Let B = Bi(u, rloc/2). We show that there exists
a candidate set S ⊆ B. Recall that B induces a clique in
the pruned graph Epru, so for any subset S ⊆ B, we have
B ⊆ N(S). Since B contains at least Namb nodes and
has diameter at least R in each category j 6= i, N(S)
inherits these properties. Thus, it remains to ensure
that N(S) has low diameter in category i.

We claim that Local Category-Disjointness implies
the existence of a subset S ⊆ B of size K, such that
any two nodes in S are at distance at least 2 rpru in
each category j 6= i. Consider (for the proof only)
the following simple algorithm. The algorithm works
with two set-valued variables, S and U , initialized to
S = ∅ and U = B. It runs the following loop K
times: pick any node v ∈ U , add this node to S, and
remove from U all balls Bj(v, 2 rpru), j 6= i. Clearly, the
following invariant is maintained after each iteration:
any two nodes v ∈ S,w ∈ S ∪U are at distance at least
2 rpru in any category j 6= i. Therefore, the algorithm
finds the desired set S unless U were to become empty
prematurely. This cannot happen because by Local
Category-Disjointness, B and any Bj(v, 2 rpru), j 6= i
overlap in at most O(log n) nodes, so the cardinality of
U decreases by at most O(K log n) in each iteration.

Now fix the subset S guaranteed by the previous
paragraph. Consider some node w ∈ N(S). For any
category j 6= i, there can be at most one node in
S within category-j distance rpru from w. (If there
were two such nodes v, v′ ∈ S then Dj(v, v′) ≤ rpru,
a contradiction.) It follows that at least one node v ∈ S
is at distance more than rpru from w in each category
j 6= i. Since the pruned graph Epru contains the edge
(v, w), v and w must be close in some category, and
we have proved that they can only be close in category
i. Therefore Di(v, w) ≤ rpru. Since S ⊆ B, it follows
that Di(u,w) ≤ rpru + rloc/2. Therefore, any two nodes
in N(S) are at category-i distance at most 2 rpru + rloc

from one another.

For each iteration i of the Amoeba Stage, we need
to find a seed clique C for E′pru such that |C| ≥ Namb

and diamj(C) ≥ log2(n), for each category j < i. By
Lemma 3.7, one such clique is given by N(S), for any
given node u and some subset S ⊆ N(u) of size K.
Therefore, we can run the original Two-Hop Test to
obtain the pruned graph Epru, pick any node u, and
iterate through all K-node subsets S ⊆ N(u) until we
find a set S such that N(S) is a clique in E′pru. It is

easy to see that this approach results in running time
n polylog(n). In fact, one only needs the initial pruning
step to be local to node u, so the list of all candidate
subsets N(S) can be obtained in polylog(n) time.

Efficient implementation of the Amoeba step. To
implement the Amoeba step efficiently, we use a queue
which initially contains all edges. In each Amoeba
step, edges are popped from the queue until one is
found that satisfies Condition (3.5). Once an edge
(u, v) satisfies this condition, it is added to the amoeba,
while all its adjacent edges are (re-)enqueued. Any
one edge is adjacent to at most polylogarithmically
many other edges, and can therefore be enqueued at
most polylogarithmically many times. Thus, the entire
growth phase of the Amoeba algorithm is implemented
in npolylog(n) running time. The following argument
shows the correctness of this queue policy: If an edge
(u, v) is checked and does not satisfy Condition (3.5),
then it can satisfy this condition at some later point
only if another edge incident to u or v has been added
to the Amoeba, i.e., only if (u, v) is re-enqueued.

From a spanner to succinct distance labels. Fix a
category i. For the remainder of this section, all “balls”
and “distances” refer to category i. We use the spanner

Eamb = E
(i)
amb produced by the Amoeba algorithm to

produce distance labels for Di of polylogarithmic size,
so that for any two nodes u, v the distance Di(u, v) can
be estimated with constant distortion from their labels
alone (in polylogarithmic time).

Consider exponentially increasing distance scales r.
For each distance scale r, pick kr scale-r beacon nodes
independently and uniformly at random; kr is chosen
so that with high probability, each ball of radius r
contains Θ(log n) scale-r beacon nodes; For each scale-r
beacon b, run a breadth-first search in Eamb for Θ(r)
steps, to compute distance estimates between b and all
nodes within distance Θ(r) from b. Simple accounting
shows that computing the estimates for all scales and
all beacons takes npolylog(n) time.

Thus, for every given node u, we have computed
estimates for distances between u and some subset Su
of beacons. Su includes all scale-r beacons within
distance Θ(r) from u, for each scale r. Together, these
distance estimates constitute u’s distance label. Given
the distance labels of two nodes u and v, one can
reconstruct the distance estimate for the pair (u, v) by
picking the beacon b ∈ Su ∩ Sv closest to node u, and
using the distance estimate for the pair (b, v) as an
estimate for (u, v).
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4 Overview of the additional results

This section contains a succinct account of the exten-
sions outlined in the introduction. The details, includ-
ing all proofs, can be found in the full version [1].

We improve the main result in two directions:
improving the distortion from a multiplicative constant
to a factor 1 + o(1), and handling the case of low
(constant) degree.

4.1 Improving the distortion: single category

In trying to improve the distortion beyond a multi-
plicative constant, we face an immediate obstacle: as
discussed in Section 2, an algorithm can estimate the
normalization constant Csg and the target degree ksg

only up to a constant factor. However, for further im-
provements of the distortion, more accurate estimates of
Csg and ksg appear to be necessary. In order to side-step
this technical obstacle, we define normalized distances

N (u, v) = D(u, v)/(Csg ksg)1/d

, and we focus on N instead of actual distances as the
quantities to be inferred.

Note that Theorem 3.1 can also be interpreted to
yield an estimate N ∗ for N which with high probability
has no contraction, constant expansion and polylog(n)
additive error. We improve this bound to unit distortion
with sub-linear additive error.

Theorem 4.1. Consider a single-category social graph
of dimension d, with Csgksg = Ω(log n) and near-
uniform density. There is a polynomial-time algo-
rithm that w.h.p. reconstructs each normalized distance
N (u, v) with additive error ±N γ logO(1) n, where γ =
d+2
2d+2 . The algorithm runs in polynomial time.

The high-level idea is to augment the Two-Hop
Test from Section 3 with a post-processing step we
call Two-Ball Algorithm. This is a variation of the
common neighbors heuristic where instead of common
neighbors, the algorithm counts 3-hop paths whose first
and last hops are sufficiently short according to the
initial estimates. More precisely, to estimate N (s, t),
the algorithm counts edges between two node sets B̃∗s
and B̃∗t that are small balls (centered at s and t,
respectively) with respect to the initial estimates N ∗.

The Two-Ball Algorithm proceeds as follows. The
input consists of N ∗ and the original edge set Esg.
For every two nodes s and t, the normalized distance
N (s, t) is estimated as follows. Let B̃u(κ;N ∗) be the
set of the κ closest nodes to node u according to N ∗,
breaking ties arbitrarily; note that this set is — up to
tie-breaking — a ball with respect to N ∗. Consider
balls B̃∗s = B̃s(κ;N ∗) and B̃∗t = B̃t(κ;N ∗), for some

cardinality κ to be specified later. Count the number of
edges in Esg between B̃∗s and B̃∗t , and let M̃s,t be that
number. The new estimate is

N ′(s, t) =
(
κ2/M̃s,t

)1/d

.

We take κ = rdx, where rx , x(d+2)/(2d+2) and x =
N ∗(s, t). See Algorithm 2 for the pseudocode.

Algorithm 2 The Two-Ball Algorithm.

Inputs. Original edge set Esg and initial estimates N ∗
from Theorem 3.1.
Output. Improved distance estimates N ′.
For each node pair (s, t):

1. B̃∗s = B̃s(κ;N ∗) and B̃∗t = B̃t(κ;N ∗), where
κ = xd(d+2)/(2d+2) and x = N ∗(s, t).

2. M̃s,t is the number of edges in Esg between B̃∗s and

B̃∗t .
3. N ′(s, t) = (κ2/M̃s,t)

1/d.

Notation. B̃u(κ;N ∗) is the set of the κ closest nodes
to u according to N ∗, breaking ties arbitrarily.

The idea is that E
[
M̃s,t

]
≈ κ2N−d(s, t), and our

estimate inverts this relation. We pick κ to optimize the
trade-off between the “spatial uncertainty” (pairwise
distances between nodes in B̃∗s and B̃∗t are not exactly
N (s, t)) and “sampling uncertainty” (deviations of the
number of edges from the expectation). The former
increases with κ, and the latter decreases with κ.

Recursive two-ball algorithm. Given that the
Two-Ball Algorithm produces improved estimates of
(normalized) distances, it seems natural to run the
algorithm again, using the improved estimates as a
starting point for defining the balls B̃∗s and B̃∗t more
accurately. This suggests a recursive approach: to
estimate D(s, t), the algorithm can use the previously
computed estimates for smaller distance scales to define
B̃∗s and B̃∗t . We call the resulting algorithm (with
carefully optimized distance scales) the Recursive Two-
Ball Algorithm. The technical goal is to improve the
additive error in Theorem 4.1.

The analysis of this algorithm is significantly more
delicate. In particular, in order to take advantage of the
improved estimates, a stronger uniformity condition is
needed on the metric: we say that the metric space
has perfectly uniform density iff each ball of radius r
contains CPD r

d±O(rd−1) points, where CPD is a known
constant. Then we can improve the additive error to
polylog(n).
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Theorem 4.2. Consider a single-category social graph
with Csgksg = Ω(log n) and perfectly uniform density.
Assume that the social distance is defined by the `d2
norm, with d > 2. Then, the Recursive Two-Ball
Algorithm w.h.p. reconstructs all normalized distances
with unit distortion and additive error polylog(n).

Remark. The algorithm uses a constant cd that cap-
tures, up to the first-order term, how the expected num-
ber of edges between two radius-r balls depends on r and
the distance between centers. Specifically, in the set-
ting of Theorem 4.2, consider two radius-r balls whose
centers are at distance x > 4r. The expected number
of edges between these two balls is (cd r

2/x)d, up to a
multiplicative factor 1 +O(r−2). Here, cd is a constant
that depends only on the dimension d and the constant
CPD in the definition of perfectly uniform density. We
assume that cd is known to the algorithm.

The restriction to the `2 norm is essential to define
cd: under `p, p 6= 2, the expected number of edges
between the two balls significantly depends on the
alignment of the s-t line relative to the coordinate axes.

Remark. For d = 2, a similar (but slightly more
complicated) algorithm and analysis yield additive error

2O(
√

log x) for node pairs at normalized distance x; we
omit the details.

We next define the algorithm. Let us first set
up the notation. Let N ∗ be the normalized distance
estimates guaranteed by Theorem 3.1. We will compute
refined estimates N ′, which are initialized to N ∗. Let
B̃u(κ;N ′) be the set of the κ closest nodes to u
according to N ′, breaking ties arbitrarily.

The Recursive Two-Ball Algorithm proceeds as
follows. The input consists of N ∗ and the original edge
set Esg. The algorithm considers node pairs (s, t) such
that N ∗(s, t) > polylog(n), in order of increasing N ∗.
For each such node pair, we define balls around s and
t whose radius is roughly r̂x, where x = N ∗(s, t) and
r̂x = x1/2+1/d. Formally, we define balls B̃′s = B̃s(κ;N ′)
and B̃′t = B̃t(κ;N ′), where κ = CPD r̂

d
x. Note that these

balls are defined with respect to the improved estimates
N ′. Let M̃s,t be the number of edges between B̃′s and

B̃′t. The new estimate is N ′(s, t) = cd r̂
2
x M̃

−1/d
s,t . The

pseudocode is shown in Algorithm 3. Note that the
algorithm is quite simple; the only complication is how
to pick κ as a function of x = N ∗(s, t).

Overview of the analysis. Let a(x) be the maximum
additive error for node pairs at normalized distance at
most x. As in the Two-Hop Test, the error comes
from two sources: spatial uncertainty and sampling
uncertainty. We show that the spatial uncertainty can

Algorithm 3 The Recursive Two-Ball Algorithm.

Inputs. Original edge set Esg and initial estimates N ∗
from Theorem 3.1.
Output. Improved distance estimates N ′.
N ′ ← N ∗.
For each node pair (s, t) such that N ∗(s, t) >
polylog(n), in order of increasing N ∗:

1. κ = CPD r̂
d
x, where x = N ∗(s, t) and r̂x = x1/2+1/d.

2. B̃′s = B̃s(κ;N ′) and B̃′t = B̃t(κ;N ′).
3. M̃s,t is the number of edges in Esg between B̃′s and

B̃′t.

4. N ′(s, t) = cd r̂
2
x M̃

−1/d
s,t .

Notation. B̃u(κ;N ′) is the set of the κ closest nodes
to node u according to N ′, breaking ties arbitrarily.
cd is the constant from the remark after Theorem 4.2.

contribute at most O(a(r̂x)) to the overall additive
error; interestingly, this holds for any choice of r̂x.
We use Chernoff Bounds to bound the contribution
of sampling uncertainty by O(a(r̂x)) as well; this is
where the particular exponent in r̂x is used. It follows
that a(x) = O(a(r̂x)). Finally, the distance estimates
for a given node pair implicitly rely on recursion from
distance scale x to distance scale r̂x. Let ρ(x) be the
depth of this recursion: the number of steps until the
distance scale goes below polylog(n). It is easy to see
that a(x) = 2O(ρ(x)) and that ρ(x) = O(log logn).

4.2 Improving distortion: multiple categories

In order to improve the estimates for multiple cate-
gories, we employ the two algorithms from Section 4.1.
The main difference with the single-category case is
that when we count the number of edges between the
balls in the original multi-category social graph graph
for some category i, some of these edges may come
from other categories, which might affect the estima-
tion. We would like to claim that the number of edges
from other categories between the two balls is small
compared to the number of edges from category i. Un-
fortunately, such a claim does not follow from the Local
Category-Disjointness condition, which prompts the fol-
lowing stronger condition.

The stronger condition, called Scale-R Category-
Disjointness, states that at all scales up to R, categories
look essentially “random” with respect to one another.
More specifically, given a pair of balls B, B′ in some
category i, we count the number of node pairs (u, u′),
u ∈ B, u′ ∈ B′ such that u and u′ are close in some
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other category j:

#pairsj(B,B
′, r) ,

|{(u, u′) | u ∈ B, u′ ∈ B′, Dj(u, u′) < r}|.
(4.6)

If the node identifiers within each category are permuted
randomly, then the expected number of such node pairs
is Θ(rd/n) · |B| |B′|, and with high probability, the
deviations are bounded by:

#pairsj(B,B
′, r) ≤ O( r

d

n ) |B| |B′| +O(log2 n).(4.7)

Scale-R Category-Disjointness asserts that (4.7) holds
“locally:” at all distance scales up to R.

Definition 4.1. The Scale-R Category-Disjointness
condition states that (4.7) holds for any two categories
i 6= j, any two disjoint category-i balls B, B′ with
|B| · |B′| ≤ Rd, and any r ∈ (0, R].

Remark. Equation (4.7) for randomly permuted cate-
gories is derived in the full version of the paper [1].
The expectation is relatively easy to derive, whereas
the high-probability guarantee requires a more care-
ful analysis. We obtain (a slightly weaker version of)
Local Category-Disjointness as a special case if R =
polylog(n) and B is restricted to be a single node.

We will improve over the constant distortion under
the condition above. We present two results: an exten-
sion of the Two-Ball Algorithm and an analysis of the
Recursive Two-Ball Algorithm for multiple categories.

Like in the single-category case, we focus on nor-

malized distances. For each category i, let C
(i)
sg and k

(i)
sg

be the normalization constant and the target degree, re-
spectively. The normalized category-i distance between

nodes u, v ∈ V is Ni(u, v) , Di(u, v)/(C
(i)
sg k

(i)
sg )1/d.

The Extended Two-Ball Algorithm. The Scale-
R Category-Disjointness condition does not apply to
distance scales beyond R, and even for R = ∞, the
guarantee of Equation (4.7) is quite weak at very
large scales. Accordingly, we find that the Two-Ball
Algorithm becomes problematic at large distance scales.
To deal with these issues, we apply the Two-Ball
Algorithm only to distance scales small enough to
provide strong guarantees. The improved distance
estimates define edge lengths, and a post-processing
step computes shortest paths with respect to these edge
lengths. The resulting algorithm, called Extended Two-
Ball Algorithm, satisfies the following theorem.

Theorem 4.3. Assume the setting of Theorem 3.1 with
Scale-R1+1/(d+1) Category-Disjointness, where R ≥
polylog(n) for a sufficiently large polylog(n). Then, the

Extended Two-Ball Algorithm runs in polynomial time,
and with high probability produces distance estimates N ′i
with the following guarantee:

For any pair (s, t) at normalized dis-
tance x = Ni(s, t), the estimate
N ′i (s, t) has multiplicative distortion

1 ±
[
(min(x,R, R̂))−d/(2d+2) ·O(log2 n)

]
,

where R̂ =
(

n
logn

)(2d+2)/(2d2+3d)

.

Remark. The distortion in Theorem 4.3 can be in-
terpreted as 1 ± O

(
`−d/(2d+2) · log2 n

)
, where ` =

min(x,R, R̂) is the “effective distance scale”.

We begin by defining the Extended Two-Ball Algo-
rithm precisely. The input consists of the multi-category
social graph and the distance estimates N ∗ = N ∗i for a
given category i, as guaranteed by Theorem 3.1. Recall
that these are non-contracting estimates with constant
expansion δ and polylog(n) additive error; we assume
that (an upper bound on) δ is known to the algorithm.
Apart from δ, the algorithm is parameterized by the
distance scale R from Theorem 4.3.

The algorithm proceeds as follows. It focuses on
the edge set H = {(u, v) | N ∗(u, v) ≤ R}. For each
edge (u, v) ∈ H, it applies the Two-Ball Algorithm with
respect to distances N ∗ to obtain improved distance
estimates NH(u, v). These improved estimates are
treated as edge lengths for H. For each node pair (s, t),
we distinguish two cases. If the edge (s, t) is in H,
we simply set the final estimate N ′i (s, t) = NH(s, t).
Otherwise, the final distance estimate N ′i (s, t) is the
length of the shortest s-t path using the edge set

Ht = {(u, v) ∈ H | N ∗(u, v) ≥ R
2δ or v = t}.(4.8)

In other words, the distance is estimated by the length
of the shortest path using only “sufficiently long” edges,
except for possibly the last edge, which may be short.

The Recursive Two-Ball Algorithm. We show
that the Recursive Two-Ball Algorithm from Section
4.1 can be applied verbatim in the case of multiple
categories with Scale-∞ Category-Disjointness, yielding
poly-logarithmic additive error. The analysis only needs
to be modified slightly to deal with edges from other
categories. However, our guarantees only apply to node
pairs at distances x ≤ n1/(d+1) = Dd/(d+1), where
D = n1/d is the diameter of the metric space.

Theorem 4.4. Consider a multi-category social graph
with Csgksg = Ω(log n), with Scale-∞ Category-
Disjointness and perfectly uniform density for each cat-
egory. Assume that the social distance in each category
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is defined by the `d2 norm, with d > 2. Then, the Recur-
sive Two-Ball Algorithm runs in polynomial time, and
produces distance estimates N ′i satisfying the following
guarantee with high probability:

For every pair (s, t) of nodes at normalized
distance Ni(s, t) ≤ n1/(d+1), we have that

|N ′i (s, t)−Ni(s, t)| ≤ polylog(n).

For normalized distances larger than n1/(d+1), even
under actual randomly permuted categories, the number
of edges from other categories grows prohibitively large
for large distances; it seems unlikely that this obstacle
could be easily overcome.

However, we can use the improved estimates from
Theorem 4.4 with the post-processing step from the
Extended Two-Ball Algorithm (with R = n1/(d+1)).
The resulting algorithm estimates normalized distances
x > R with additive error (x/R) polylog(n).

4.3 Constant target degree

The analysis so far has relied heavily on the fact that
the target degree ksg (essentially the expected average
node degree) was at least logarithmic. Indeed, as
discussed in Section 2, the first obvious problem with
constant expected degree is that with non-negligible
probability, the social graph Esg is disconnected. To
circumvent this problem, much of the past literature
(e.g., [18, 27, 28, 40]) assumes that in addition to the
random edges, the network also contains a set Eloc of
local edges deterministically.9 In the literature, Eloc is
frequently the d-dimensional grid. We adopt a more
general model in which Eloc can be essentially any set
of short edges. A constant target degree poses two
additional challenges beyond mere connectivity:

• There are insufficiently many long-range links to
support pruning via counting common neighbors. Even
for short distances, the number of common neighbors
is only constant, and high-probability guarantees can
therefore not be obtained.10 Therefore, in order to
identify short edges as such, we need to rely on the
structure of Eloc.

9Without loss of generality, Eloc can also include all edges
which would be included by the basic small-world model with

probability 1.
10See, e.g., the difficulties faced by [20]. The authors of [20]

consider a small-world model with one random neighbor for each

node. They can only make guarantees about pruning away all but
a poly-logarithmic number of long-range edges. The main reason
is that even distant nodes will choose the same random neighbor

with probability Ω(1/n), and high-probability bounds therefore
only guarantee at most poly-logarithmically many long random
edges to remain.

• To avoid stochastic dependence between multiple
stages (such as the Two-Hop Test and Two-Ball Algo-
rithm), we had previously partitioned Esg randomly into
separate sets to be used in the stages. With constant
node degrees, this may risk leaving the Two-Hop Test
with only half of the local edges Eloc. Hence, partition-
ing the edges may not be viable any more. On the other
hand, if the same edges are used in multiple stages, sub-
tle stochastic dependencies between the stages are cre-
ated; our analysis needs to carefully account for these
dependencies.

Here we explore the changes (in modeling, algo-
rithms and analysis) necessary to deal with constant
target degrees. We focus on the single-category case for
the remainder of the subsection.

Our results apply so long as the set of local edges
is “rich enough” in local connectivity.

Definition 4.2. (“Richness” of local edges)
1. An edge set E is a (σ, δ)-spanner if its shortest-path
distance Dsp satisfies, for all node pairs (u, v):

σ · D(u, v) ≤ Dsp(u, v) ≤ δ · D(u, v)

2. A set E of edges is (b, h)-connected if for every
edge (u, v) ∈ E, E contains b edge-disjoint u-v paths of
at most h edges each.

3. Eloc is (b, h)-rich with distortion (σ, δ) if it is
a (σ, δ)-spanner and contains a (b, h)-connected (σ, δ)-
spanner E ⊆ Eloc (called its connectivity witness).

As an example, we show in the full version [1] that
the d-dimensional toroidal grid is (2d − 1, 3)-rich and
(for d ≥ 2) (2d, 7)-rich, both with distortion (1, O(1)).

Next we present a solution which relies on knowing
parameters (b, h) of the local structure’s richness. In
other words, the pruning algorithm needs to know how
rich a local structure to expect. Later, we show how
to make the pruning algorithm adapt to the available
richness under fairly mild assumptions.

Basic Approach: Edge-Disjoint Paths. Our solu-
tion is based on a more careful design of the pruning
stage, where instead of counting common neighbors,
the algorithm counts edge-disjoint paths of bounded
length. The pruning stage is very simple: The algorithm
starts with an edge set E = Esg. It prunes each edge
(u, v) ∈ E such that E does not contain b edge-disjoint
u-v paths of at most h hops each. This is repeated until
no more edges can be pruned. We call this algorithm
the (b, h)-EDP Pruning Algorithm; here, EDP stands
for Edge-Disjoint Paths.

The idea is that this algorithm keeps a sufficiently
rich subset of local edges, and prunes all edges in Esg
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whose length exceeds some threshold rEDP (defined in
Equation (4.9)). (We call such edges long edges.) For
edges of intermediate length, the algorithm makes no
guarantees about whether they are pruned. Crucially,
the pruned graph does not depend on the long edges,
in the following sense: Let Esg, Êsg be two edge sets
generated according to the same distribution, such that
the random choices for non-long edges are the same,
and the random choices for long edges are independent.
Then, with high probability (over the random process
generating all edges of Esg and Êsg), the remaining set

of edges after pruning is the same for both Esg and Êsg.
The advantage of this guarantee is that we do not need
to worry about dependencies on the pruned graph, so
long as the post-processing stage only uses long edges.
Therefore, we can use the pruned graph to define the
initial estimates N ∗ for normalized distances and then
use a suitably modified and optimized version of the
(Recursive) Two-Ball Algorithm which only considers
node pairs (s, t) for which N ∗(s, t) is sufficiently large.

We start the analysis of the (b, h)-EDP Pruning
Algorithm with several observations. First, notice that
the pruned graph T (E) is the maximal (b, h)-connected
subset of E, i.e., the union of all such subsets. It follows
that T (E) does not depend on the order in which the
edges are pruned. Second, because T (E) is the maximal
(b, h)-connected subset of E, the pruned graph T (E)
does not depend on the presence or absence of the
pruned edges e ∈ E \ T (E). Formally, T (E) = T (E′)
whenever T (E) ⊆ E′ ⊆ E.

To ensure correctness, we can use the (b, h)-EDP
Pruning Algorithm only if the local structure is (b, h)-
rich. The performance depends on the parameters
(b, h): we get better estimates for larger b and smaller h.
We summarize our results as follows. In a slight abuse
of notation, here, the (Recursive) Two-Ball Algorithm
refers to the suitably modified version that works with
the (b, h)-EDP Pruning Algorithm.

Theorem 4.5. Consider a single-category social graph
of near-uniform density. Suppose that the local edge
set Eloc is (b, h)-rich with distortion (σ, δ). Let D =
Θ(n1/d) be the diameter of the metric space. For any
constant α > 0 (not known to the algorithm), let

rEDP(α) = D(2+α)/b · h · (O(ksg + log1+α n))2h/d

= D(2+α)/b · (O(log n))O(h).
(4.9)

Let E′ be the edge set retained by the (b, h)-EDP Prun-
ing Algorithm. Then, with probability at least 1 −
O(n−α), the following hold.

(a) E′ contains the connectivity witness E′loc of
Eloc and no edges whose length exceeds rEDP(α). The
algorithm makes no guarantees for other edges.

(b) Let Dsp be the shortest-path distance on E′. Then,
for all node pairs (u, v), we have that

D(u, v) ≤ βDsp(u, v) ≤ δ · βD(u, v),

where β = max( 1
σ , rEDP(α)).

In words, the shortest paths distance in E′, scaled up by
β, gives no contraction, and expansion at most δ β.

(c) The Two-Ball Algorithm reconstructs all normal-
ized distances N (u, v) with unit distortion and additive
error rEDP(α)(N γ(u, v) + rEDP(α)), where γ = d+2

2d+2 .

(d) Assume that the metric has perfectly uniform
density, and the social distance is the `d2 norm for
d ≥ 3 dimensions. Then the Recursive Two-Ball
Algorithm reconstructs all normalized distances with
unit distortion and additive error rEDP(α) · polylog(n).

Running times in Theorem 4.5. While the main
thrust in this paper is information-theoretic, the algo-
rithms in Theorem 4.5 are actually polynomial. Let us
discuss how to improve the running times to near-linear,
an important feature for the sizes of networks we are en-
visioning.

The näıve implementation of the (b, h)-EDP Prun-
ing Algorithm checks every remaining edge at each it-
eration, which gives a running time of Õ(n2). However,
we show the following:

Lemma 4.1. The (b, h)-EDP Pruning Algorithm can be
implemented in Õ(n) time for constant b and h.

We also comment on the running time of the Two-
Ball Algorithm. Applying this algorithm to a given
node pair (u, v) can be computationally expensive when
D(u, v) is large (and consequently, the algorithm needs
to consider large balls around u and v). Thus, the Two-
Ball Algorithm for a given node pair can be viewed as
a precise but costly distance measurement. Instead of
applying it to every node pair, we could instead use the
beacon-based triangulation technique from [30]: here,
one selects O(( 1

ε ) ( 1
δ )d) “beacon nodes” uniformly at

random, and measures the distance from each node
only to each beacon. This technique achieves distortion
(1 + δ)C for all but an ε-fraction of node pairs, where
C is the distortion of the Two-Ball test.

Adapting to the “optimal” richness. Theorem 4.5
assumes that the (b, h)-richness of the local edge set
Eloc is known to the algorithm. In reality, it is desirable
to adapt to the “optimal” richness without knowing it
in advance. Here, the “optimal” richness means the
(b, h) pair that minimizes rEDP(α) in Equation (4.9),
subject to the constraint that Eloc is (b, h)-rich with
small distortion.
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Our algorithm, called Adaptive EDP algorithm,
proceeds as follows: for a given set H of candidate
hop counts, we try all (b, h) pairs, h ∈ H, in order of
increasing rEDP(α) until the pruned graph is connected,
and focus on the last pair. Without loss of generality,
we can start with b equal to the smallest node degree in
Esg. We can use binary search over the (b, h) pairs (in
the same order) to reduce the number of pairs that we
need to consider.

While the above algorithm is very simple, the
challenge is to argue when and if it works. Let Tb,h(E)
denote the pruned graph if the (b, h)-EDP Pruning
Algorithm is applied to the edge set E. We rely on
the following crucial observation:

Lemma 4.2. Consider a single-category social graph
with near-uniform density. Suppose that the local struc-
ture Eloc is a (·, δ)-spanner, and moreover, Tb,h(Eloc)
contains at least εn isolated nodes, for some parameters
b, h, ε, δ such that

(2δh)d C2
UD Csg ksg ≤ 1

6 .(4.10)

Then Tb,h(Esg) is disconnected with high probability.

Since Csg = Θ(1/ log n) and CUD = Θ(1), condi-
tion (4.10) holds, for large enough n, whenever ksg, δ
and h are constants. The lemma motivates the follow-
ing definition of “robustness” of a graph.

Definition 4.3. A connected graph G = (V,E) is
called (ε, h)-robust with distortion (σ, δ), for some ε ∈
(0, 1], if the following holds for every b: either G is
(b, h)-rich with distortion (σ, δ), or Tb,h(E) contains at
least εn isolated nodes.11

In the first case of this definition, we can use
the (b, h)-EDP Pruning Algorithm safely, while in the
second case, we will show that Tb,h(Esg) is disconnected
with high probability. Notice that the toroidal grid is
(1, h)-robust for any h. We give more examples of robust
graphs in the full version [1].

Theorem 4.6. Consider a single-category social graph
with near-uniform density and local structure Eloc. Sup-
pose that for all h ∈ H, Eloc is (ε, h)-robust with distor-
tion (σ, δ) and (4.10) holds. Then, when the Adaptive
EDP algorithm is run with the candidate set H, it will
obtain the guarantees of Theorem 4.5 for the optimum
pair (b, h) among all h ∈ H.

11Any graph G in Definition 4.3 is a (σ, δ)-spanner. This is

because for b = 1, no edges are pruned, and so G must be (1, h)-
rich with distortion (σ, δ), so it is a (σ, δ)-spanner.

5 Conclusions

We have shown that, under standard assumptions about
generative models for social networks, it is possible to
reconstruct social spaces with small distortion from a
multiplex social network; indeed, it is possible to do so
in near-linear time. The edges do not need to be labeled
with their “origin,” so long as the categories are “locally
sufficiently uncorrelated.” Under increasingly stronger
assumptions, the distortion can be improved from con-
stant, to 1 + o(1), to poly-logarithmic additive error.
While these results rely on having poly-logarithmic node
degree, we also show that small polynomial distortion
can be obtained in the constant-degree regime, so long
as the social network contains a sufficiently rich local
structure. This is possible even if the algorithm only
possesses very rudimentary knowledge about the local
structure.

While our results can be interpreted as a proof
of concept — it is possible in principle to efficiently
separate the different dimensions of social interactions
and identify similarities between individuals — they set
the stage for a number of possible extensions.

1. There are several specific technical open questions
within our model, the most immediate of which is
extending the multi-category results to the constant-
degree regime.

2. We assumed that the algorithm had knowledge
of various input parameters (the number of categories,
the number of dimensions, etc.), whereas ideally, the
algorithm should be able to learn these parameters from
input data as well.

3. For our multi-category algorithms to work, we
required a “category disjointness” condition, essentially
stating that locally, metrics look uncorrelated with
respect to each other. It seems unlikely that one could
reconstruct metrics if categories were extremely similar,
but it is an interesting open question how much our
current condition could be weakened while still allowing
for provable reconstruction. In particular, we conjecture
that future work will be able to deal with a few localized
violations of the category disjointness condition, so that
they lead to incorrect distance estimates only for the
affected nodes, without propagating to other parts of
the metric space.

4. Our model so far also assumes that the node
degrees are essentially uniform across nodes, which will
usually not hold in practice. A corresponding extension
for the single-category case might not be too difficult,
but inferring the individual node degrees for multiple
categories appears more difficult.
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5. Finally, and perhaps most importantly, one may
want to consider “host spaces” other than Euclidean
spaces with near uniform density, such as ultrametrics,
more general “group structures” (e.g., [28]), or point
sets with significantly non-uniform density. It would be
particularly interesting if an algorithm did not need to
know the structure of the host space in advance, and
instead could infer it from the data.

In practice, there will usually be additional infor-
mation available beyond the edges. This may include
information about nodes’ locations, interests, or demo-
graphics (as collected by social networking sites); partial
interaction statistics along the edges; or perhaps a social
network that has been previously embedded in a social
distance space, but is now being extended by a few new
nodes. In either case, it is an interesting question how
to formalize the benefits that can be obtained with such
side information. In particular, time stamps on edges
introduce a temporal dimension into the problem: now,
instead of fixed node locations in the social space, one
could ask about nodes’ trajectories over time.
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