
Equilibria of Online Scheduling Algorithms

Itai Ashalgi
Sloan School of Management, MIT

iashlagi@mit.edu

Brendan Lucier
Microsoft Research New England
brlucier@microsoft.com

Moshe Tennenholtz
Microsoft Research, Herzlyia, Israel
moshet@ie.technion.ac.il

Abstract

We describe a model for competitive online scheduling al-
gorithms. Two servers, each with a single observable queue,
compete for customers. Upon arrival, each customer strate-
gically chooses the queue with minimal expected wait time.
Each scheduler wishes to maximize its number of customers,
and can strategically select which scheduling algorithm, such
as First-Come-First-Served (FCFS), to use for its queue. This
induces a game played by the servers and the customers.
We consider a non-Bayesian setting, where servers and cus-
tomers play to maximize worst-case payoffs. We show that
there is a unique subgame perfect safety-level equilibrium
and we describe the associated scheduling algorithm (which
is not FCFS). The uniqueness result holds for both random-
ized and deterministic algorithms, with a different equilib-
rium algorithm in each case.
When the goal of the servers is to minimize competitive ratio,
we prove that it is an equilibrium for each server to apply
FCFS: each server obtains the optimal competitive ratio of 2.

1 Introduction
Service providers often compete over customers. In this pa-
per we study the effect of waiting time on competition. For
example, a customer choosing between restaurants of simi-
lar price and quality might select the one with fewer waiting
patrons. If competing cloud service providers have similar
pricing structures, a client with a job to run might choose
the provider with fewer jobs in queue. This customer behav-
ior incentivizes servers to strategically manage their queues.

We consider a model in which two servers, each holding
a queue, compete over self-interested customers who choose
servers strategically to minimize wait time. We assume that
the queues are observable to both customers and servers.
Moreover, each server can apply an arbitrary scheduling al-
gorithm that determines how customers are selected from
its queue. The competition between servers defines a game:
each server chooses a scheduling algorithm with the goal of
maximizing the number of customers they will serve, and
each customer strategically chooses a queue (upon arrival)
to minimize wait time, given the selected protocols. We ask:
what scheduling algorithms arise as equilibria of this game,
and how will the market split as a result?

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Each scheduling protocol can be viewed as an online al-
gorithm, making service decisions based on an observed his-
tory. Following the theory of online algorithms, we adopt a
non-Bayesian approach, meaning that there are no proba-
bilistic assumptions on arrival and service rates. This yields
an online game, which we analyze using two different non-
Bayesian solution concepts. We first study safety-level equi-
libria, which are strategy profiles in which each player max-
imizes her worst-case utility, over all possible inputs, given
the strategies of the other players (Ashlagi, Monderer, and
Tennenholtz 2009; 2006). As the game is played sequen-
tially we focus on subgame perfect equilibria: the choices
of the customers as well as the online decisions of the algo-
rithms must be rational at every potential state of the queues.

We also study competitive ratio equilibria: strategy pro-
files in which each player maximizes competitive ratio (i.e.
worst-case approximation to the optimal utility in hindsight)
given the others’ strategies (Engelberg and Naor 2007).
Here, too, we are interested in subgame perfect equilibria.

To provide insight into issues raised by our game-
theoretic scenario, consider the First Come First Served
(FCFS) scheduling algorithm. While natural, FCFS is not
always a best response in our game. Suppose a customer c
arrives and observes that one queue has 5 customers, and
the other has 1. The second server could attract c by placing
him next in line, as in FCFS. But the server can do better: c
would join even if the server reserved the right to serve up
to three more customers ahead of c. This is strictly better for
the server, as it gives added flexibility for future customers.

This insight can be used to develop a strategy (i.e. a novel
algorithm) called the Promise algorithm. This protocol of-
fers each incoming customer the longest possible wait-time
that beats the opponent’s, if possible. The difficult part of
this algorithm is correctly guessing the opponent’s wait time,
which must be inferred from the history of customer choices.

We find that, if servers are restricted to use determin-
istic algorithms, the profile in which both servers adopt
the Promise algorithm is the unique subgame perfect
safety-level equilibrium. This uniqueness result covers non-
symmetric and mixed strategy profiles. We also show how to
extend the promise algorithm to a randomized setting, where
it offers an expected waiting time to each arriving customer.
We again prove that this Probabilistic Promise Algorithm is
the unique subgame perfect safety-level equilibrium. Prov-



ing uniquness in the randomized setting presents additional
challenges, as there are many ways that an expected waiting-
time can be realized; nevertheless we prove that there is a
uniquely dominant realization method, which we describe.

When the servers’ goal is to minimize competitive ratio,
we show it is an equilibrium for each server to use FCFS.
That is, FCFS optimizes competitive ratio when played
against itself, and this optimal competitive ratio is 2. By
comparison, the competitive ratio of Promise versus itself
is strictly worse (at least 2.5), and hence FCFS is superior
for the decision criterion of competitive ratio.

Related work As far as we are aware, our work is the
first work to study competing queues with incomplete infor-
mation over arrivals when both servers and customers are
strategic. The closest work to ours is by (Hassin 2009), who
studies customer equilibria when one scheduler uses FCFS
and the other chooses customers randomly. In that work
only the customers are strategic, and the arrival/service pro-
cesses are stochastic. Competition between schedulers in a
complete information setting was studied by (Ashlagi, Ten-
nenholtz, and Zohar 2010). (Immorlica et al. 2011) stud-
ied a family of zero-sum games for two players, each of
whom optimizes online to outperform the opponent. Our
model can be viewed as an online zero-sum game, but
servers accumulate utility rather than maximizing the prob-
ability of “winning” (another example is the competition
on hiring a secretary (Immorlica, Kleinberg, and Mahdian
2006)). Moreover, only the algorithm designers are strategic
in their model. A related topic is competition between sell-
ers who seek to maximize revenue by attracting more cus-
tomers (see, e.g., (McAfee 1993; Peters and Severinov 1997;
Burguet and Sakovics 1999)).

Suboptimality of FCFS has been observed in other con-
texts. For example, Last Come First Served (LCFS) can
be better when customers observe the queue before decid-
ing whether to join ((Naor 1969), (Hassin 1985; Alperstein
1988)). These observations are for the single-server case.

2 Model and Preliminaries
Our setting is an online game played by two servers, {1, 2},
and a setC of n customers1. The game unfolds as a sequence
of time-ordered events. Formally, an arrival event, (t, c), in-
dicates customer c ∈ C arrives at time t. A queue choice
event, (t, c, j), indicates c ∈ C joins queue j. A service
event, (t, j), indicates server j finishes a service at t.

A history H is a sequence of time-ordered events. We say
H ′ extends H , H ′ � H , if H is a prefix of H ′. A history H
is valid if every c ∈ C has at most one arrival and one queue
choice, with any queue choice by c immediately following
c’s arrival, and every H ′ � H has at least as many queue
choices for j as services by j. Write H for the set of valid
histories. WriteCj(H) = {c ∈ C : ∃t s.t. (t, c, j) ∈ H}, the
customers who join queue j ∈ {1, 2} throughout H ∈ H.

A strategy for server j is a function A : H → C ∪ {nil}.
We interpret A(H) as the customer to serve next if a ser-
vice completion occurs following H . Given H and service

1Our results extend readily to infinite sequences of customers.

event (t, j) following H , we say c begins service at time t
if A(H) = c. Write Qj(A, H) for those customers who are
“in queue” after H (i.e. joined j but haven’t begun service),
given j uses strategyA. We require thatA(H) ∈ Qj(A, H)
whenQj(A, H) 6= ∅, or nil otherwise (that is, a server never
remains idle while there are customers in queue). For exam-
ple, the First-Come-First-Served (FCFS) scheduler, F , se-
lects the customer from Qj(F , H) who arrived earliest (or
nil if Qj(F , H) = ∅). A strategy for a customer c ∈ C is
a function σ : H → {1, 2}. We interpret σ(H) as the cus-
tomer’s choice of server if he arrives following the events2

in H . We write σ for a profile of strategies for each c ∈ C,
and σ−c for a profile that excludes customer c.

Arrival and service times are exogenous and initially un-
known to the players. Formally, each c ∈ C has an arrival
time ac, and each server j has an infinite sequence of service
times d1

j < d2
j < . . . . Write Π for a set of arrival and ser-

vice times, which we view as an input instance. Given input
profile Π and strategies σ and (A1,A2), the game resolves
as follows. Write Ht for the set of events that occur strictly
before time t ≥ 0, with H0 = ∅. For each c ∈ C, there is an
arrival event (ac, c) and choice event (ac, c, σc(Hac). When-
ever a customer joins an empty queue (i.e. σc(Ht) = j and
Qj(Aj , Ht) = ∅ where t = ac) or there is a service event
(t, j) with Aj(Ht) = c, we say customer c begins service
from j at time t; write b(c) for this time t. Customer c finishes
being served at time f(c) = min{dkj : dkj > b(c)}; that is, at
the next service time for j that follows b(c). For each c ∈ C
there is a service event (f(c), j) indicating the completion of
service for customer c at time f(c). As there are 3n events
and all ac, dkj are finite, there is some T ≥ 0 such that no
event occurs after time T . Write H(Π) = H(A1,A2,σ,Π)
for this completed history HT .

The payoff for server j is uj = |Cj(H(Π))|, the num-
ber of customers who join his queue. The (negative) payoff
for customer c is uc = −#{c′ 6= c : f(c′) ∈ [ac, f(c)]}.
That is, c incurs a cost equal to the number of customers
that are served ahead of c, but after c arrives, in the queue
that c selects3. We refer to this cost as the waiting time of c.
Write ui(A1,A2,σ,Π) for utilities in the completed history
H(A1,A2,σ,Π).

Equilibrium concepts A safety-level equilibrium (Ash-
lagi, Monderer, and Tennenholtz 2006) is a profile of strate-
gies of the players, A1,A2, and σ, such that, for all c ∈ C,

σc ∈ argmax
σ′

{
min

Π
{uc(A1,A2, (σ

′,σ−c),Π)}
}

and for A1 (and similarly for A2),

A1 ∈ argmax
A′

{
min

Π
{u1(A′,A2,σ,Π)}

}
.

In other words, all players maximize their worst-case pay-
offs. Since players move sequentially, we focus on equilib-
ria that are subgame perfect. Roughly speaking, a profile of

2We think of H as determining the state of each queue.
3Our use of this utility function, rather than the number of time

units spent in queue, is motivated by the non-Bayesian setting.



strategies forms a subgame perfect equilibrium if, at every
possible state of a partially completed game, the players’
prescribed actions form an equilibrium for the remaining
stages of the game. More formally, an equilibrium is sub-
game perfect for the customers if each customer c maxi-
mizes utility in the subgame that begins when the customer
arrives, for every prior history H:

σc ∈ argmax
σ′

{
min

Π: Hac (Π)=H
{uc(A1,A2, (σ

′,σ−c),Π)}
}
.

An equilibrium is subgame perfect for the servers if, given
a history H , the subsequent decisions made by each algo-
rithm are utility-maximizing in the subgame beginning after
H (Engelberg and Naor 2007). That is, for each H ∈ H,

A1 ∈ argmax
A′

{
min

Π: H�H(Π,A′,A2,σ)
{ui(A′,A2,σ,Π)}

}
and similarly for A2. Note that a maximal A′ must be con-
sistent with H , and hence the optimization over A′ is with
respect to events following H . An equilibrium is subgame
perfect if it is subgame perfect for the customers and servers.

Note that, given A1 and A2, there is a unique subgame
perfect equilibrium for the customers4, determined by back-
ward induction. We will therefore often drop dependencies
on σ from our notation, assuming customers apply subgame
perfect strategies. We also write uj(A1,A2, H) for the util-
ity of j if no further customers arrive after the events of H .

The competitive ratio of algorithm A1 against A2 is
CR(A1,A2) = maxΠ maxA∗

u1(A∗,A2,Π)
u1(A1,A2,Π) . In a competi-

tive ratio equilibrium, each server minimizes its competi-
tive ratio given the strategies of the other players. That is,
A1 ∈ argminA CR(A,A2) and similarly for A2.

3 Deterministic Safety-Level Equilibria
We begin by studying safety-level equilibria when sched-
ulers are restricted to applying deterministic algorithms. The
intuition we build will be of use when we consider the more
technically demanding setting of randomized schedulers.

An alternative scheduler formulation
Formally, a scheduling algorithm determines how to select
customers from queue, but an alternative (equivalent) formu-
lation will be convenient. For each H ∈ H, we will think of
algorithm Aj as assigning to each c ∈ Qj(Aj , H) a worst-
case waiting time sc ∈ N ∪ {∞}, where the worst case is
over H ′ � H . We call sc the slot held by c. Write s for a
profile of slots. We say s is valid if, for each k ≥ 1, at most
k customers have slot ≤ k (this is a property of worst-case
waiting times). Whenever a customer is served, an algorithm
necessarily decreases each remaining customer’s slot by 1,
and an algorithm can never increase a customer’s slot. This
formulation is motivated by the following characterization
of customer behavior, which follows immediately from the
definition of subgame perfect safety-level equilibrium.

4For clarity of exposition, we will ignore issues of tie-breaking;
it suffices that customers break ties in a publicly-known manner.

Algorithm 1 Promise Scheduler
State: Slot profile s; guess s′ at opponent’s slot profile.

When a new customer c joins our queue:
1: if w(s) < w(s′) then
2: sc ← max{s ∈ E(s) : s < w(s′)}
3: else sc ← w(s)

When the server is idle:
1: c← argminc{sc}; Serve c
2: sc ← sc − 1 for all remaining customers

When a customer c joins the other queue:
1: s′c ← max{s ∈ E(s′) : s < w(s)}

Theorem 3.1. Suppose (A1,A2,σ) is a subgame perfect
equilibrium. Then, for all H ∈ H, σc(H) is the queue that
would assign the smaller slot to c after history H .

Write sj(Aj , H) for the slot profile assigned by queue j,
using Aj , after history H . Slot k is empty in s if assigning a
new customer to slot k would maintain validity. Write E(s)
for the set of empty slots, and w(s) = minE(s). Let nk(s)
be the number of empty slots in s less than or equal to k.

The Promise scheduler
We now describe the Promise algorithm, P , listed as Algo-
rithm 1. In addition to maintaining its slot profile s, P main-
tains a profile for the other queue, s′. An arriving customer
is assigned the largest slot in E(s) that is less than w(s′) (or
w(s) if no such slot is available). The customer with minimal
slot is always chosen to be served. Profile s′ is maintained by
assuming that the opponent behaves the same way: assigns
incoming customers the largest slot in E(s′) less than w(s),
and always serves the customer with minimal slot.

The main result in this section is the following.

Theorem 3.2. (P,P) is the unique subgame-perfect safety-
level equilibrium.

Note Theorem 3.2 covers even non-symmetric and mixed
strategy profiles. To prove Theorem 3.2, we begin with a
lemma. We say that s dominates s′ if sc ≥ s′c for all c.

Lemma 3.3. If H � H(P,P,Π) and H � H(A1,P,Π)
for some A1, Π, and H , then s1(P, H) dominates
s1(A1, H).

Proof. From the definition of P , for each c ∈ C1(H),
s1
c(P, H) is maximal such that c would have chosen 1 given

server 2 plays P . Thus, for anyA1 with H � H(A1,P,Π),
s1
c(A1, H) ≤ s1

c(P, H) for all c ∈ C1(H).

Lemma 3.4. If H(P,P,Π) 6= H(A1,P,Π), then the first
event at which they differ is a customer joining queue 1 in
H(P,P,Π) but joining queue 2 in H(A1,P,Π).

Proof. LetH be the minimal common prefix. Since the next
event after H is not common, it must be a customer c’s
choice of queue. Since s1(P, H) dominates s1(A1, H) by
Lemma 3.3, and P always offers a slot that would attract a



customer versus P if possible, it cannot be that c joins queue
1 in H(A1,P,Π) but not in H(P,P,Π).

We now show how Lemma 3.4 implies Theorem 3.2.
We first show that (P,P) is a subgame perfect equilib-
rium. For all H ∈ H and all A1,A2, the minimum pay-
off minΠ:H�H(Π){u1(A1,A2,Π)} occurs when no further
customers arrive following H . Subgame perfection there-
fore corresponds to always attracting an incoming customer
whenever there exists an algorithm consistent with H that
does so. Lemma 3.4 therefore immediately implies that P is
subgame perfect when played against P , as required.

We next show (P,P) is the unique subgame perfect equi-
librium. Suppose (A1,A2) is subgame perfect withA1 6= P
or A2 6= P . Then ∃Π with H(A1,A2,Π) 6= H(P,P,Π).
Let H be the minimal common prefix, and choose Π so that
H is shortest. Then, without loss of generality, the next event
in H(A1,A2,Π) and H(P,P,Π) is a customer c joining
queue 2 in the former, but queue 1 in the latter. Let Π′ be
Π excluding all customers that have not arrived in H , but
including c. Then u1(A1,A2,Π

′) < u1(P,P,Π′).
Consider H(P,A2,Π

′). If H 6� H(P,A2,Π
′), then by

Lemma 3.4 the first point of difference between H and
H(P,A2,Π

′) must be a customer joining 2 in H but not
in H(P,A2,Π

′) (since H is a prefix of H(P,P,Π′)). This
contradicts the supposed subgame perfection of A2. So we
must have H � H(P,A2,Π

′). Then, since c joins queue 1
in H(P,P,Π′), by Lemma 3.4 it must also join queue 1 in
H(P,A2,Π

′), and hence u1(P,A2,Π
′) = u1(P,P,Π) >

u1(A1,A2,Π
′). Since both P and A1 are consistent with

historyH , we conclude thatA1 does not maximize utility in
the subgame beginning after history H , contradicting sub-
game perfection. This completes the proof of Theorem 3.2.

4 Randomized Safety-Level Equilibria
We now consider games with randomized scheduling al-
gorithms. We again find a unique subgame perfect safety-
level equilibrium. Our equilibrium scheduler generalizes the
Promise scheduler by allowing lotteries over slots, and track-
ing the expected slot assigned to each customer in queue.

A characterization of randomized schedulers
It will again be convenient to view schedulers as assigning
wait times to customers. Since a randomized algorithm A is
a convex combination of deterministic algorithms, its state
can be described by a distribution Γ over slot assignments to
customers. A distribution is valid if each slot assignment in
its support is valid. Given valid distribution Γ and customer
c, the expected slot of c is ec = Es∼Γ[sc]. Note that ec ∈
R≥1 ∪ {∞}. Write e for a profile of expected slots, and let
C(e) denote the customers represented in e. The definition
of subgame perfection implies that each customer chooses
the queue that offers the smaller expected slot.

Claim 4.1. Fix scheduling algorithms A1, A2. The unique
subgame perfect safety-level equilibrium for the customers
is for each customer c to select the queue that minimizes the
expected slot that would be assigned to c.

By Claim 4.1, the outcome of the game is uniquely deter-
mined by the input profile Π and server strategies A1,A2.
It also motivates us to study which profiles of expected slots
are realizable by valid distributions. A profile e is valid if
it is realizable by a valid distribution Γ. The following re-
sult characterizes all valid expected slot assignments. This
lemma turns out to be a restatement of a classical result
from scheduling theory (Horvath, Lam, and Sethi 1977),
expressed in the context of ad auctions by (Feldman et al.
2008). Let [e]i denote the ith-smallest entry of e.
Lemma 4.2. Expected slot profile e is valid if and only if,
for all k ≤ n,

∑k
i=1[e]i ≥

∑k
i=1 i.

Given Lemma 4.2, we think of a scheduler as assigning
an expected slot (i.e. expected worst-case wait time) to each
customer, subject to the validity condition. Moreover, if e is
valid, then so is e′ whenever [e]′i ≥ [e]i for every i. Given
valid e, there is a minimal z such that e would remain valid
if a new customer c was admitted and assigned5 ec = z.
Let w(e) be this minimal value z. We are interested in a
notion of one slot profile being “better” than another, from
the perspective of maximizing worst-case server utility.
Definition 1. Expected slot profile e dominates e′ if∑k
i=1[e]i ≥

∑k
i=1[e]′i for all k ≥ 1.

Claim 4.3. If e dominates e′ then w(e) ≤ w(e′).

Proof. Note that w(e) is precisely the minimal value such
that

∑k−1
i=1 [e]i + w(e) ≥

∑k
i=1 i for all k, and similarly for

w(e′). If z ≥ w(e′) then
∑k−1
i=1 [e]′i + z ≥

∑k
i=1 i for all k.

But then
∑k−1
i=1 [e]i+z ≥

∑k
i=1 i, and hence z ≥ w(e).

The probabilistic promise scheduler
We now describe subgame perfect safety-level equilibrium
over randomized algorithms. The (probabilistic) promise al-
gorithm, PP , is listed as Algorithm 2. Informally, PP is
similar to P: it maintains a slot profile for itself, e, as well
as for the opponent, e′. Whenever a new customer joins
the queue, it is assigned the largest expected slot greater
than w(e) but smaller than w(e′), if any; otherwise it is as-
signed w(e). To deal with issues of tie-breaking, we allow
the scheduler to offer an expected wait time of w(e′)−, de-
fined to be infinitesimally smaller than w(e′). One can view
such infinitesimals as implementing a tie-breaking rule for
the customers, arising in the limit of ε-approximate equilib-
ria as ε tends to 0; see (Ashlagi et al. 2010) for a discussion.

Whenever a customer is to be served, the algorithm pro-
ceeds as follows. First, it chooses the customers that will be
selected with positive probability: those with the k smallest
expected slots (line 2), for some k (described below). Each
of these customers is assigned a probability pi with which
they will be served (line 3). A customer is then chosen for
service according to this distribution (line 4). The remain-
ing k − 1 of these k customers have their expected slots
set to a certain quantity X = Z−1

k−1 , where Z =
∑k
i=1[e]i

(line 5). The values pi are chosen so that each customer’s
5There is a minimal z, rather than an infinimum, because the

inequalities of Lemma 4.2 are not strict.



Algorithm 2 Probabilistic Promise Scheduler
State: Exp. slot profile e; guess e′ at opponent’s profile.

When a new customer c joins our queue:
1: if w(e) < w(e′) then ec ← w(e′)−

2: else ec ← w(e)

When the server is idle:
1: if |C(e)| > 1 and [e]1 > 1 then
2: Let k ≥ 1 be min s.t. (

∑k
i=1[e]i)−1 ≤ (k−1)[e]k+1

3: Let Z ←
∑k
i=1[e]i, pi ← Z−1−(k−1)[e]i

Z−k for each i
4: Choose i ∈ [k] from distribution defined by pi’s
5: [e]i ← 1; [e]j ← (Z − 1)/(k − 1) ∀ j ≤ k, j 6= i
6: c← argmin{ec}; Serve c; Remove c from C(e)
7: ec ← ec − 1 ∀ c ∈ C(e)

When a customer c joins the other queue:
1: e′c ← w(e)−

expected wait time is invariant under this procedure, i.e.
[e]i = pi · 1 + (1 − pi) · X . The value k is chosen to be
the smallest so that, when the quantities are set as described
above, we will have X ≤ [e]k+1, so that the relative order
of the customers’ slots is unchanged.

To maintain state e′ we assume that, when a customer
joins the opponent’s queue, it is assigned slot w(e)−, and
that customers are served as described above.
Lemma 4.4. PP is a feasible scheduling algorithm.

Proof. We first show that the values pi (from line 3) form a
distribution. By validity, [e]i ≥ 1 for all i, so Z ≥ k. Thus,
by the choice of k, we have

pi ≥ Z − 1− (k − 1)[e]k

> ((k − 2)[e]k + [e]k + 1)− 1− (k − 1)[e]k ≥ 0.

Noting also that
∑
i pi = 1 establishes well-definedness.

We now show that validity is maintained after performing
the modifications on lines 5. Let e and e denote the expected
slot assignments before and after line 5. For all j < k,∑

i≤j

[e]i = 1 + (j − 1)
Z − 1

k − 1
≥
∑
i≤j

[e]i ≥
∑
i≤j

i.

For all j ≥ k, we have
∑
i≤j [e]i =

∑
i≤j [e]i ≥

∑
i≤j i,

since the sum of the lowest k expected slots is unchanged.
We next show validity is maintained after line 7. Let e and

ẽ denote the expected slots before and after line 7. For all k,
k∑
i=1

[ẽ]i =

k+1∑
i=2

([e]i − 1) ≥

(
k+1∑
i=1

i

)
− k − [e]1 =

k∑
i=1

i.

Finally, to show that ec is indeed the worst-case expected
wait time for customer c, note first that if ec = 1 then c is
served next. Otherwise, if c is is a possible candidate to be
served on an interation of the algorithm, then his expected
wait time over the algorithm’s randomness is

pc · 1 + (1− pc) ·
Z − 1

k − 1
= ec.

Finally, each customer who is not served has its expected
wait time reduced by 1, as is required.

We next show that the method used to select customers
from queue is optimal: it generates an expected slot assign-
ment that dominates the assignment of any other method.

Lemma 4.5. Fix valid expected slot profile e, and let eP
P

denote the profile that results after a customer is selected
from queue according to PP . Consider any other expected
slot assignment ẽ that results from a customer selection
method respecting e. Then eP

P

dominates ẽ.

Proof. Letm = |C(e)| and consider any customer selection
method that respects e. This assigns to each c ∈ C(Q) a
probability pc of being served, and an expected wait time ẽc
if c is not served, where pc · 1 + (1− pc)ẽc ≤ ec.

Note that ẽ is this profile of expected slots ẽc, excluding
the customer who was served. If the customer with k-lowest
expected slot in e is served, then [ẽ]i ≥ [e]i for each i < k
and [ẽ]i ≥ [e]i+1 for i ≥ k; this follows since [e]i ≥ 1 for
all i. For any such profile ẽ, we claim that

1 +

m−1∑
i=1

[ẽ]i ≤
m∑
i=1

[e]i. (1)

To see this, note that
m∑
i=1

[e]i =
∑

c∈C(e)

(pc + (1− pc)ẽc) = 1 +
∑

c∈C(e)

(1− pc)ẽc

where the coefficients (1 − pc) each lie in [0, 1] and sum to
(m− 1). The RHS is therefore minimized when pc = 1 for
some c maximizing ẽc, from which we conclude (1).

Recall PP selects k, sets [eP
P

]j = 1
k−1 ((

∑k
i=1[e]i)− 1)

for j < k, and [eP
P

]j = [e]j+1 for j ≥ k. Value k is chosen
to be minimal such that [eP

P

]k−1 ≤ [e]k+1.
Suppose for contradiction that there exists some ` such

that
∑`
i=1[ẽ]i >

∑`
i=1[eP

P

]i. We consider two cases, de-
pending on whether ` < k or ` ≥ k. If ` < k, then∑`
i=1[eP

P

]i = `
k−1 ((

∑k
i=1[e]i)−1). But now

∑`
i=1[ẽ]i >

`
k−1 ((

∑k
i=1[e]i)− 1) implies [ẽ]j >

1
k−1 ((

∑k
i=1[e]i)− 1)

for all ` < j < k, since the [ẽ]j are non-decreasing. Further-
more, [ẽ]j ≥ [e]j+1 for all j ≥ k. Putting this together,

m−1∑
i=1

[ẽ]i >

((
k∑
i=1

[e]i

)
− 1

)
+

m∑
i=k+1

[e]i =

m∑
i=1

[e]i − 1

contradicting (1). Next suppose that ` ≥ k. Then∑̀
i=1

[eP
P

]i =

(
k∑
i=1

[e]i

)
−1 +

`+1∑
i=k+1

[e]i =

(
`+1∑
i=1

[e]i

)
−1.

We then have that
m−1∑
i=1

[ẽ]i >
∑̀
i=1

[eP
P

]i +

m∑
i=`+2

[e]i =

m∑
i=1

[e]i − 1

contradicting (1).



We can now show that PP is our desired equilibrium.
Theorem 4.6. (PP ,PP ) is the unique subgame perfect
safety-level equilibrium.

The proof of Theorem 4.6 is similar to Theorem 3.2. The
space of potential strategies is larger, but Claim 4.3 and
Lemma 4.5 imply that, on any history H consistent with
(PP ,PP ) and any algorithm A consistent with H when
played by queue j, the state of PP dominates that of A.
Given this, we can apply the arguments from Theorem 3.2
to show that (PP ,PP ) is the unique subgame perfect equi-
librium. The details appear in the full version of the paper.

5 Deterministic Competitive Ratio Equilibria
We now consider competitive ratio equilibria over the space
of deterministic algorithms. We show that even though the
FCFS scheduler, F , is not a symmetric subgame perfect
safety-level equilibrium (Theorem 3.2), (F ,F) does form
a competitive ratio equilibrium. Specifically, we prove that
F has competitive ratio 2 against F , and that this is the best
possible competitive ratio that can be achieved against F .
Theorem 5.1. (F ,F) forms a competitive ratio equilib-
rium, with competitive ratio 2.

Proof sketch. We first show CR(F ,F) ≤ 2. Choose al-
gorithm A and input Π. Write HA = H(A,F ,Π) and
HF = H(F ,F ,Π). Write HAt and HFt for the prefixes
of HA and HF up to time t. Recall from Section 3 the
definition of sj(Aj , H). Define the potential of a pair of
prefixes, f(HAt , H

F
t ), to be the number of slots empty in

s1(A, HAt ) but not s1(F , HFt ), plus the number of slots
empty in s2(F , HFt ) but not s2(A, HAt ). A straightfor-
ward case analysis (given in the full version) shows that
|C1(HA)| + f(HAt , H

F
t ) increases only if some c ∈ C

joins queue 1 in HF , and by at most 2. This implies
|C1(HAt )| + f(HAt , H

F
t ) ≤ 2|C1(HFt )| at each t. Since

f(HA, HF ) = 0, |C1(HA)| ≤ 2|C1(HF )| as required
We next show that the competitive ratio of 2 is optimal.

Choose A and arbitrarily large R > 0. Assume for con-
tradiction that CR(A,F) ≤ 2 − 1

R . We will describe an
input Π by describing H(A,F ,Π). Begin with 2R cus-
tomer arrivals; let H0 be the history after these arrivals. Let
T = |C2(A,F , H0)|. Note T ≥ R from the definition
of F . We therefore have |C1(A,F , H0)| ≤ T , and each
c ∈ C1(A,F , H0) is assigned a slot at most T . We will
show by induction that, for all i ≥ 1, there is a valid history
Hi � H0 such that |C1(A, Hi)| ≥ |C1(A, H0)| + i, with
each customer in C1(A, Hi) assigned a slot at most T , and
C2(F , Hi) has T customers in slots 1 through T . For i > T
the slot assignment of queue 1 is invalid, a contradiction.

For the induction, suppose Hi ends at time t,
|C1(A, Hi)| ≥ 2R − T + i, and all c ∈ C1(A, Hi) are as-
signed to slots at most T . Let S = |C1(A, Hi)|, so S ≤ T by
validity. DefineH ′i � Hi as follows: alternate between serv-
ing a customer from queue 2 and having a new customer ar-
rive, 2T times. Suppose for contradiction that none of these
new customers join server 1. Let Π be the set of customers
that arrive in H ′i . We then have that u1(A,F ,Π) = S. Let
A′ be an algorithm that offers each customer in Hi a slot

of ∞, then offers to each subsequent customer the maxi-
mum available slot less than the slot offered by server 2 (as-
suming that server 2 uses F). Then, at time t, queue 2 has
S + T customers in slots 1 through S + T . Each of the next
S + T − 1 customers arriving in H ′i join server 1, as the kth
customer would be offered slot S+T−k. We therefore have
u1(A′,F ,Π) ≥ S+T −1. Since S ≤ T = 2R, this implies
a competitive ratio of at least 2− 1

R , a contradiction.
We conclude that a customer joins queue 1 in H ′i . Let

Hi+1 � H ′i be the history ending after the first cus-
tomer joins server 1. Then |C1(A, Hi+1)| = |C1(A, Hi)|+
1 ≥ 2R − T + i + 1, and moreover |C2(F , Hi+1)| =
|C2(F , Hi)| = T . This completes the induction.

Competitive Ratio of the Promise Scheduler
We next consider the competitive ratio of the promise sched-
uler, P . We find that CR(P,P) > 5/2. Thus, while profile
(P,P) is unique among subgame perfect safety-level equi-
libria, it is strictly worse than profile (F ,F) with respect to
the decision criterion of competitive ratio.
Proposition 5.2. CR(P,P) ≥ 5

2 .

The proof of Proposition 5.2 is similar to the second half
of Theorem 5.1 (which showed CR(F ,F) ≥ 2). The addi-
tional idea that results in an improved bound is that a sched-
uler facing an opponent using P can sometimes benefit by
strategically leaving certain slots open (i.e., by sacrificing
customers). The reason this is useful against an opponent
playing P is that such open slots can affect the slots offered
by his opponent to future customers. We construct an input
instance in which an algorithm with future knowledge can
apply such a strategy to cause his opponent to fill his lowest
slots, leading to a significant increase future customers. The
details appear in the full version of the paper.

6 Conclusion
We analyzed a competition between online scheduling al-
gorithms with strategic customers and observable queues.
We studied the non-Bayesian equilibrium concept of safety-
level equilibrium, and found that the unique equilibrium oc-
curs when both schedulers apply the novel Promise algo-
rithm. If we instead take the view from online algorithm
analysis that schedulers wish to maximize competitive ratio,
then it is an equilibrium for both schedulers to apply FCFS.

This work provides more questions than answers; we list
just a few future directions. A natural step would be to ex-
tend our results to 3 or more servers. One might also ex-
plore Bayesian settings, e.g. Possion arrival rates and ex-
ponential service times, or non-observable queues. Perhaps
servers could choose the information revealed to the cus-
tomers (and/or opponent)6. One might introduce hetero-
geneity between servers, e.g. in quality or speed of service.
We leave open the question of whether FCFS is the optimal
competitive ratio equilibrium (in terms of the competitive
ratio achieved). Finally, we suspect the general framework
of equilibria for online algorithms with strategic users can
be applied to other algorithmic settings.

6See (Hassin 1986) for single-server information decisions.



References
Alperstein, H. 1988. Optimal pricing for the service facil-
ity offering a set of priority prices. Management Science
34:666–671.
Ashlagi, I.; Braverman, M.; Hassidim, A.; Lavi, R.; and
M.Tennenholtz. 2010. Position auctions with budgets: Ex-
istence and uniqueness. B.E. Journal of Theoretical Eco-
nomics - Advances 10(1)).
Ashlagi, I.; Monderer, D.; and Tennenholtz, M. 2006. Re-
source selection games with unknown number of players.
In Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multiagent Systems, 819–825.
Ashlagi, I.; Monderer, D.; and Tennenholtz, M. 2009. Two-
terminal routing games with unknown active players. Artifi-
cial Intelligence Journal 173(15):1441–1455.
Ashlagi, I.; Tennenholtz, M.; and Zohar, A. 2010. Compet-
ing schedulers. In Proceedings of the 25th National Confer-
ence on Artificial Intelligence (AAAI).
Burguet, R., and Sakovics, J. 1999. Imperfect Competi-
tion in Auction Designs. International Economic Review
40(1):231–247.
Engelberg, R., and Naor, J. 2007. Equilibria in Online
Games. In Proceedings of the 18th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 149–158.
Feldman, J.; Muthukrishnan, S.; Nikolova, E.; and Pál, M.
2008. A truthful mechanism for offline ad slot scheduling.
In Proceedings of the 1st International Symposium on Algo-
rithmic Game Theory, SAGT ’08, 182–193. Berlin, Heidel-
berg: Springer-Verlag.
Hassin, R. 1985. On the optimality of first-come last-served
queues. Econometrica 53:201–202.
Hassin, R. 1986. Consumer information in markets with
random products quality: The case of queues and balking.
Econometrica 54:1185–1195.
Hassin, R. 2009. Equilibrium customers choice between
FCFS and Random servers. Queueing Systems 62:243–254.
Horvath, E. C.; Lam, S.; and Sethi, R. 1977. A level algo-
rithm for preemptive scheduling. J. ACM 24(1):32–43.
Immorlica, N.; Kalai, A.; Moitra, A.; Postlewaite, A.; and
Tennenholtz, M. 2011. Dueling Algorithms. In Proceedings
of the 43th Symposium on Theory of Computing.
Immorlica, N.; Kleinberg, R.; and Mahdian, M. 2006. Sec-
retary problems with competing employers. In Internet and
Network Economics, LNCS 4286, 389–400.
McAfee, P. 1993. Mechanism Design by Competing Sellers.
Econometrica 61:1281–1312.
Naor, P. 1969. The regulation of queue size by levying tolls.
Econometrica 37:15–24.
Peters, M., and Severinov, S. 1997. Competition Among
Sellers Who Offer Auctions Instead of Prices. Joutnal of
Ecoonimc Theory 75:141–179.


