
A Parallel SGD method with Strong Convergence

Dhruv Mahajan
Microsoft Research India

dhrumaha@microsoft.com

S. Sathiya Keerthi
Microsoft Corporation, Mountain View

keerthi@microsoft.com

S. Sundararajan
Microsoft Research India

ssrajan@microsoft.com

Léon Bottou
Microsoft Research, New York
leonbo@microsoft.com

Abstract

This paper proposes a novel parallel stochastic gradient descent (SGD) method
that is obtained by applying parallel sets of SGD iterations (each set operating on
one node using the data residing in it) for finding the direction in each iteration
of a batch descent method. The method has strong convergence properties. Ex-
periments on datasets with high dimensional feature spaces show the value of this
method.

Introduction. We are interested in the large scale learning of linear classifiers. Let {xi, yi} be
the training set associated with a binary classification problem (yi ∈ {1,−1}). Consider a linear
classification model, y = sgn(wTx). Let l(w ·xi, yi) be a continuously differentiable, non-negative,
convex loss function that has Lipschitz continuous gradient. This allows us to consider loss functions
such as least squares, logistic loss and squared hinge loss. Hinge loss is not covered by our theory
since it is non-differentiable. Our aim is to to minimize the regularized risk functional f(w) =
λ
2 ∥w∥

2 + L(w) where λ > 0 is the regularization constant and L(w) =
∑

i l(w · xi, yi) is the total
loss. The gradient function, g = ∇f is Lipschitz continuous.

For large scale learning on a single machine, it is now well established that example-wise methods1

such as stochastic gradient descent (SGD) and its variations [1, 2, 3] and dual coordinate ascent [4]
are much faster than batch gradient-based methods for reaching weights with sufficient training
optimality needed for attaining steady state generalization performance. However, example-wise
methods are inherently sequential.

For tackling problems involving huge sized data, distributed solution becomes necessary. One ap-
proach to parallel SGD solution [5] is via (iterative) parameter mixing [6, 7]. Consider a distributed
setting with a master-slave architecture2 in which the examples are partitioned over P slave com-
puting nodes. Let: Ip be the set of indices i such that (xi, yi) sits in the p-th node; and Lp(w) =∑

i∈Ip
l(w · xi, yi) be the total loss associated with node p. Thus, f(w) = λ

2 ∥w∥
2 +

∑
p Lp(w).

Suppose the master node has the current weight vector wr and it communicates it to all the nodes.
Each node p can form the approximation,

f̃p =
λ

2
∥w∥2 + Lp(w) (1)

of f using only its examples, and do several SGD epochs (local passes over its examples) on f̃p and
reach a point wp. The wp ∀p can then be communicated back to the master node and averaged to
form the next iterate wr+1. One can stop after just one major iteration (go from r = 0 to r = 1)
or repeat many such major iterations. Convergence theory for such methods is limited, and, even

1These methods update w after scanning each example.
2An AllReduce arrangement of nodes [8] may also be used.

1

that requires a complicated analysis [5]. There are two main issues related to variance and bias: (a)
When the number of nodes is large, the f̃p are very different from each other, and so, the variability
in the wp is large and the averaged weight vector is also far away from w⋆ = argmin f(w). (b)
If we use too many SGD epochs within each node p, then, within each major iteration, SGD will
converge to the minimizer of f̃p irrespective of the starting point wr, making the major iterations
useless.

A New Parallel SGD method. Our main idea is to use a descent method for batch training and, in
each of its iterations, compute the direction by doing SGD iterations in parallel on function approx-
imations that are “better” than the f̃p. We begin each iteration r by computing the gradient gr at
the current point wr.3 One can communicate wr and gr to all P (slave) nodes. The direction dr is
formed as follows. Each node p constructs an approximation of f(w) using only information that is
available in that node4 (call this function as f̂p(w)) and (approximately) optimizes it (starting from
wr) to get the point wp. Let dp = wp − wr. Then dr is chosen to be any convex combination of
dp ∀p. Note that, if each dp is a descent direction then dr is also a descent direction.

The key is to choose each approximating functional f̂p to have gradient consistency at wr:

f̂p(w) = f̃p(w) + (gr − λwr −∇Lp(w
r)) · (w − wr) (2)

Note that ∇f̂p(w
r) = gr. This condition gives the necessary tilt to the approximating functions for

maintaining consistency with the minimization of the global objective function f .

Algorithm 1 gives all the steps of our method. There, sgd(v0; f̂p, s, pars) denotes the output point
obtained by applying s epochs of a SGD method to f̂p, starting from v0, where pars denotes param-
eters associated with the SGD method, e.g., learning rate. Note that the output point is stochastic
since there is randomness present in the iterations, e.g., the order in which examples are presented.

Algorithm 1: Distributed method for minimizing f (com: communication; cmp: = computation;
agg: aggregation)

Choose w0; s, pars, 0 ≤ θ < π
2 ;

for r = 0, 1 . . . do
1. Compute gr (com: wr; cmp: Two passes over data; agg: gr); By-product: {zi = wr · xi};
2. Exit if gr = 0;
3. for p = 1, . . . , P (in parallel) do

4. Set v0 = wr;
5. Set wp = sgd(v0; f̂p, s, pars);
6. If −gr, dp ≥ θ, set dp = −gr; (a, b denotes the angle between vectors a and b);

end
7. Set dr as any convex combination of {dp} (agg: dp);
8. Do line search to find t (for each t: comm: t; cmp: l and ∂l/∂t; agg: f(wr + tdr) and its
derivative wrt t);
9. Set wr+1 = wr + tdr;

end

For step 8 we require that the following standard line search conditions are satisfied:

Armijo: fr+1 ≤ fr + αgr · (wr+1 − wr) (3)
Wolfe: gr+1 · dr ≥ βgr · dr (4)

where 0 < α < β < 1 and fr = f(wr).

Theorem 1. Algorithm 1 has global linear rate of convergence (glrc), i.e., ∃ 0 < δ < 1 such that
(f(wr+1)−f(w⋆)) ≤ δ(f(wr)−f(w⋆)) ∀r, where w⋆ = argminw f(w). It follows that algorithm
1 finds a point wr satisfying f(wr)− f(w⋆) ≤ ϵ in O(s log(1/ϵ)) time.

3It is worth noting that recently proposed powerful SGD methods [3] also compute full batch gradients once
every few SGD epochs.

4This information includes the examples sitting in the node as well as wr , gr etc.

2

Theorem 1 can actually be stated stronger than what is given above. If steps 4-6 of algorithm 1
are replaced by any sub-algorithm that finds a dp satisfying −gr, dp < θ then the glrc result
still holds. While convergence follows from standard optimization theory, proving glrc under such
general conditions seems to be a new result. Previously, glrc seems to have been established only
for special cases such as the gradient descent method [9].

If the condition −gr, dp ≥ θ never gets triggered in step 6, then algorithm 1 can be viewed as a
clean parallel SGD method. Step 6 is a “safe” artifact step that is added to account for the stochas-
ticity of (sgd). One may ask: how frequently does the condition −gr, dp ≥ θ happen?. This can be
answered both, from a theoretical as well as a practical angle. Theoretically, we can show that, by
making s, the number of sgd epochs in step 5 large, the probability of the condition happening can
be made arbitrarily small.

Theorem 2. Let ŵ⋆
p = argminw f̂p(w). Suppose sgd has strong stochastic convergence in the sense

that E∥wp − ŵ⋆
p∥2 ≤ Kαs∥wr − ŵ⋆

p∥2 ∀s, where 0 ≤ α < 1 and K ≥ 0. Let π
2 > θ > cos−1 λ

L

where L is a Lipschitz constant for g. Then, for any 0 < γ < 1, ∃ s = O(log(1/γ)) such that
Prob(−gr, dr ≥ θ) < γ.

Theorems 1 and 2 can be combined to give algorithmic time complexity as O(log(1/(ϵγ))). The
proof is based on formalizing the following observations. (1) Since f̂p has a ‘curvature’ of at least
λ and ∇f̂p(w

r) = gr, ŵ⋆
p − wr makes an angle less than cos−1 λ

L with −gr. (2) Strong stochastic
convergence of sgd implies that, as s is made large, wp comes close to ŵ⋆

p with high probability.
Recent SGD methods [3, 2] possess the strong convergence property needed in Theorem 2.

Let us now discuss the practical view of step 6. For sgd, suppose we use an SGD method such as
the ones in [3, 2] which move in directions that are “close” to the negative batch gradient and also
have low variance. Then, the points generated by sgd lie close to the batch negative gradient flow
and hence nicely lead to wp − wr being a descent direction. This actually happens even when s
is small. With large s, of course, wp moves close to ŵ⋆

p as explained earlier. Thus, the chance of
f̂p(wp) ≥ f̂p(w

r) happening is very low, irrespective of s. Note from the definition of f̂p that,
wp − wr is a descent direction of f at wr if and only if f̂p(wp) < f̂p(w

r).

For a practical implementation, we can simply set θ = 0, going by standard practice in numerical
optimization; thus, directions that lead to descent are accepted. Parameters (pars) of sgd can be set
as recommended by the individual SGD method used. The number of epochs s can be set based on
a communication-computation trade-off; it is wise to choose s so that the cost of communication
(of wr, gr etc.) between nodes is reasonably commensurate with the cost of computation (sgd
epochs) in each node. For step 7, one can use simple averaging. For the line search step we can
first calculate w · xi (note the by-product in step 1) and dr · xi for all i in a distributed fashion.
Then the calculation of f(wr + tdr) and its derivative with respect to t is cheap; so one can use any
good one dimensional search algorithm to find a point satisfying the Armijo-Wolfe conditions. The
parameters in these conditions can be set to: α = 10−4 and β = 0.9.

Experiments. We use an AllReduce tree running on a Hadoop cluster [8]. We
use the Area under Precision-Recall Curve (AUPRC) and (f − f∗)/f∗ (in log scale)
as the evaluation criteria. (We obtained f∗ by optimizing with very small tolerances
to get a very accurate solution.) Experiments are conducted on the kdd2010 dataset
in http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html. This
dataset has 8.41 million examples, 20.21 million examples and 0.3 billion non-zero elements in
the data matrix. We use squared hinge loss with L2 regularization. For sgd we use the SVRG
method [3]. Let FS − s denote our method with s being the number of sgd epochs.

We compare our method against SQM (Statistical Query Model) [10, 8], which is currently one of the
most effective distributed methods. SQM is a batch, gradient-based descent method. The gradient is
computed in a distributed way with each node computing the gradient component corresponding to
its set of examples, followed by an aggregation of the components via an AllReduce tree. Hybrid is
same as SQM, but uses parameter mixing for initializing. Each node p does one epoch of SGD [1]
on its examples; then the weights from various nodes are averaged to form a weight vector that is
used to initialize SQM. Our implementations of SQM and Hybrid are close to that in [8]; the main
difference is that, instead of L-BFGS we use the better-performing TRON [11] as the core optimizer.

3

0 500 1000
−5

−4

−3

−2

−1

0

Communication passes

D
iff

er
en

ce
 to

 O
pt

. F
un

. V
al

ue

FS−8
FS−16
SQM
Hybrid

(a) 25 nodes

0 1 2 3 4
x 10

4

−6

−4

−2

0

Time

D
iff

er
en

ce
 to

 O
pt

. F
un

. V
al

ue

FS−8
FS−16
SQM
Hybrid

(b) 25 nodes

0 0.5 1 1.5 2
x 10

4

0.35

0.4

0.45

0.5

0.55

Time

A
U

P
R

C

FS−8
FS−16
SQM
Hybrid

(c) 25 nodes

0 200 400 600 800
−3

−2

−1

0

Communication passes

D
iff

er
en

ce
 to

 O
pt

. F
un

. V
al

ue

FS−8
FS−16
SQM
Hybrid

(d) 100 nodes

0 1 2 3 4 5
x 10

4

−3

−2

−1

0

Time

D
iff

er
en

ce
 to

 O
pt

. F
un

. V
al

ue

FS−8
FS−16
SQM
Hybrid

(e) 100 nodes

0 1 2 3
x 10

4

0.35

0.4

0.45

0.5

0.55

Time

A
U

P
R

C

FS−8
FS−16
SQM
Hybrid

(f) 100 nodes

Figure 1: Comparison of methods. Left and middle: (f − f∗)/f∗ (log scale) versus Number of
communication passes and Time (in seconds); Right: AUPRC as a function of Time, for kdd2010
with 25 nodes (top) and 100 nodes (bottom).

Figure 1 compares our method against SQM and Hybrid. First let us look at the variation of the ob-
jective function accuracy with respect to the number of communication passes.5 Looking at the plots
on the left side of Figure 1 we can see that our method requires far less number of communication
passes than SQM and Hybrid to achieve the same accuracy in objective function. This difference
between the methods also extends to the plots of objective function accuracy versus computing time
(middle sub-plots in Figure 1); however, the difference in performance is less pronounced. This is
due to the increased computational work (sgd epochs) done by our method at the nodes; note that
SQM and Hybrid use the nodes only to compute gradient components.

SQM and Hybrid also have the advantage of better convergence when coming close to the optimum
since they are directly based on second order modeling of f . Our method is good at forming approx-
imate global views of f right from the beginning, thus making good progress in the early iterations.
This is also directly reflected in the AUPRC plots (the right side of Figure 1). Our method reaches
stable generalization performance much quicker than SQM and Hybrid.

When the number of nodes is increased, SQM and Hybrid come closer to our method; see this by
comparing the sub-plots in the top and bottom of Figure 1. This is due to the fact that, when the
number of nodes becomes large, f̂p does not approximate f very well, leading to an increased num-
ber of major iterations. The value of s, the number of SGD epochs plays a key role in determining
the rate of linear convergence.

Conclusion and discussion. We have given a parallelization of stochastic gradient descent with
strong convergence properties and demonstrated its effectiveness.

We can extend our method in several ways. (a) Suppose f is non-convex, e.g., f from neural
networks and deep learning. In the definition of f̂p (see (2) and (1)), if Lp(w) is replaced by a
convex approximation then convergence of algorithm 1 can be shown; however, complexity results
(which require glrc) are not easy to prove. From a practical point of view, it also makes sense to try
non-convex f̂p, but care is needed to stop the optimization of f̂p via sgd early to make sure that the
dp are descent directions. (b) For convex f , our method can also use other algorithms (e.g., L-BFGS,
TRON etc.) as a replacement for sgd to optimize f̂p, leading to interesting possibilities. (c) It is also
useful to explore automatic ways of switching from our method to SQM when nearing the optimum.

5One communication pass corresponds to a vector of size equal to the feature dimension being passed
between nodes.

4

References

[1] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in COMP-
STAT’2010, pp. 177–187, 2010.

[2] N. Le Roux, M. Schmidt, and F. Bach, “A stochastic gradient method with an exponential
convergence rate for strongly convex optimization with finite training sets,” in arXiv, 2012.

[3] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance
reduction,” NIPS, 2013.

[4] C. Hsieh, K. Chang, C. Lin, S. Keerthi, and S. Sundararajan, “A dual coordinate descent
method for large-scale linear svm,” in ICML, pp. 408–415, 2008.

[5] M. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized stochastic gradient descent,” in
NIPS, pp. 2595–2603, 2010.

[6] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker, “Efficient large-scale dis-
tributed training of conditional maximum entropy models,” in NIPS, pp. 1231–1239, 2009.

[7] K. Hall, S. Gilpin, and G. Mann, “Mapreduce/bigtable for distributed optimization,” in NIPS
Workshop on Leaning on Cores, Clusters, and Clouds, 2010.

[8] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford, “A reliable effective terascale linear
learning system,” in arXiv, 2011.

[9] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK: Cambridge University
Press, 2004.

[10] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun, “Map-reduce for machine
learning on multicore,” NIPS, pp. 281–288, 2006.

[11] C. Lin, R. Weng, and S. Keerthi, “Trust region newton method for large-scale logistic regres-
sion,” JMLR, pp. 627–650, 2008.

5

