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Abstract. The hub labels (HL) algorithm is the fastest known technique
for computing driving times on road networks, but its practical appli-
cability can be limited by high space requirements relative to the best
competing methods. We develop compression techniques that substan-
tially reduce HL space requirements with a small performance penalty.

1 Introduction

Computing the driving time between two points in a road network is the fun-
damental building block for location services, which are increasingly important
in practice. Dijkstra’s algorithm [14] can solve this problem in essentially linear
time, but this is too slow for continental road networks. This motivates two-stage
algorithms, which use a preprocessing phase to precompute some auxiliary data
that is then used to accelerate queries. Several efficient algorithms have recently
been developed following this approach, each offering a different tradeoff between
preprocessing effort and query times [3–8, 11, 16–19].

This paper focuses on hub labels (HL), a labeling algorithm [9, 15] developed
by Abraham et al. [3, 4] to work specifically with road networks. For each vertex
v in the network, its preprocessing step computes a label consisting of a set of
hubs (other vertices), together with the distances between v and these hubs. The
construction is such that, for any two vertices s and t, there must be at least one
hub on the shortest s–t path that belongs to the labels of both s and t. Queries
can then be answered by simply intersecting the two relevant labels.

The HL algorithm has several attractive properties. First, it is the fastest
point-to-point shortest-path algorithm for road networks, for both long-range
and (more common) local queries. Second, its query algorithm is by far the
simplest: it does not even need a graph data structure, allowing practitioners with
no algorithm engineering expertise to implement fast queries. Finally, the concept
of labels (and hubs) is intuitive and extremely powerful, naturally lending itself
to the implementation of much more sophisticated queries, such as finding nearby
points of interest, optimizing ride sharing schemes, or building distance tables [2].

One aspect of HL, however, severely limits its applicability: space usage. Al-
though preprocessing time is in line with most other methods (a few minutes on
a modern server [4]), in many settings it produces a prohibitive amount of data.
Computing and storing all labels requires up to two orders of magnitude more
space than storing the graph itself. For a standard benchmark instance represent-
ing Western Europe, labels require roughly 20 GiB of RAM, while a graph-based
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algorithm such as contraction hierarchies (CH) [16] requires less than 0.5 GiB.
For more realistic representations (with turn costs), space requirements are even
higher, rendering HL impractical on most commodity machines.

One could use another algorithm instead, but this would mean sacrificing
query speed, ease of use, or flexibility. Storing the labels in external memory is
feasible [2], but makes queries orders of magnitude slower. Finally, Abraham et
al. [3] propose a (RAM-based) compact label representation that reduces space
usage by a factor of roughly 3, but the compression routine itself requires a large
amount of time and space (including in-memory access to all labels).

We propose hub label compression (HLC), a technique that achieves high
compression ratios and works in on-line fashion. Compressing labels as they are
generated drastically reduces the amount of RAM used during preprocessing,
which is only slightly slower than for plain HL. On continental road networks,
HLC uses an order of magnitude less space than standard HL (1.8 GiB on West-
ern Europe). Queries are somewhat slower, but still faster than almost all other
known algorithms. Crucially, they are still easy to implement (requiring no graph
or priority queue), and preserve the full generality of the HL framework.

The remainder of this paper is organized as follows. After a brief overview of
the HL algorithm (in Section 2), Section 3 explains the basics of HLC: the data
structure, query implementation, and justification for our design decisions. Sec-
tion 4 proposes optimizations that enable faster queries and better compression.
Section 5 explains how the compact data structure can be generated. Section 6
has an experimental analysis of our approach. We conclude in Section 7.

2 Hub Labels

We represent a road network as a directed graph G = (V,A). A vertex v ∈ V
is an intersection, and an arc (v, w) ∈ A is a road segment with a nonnegative
length `(v, w), typically reflecting driving times. Let n = |V |. In the point-to-
point shortest path problem, we are given a source vertex s and a target vertex
t, and our goal is to find dist(s, t), the total length of the shortest s–t path in G.

The hub labels (HL) algorithm [3, 4] solves this problem in two stages. During
preprocessing, HL creates a forward label Lf (v) and a backward label Lb(v)
for each vertex v ∈ V . The forward label Lf (v) consists of a sequence of pairs
(w,dist(v, w)), in which w ∈ V is a hub and dist(v, w) is the distance (in G) from
v to w. The backward label is similar, with pairs (u,dist(u, v)). By construction,
labels obey the cover property : for any two vertices s and t, the set Lf (s)∩Lb(t)
must contain at least one hub v that is on the shortest s–t path. Queries are
straightforward: to find dist(s, t), simply find the hub v ∈ Lf (s) ∩ Lb(t) that
minimizes dist(s, v)+dist(v, t). By storing the entries in each label sorted by hub
ID, this can be done with sequential sweeps over both labels (as in merge sort),
which is very simple and cache-friendly. To compute labels for road networks
efficiently, Abraham et al. [3, 4] propose a two-step algorithm. First, as in CH [16],
one computes the “importance” of each vertex, roughly measuring how many
shortest paths it hits. The label for each vertex v is then built in a greedy fashion:
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the label starts with only the most important vertex as a hub, with more vertices
added as needed to ensure every shortest path originated at v is hit. The resulting
labels are surprisingly small, with around 100 hubs on average on continental
road networks. The resulting queries are fast, but memory requirements are high.

3 Compressed Labels

We now present our basic compression strategy. We describe it in terms of for-
ward labels only, which we denote by L(·) to simplify notation; backward labels
can be compressed independently using the same method. As Abraham et al. [4]
observe, the forward label L(u) of u can be represented as a tree Tu rooted at u
and having the hubs in L(u) as vertices. Given two vertices v, w ∈ L(u), there is
an arc (v, w) in Tu (with length dist(v, w)) if the shortest v–w path in G contains
no other vertex of L(u).

Our compression scheme exploits the fact that trees representing labels of
nearby vertices in the graph often have many subtrees in common. We assign
a unique ID to each distinct subtree and store it only once. Furthermore, each
tree is stored using a space-saving recursive representation. More precisely, for
any v ∈ L(u), let Su(v) be the maximal subtree of Tu rooted at v. This subtree
can be described by its root (v itself) together with a list of the IDs of its child
subtrees, each paired with an offset representing the distance from v to the
subtree’s root. We call this structure (the root ID together with a list of pairs)
a token. Common tokens can then be shared by different labels.

The remainder of this section details the actual data structure we use, as
well as queries. Section 5 discusses how to actually build the data structure.

Data Structure. Our representation makes standard assumptions [8] for real-
world road networks: (1) vertices have integral IDs from 0 to n−1 and (2) finite
distances in the graph can be represented as unsigned 32-bit integers.

A token is fully defined by the following: (1) the ID r of the root vertex of
the corresponding subtree; (2) the number k of child tokens (representing child
subtrees of r); and (3) a list of k pairs (i, δi), where i is a token ID and δi is the
distance from r to the root of the corresponding subtree. We thus represent a
token as an array of 2k+ 2 unsigned 32-bit integers. We represent the collection
of all subtrees by concatenating all tokens into a single token array of unsigned
32-bit integers. In addition, we store an index, an array of size n that maps each
vertex in V to the ID of its anchor token, which represents its full label.

We still have to define how token IDs are chosen. We say that a token is
trivial if it represents a subtree consisting of a single vertex v, with no child
tokens. The ID of such a trivial token is v itself, which is in the range [0, n).
Nontrivial tokens (those with at least one child token) are assigned unique IDs
in the range [n, 232). Such IDs are not necessarily consecutive, however. Instead,
they are chosen so as to allow quick access to the corresponding entry in the
token array. More precisely, a token that starts at position p in the array has
ID n + p/2. (This is an integer, since all tokens have an even number of 32-bit
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integers.) Conversely, the token whose ID is i starts at position 2(i − n) in the
array. Trivial tokens are not represented in the token array, since the token ID
fully defines the root vertex (the ID itself) and the number of children (zero).

Since all IDs must fit in 32 bits, the token array can only represent labelings
whose (compressed) size is at most 8(232 − n) bytes. For n� 232, as is the case
in practice, this is slightly less than 32 GiB, and enough to handle all instances
we test; bigger inputs could be handled by varying the sizes of each field.

Queries. Since a standard (uncompressed) HL label is stored as an array of
hubs (and the corresponding offsets) sorted by ID, a query requires a simple
linear scan. With the compact representation, queries require two steps: we first
retrieve the two labels, then intersect them. We discuss each in turn.

Retrieving a label L(v) means transforming its token-based representation
Tv into an array of pairs, each containing the ID of a hub h and its distance
dist(v, h) from v. We can do this by traversing the tree Tv top-down, while
keeping track of the appropriate offsets. For efficiency, we avoid recursion and
perform a BFS traversal of the tree using the output array itself for temporary
storage. More precisely, we do as follows. First, we use the index array to get tv,
the ID of v’s anchor token, and initialize the output array with a single element,
(tv, 0). We then process each element of this array in order. Let (t, d) be the
element in position p (processed in the p-th step). If t < n (i.e., it is a trivial
token), there is nothing to do. Otherwise (if t ≥ n), we read token t from the
token array, starting at position 2(t − i). Let w be t’s root vertex. We replace
(t, d) by (w, d) in the p-th position of the output array and, for each pair (i, δi)
in the token, append the pair (i, d+δi) to the output array. The algorithm stops
when it reaches a position that has not been written to. At this point, each pair
in the output array corresponds to a hub together with its distance from v.

The second query step is to intersect the two arrays (for source and target)
produced by the first step. Since the arrays are not sorted by ID, it is not enough
to do a linear sweep, as in the standard HL query. We could explicitly sort the
labels by ID before sweeping, but this is slow. Instead, we propose using indexing
to find common hubs without sorting. We first traverse one of the labels to build
an index of its hubs (with associated distances), then traverse the second label
checking if each hub is already in the index (and adding up the distances). The
simplest such index is an array indexed by ID, but this takes Θ(n) space and
may lead to many cache misses. A better alternative is to use a small hash table
with a simple hash function (we use ID modulo 1024) and linear probing [10].

Discussion. Our data structure balances space usage, query performance, and
simplicity. If compression ratios were our only concern, we could easily reduce
space usage with various techniques. We could use fewer bits for some of the fields
(notably the number of children). We could use relative (rather than absolute)
references and variable-length encoding for the IDs [21]. We could avoid storing
the length of each arc (v, w) multiple times in the token array (as offsets in tokens
rooted at v) by representing labels as subtrees of the full CH graph [16], possibly
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using techniques from succinct data structures [20]. Such measures would reduce
space usage, but query times could suffer (due to worse locality) and simplicity,
arguably the main attraction of HL, would be severely compromised.

4 Variants and Optimizations

We now consider optimizations to our basic compression scheme. They modify
the preprocessing stage only, and require no change to the query algorithm.

The Token DAG. Conceptually, our compressed representation can be seen
as a token graph. Each vertex of the graph corresponds to a nontrivial token x,
and there is an arc (x, y) if and only if y is a child of x in some label. The length
of the arc is the offset of y within x. The token graph has some useful properties.
By definition, a token x that appears in multiple labels has the same children
(in the corresponding trees) in all of them. This means x has the same set of
descendants in all labels it belongs to, and by construction these are exactly the
vertices in the subgraph reachable from x in the token graph. This implies that
this subgraph is a tree, and that the token graph is a DAG. It also implies that
the subgraph reachable from x by following only reverse arcs is a tree as well:
if there were two distinct paths to some ancestor y of x, the direct subgraph
reachable from y would not be a tree. We have thus proven the following.

Lemma 1. The token graph is a DAG in which any two vertices are connected
by at most one path.

Note that all DAG vertices with in-degree zero are anchor tokens, and DAG
vertices with out-degree zero (which we call leaf tokens) are nontrivial tokens
that only have trivial tokens (which are not in the token DAG) as children.

Pruning the DAG. Retrieving a compressed label may require a nonsequential
memory access for each internal node in the corresponding tree. To improve
locality (and even space usage), we propose two operations. We can eliminate a
non-anchor token t (rooted at a vertex v) with a single parent t′ in the token DAG
as follows. We replace each arc (t, t′′) in the DAG by an arc (t′, t′′) with length
equal to the sum of (t′, t) and (t, t′′). Moreover, in t′, we replace the reference to t
by a reference to trivial token v. This 1-parent elimination operation potentially
improves query time and space. Similarly, 1-child elimination applies to a non-
anchor token t that has exactly two parents in the DAG, a single nontrivial child
t′, and no nontrivial children. We can discard t and create direct arcs from each
parent of t to t′, saving nonsequential accesses with no increase in space.

Flattening. A more aggressive approach to speed up queries is to flatten sub-
trees that occur in many labels. Instead of describing the subtree recursively,
we create a single token explicitly listing all descendants of its root vertex, with
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appropriate offsets. We propose a greedy algorithm that in each step flattens
the subtree (token) that reduces the expected query time the most, assuming all
labels are equally likely to be accessed. Intuitively, our goal is to minimize the
average number nonsequential accesses when reading the labels.

Let λ(x) be the number of labels containing a nontrivial token x, and let
α(x) be the number of proper descendants of x in the token DAG (α(x) is 0 if x
is a leaf). The total access cost of the DAG is the total number of nonsequential
accesses required to access all n labels. (This is n times the expected cost of
reading a random label.) If H is the set of all anchor tokens, the total access
cost is

∑
x∈H(1+α(x)). The share of the access cost attributable to any token x

is λ(x) · (1 +α(x)). Flattening the corresponding subtree would reduce the total
access cost by v(x) = λ(x)α(x), as a single access would suffice to retrieve x.

Our algorithm starts by traversing the token graph twice in topological order:
a direct traversal initializes λ(·) and a reverse one initializes α(·). It then keeps
the v(x) = λ(x)α(x) values in a priority queue. Each step takes the token x with
maximum v(x) value, flattens x, then updates all v(·) values that are affected.
For every ancestor z of x, we set α(z)← α(z)− α(x); for every descendant y of
x, we set λ(y)← λ(y)−λ(x). If λ(y) becomes zero, we simply discard y. Finally,
we remove the outgoing arcs from x (making x a leaf) and set α(x) ← 0. We
stop when the total size of the token array increases beyond a given threshold.
Using Lemma 1, one can show that this algorithm runs in O(τµ) time, where τ
is the initial number of tokens in the DAG and µ is the maximum label size.

Discussion. We implemented flattening as described above, but the concept is
more general: one could flatten arbitrary subtrees (not just maximal ones), as
long as unflattened portions are represented elsewhere with appropriate offsets.
The 1-parent and 1-child elimination routines are special cases of this, as is
Abraham et al.’s compression technique [3], which splits each label into a subtree
containing its root and a (shared) token representing the remaining forest.

With no stopping criterion, the greedy flattening algorithm eventually leads
to exactly n (flattened) tokens, each corresponding to a label in its entirety, as
in the standard (uncompressed) HL representation. Conversely, we could have a
“merge” operation that combines tokens rooted at the same vertex into a single
token (not necessarily flattened) representing the union of the corresponding
trees. This saves space, but tokens no longer represent minimal labels. Our BFS-
based label retrieval technique is still correct (it access all relevant hubs), but it
may visit each hub more than once, since Lemma 1 no longer holds. We could
fix this by visiting tokens in increasing order of distance (with a heap), as in CH
queries [16]. This similarity is not accidental: repeated application of the “merge”
operation eventually leads to a single token rooted at each vertex (representing
all subtrees rooted at it), with the token graph exactly matching the upward CH
graph [16]. In this sense, HLC generalizes both CH and HL.

Reordering. If the tokens corresponding to the endpoints of a DAG arc are
not stored consecutively in memory, traversing this arc usually results in a cache
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miss. Tokens must be stored in increasing order of ID, but these IDs can be chosen
to our advantage. By reordering tokens appropriately during preprocessing, we
can potentially decrease the number of cache misses during queries.

We propose the following. First, we mark a subset M of the DAG arcs such
that each token t in the DAG has at most one incoming arc and at most one
outgoing arc in M . This creates a collection of vertex-disjoint paths. We then
assign consecutive IDs to the vertices along each path (the order among paths is
arbitrary). For random queries, this assignment avoids (compared to a random
order) approximately λ(t)/n cache misses for each marked arc (t, t′). We define
the gain associated with a set M as the sum of λ(t) over all marked arcs (t, t′).
One can show that the set M∗ with maximum gain can be found using minimum-
cost flows. For efficiency, however, we use a greedy heuristic instead. We start
with all arcs unmarked, then process the tokens in nonincreasing order of λ(·).
To process a token t, we mark, among all outgoing arcs (t, t′) such that t′ has
no marked incoming arc, the one maximizing λ(t′). If no such arc exists, we just
skip t. Eventually, this leads to a maximal set M of marked arcs.

5 Label Generation

We now explain how the data structures described in Section 3 can actually
be built. To create a compressed representation of an existing set of labels, we
start with an empty token array and tokenize the labels (i.e., create their token-
based representation) one at a time, in any order. To tokenize a label L(v), we
traverse the corresponding tree Tv bottom-up. To process a vertex w ∈ Tv, we
first build the token tw that represents it. This can be done because at this point
we already know the IDs of the tokens representing the subtrees rooted at w’s
children. We then pick an ID i to assign to tw. First, we use hashing to check if tw
already occurs in the token array. If it does, we take its existing ID. Otherwise,
we append tw to the token array and use its position p to compute the ID i, as
described in Section 3 (i = n+ p/2). When the bottom-up traversal of Tv ends,
we store the ID of tv (the anchor token of v) in the index array.

Note that label compression can be implemented in on-line fashion, as la-
bels are generated. Asymptotically, it does not affect the running time: we can
compress all labels in linear time. In practice, however, generating a label often
requires access to other existing labels [3, 4]. If we are not careful, the extra cost
of retrieving existing compressed labels may become the bottleneck.

With that in mind, we modify Abraham et al.’s recursive label generation [4]
to compress labels as they are created. Building on the preprocessing algorithm
for contraction hierarchies (CH) [16], they first find a heuristic order among
all vertices, then shortcut them in this order. To process a vertex v, one (tem-
porarily) deletes v and adds arcs as necessary to preserve distances among the
remaining vertices. More precisely, for every pair of incoming and outgoing arcs
(u, v) and (v, w) such that (u, v) ·(v, w) is the only u–w shortest path, one adds a
new shortcut arc (u,w) with `(u,w) = `(u, v) + `(v, w). This procedure outputs
the order itself (given by a rank function r(·)) and a graph G+ = (V,A ∪ A+),
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where A+ is the set of shortcuts. The number of shortcuts depends on the order;
intuitively, it is best to first shortcut vertices that belong to few shortest paths.

Labels are then generated one by one, in reverse contraction (or top-down)
order, starting from the last contracted vertex. The first step to process a vertex
v is to build an initial label L(v) by combining the labels of v’s upward neighbors
Uv = {u1, u2, . . . , uk} (u is an upward neighbor of v if r(u) > r(v) and (u, v) ∈
A∪A+.) For each ui ∈ Uv, let Tui be the (already computed) tree representing its
label. We initialize Tv (the tree representing L(v)) by taking the first tree (Tu1

)
in full, and making its root a child of v itself (with an arc of length `(v, u1)). We
then process the other trees Tui

(i ≥ 2) in top-down fashion. Consider a vertex
w ∈ Tui

with parent pw in Tui
. If w 6∈ Tv, we add it—pw must already be there,

since we process vertices top-down. If w ∈ Tv and its distance label dv(w) is
higher than `(v, ui) + dui(w), we update dv(w) and set w’s parent in Tv to pw.

Once the merged tree Tv is built, we eliminate any vertex w ∈ Tv such that
dv(w) > dist(v, w). The actual distance dist(v, w) can be found by bootstrapping,
i.e., running a v–w HL query using L(v) itself (unpruned, obtained from Tv) and
the label L(w) (which must already exist, since labels are generated top-down).

Our algorithm differs from Abraham et al.’s [4] in that it stores labels in
compressed form. To compute L(v), we must retrieve (using the token array)
the labels of its upward neighbors, taking care to preserve the parent pointer
information that is implicit in the token-based representation. Similarly, boot-
strapping requires retrieving the labels of all candidate hubs.

To reduce the cost of retrieving compressed labels during preprocessing, we
keep an LRU cache of uncompressed labels. Whenever a label is needed, we first
look it up in the cache, and only retrieve its compressed version if needed (and
add it to the cache). Since labels used for bootstrapping do not need parent
pointers and labels used for merging do, we keep an independent cache for each
representation. To minimize cache misses, we do not generate labels in strict top-
down order; instead, we process vertices in increasing order of ID, deviating from
this order as necessary. If we try to process v and realize it has an unprocessed
upward neighbor w, we process w first, then come back to v. (We use a stack
to keep track of delayed vertices.) The cache hit ratio improves because nearby
vertices (with similar labels) tend to have similar IDs in our test instances.

For additional acceleration, we also avoid unnecessary bootstrapping queries.
If a vertex v has a single upward neighbor u, there is no need to bootstrap Tv
(and u’s token can be reused). If v has multiple upward neighbors, we bootstrap
Tv in bottom-up order. If we determine that the distance label for a vertex
w ∈ Tv is correct, its ancestors in Tv must be as well, and need not be tested.

6 Experiments

We implemented our HLC algorithm in C++ and compiled it (using full opti-
mization) with Microsoft Visual C++ 2010. We tested it on a machine running
Windows Server 2008 R2 with 96 GiB of DDR3-1333 RAM and two 6-core Intel
Xeon X5680 CPUs at 3.33 GHz (each CPU has 6×64 KB of L1, 6×256 KB L2,
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Table 1. HLC and HL performance, aggregated over forward and backward labels.

preprocessing queries
time space tokens reads hash linear merge

algorithm [h:m] [MiB] /vertex /label [ns] [ns] [ns]

basic HLC 00:47 2016.3 4.925 39.46 3338 3832 7035
+1-parents 00:48 1759.0 3.053 36.27 3313 3830 7007
+1-children 00:49 1759.0 2.912 35.78 3304 3809 6996
+5% flat 00:50 1840.1 2.912 12.96 2554 2999 6205

plain HL 00:38 21776.1 2.000 1.00 1208 1315 617

and 12 MB of shared L3 cache). For ease of comparison, all runs were sequen-
tial. Our default benchmark instance (made available by PTV AG for the 9th
DIMACS Implementation Challenge [13]) represents (Western) Europe; it has
n = 18 · 106 vertices, m = 42 · 106 arcs, and travel times as the cost function.

Our first experiment examines the effectiveness of all variants of HLC we
considered. For reference, we also report the performance of a plain implemen-
tation of HL algorithm, where each label is an array of 32-bit integers (hubs and
distances), sorted by hub ID. The complicated optimizations proposed by Abra-
ham et al. [3] (such as ID reassignment, 8/24 compression, distance oracles, and
index-free queries) will be considered later. We use the default contraction order
proposed by Abraham et al. [4] (HL-15), with 78.24 hubs per label on average.

For each method, Table 1 shows the total preprocessing time (including find-
ing the contraction order), the amount of data generated, the average number
of (both trivial and nontrivial) tokens per vertex, and the average number of
nontrivial tokens read to retrieve a label (“reads/label”). All values are aggre-
gated over both forward and backward labels. We also show average times (over
107 random s–t pairs) for three query strategies: hashed index, linear index (an
n-sized array), and merging (including a call to the STL sort function for HLC).

The basic version of HLC (described in Section 3) uses an order of magnitude
less space than HL, with similar preprocessing time. This makes the label-based
approach much more practical: while few current servers have 20 GiB of RAM
available, most can easily handle 2 GiB data structures. (For comparison, labels
compressed with gzip would take 7.7 GiB and would not support fast queries.)
Space usage can be reduced by around 10% if 1-parent tokens are eliminated,
with little effect on query times; 1-child elimination has a small but positive
effect. Greedily flattening tokens until the token array increases by 5% reduces
the number of tokens needed to represent each label by more than 70%, but
queries are only about 25% faster (“popular” tokens end up in cache anyway,
even without flattening). Flattening twice as much (10%) would further reduce
query times by only 3%.

Regarding queries, hashing is slightly faster than linear indexing for HLC,
and significantly faster than merging (which requires sorting). For HL, whose
labels are already sorted by ID, merging is by far the best strategy, due to its
favorable access pattern and simplicity. In the end, hashing and worse locality
make HLC queries about four times slower than plain HL queries.
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Table 2. Random queries on Europe.
prepro space query

method [h:m] [GB] [ns]

CH [16] 0:14 0.4 79373
TNR [5] 0:21 2.5 1711
TNR+AF [8] 2:00 5.7 992
HL prefix [3] ≈2:00 5.7 527
HL-15 local [4] 0:37 18.8 556
HL-∞ global [4] ≈60:00 17.7 254

HLC-0 0:30 1.8 2989
HLC-15 0:50 1.8 2554

Table 2 compares the two versions of
HLC (with all optimizations) with other
fast algorithms. It includes CH [16] and
three variants of HL [3, 4]: HL-∞ global
is optimized for long-range queries, HL-
15 local for short-range queries, and
HL prefix minimizes space usage. HLC-
0 and HLC-15 use the same vertex or-
ders as HL-0 and HL-15, respectively [4].
We also include Transit Node Routing
(TNR) [5, 6], which uses table lookups
for long range queries, CH for local queries, and (optionally) hashing for
midrange queries. TNR+AF [8] uses arc flags [19] to guide TNR towards the
target. We report preprocessing time, space usage, and average time for random
queries, considering the best available implementation of each method. All times
are sequential and scaled to match our machine [3].

While standard HL uses much more space than other methods, compression
makes the hub labels approach less of an outlier. HLC uses only about 4 times
as much space as CH (the most compact method), but random queries are 30
times faster. HLC is comparable to TNR in all three criteria. As we have argued
before, however, HLC has advantages that can make it more practical: simplicity
(no graphs or priority queues) and flexibility (natural extensions based on hubs).
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Fig. 1. Local queries.

Moreover, HLC is faster for lo-
cal queries, which in practice are
more common than long-range (or
random) ones. Fig. 1 plots the me-
dian query times of several algo-
rithms as a function of the Dijk-
stra rank [16]. (Vertex v has Dijk-
stra rank i with respect to s if v
is the i-th vertex scanned by Dijk-
stra’s algorithm from s.) Each point
corresponds to 10 000 queries with
a given rank. The numbers were taken from [3, 5, 8, 16] and scaled appropriately.

Query times increase with Dijkstra rank for CH (since its search space is
bigger), but decreases for TNR (since it can only do fast table lookups for more
global queries). Standard HL can reorder vertices to allow long-range queries
to skip some unimportant hubs [3]. In contrast, HLC must always visit nearby
hubs before getting to more important ones, and its query times are largely
independent of the Dijkstra rank. For local queries, HLC is only about three
times slower than HL, and much faster than other methods.

Finally, Table 3 reports the performance of HLC on a variety of road net-
works. We start with Western Europe from PTV, taking both travel times (as
before) and travel distances as cost functions. We also test an expanded version
of this instance with turn costs, which we model by creating a vertex to represent
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Table 3. Results for HLC on various instances: number n of vertices (in millions),
average (out-)degree, preprocessing time, space usage, compression ratio (relative to
plain HL), average number of hubs per label, and (hash-based) query times.

n time space comp hubs query
source input metric turns [106] deg [h:m] [MiB] ratio /label [ns]

PTV W. Europe time × 18.0 2.36 0:50 1840.1 11.83 78.24 2554
W. Europe time X 42.6 2.72 4:10 6363.4 11.02 107.03 3512
W. Europe dist × 18.0 2.36 3:15 2973.9 15.91 171.25 5734

Tiger US time × 23.9 2.41 0:53 2979.6 8.62 69.33 2486
US dist × 23.9 2.41 2:32 4126.2 14.08 157.99 5294

OSM Australia time × 4.9 1.97 0:13 408.8 9.48 51.30 1689
S. America time × 11.3 2.18 0:29 1167.2 8.33 55.25 1865
N. America time × 162.5 2.04 5:52 14560.6 18.25 106.18 3520
Old World time × 188.7 2.02 6:14 17164.4 16.07 94.78 3232

Bing Europe default × 47.9 2.23 1:53 4791.8 15.20 98.53 3264
Europe default X 107.0 2.26 8:01 13046.6 14.38 113.92 3854
N. America default × 30.3 2.41 1:33 3461.2 14.52 107.74 3437
N. America default X 72.5 2.61 14:34 13403.8 11.04 132.87 4429

each original arc [11]; we follow Delling et al. [11] and set U-turn costs to 100
seconds and all other turn costs to zero. In addition, we test TIGER data [13] rep-
resenting the USA, as well as four OpenStreetMap (OSM) instances (v. 121812)
with realistic travel times (but no turn costs or restrictions), representing Aus-
tralia, South America, North (and Central) America, and Old World (Africa,
Asia, and Europe). Finally, we test the actual data used by Bing Maps (building
on Navteq data) in production; the cost function is proprietary, but correlates
well with travel times, as one would expect. We consider versions with turn costs
(as used in production) and without. All instances are strongly connected.

Although the average number of hubs per label varies significantly, HLC
always needs one order of magnitude less storage than plain HL. Without com-
pression, some instances would require more than 200 GiB of RAM, which is
hardly practical. This is an issue especially for OSM data, whose vertices rep-
resent both topology (intersections) and geometry, leading to sparse but large
graphs. With compression, space usage is kept below 20 GiB in every case, which
is much more manageable. Queries always remain below 6µs.

7 Final Remarks

We presented compression techniques that substantially reduce the memory re-
quirements for HL. Not only do they keep queries fast and simple, but they also
preserve the flexibility and generality of labels. This makes the label-based ap-
proach practical in a wider range of applications. An open problem is to speed
up its preprocessing to handle dynamic scenarios (such as real-time traffic) effi-
ciently. Although techniques such as CRP [11, 12] can quickly adapt to changes
in the length function, they have more complicated (and much slower) queries.
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