Performance Isolation in Multi-Tenant Cloud Data Services

Vivek Narasayya, Sudipto Das, Manoj Syamala, Herodotos Herodotou, Badrish Chandramouli, Surajit Chaudhuri

Microsoft Research

Interns: Feng Li (NUS), Hyunjung Park (Stanford)
Multi-Tenant Cloud Data Services

- Relational Database-as-a-Service (DaaS)
 - Examples: Microsoft SQL Azure, Amazon RDS

- MapReduce Cloud Platforms for “Big Data”
 - Examples: Windows Azure HDInsight, Amazon EMR, Cosmos (Microsoft internal)

- Cost vs. Performance
 - Low operational cost requires densely packing tenants
 - Tenants want good performance
Multi-Tenancy in Database-as-a-Service (DaaS)

- Queries from a tenant share DBMS resources with other tenants
- CPU, Memory, I/O, network shared across tenants
- Tenants seek isolation from SQL workloads issued by other tenants

Tenant1 Application

Tenant2 Application

Machine in cluster

Database server process

Tenant1 database

Tenant2 database

Storage
Multi-Tenancy in MapReduce Platforms

- Each job is a collection of tasks
- Each task is an OS process
- Tasks of a tenant share machine resources with other tenants
- Tenants seek performance isolation at:
 - Task level
 - Job level
Focus of this talk

SQLVM: Performance Isolation in Multi-Tenant Relational Database-as-a-Service
Performance Isolation: Desiderata

- Tenants want performance unaffected by other tenant workloads
- Static resource allocation per tenant not cost effective
 - One VM per tenant each running a DBMS does not scale
- Service provider accountable for performance isolation
 - Increases confidence of customers to deploy in cloud
What Should Performance Isolation Mean?

- Can we promise queries/sec or query latency?

- Queries can access vastly different amounts of data

  ```sql
  SELECT Product, SUM(Sales) as TotalSales
  FROM FactSales F JOIN DimProduct P JOIN DimStates S
  ON F.ProdID = P.ProdID and F.StateId = S.StateId
  WHERE State = 'Vermont' 'California'
  GROUP BY Product
  ```

- DaaS providers aim to support most existing apps
 - Even ad-hoc queries
Tenant is promised reservation of DBMS resources

- "VM inside SQL process"
- CPU utilization, IOPS, Memory, ...

Resource governance

- Fine-grained resource sharing
- Novel mechanisms

Metering (auditing)

- Monitor actual and promised metrics for tenant
- Determine violations
Resource Governance Mechanism

Challenges
- Bursty I/O patterns
- Coordinating tenant I/Os across cores
- Capturing I/Os issued indirectly on tenant's behalf

Key idea: Shape I/O traffic
- 50 IOPS → one I/O every 20 msec
- I/O request tagged with deadline
- Issue I/Os whose deadline has arrived
Metering

- Metering interval (e.g. 1 sec)

Promised IOPS not achieved

Insufficient workload

Sufficient workload, but system unable to meet promise

Promised: 100 IOPS
Achieved: 80 IOPS

Burst of 200 I/Os arrive

- 50 I/Os
- 100 I/Os
- 50 I/Os

Time

7/15/2013 MSR Faculty Summit 2013
Violations and Penalties

- Metering interval, e.g. 1 sec
- Tenant is promised a Reservation of 100 IOPS
- Metering: Actual IOPS and Violations (IOPS)
- Penalty applied if Actual IOPS < promised IOPS

(SLA structure similar to Availability SLAs offered today)
Overbooking

- 150 IOPS
 - Tenant1 Application
 - Database server process
 - Tenant1 database
 - Tenant2 database
 - Machine in cluster
- 100 IOPS
 - Tenant2 Application
 - Storage

Capacity: 200 IOPS

- Enables denser packing, but...
 - ... may not be able to meet promises
- Resource governance objectives:
 - Minimize overall penalty
 - Fairness to tenants
- Online optimization
- Related problems:
 - How much to overbook?
 - Tenant migration
CPU and Memory

CPU
- Reservation: CPU utilization (e.g. 10%)
- Resource governance challenges:
 - Variable quantum, number of connections, parallelism
- Metering: Measure delay when tenant thread is ready to run but CPU is being used by another tenant
- Upcoming VLDB 2014 paper

Memory
- Buffer pool memory is a cache of database pages
- Reservation: Hit Ratio of workload for given memory size (e.g. 1GB)
- Metering: "what-if" analysis to determine promised Hit Ratio
Demo
Related Work

- Resource/workload management for DBMS
 - Based on **maximum limits**, priorities etc.

- SLA on Query Response Time
 - Cost-aware scheduling [Chi et al, VLDB 2011]
 - PIQL: Success-Tolerant Query Processing in the Cloud [Armbrust et al, VLDB 2011]

- Consolidating multiple database workloads
 - Database consolidation and resource modeling[Curino et al, SIGMOD 2011, Mozafari et al, SIGMOD 2013]
 - Towards multi-tenant Performance SLOs [Lang et al, ICDE 2012]
Status and Future Work

- Working in close collaboration with SQL team in Microsoft
 - Novel resource governance, metering mechanisms
 - SQL Azure, SQL Server 2014 CTP1

- Ongoing and Future Work
 - Resources: CPU, I/O, Memory
 - Exploiting SQLVM
 - Overbooking
 - Capacity planning
 - Higher-level performance SLAs
Experimental Setup

- **Workloads**: TPC-C, Dell DVD-benchmark, TPC-H, CPUIO
- **Machine**: 12 core, 72 GB RAM, 3 HDD, SSD (log)
- **Number of tenants**: Up to 100

- **Example experiment**
 - **Eight** tenant databases sharing a *single* SQL Server instance
 - Each tenant executing a **CPU- and I/O-intensive** workload
 - **Tenant 1** (connecting to db1) is the tenant of interest
 - Tenant 1 shown in **Red**
 - Tenant 1 starts its workload, other tenants gradually added to the system
 - Execute without and with SQLVM
Without Performance Isolation

Tenant of interest

Other tenant workloads start

With Performance Isolation (SQLVM)

Tenant of interest

Other tenant workloads start

Tenant1:
- 50% CPU utilization
- 50 IOPS
- 2 GB RAM
Without SQLVM

With Performance Isolation (SQLVM)

7/15/2013

MSR Faculty Summit 2013
Relational Database-as-a-Service Providers

- Microsoft SQL Azure
 - Single SQL Server process per node
 - Each tenant gets a database

- Amazon RDS
 - MySQL hosted in VM
 - SQL Server, Oracle

- Oracle 12c
 - Multi-tenant Oracle DBMS as a service

- Google Cloud SQL
 - MySQL database
 - Allows DBMS access from AppEngine