The Naiad Clock Protocol:
Specification, Model Checking, and Correctness Proof

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

February 12, 2013

Abstract

This report presents a formal specification, written in
TLA+, for the Naiad Clock protocol, along with the re-
sults of checking the specification using the TLC model
checker. Also presented is a formal proof of the Na-
iad Clock safety properties, which has been mechanically
checked using the TLA+ proof system.

This report is based partly on work with Martin Abadi,
Frank McSherry, and Derek Murray.

Contents

(1__The Naiad Clock Protocol|
1.1 Informal descriptionf.
|1.2 Basic specification|

2 Discussion of the specification|

|3 Discussion of model checking

|4 Discussion of the proof]
4.1 A walk through the proof]

4.1.2 Basic library theorems)| .
4.1.3 Properties of delta vectors|
4.1.4 Additional invariants| . .

4.1.7 Proving invariants| . . .

4.1.8 Proving the main safety properties| L

4.2 Proof system overview|

4.4.2 Refactoring action effects|
4.4.3 Symbolic conclusions| .
[@d.4.4 Parallel deductionl. . . .
4.4.5 Checking the entire proof]

|Acknowledgements|

A Sp

[B_Modell

<

O O O O ©

10
10
10
10
11
11
11
11
11
13
13
13
14

15

19

33

CONTENTS

IC_Proof of Correctness| 35
IC.1__Basic additional definitions|o 36
IC.2 Factsaboutnaturals| e e 38
[C.3 Factsaboutsequences|. 40
C.4 Properties of RemoveAt]. e 49
... 57
|[C.6 Facts about exact SEqUENCESs| i e e e e e e e e e e e 61
[C.7 Facts aboutpartial orders| 71

|C.9 Facts about summing up sequences of delta vectors|, 77
E’ H) Eacts anut summlng up delta vectors in the range of a function]. o . o v v v v vt . 111
[CIT Facts about upright delta VECTOTS| v o it e e e e e e e e 133

|C.12 Facts about beta-upright delta vectors| 139
|C.13 Facts about delta vectors vacantup topomnt f. 146
................................. 150

C.15 Deduce various invariants from others

|C.18 How the actions affect Incominglnfo| 184
[C:19 How the actions affect GloballncominglInfo| 191

C.20 Proof of invariant Invlype| 200
C.21 Proof of invariant InvIempUpright| 203

[C22 Proof of invariant InvIncomingInfoUprightl. 207
|C.23 Proof of invariant InvinfoAtBetaUpright o 0 L 212

C.24 Proof of invariant InvGlobalRecordCount

|C.25 Proof of invanant InvStickyNrecVacantUpto] 226

. roof of invariant InvStic 0bVacantUpLo] v v e 232

[C27 Thetop-level proof module] 240

Chapter 1

The Naiad Clock Protocol

We describe the Naiad Clock protocol informally, fol-
lowed by a basic specification. We assume that the reader
is familiar with TLA+ [5]].

1.1 Informal description

The Naiad Clock Protocol oversees the progress of a
computation running within Naiad [7, [8], a distributed
dataflow system in which records flow through an abstract
dataflow computation graph.

In any state of a Naiad computation, the existing
records can occupy different stages in the logical progress
of the computation. For example, a simple computation
may consist of several successive stages in which an input
record at each stage is transformed into an input record at
the following stage. Each stage represents a point in vir-
tual time. In this case, the points would be arranged in a
linear order.

In general, we assume a set of points in virtual time,
with a partial order, and associate each record with a point
in virtual time, but the set of points need not be finite,
and the partial order need not be linear. An operation can
consume input records from a set of points and produce
output records at another set of points.

We do require that, if an operation produces a record at
one point in virtual time, then the operation has consumed
at least one record at a strictly lower point according to
the partial order. Therefore, as the computation proceeds,
the population of records will migrate away from lower
points. Should a downward-closed set of points become
vacant, this set will always thereafter remain vacant, as
any operation that might produce a record associated with

a point in the set would need to consume such a record as
well. This monotonically increasing set of permanently
vacant points represents the progress of the Naiad com-
putation.

It is important that a Naiad processor become aware
that a set of points is permanently vacant, because some of
the Naiad operations perform an aggreation of all records
arriving at a given point. The aggregation (along with any
temporary storage it might need) is not complete until all
records have been seen.

Since a Naiad computation runs on a distributed collec-
tion of processors, each processor is not able to observe,
directly, the exact contents of the set of records in order to
measure progress. Processors must instead communicate
with each other, as they perform operations, exchanging
information about the records that those operations con-
sume and produce. With this information, each processor
can maintain a possibly delayed but always safe approx-
imation to the set of permanently vacant points in virtual
time.

More concretely, in the Naiad Clock Protocol, each
processor maintains a local occupancy vector that maps
each point to the processor’s view of the number of
records at that point, depicted in Figure [[.T} At the start
of the Naiad computation, this local vector is initialized
from the initial set of records in the system. A processor
tracks changes in occupancy due to the operations that
it performs. When convenient, the processor broadcasts
incremental updates to all processors, sending updates
about points with net poduction of records before those
about points with net consumption of records. When a
processor receives one of these updates, it adjusts its lo-
cal occupancy vector accordingly. The protocol assumes

occupancy
vector

virtual
time

ooo
oo

oo
oo

CHAPTER 1. THE NAIAD CLOCK PROTOCOL

e point
7} partial order

[record

O processor

<€— message queue

Figure 1.1: Overall structure: each processor locally accumulates a delayed view of the occupancy vector.

that communication channels between processors are re-
liable and completely ordered, so that updates are neither
dropped nor delivered out of order.

The intent of this approach is that, once a downward-
closed set of points becomes vacant in the local occupancy
vector of some processor, that same set of points is in fact
vacant thereafter in the global set of records. Although the
local occupancy vector can be a delayed view of the true
occupancy vector, it is a safe approximation, so it allows
each processor to report correct results from completed
parts of the computation to external observers; it is also a
useful input to each processor’s memory management and
scheduling decisions.

1.2 Basic specification

To progress to a more formal description of the clock pro-
tocol, we introduce the definitions shown in Figure @
Point is the set of points, Proc is the set of processors,
and = is a partial order on Point.

A count vector maps each point to a natural number, the
count of the number of records at that point. A delta vec-
tor maps each point to an integer, representing a change
in the record count at that point.

We use Z to designate the delta vector that is every-
where zero and ¢ and © to indicate component-wise ad-

dition and subtraction.

Given a delta vector a, we say that point ¢ is positive iff
a[t] > 0 and negative iff a[t] < 0. Since talking about the
locations of positive and negative points in delta vectors
turns out to be important in the clock protocol and in its
proof of correctness, we define several predicates for this
purpose. A delta vector a is vacant up to point ¢ iff a[s] =
0 for all s < ¢ and that it is non-positive up to point ¢ iff
a[s] < 0forall s < t. A delta vector s is supported at
point ¢ iff there exists s < ¢ such that a[s] < 0 and a is
non-positive up to s. We call s the support for ¢. A delta
vector is upright iff all of its positive points are supported.

This definition of upright delta vectors arises because
we use delta vectors to describe the changes in record
counts that operations cause. As indicated in Section[I.T}
we require that for any point ¢ at which an operation
causes a net production of records there must be a lower
point s at which the operation causes a net consumption
of records; this property explains why, in an upright delta
vector, for each positive point ¢ there must exist a negative
point s < ¢. For s to support ¢, we further require that all
points u = s be non-positive; this property prevents cases
of infinite descent. It yields, in particular, that the sum of
two upright delta vectors is upright. (In cases where < is
well-founded, infinite descent is impossible, so the further
requirement becomes superfluous.)

1.2. BASIC SPECIFICATION

CONSTANT Point set of points
CONSTANT Proc set of processors
CONSTANT _ <X _ partial order on Point

CountVec = [Point — Nat] count vectors

DeltaVec = [Point — Int] delta vectors

Z = [t € Point — (] everywhere zero

a®b = [t € Point — a[t] + b[t]] component-wise addition

aOb = [t € Point — a[t] — b[t]] component-wise subtraction

s<t 2 s=<tAs#£t strictly lower

IsVacantUpto(a, t) = Vs € Point : s <t = a[s] =0

IsNonposUpto(a, t) = ¥s € Point:s <t = a[s] <0

IsSupported(a, t) = 3s € Point: s < t A a[s] < 0 A IsNonposUpto(a, s)

IsUpright(a) = Yt € Point : a[t] > 0 = IsSupported(a, t)
VARIABLE nrec € CountVec
VARIABLE temp € [Proc — DeltaVec]
VARIABLE msg € [Proc — [Proc — Seq(DeltaVec)]]
VARIABLE glob € [Proc — DeltaVec]
Init =
A nrec € CountVec any initial population of records
A temp = [p € Proc — Z] no unsent changes
Amsg =[p € Proc [q € Proc+— ()]] no unreceived updates
A glob = [q € Proc — nrec] each processor knows the initial nrec
NextPerformOperation £ 3p e Proc, ¢ € CountVec, r € CountVec :
LET delta £ roc¢ IN the net change in record population
AVt € Point : c[t] < nrec[t] only consume what exists
A IsUpright(delta) net change must be upright
A nrec’ = nrec & delta

A temp’ = [temp EXCEPT ![p] = temp|p] @ delta]
A UNCHANGED msg
A UNCHANGED glob

NextSendUpdate 2 dp € Proc, tt € SUBSET Point :
LET gamma = [t € Point — IF t € #t THEN temp|p][t] ELSE 0] IN
A gamma # Z update must say something
A IsUpright(temp[p] © gamma) what is left must be upright
/A UNCHANGED nrec
A temp’ = [temp EXCEPT ![p] = temp[p] © gamma)
A msg’ = [msg EXCEPT ![p] = [¢ € Proc — Append(msg[p][q], gamma)]]
A UNCHANGED glob
A

NextReceiveUpdate = Ip € Proc, ¢ € Proc :
LET kappa = msg[p][q][1] IN oldest unreceived update from p to ¢
A msg[pllq] # () message queue must be non-empty
A\ UNCHANGED nrec
A\ UNCHANGED temp
A msg’ = [msg EXCEPT ![p][q] = Tail(msg[p](q])]
A glob’ = [glob EXCEPT ![g] = glob[q] & kappa]

Next £ NextPerformOperation \V NextSendUpdate V NextReceive Update
Spec Init A ONext

(1T

For any point ¢ and processor g, if glob[q] is vacant up to ¢, then, at this and all future times, nrec is vacant up to ¢.
Safe = Yt € Point, q € Proc: (IsVacantUpto(glob|q], t) = OlsVacantUpto(nrec, t))

Safe always holds in any execution that obeys Spec.

THEOREM Spec = OSafe

Figure 1.2: Basic specification of the clock protocol.

Finally, the clock protocol uses four state variables:
nrec, temp, msg, and glob.

* nrec is the occupancy vector, which represents the
number of records that currently exist at each point.

* temp|p] is the local (temporary) change in the oc-
cupancy vector due to the performance of operations
at processor p. Note that the change at a given point
can be negative (net records consumed), positive (net
records produced), or zero. We call it temporary be-
cause eventually the processor takes the information
from temp|p] and broadcasts it as an incremental up-
date.

* msg[p][q] is the queue of updates from processor p
to processor ¢q. Each update is a delta vector that
is zero everywhere except at those points that con-
tain information about net changes. Implementations
may of course limit the number of non-zero points
and represent updates in a compact form.

* glob[q] is the delayed view at processor ¢ of the oc-
cupancy vector. It is a delta vector, rather than a
count vector, because glob[g][t] can be negative for
some point ¢. Such negative values can appear, for
example, when one processor p; produces a record
at point ¢, a second processor ps consumes it and,
because of different queuing delays, processor ¢ re-
ceives the update from po before that from p; .

The basic specification of the clock protocol defines an
initial Init, a next-state relation Next, and then a com-
plete specification Spec which states that Init must hold
and then forever each step must satisfy the Next relation.

Inat states that nrec can be any mapping from Point to
Nat; this mapping represents an arbitrary initial popula-
tion of records. Initially, there are no unsent changes, no
unreceived updates, and each processor knows the initial
population.

Each step from a current state to a next state is an action
specified as a relation between the values of the state vari-
ables in the current state (unprimed) and in the next state
(primed). The algorithm has three actions: NextPerform-
Operation, NextSendUpdate, and NextReceiveUpdate.

e In the NextPerformOperation action, processor p
performs an operation that consumes and produces

CHAPTER 1. THE NAIAD CLOCK PROTOCOL

some number of records at each point. The records
to be consumed must exist and the net change in
records delta must be an upright delta vector. The
action adds delta to nrec and to temp|p].

* In the NextSendUpdate action, processor p selects a
set of points ¢t and broadcasts an update about its
changes at those points. The update is represented
by gamma. The processor must choose ¢t in such a
way that temp[p] © gamma is upright. This require-
ment holds, in particular, when ¢t consists of posi-
tive points in temp[p] if any exist, because temp[p]
is always upright. The action subtracts gamma from
temp|p] and appends gamma to msg[p][q] for all q.

* In the NextReceiveUpdate action, processor q selects
a processor p and receives the oldest update kappa
on the message queue from p to ¢. For this action
to take place, the current message queue msg[p][q]
must be non-empty. The action adds kappa to
globlq] and removes it from msg[p][q].

The next-state relation Nezt is simply the disjunction of
the relations for these three actions.

The main safety property of the clock protocol is Safe,
which states that if any processor ¢ has a glob[q] that is
vacant up to some point ¢, then the actual set of records,
nrec is vacant up to point ¢. Our goal is to establish that
this safety property always holds in every execution that
obeys the specification.

Chapter 2

Discussion of the specification

Appendix[A] gives a full TLA+ specification of the Na-
iad Clock protocol.

The full TLA+ specification follows the outline of the
basic specification presented in Section [I.2] in most re-
gards. However, there are some differences.

The basic specification uses =< for the partial order. In
order to facilitate model checking, the full specification
uses the variable lleq to hold the partial order. This vari-
able is initialized to any partial order and never changed
afterwards. This permits the model checker to explore the
state space separately for each possible partial orderE]

For clarity, the basic specification uses short names for
operators and definitions. For example, it uses Z for the
everywhere zero delta vector and ¢ and © for addition
and subtraction of delta vectors. The full specification
uses long names for everything. Using long names is per-
haps a bit more cumbersome, but it prevents name colli-
sions. TLA+ absolutely forbids name collisions. It is pos-
sible to perform named instantiation of TLA+ modules in
order to use multiple modules that would otherwise have
name collisions, but that solution is even more cumber-
some than using long names.

The full specification admits stutter steps (steps in
which nothing changes), in addition to steps performed by
the defined actions. TLA+ encourages writing specifica-
tions that admit stutter steps in order to make it possible to

! An alternative solution, perhaps more in the style of TLA+, would
be to declare lleq as a constant and then construct a mapping from each
possible partial order to an instantiation of the clock protocol specifi-
cation. Unfortunately, this solution would greatly explode the number
of states the model checker would have to explore, because each state
would correspond to a mapping from the partial orders to a state within
an execution for that partial order.

prove a refinement mapping by using a one-to-one corre-
lation of states. The basic specification does not envision
stutter steps.

In addition to the main safety property, the full spec-
ification includes a couple of additional safety proper-
ties and several invariants. The model checker can eas-
ily check invariants. The model checker can also check
general safety properties, but to do so it has to keep infor-
mation about the entire state graph, which causes it to run
much slower.

However, the full specification uses a trick to enable
the model checker to check two of the safety properties
as simple state predicates. These two safety properties
are “sticky” in the sense that once some state predicate is
true of some state, it remains true for all following states.
By adding a state variable to remember the value of the
predicate from the previous state, the “stickiness” can be
checked as a simple state predicate. The full specification
introduces the two state variables nrecvut and globvut for
this purpose.

CHAPTER 2. DISCUSSION OF THE SPECIFICATION

Chapter 3

Discussion of model checking

Appendix [B] gives a TLA+ extension of the Naiad
Clock protocol that defines default constants and intro-
duces a constraint so that model checking has only a finite
number of states to explore. The configuration parameters
are as follows:

* MaxProc, the number of processors.
* MazPoint, the number of points.

e MazrRecPerPoint, the maximum number of records
per point that exist (in nrec) in any state.

e MazRec, the maximum total number of records that
exist (in nrec) in any state.

¢ MaxMsgPerQueue, the maximum number of mes-
sages that can be on any single queue in any state.

We used the TLA+ toolbox [4] to construct and manage
models for model checking the specification.

Using a 2.67 GHz Intel i7 with 4 GB of memory run-
ning TLC2 version 2.05, we model checked the specifi-
cation in various configurations. For each configuration,
TLC determined the maximum depth of the state space
graph as well as the total number of distinct states. Ta-
ble 3.1l shows the statistics.

As expected, the number of distinct states and conse-
quently the model checking run time blow up enormously
as the configuration parameters are increased. This limits
the feasibility of model checking of this specification to
small configurations only.

Using the model checker, we checked the following in-
variants:

[\8)
S

@

T OL

e 2R

eI 8 8

TREET
S 3338 distinct run time
S=S=== depth states (sec)
22121 12 2690 5
22122 14 5286 5
22123 14 6110 5
22221 17 47192 27
22222 21 271870 121
22223 22 538738 201
22241 18 278138 184
22242 23 3418972 2053
22243 28 13293954 5785
23121 21 1461100 1502
23122 25 16744480 19339

Table 3.1: Model checking statistics.
space exploration.

Complete state

e InvType, which states that all state variables contain
values of their expected types.

o InvTempUpright, which states that temp|p] is up-
right.

* InvGlobalRecordCount, which states that glob|[q]
plus all infomation heading toward ¢ equals nrec.

e InvStickyNrec VacantUpto, which states that if
nrec is vacant up to point ¢, then it will be so

in the next state. This invariant is checked us-
ing the fiducial variable nrecvut, which remembers
IsVacantUpto(nrec, t) from the previous state.

e InuStickyGlobVacantUpto, which states that if
glob[q] is vacant up to point ¢, then it will be so
in the next state. This invariant is checked us-
ing the fiducial variable globvut, which remembers
IsVacantUpto(glob|q], t) from the previous state.

e InvGlobVacantUptoImpliesNrec, which states that
if glob[q] is vacant up to a point ¢, then so is nrec.

In every state explored by the model checker, all of these
invariants were found to hold.

Based on these model checking results, we were fairly
confident that the specification was correct. However, be-
cause of state space explosion, we could only check some
small configurations using 2 processors and 3 points in
virtual time. In the next chapter we discuss our formal
proof.

CHAPTER 3. DISCUSSION OF MODEL CHECKING

Chapter 4

Discussion of the proof

Appendix |C| gives a TLA+ proof of the Naiad Clock
protocol invariants. The proof has been mechanically
checked using the TLA+ Proof System [2} 3] except for a
few minor details. Unfortunately, the current TLA+ proof
system cannot handle temporal reasoning, so any tempo-
ral deductions have to be checked manually. Fortunately,
the vast majority of the proof deals with state predicates
and next state relations, all of which is checked mechani-
cally. Only the final steps in proving that the specification
implies some temporal property require temporal deduc-
tions and thus have to be checked manually.

The proof is quite long, so we divided it into mod-
ules for ease of understanding and management. In Sec-
tion4.1] we walk through the proof and explain what each
module accomplishes. In Section #.2] we give a brief de-
scription of the TLA+ proof system. In Section #.3] we
discuss the performance of the proof system in checking
our proof. In Section we discuss what we learned
about writing and checking such a large proof.

4.1 A walk through the proof

The proof is divided into modules for ease of understand-
ing and management. Each module contains a collection
of theorems and definitions relating to a certain concept.
As we discuss in Section .4 the proof is composed of
modules that build on one another in a linear sequence.

4.1.1 Basic definitions

NaiadClockProofBase (C.1) provides some additional
definitions that are needed in the proof but do not ap-

pear in the specification. For example, the proof needs
the concept of a beta-upright delta vector, which is a gen-
eralization of the concept of an upright delta vector. It
also turns out to be useful in the proof to have symbolic
definitions for various formulas that appear written out in
the specification. This lets proof steps use these formu-
las symbolically, which helps keep the back-end provers
from getting lost when trying to check proof obligations.

4.1.2 Basic library theorems

Next follow a number of modules that contain vari-
ous theorems about naturals (C.2)), sequences (C.3)), the
RemoveAt sequence operator (C.4), finite sets (C.5), ex-
act sequences (C.6), and partial orders (C.7). We consider
these modules as library modules, because their theorems
are of general usefulness.

4.1.3 Properties of delta vectors

Next come several modules that prove various properties
of delta vectors.

NaiadClockProofDeltaVecs proves that the addi-
tion of delta vectors is commutative, associative, closed,
and has an identity. In other words, that it is a commuta-
tive monoid.

NaiadClockProofDeltaVecSeqs contains theo-
rems about the sum of a sequence of delta vectors. These
theorems have to dig inside the recursive definition of the
sum of a sequence of delta vectors and they are extremely
tedious. We consider this module as a library module be-
cause it could be recast in general terms to apply to any

10

commutative monoid.

NaiadClockProofDeltaVecFuns (C.10) contains theo-
rems about the sum of the delta vectors in the range of a
function. These theorems are also extremely tedious. We
consider this module as a library module because it could
be recast in general terms to apply to any commutative
monoid.

NaiadClockProofDeltaVecUpright (C.I1) contains the-
orems about upright delta vectors, especially the theorem
that the sum of two upright delta vectors is upright and the
corollaries for the sum of a sequence of delta vectors and
for the sum of the delta vectors in the range of a function.

NaiadClockProofDeltaVecBetaUpright contains
theorems about beta-upright delta vectors.

NaiadClockProofDeltaVecVacantUpto contains
theorems about delta vectors that are vacant up to a given
point.

4.1.4 Additional invariants

NaiadClockProofInvariants (C.14) introduces the defini-
tions of some additional invariants that are needed in the
proof.

4.1.5 Deduction of some invariants

NaiadClockProofDeducelnv (C.15)) contains theorems
that deduce certain invariants from others. These theo-
rems state the deductions in both the current state and in
the next state, as we describe in Section f.4.4]

4.1.6 The effects of actions

The next several modules contain theorems about the ef-
fects of the actions. As we discuss in Section we
discovered that many of the same deductions about var-
ious effects of actions kept reappearing in proofs of the
various invariants. The entire proof was made much sim-
pler by refactoring these deductions into their own theo-
rems, which we call action effect theorems. As we dis-
cuss in Section [£.4.3] the conclusions of the action effect
theorems tend to be quite complicated, with multiple con-
juncts and internal case analysis, and the back-end provers
tended to have difficulty in applying them. We solved
this latter problem by defining symbolic predicates for the
conclusions.

CHAPTER 4. DISCUSSION OF THE PROOF

NaiadClockProofAffectState (C.16) contains theorems
on how the actions affect the state variables.

NaiadClockProofAffectInfoAt (C.17) contains theo-
rems on how the actions affect the state operator InfoAt.

NaiadClockProofAffectincominglnfo (C.18) contains
theorems on how the actions affect the state operator
IncominglInfo.

NaiadClockProofAffectGloballncominglnfo (C.19)
contains theorems on how the actions affect the state
operator GloballncominglInfo.

4.1.7 Proving invariants

The next several modules contain theorems that prove in-
variants. Each module deals with one invariant and con-
tains three main theorems: first a theorem that the invari-
ant holds in the initial state, then a theorem that the invari-
ant is maintained through the next state relation, and then
a finally a theorem that the specification implies that the
invariant always holds. The proof of this last theorem re-
quires a temporal deduction and therefore can not entirely
be checked mechanically by the current TLA+ proof sys-
tem.

NaiadClockProofInvType (C.20) proves that all state
variablaes always have their expected types.

NaiadClockProoflnvTempUpright (C.21) proves that
temp|p] is always upright.

NaiadClockProoflnvincomingInfoUpright (C.22)
proves that any suffix of incoming infomation is always
upright.

NaiadClockProofInvInfoAtBetaUpright (C.23) proves
that any update is always beta-upright with the incoming
information behind it.

NaiadClockProofInvGlobalRecordCount (C.24) proves
that the sum of glob[g] plus all infomation heading toward
q is always nrec.

NaiadClockProoflnvStickyNrecVacantUpto (C25)
proves that whenever nrec is vacant up to a point %, it
stays that way for all future times.

NaiadClockProofInvStickyGlobVacantUpto (C26)
proves that whenever glob[q] is vacant up to a point ¢, it
stays that way for all future times.

4.4. WHAT WE LEARNED

4.1.8 Proving the main safety properties

Finally, NaiadClockProof contains theorems that
prove the main safety properties. The proofs of these
theorems basically consist of appealing to prior theorems
about invariants and then making some temporal deduc-
tions. Unfortunately, the temporal deductions cannot be
checked mechanically by the current TLA+ proof system.

4.2 Proof system overview

The proof system consists of a proof manager tlapm that
parses the TLA+ modules, expands definitions, constructs
proof obligations, and employs back-end provers to dis-
charge obligations.

To discharge an obligation, tlapm itself first checks
to see if the obligation is “trivially identical” with some
known fact If this fails, tlapm then hands the obligation
off to the back-end provers.

By default, tlapm first invokes Zenon [[1], a tableau
prover for classical first-order logic with equality. Zenon
is generally quick to solve simple problems, but tends to
fail on anything complicated. If Zenon fails, tlapm then
invokes Isabelle [[6] using a specialized TLA+ object logic
that includes propositional and first-order logic, elemen-
tary set theory, functions, and the construction of natural
numbers.

Pragmas can be used to direct tlapm to appeal to other
back-end provers. An entire catagory of provers based on
Satisfiability Modulo Theory (SMT) is especially good
with some hard problems involving arithmetic, uninter-
preted functions, and quantifiers. The back-end prover
smt3 is one such SMT prover.

4.3 Proof statistics

The entire proof contains 27 modules, 146 theorems, and
10743 lines. Using an Intel® Core™ i7 CPU M 620 lap-
top with 4 GB of memory running at 2.67 GHz, the entire
proof is verified in less than two hours.

Table B.1] shows a number of statistics for each mod-
ule in the proof. The line counts are based on the number

UIn the current implementation, “trivially identical” means identical
up to renaming of bound variables, after expanding all usable definitions.

11

of lines in the ASCII TLA+ source files, which may dif-
fer slightly from the number of lines in the typeset TLA+
format.

It turns out that dividing the proof into modules is also
necessary to enable the proof manager to handle the proof.
We tried combining everything into one long module and
then asking the proof manager to prove the entire thing.
It failed due to running out of Java heap space before col-
lecting even one-third of the total obligations.

As can be seen in Table .1} about two-thirds of the to-
tal proof obligations are discharged by tlapm itself, mean-
ing that they are “trivially identical” to some known fact.
This might seem surprising, but it results from the way the
proof manager treats the adduced facts mentioned in the
BY clause of each leaf proof step. Each of these adduced
facts is considered as a separate proof obligation that must
be discharged. In the general case, one could write an ar-
bitrary formula as an adduced fact. However, we never do
that: instead, we always just reference some earlier proof
step or theorem. Nonetheless, the way the proof manager
is currently implemented, it examines the adduced fact,
compares it against all known facts while expanding all
useable definitions, and eventually arrives at the conclu-
sion that, yes, indeed, the adduced fact is “trivially identi-
cal” to some known fact.

The remaining obligations actually require work by a
back-end prover. Almost all of these are proved by Zenon,
which shows the utility of this prover. The smt3 prover
is needed for several hundred obligations that depend on
arithmetic properties. The remaining few obligations are
proved by Isabelle.

4.4 What we learned

4.4.1 Linear module structure

The module structure in the proof is completely linear.
That is to say, each module in the proof extends the pre-
vious module, in a strictly linear order.

The linear module structure is not the most logical or-
ganization of the modules in the proof. For example,
the module NaiadClockProofDeltaVecSegs (C.9) contains
theorems about properties of summing up sequences of
delta vectors. These properties depend on the fact that
addition of delta vectors is commutative and associative.

12 CHAPTER 4. DISCUSSION OF THE PROOF

run time obligations proved by
module name theorems lines (sec) |isabelle ~ smt3 tlapm zenon
C.1| NaiadClockProofBase 0 114 50 0 0 0 0
C2| NaiadClockProofNaturals (lib) 5 120 98 1 15 37 32
C3| NaiadClockProofSequences (lib) 18 500 139 7 12 119 73
C4| NaiadClockProofRemoveAt (lib) 1 393 152 4 21 180 76
C5| NaiadClockProofFiniteSets (lib) 5 225 127 2 9 114 67
C6| NaiadClockProofExactSegs (lib) 6 511 308 0 39 368 218
C.7| NaiadClockProofPartialOrders (lib) 4 145 62 0 0 16 11
C38| NaiadClockProofDeltaVecs 7 153 66 4 3 0 10
C9| NaiadClockProofDeltaVecSegs (lib) 19 1805 674 23 98 978 602
C.10| NaiadClockProofDeltaVecFuns (lib) 17 1149 385 1 2 452 312
C.11| NaiadClockProofDeltaVecUpright 6 308 114 1 5 95 54
C.12| NaiadClockProofDeltaVecBetaUpright 5 364 128 1 5 110 68
C.13| NaiadClockProofDeltaVecVacantUpto 2 226 91 0 9 83 37
C.14| NaiadClockProoflnvariants 0 153 51 0 0 0 0
C.15| NaiadClockProofDeducelnv 7 594 225 3 12 230 160
C.16| NaiadClockProofAffectState 4 677 256 1 11 328 176
C.17| NaiadClockProofAffectinfoAt 5 329 163 1 22 163 83
C.18| NaiadClockProofAffectincominglnfo 4 383 156 2 2 140 86
C.19| NaiadClockProofAffectGloballncominglnfo 5 429 198 2 3 167 115
C.20| NaiadClockProoflnvType 3 169 100 1 1 48 38
C.21| NaiadClockProoflnvTempUpright 3 199 97 0 0 59 41
C.22| NaiadClockProoflnvincominglnfoUpright 3 224 109 0 1 69 54
C.23| NaiadClockProofinvinfoAtBetaUpright 3 382 172 0 9 176 105
C.24| NaiadClockProoflnvGlobalRecordCount 3 299 131 0 0 104 71
C.25| NaiadClockProoflnvStickyNrecVacantUpto 4 304 120 0 3 97 63
C.26| NaiadClockProoflnvStickyGlobVacantUpto 4 417 160 4 0 145 87
C.27| NaiadClockProof 3 17 63 0 0 27 10
library (8 modules) total: 75 4848 1945 38 196 2264 1391
special (19 modules) total: 71 5895 2450 20 86 2041 1258
(27 modules) Total: 146 10743 4395 58 282 4305 2649

Table 4.1: Statistics by proof module. Modules indicated by (lib) are of general interest, or could be so rewritten, and
we consider them as library modules.

4.4. WHAT WE LEARNED

It would be a more logical organization to have written a
library module that proved such properties for any com-
mutative and associative binary operation and then instan-
tiated this module for the particular operation of delta vec-
tor addition. And it would be more logical to make each
module extend only those modules upon which it directly
depended.

We originally tried writing the proof with this more log-
ical organization. Unfortunately, this organization had the
result of causing the current TLA+ proof manager to bog
down and become so slow that it was unusable. Our spec-
ulation is that the “logical organization” resulted in an ex-
ponentially growing number of extension paths reaching
to the more fundamental theorems and that the current
TLA+ proof manager wastes itself in searching through
these paths in trying to find “trivial” matches for each
proof obligation.

Writing the proof with a linear module structure avoids
this TLA+ proof manager performance problem.

We created an example set of modules that exhib-
ited this TLA+ proof manager performance problem and
supplied it to the implementation team at MSR-INRIA.
Damien Doligez investigated the problem and fixed the
proof manager to avoid it. However, by this time we
had already completed the linear module structure of our
proof and we did not want to spend the time to recast it
back into a more logical structure of library modules.

4.4.2 Refactoring action effects

The proof of the main safety properties relies on a num-
ber of invariants. When developing the subproofs of how
each of the actions maintain these invariants, we discov-
ered that we were often repeating many of the same de-
ductions from one invariant to another. This was tedious.

So we refactored the proof by breaking out separate
theorems about how each action affected the state vari-
ables and each of the state operators. This refactoring
greatly simplified many of the invariant proofs. Further-
more, it made it much easier later with slight revisions to
the specification, because generally much of the required
proof changes occurred in the action effect theorems with-
out impacting the rest of the proof.

13

4.4.3 Symbolic conclusions

We found that the back-end provers had little success
in applying theorems whose statements are complicated.
This was a particular problem with the action effect the-
orems, whose conclusions often include a case analysis.
For example, NextSendUpdate appends a delta vector on
all queues from processor p: the effect of this action on
the message queue from processor fp to processor fq de-
pends on whether p = fp or not.

The solution to this problem was to define a symbolic
predicate that captured the conclusion of such a theorem.
When the provers were faced with verifying such a sym-
bolic predicate, they usually had no difficulty applying the
theorem. Then the proof could continue, deducing any de-
sired conclusion from the predicate by expanding its def-
inition.

A few of the theorems had complicated assumptions
that seemed to suffer from the same problem. So in these
cases we created a symbolic predicate for the theorem’s
hypothesis. In order to use the theorem, we first establish
the hypothesis, using its definition. Then the back-end
provers can see how to justify the theorem’s conclusion
by applying the symbolic hypothesis.

4.4.4 Parallel deduction

Several of the invariants in the proof can be deduced from
other invariants. For example, given that all state variables
contain values of their expected types, we can deduce that
each of the state operators also compute values of their
expected types.

Since these deductions involve state predicates without
involving any temporal operators, the exact same deduc-
tion works in both the current state (unprimed) and in the
next state (primed). Essentially, what we have is a proof
macro that can be expanded to a proof in the current state
and to a proof in the next state. Unfortunately, there is no
provision for proof macros in the TLA+ proof system.

However, we found a way to express the proof macro,
as follows. What we did for each proof was define a local

operator
DoPr(primeit, =) = IF primeit THEN z’ ELSE

and then wrap all state variables and state operators in
the steps in the proof inside instances of this operator.

14

Then by setting the proof steps in a context in which
primeit € BOOLEAN , we manage to prove a conclusion
in both the current state and in the next state simultane-
ously.

The only problem with this approach is that all of the
proof steps were more difficult for the back-end provers
to verify, since the formulas were littered with DoPr all
over the place. Usually, the provers managed to verify the
proof steps anyway. When this turned out to be too diffi-
cult, our solution was to use PICK to define new constants
for each of the state variables and state operators based on
their DoPr wrappings. The necessary properties of the
new constants could be proved from their definitions, and
then further deductions using the new constants could be
checked without difficulty.

4.4.5 Checking the entire proof

Although the TLA+ proof system provides a nice inter-
face for checking the proofs of theorems in a single mod-
ule, it currently lacks any ability to run a complete check
on a multi-module proof. So we wrote a Perl script that,
given a top-level TLA+ module, determines the closure
of all referenced modules, invokes the proof manager on
each module, and then collects and summarizes the re-
sults.

Whenever we tweaked some definition or theorem, af-
ter we were fairly sure it was correct, we would run the
Perl script to verify that the entire proof was still correct.
We also used this Perl script to prepare the statistics listed
in Table d.11

We found it particularly important to collect informa-
tion about proof obligations that failed to be verified by
the back-end provers. From time to time we would dis-
cover that a back-end prover would take more run time
than usual when trying to check a proof obligation, and it
would exhaust its time allocation from the proof manager,
resulting in a failed proof obligation. Also, whenever the
proof system implementers released an update, usually
the back-end provers became more capable but there were
sometimes cases in which the new release failed on some
obligation that the prior release had checked successfully.

When we found such a failed obligation, we took one
of two approaches to fix it. First, often the problem was
that the back-end prover just occasionally needed more
run time. In this case, we annotated the proof step with a

CHAPTER 4. DISCUSSION OF THE PROOF

pragma that instructed the proof manager how much time
to give. After several iterations of this issue with various
proof steps that needed to be checked by SMT, we just
changed all of these steps from the 5 second SMT default
to 10 seconds.

Second, sometimes the problem was that the back-end
prover had retrogressed and was no longer capable of
checking the proof step in the context in which it ap-
pearedE] Of course, we reported these cases to the proof
system implementers, but then we still had to fix the
proof. We found two approaches that worked. Usually
we decomposed the failing proof step into simpler steps
that were easier to check. However, if the proof step
was already blindingly simple, it would work to create a
new theorem that specifically applied to the deduction we
wanted to prove. The new theorem could often be easier
for the back-end provers to check because it isolated the
deduction from whatever context existed at the proof step
where we wanted to use it.

Generally, we found that the back-end provers could
often be distracted by an excessive context containing
too many usable facts. The TLA+ proof system provides
ways of managing the set of usable facts, and such man-
agement is often an important contributor to a back-end
prover’s success. Unfortunately, the way the proof man-
ager currently works, some facts, such as the types of in-
troduced constants, cannot be excluded from the proof
obligation, even if they are irrelevant. We found a few
cases were such irrelevant facts would cause the back-end
provers to fail.

2Usually, what had happened was that the proof manager’s transla-
tion of a proof obligation into the language of the back-end prover had
retrogressed, or perhaps the description of the theory used by the back-
end prover had retrogressed. Such retrogression all looks the same to
the user of the proof system.

Acknowledgements

We would like to acknowledge various people who
helped with the proof.

Thanks to Martin Abadi for a hand-proof of an initial
formulation of the safety properties, and for many discus-
sions on the exact definitions which should be used in the
specification and safety properties.

Thanks to Leslie Lamport for inspiring the develop-
ment of TLA+ and its tools and for many discussions
on how to use TLA+ and the proof system. Leslie also
demonstrated that an SMT solver could directly prove an
earlier version of the theorem that the sum of upright delta
vectors is upright.

Thanks to Stephan Merz and Damien Doligez for as-
sistance in using the TLA+ proof system, especially for
improving it and fixing the occasional bug that we found.

Thanks to Frank McSherry and the other members of
the Naiad project for help in understanding how the Naiad
Clock Protocol fits into the greater scheme of Naiad.

15

16

ACKNOWLEDGEMENTS

Bibliography

(1]

(2]

(3]

(4]

(51

(6]

(7]

(8]

R. Bonichon, D. Delahaye, and D. Doligez. Zenon:
An extensible automated theorem prover producing
checkable proofs. In Proc. 14th LPAR, pages 151-
165, 2007.

K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz.
A TLA+ proof system. In Proc. Combined KEAPPA
- IWIL Workshops, pages 17-37, 2008. http://
ceur-ws.org/Vol-418/paper2.pdf.

K. Chaudhuri, D. Doligez, L. Lamport, and S. Merz.
Verifying safety properties with the TLA+ proof sys-
tem. In IJCAR, pages 142-148, 2010.

L. Lamport. The TLA toolbox. http:
//research.microsoft.com/en-us/
um/people/lamport/tla/toolbox.html.

L. Lamport. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engi-
neers. Addison-Wesley, 2002.

L. C. Paulson. Isabelle: A Generic Theorem Prover,
volume 828 of Lecture Notes in Computer Science.
Springer, Berlin, Germany, 1994.

The Naiad project. Forthcoming systems paper on
Naiad.

The Naiad project. Naiad (project web page).
http://research.microsoft.com/
en—-us/projects/naiad/.

17

http://ceur-ws.org/Vol-418/paper2.pdf
http://ceur-ws.org/Vol-418/paper2.pdf
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
http://research.microsoft.com/en-us/um/people/lamport/tla/toolbox.html
http://research.microsoft.com/en-us/projects/naiad/
http://research.microsoft.com/en-us/projects/naiad/

18

BIBLIOGRAPHY

Appendix A

Specification

MODULE NaiadClock

EXTENDS Naturals, Integers, FiniteSets, Sequences

CONSTANT Point set of points
CONSTANT Proc set of processors

Set of possible record-point configurations that can be initialized, consumed, or produced. In general, this is [Point — Nat], but for model
checking we have to be able to supply some finite set of possibilities.

CONSTANT PointToNat
ASSUME AssumePointToNat = PointToNat C [Point — Nat]

A relation between points.

PointRelationType = [Point — [Point — BOOLEAN]|

Definition of a partial order.

IsPartialOrder(leq) =
AVYs, t, u € Point : leq[s][t] A leg[t][u] = leq]s]|
AV s, t € Point :leq[s][t] Aleg[t][s] = (s=1) antisymmetric
AVs € Point s leg[s]]s] reflexive

} ’LL] transitive

Design comment:

Preferably, I would create separate modules for exact sequences, the remove at operator, and delta vectors, and parameterized modules for summing
sequences and summing the range of functions. This would be a cleaner design than the presentation here in which everything appears in one
module.

19

20

APPENDIX A. SPECIFICATION

Unfortunately, since each of these modules would depend on many lower-layer modules, there would be many layers of duplicative module
extension and instantiation, which sadly creates an impossible performance drag on the current proof manager, as it tries to perform its “trivial”
identity check of each proof obligation against an apparent exponential explosion of known facts. The presentation here avoids this performance

drag.

Exact sequences.

Each s € S appears on Q.
EzactSeq_Each(Q, S) = Vs € S:3i€1..Len(Q): Qi] =s

Anything on @) appears at most once.

EzactSeq_Once(Q) = Vi,j€1..Len(Q): Q[i] = Qj]=i=j

@ is an exact sequence for the set S.

IsEzactSeqFor(Q, S) =
A Q € Seq(S)
A EzactSeq_Fach(Q, S)
A EzactSeq-Once(Q)

For any finite set S, choose a sequence in which each element of S’ appears exactly once.

EzactSeqFor(S) = CHOOSE Q : IsEzactSeqFor(Q, S)

Delta vectors.

A delta vector maps each point to an integer.

DeltaVecType = [Point — Int]

The zero delta vector is everywhere zero.

DeltaVecZero = [t € Point +— 0]

Pointwise addition of delta vectors.

DeltaVecAdd(a, b) = [t € Point — a[t] + b[t]]
Pointwise negation of a delta vector.

DeltaVecNeg(a) = [t € Point — 0 — a[t]]

A delta vector v is vacant up to point ¢ iff for all points s < ¢ we have v[s] = 0.

IsDeltaVecVacantUpto(leq, v, t) 2

LET
a=<b = legla)[b]
a<b = a=bANa#b
IN

Vs € Point:s<t=v[s]=0

A delta vector v is nonpos up to point ¢ iff for all points s < ¢ we have =(v[s] > 0).

IsDeltaVecNonposUpto(leq, v, t) =

LET
a=b = legla][b]
a<b=a=<bAa#b
IN

Vs € Point: s =t = —(v[s] > 0)

A delta vector v is supported at point ¢ iff there exists a point s < ¢ such that v[s] < 0 and v is non-positive up to s.

IsDeltaVecSupported(leq, v, t) =

LET
a=<b = legla)[b]
a<b = a=bANa#b
IN
ds € Point :
ANs <t
Awv[s] <0

A IsDeltaVecNonposUpto(leq, v, s)

A delta vector v is upright iff it is supported at every positive point.

21

22

IsDeltaVecUpright(leq, v) =

LET
a=<b
a=<b

IN

A
A

leg[al[0]

a=bANa#b

V't € Point : v[t] > 0 = IsDeltaVecSupported(legq, v, t)

APPENDIX A. SPECIFICATION

Summing up a sequence of delta vectors.

The sum of a sequence of delta vectors, skipping the first k.

We define the sum in terms of a recursive function over the naturals. Such a recursive function is the only formulation for which the current
TLAPS libraries provide theorems to help prove things. Based on the complexity of the proofs of those library theorems, / don’t want to start
trying to roll my own.

The recursive function Sumu|i] starts at element ¢ and recursively sums up each element going backwards towards element 1. The actual compu-

tation is

((---(((0+ QD + Q2D + QB + ... + Qs —1]) + Q[z])

Since the recursive function has to be defined for all naturals, and not just those that are in the domain of the sequence, we make it look through an
infinte extension of the sequence created by the operator Elem. Elem/(%) just returns Zero whenever ¢ is greater than the length the sequence.

Elem (1) also handles the job of skipping the first k& elements of the sequence. It does this through the simple expedient of returning Zero whenever
¢ is not greater than k. Note that if you feed in £ = 0 you get the sum of the entire sequence.

DeltaVecSeqSkipSum(k, Q) =

LET
zero

Add(a, b)

n

Elem(3)

Sumv[i € Nat]

IN
Sumu[n]

e e 11> e e

DeltaVecZero

DeltaVecAdd(a, b)

Len(Q)

IF k < iAi<nTHEN Q[i] ELSE Zero

IF ¢ = 0 THEN Zero ELSE Add(Sumuv[i — 1], Elem(7))

The sum of a sequence of delta vectors. This is just the special case £ = 0.

DeltaVecSeqSum(Q) 2 Delta VecSeqSkipSum(0, Q)

Construct a sequence of delta vectors just like @, but add d to element Q[n].

DeltaVecSeqAddAt(Q, n, d) =

LET

23

DeltaVecZero
DeltaVecAdd(a, b)

Zero
Add(a, b)
IN
[@Q EXCEPT ![n] = Add(Q[n], d)]

e >

Summing up delta vectors in the range of a function.

Given a function F' with range Delta Vec Type and a sequence I € Seq(DOMAIN F'), compute the sum of F'[I[i]] overall s € 1 .. Len([).

DeltaVecFunIndexSum(F,) =

LET
Zero < DeltaVecZero
Add(a, b) = DeltaVecAdd(a, b)
SegSum(Q) £ DeltaVecSeqSum(Q)
IN

SeqSum([i € 1.. Len(I) — F[I[i]])

Given a function F' with range Delta Vec Type and a finite set S C DOMAIN F', compute the sum of F'[s] forall s € S.
DeltaVecFunSubsetSum(F, S) =

LET
Zero £ DeltaVecZero
Add(a, b) = DeltaVecAdd(a, b)
SeqSum(Q) = DeltaVecSeqSum/(Q)
IN

DeltaVecFunIndexSum(F, ExactSeqFor(S))

Given a function F' with range Delta Vec Type determine if the set of all s € DOMAIN F' such that F'[s] # Zero is finite.

DeltaVecFunHasFiniteNonZeroRange(F) =

LET
Zero = DeltaVecZero
Add(a, b) £ DeltaVecAdd(a, b)
SeqSum(Q) £ DeltaVecSeqSum(Q)
IN

IsFiniteSet({d € DOMAIN F : F[d] # Zero})

Given a function F with range Delta Vec Type such that the set S of all s € DOMAIN F' such that F[s] # Zero is finite, compute the sum of F'[s]
overall s € S.

DeltaVecFunSum(F) 2

24 APPENDIX A. SPECIFICATION

LET
Zero £ DeltaVecZero
Add(a, b) £ DeltaVecAdd(a, b)
SeqgSum(Q) = DeltaVecSeqSum/(Q)
IN

DeltaVecFunSubsetSum(F, {d € DOMAIN F : F[d] # Zero})

Given a function F' with range Delta Vec Type, construct a function just like it but with v added to component z.

DeltaVecFunAddAt(F, x, v) 2

LET
Zero 2 DeltaVecZero
Add(a, b) = DeltaVecAdd(a, b)
SeqSum(Q) = DeltaVecSeqSum(Q)

IN

[F' EXCEPT ![z] = Add(F|z], v)]

Other data types.

A count vector gives a count of records for each point.

CountVecType = [Point — Nat]

State variables.

“lleq” is a state variable so that Init can initialize it to any partial order, for the purpose of model checking. Afterwards, it never changes.

VARIABLE lleq the precedence between points

VARIABLE nrec how many records at each point

VARIABLE glob global count for each processor and point
VARIABLE temp temporary count for each processor and point
VARIABLE msg clock message queues between processors

fiducial variables

VARIABLE nrecvut in prev state nrec was vacant at all points up thru ¢
VARIABLE globvut in prev state glob was vacant at all points up thru ¢

vars = (lleq, nrec, glob, temp, msg, nrecvut, globvut)

25

State operators.

All points s up thru ¢ have no records.

NrecVacantUpto(t) = IsDeltaVecVacantUpto(lleq, nrec, t)

All points s up thru ¢ have zero in glob[q].
GlobVacantUpto(q, t) = IsDeltaVecVacantUpto(lleq, globlq], t)

After skipping the first &, the sum of the delta vectors on the message queue from p to g, plus temp|[p].
IncomingInfo(k, p, q) =
LET
sum = DeltaVecSeqSkipSum (k, msg[p][q])
IN
DeltaVecAdd(sum, temp[p])

The sum of all incoming information heading toward processor g, except for skipping the first k& delta vectors coming from p.

Observe that Globallncominglnfo(0, g, g) is a way to refer to the sum of all incoming information heading toward processor q.

GlobalIncomingInfo(k, p, q) =
LET
F = [zp € Proc
LET 2k = IF zp = p THEN k ELSE 0 IN

26
IncomingInfo(zk, xp, q)
]
IN
DeltaVecFunSum(F)

APPENDIX A. SPECIFICATION

Next state relation.

Common part of each next action.

NexztCommon =
The partial order cannot change.
A UNCHANGED lleq
Compute fiducial variables based on old state.
A nrecvut’ = [ft € Point — NrecVacantUpto(ft)]
A globvut’ = [fqg € Proc — [ft € Point — GlobVacantUpto(fq, ft)]]

Perform an operation.

NeatPerformOperation =

dp € Proc : any processor
dc¢ € PointToNat : consumed records per point
dr € PointToNat : result records per point
LET

delta = [t € Point — r[t] — c[t]]
IN

Can consume only such records as exist.

AVt € Point : c[t] < nrec[t]

delta must be an upright delta vector.

A IsDeltaVecUpright(lleq, delta)

A nrec’ = DeltaVecAdd(nrec, delta)

A temp’ = [temp EXCEPT ![p] = DeltaVecAdd(templp], delta))
A UNCHANGED glob

A UNCHANGED msg

27

A NextCommon

Send an update. The update is broadcast to all processors. The processor is required to choose a set of points in its temp array to send that will
leave its temp array as an upright delta vector.

One simple way to do this is to always send positive points in preference to negative points.

NextSendUpdate =

dp € Proc:
dtt € SUBSET Point :
LET
tempp = temp|p]
gamma = [t € Point — IF t € tt THEN tempp[t] ELSE O]
newtempp = [t € Point — IF t € tt THEN 0 ELSE tempp|t]]
IN

A gamma # DeltaVecZero

A IsDeltaVecUpright(lleq, newtempp)

A temp’ = [temp EXCEPT ![p] = newtempp]

A msg’ = [msg EXCEPT ![p] = [¢ € Proc — Append(msg[p][q], gamma)]]
A UNCHANGED nrec

A UNCHANGED glob

A NextCommon

Receive an update.

NeatReceiveUpdate =
dp € Proc:
dq € Proc:

LET
A

kappa = Head(msg[p][q])
IN
A msg[p]q] # ()
A glob” = [glob EXCEPT ![q] = DeltaVecAdd(glob|q], kappa)]
A msg' = [msg EXCEPT ![p][q] = Tail(msg[p][q])]
A UNCHANGED nrec
A UNCHANGED temp

A NextCommon

28

APPENDIX A. SPECIFICATION

Specification.

A

Init =
Any point relation that is a partial order.
A lleq € PointRelationType
A IsPartialOrder(lleq)
Any initial record-point arrangement.
A nrec € PointToNat
Initial values.
A glob = [p € Proc — nrec]
A temp = [p € Proc — DeltaVecZero]
Amsg = [p € Proc— [q € Proc s (}]]
Initial fiducial variables based on initial state.
A nrecvut = [ft € Point — NrecVacantUpto(ft)]
A globvut = [fp € Proc — [ft € Point — GlobVacantUpto(fp, ft)]]

A

Next =

Any action.

V NextPerformOperation
V NextSendUpdate
V NextReceive Update

Spec = Init A O[Next]yars

Invariants.

Only a finite number of processors have information in temp.

IsFinite TempProcs =
IsFiniteSet({p € Proc : temp[p] # DeltaVecZero})

Only a finite number of processors sending messages to any gq.

IsFiniteMsgSenders =
YV q € Proc :
IsFiniteSet({p € Proc : msg[p]lq] # ()})

Invariant: State variables have the correct type.
InvType =
A lleq € PointRelationType
Anrec € CountVecType
A glob € [Proc — DeltaVecType]
Atemp € [Proc — DeltaVecType)
Amsg € [Proc — [Proc — Seq(DeltaVecType)]]
A nrecvut € [Point — BOOLEAN |
A globvut € [Proc — [Point — BOOLEAN |]
A IsPartialOrder(lleq)
A IsFinite TempProcs
A IsFiniteMsgSenders

Invariant: For all processors p, temp|p] is an upright delta vector.
InvTemp Upright =

Vp € Proc:

IsDeltaVecUpright(lleq, temp|p])

29

Invariant: For all processors p and ¢, the sum of all information about updates performed by p which is incoming at g, after skipping the first &

updates on the message queue, is an upright delta vector.

Note that IncomingInfo(k, p, q) sums up the delta vectors on the message queue from p to g skipping the first &, then adds temp|[p]. Taking

k = 0 includes all delta vectors on the message queue in the sum.
InvIncomingInfoUpright =

Vk € Nat :

Vp € Proc:

Vq € Proc:

IsDeltaVecUpright(lleq, IncomingInfo(k, p, q))

Invariant: For all processors ¢ the sum of all information incoming at g, except for skipping the first k£ updates on the message queue from processor

p, is an upright delta vector.

Note that GloballncomingInfo(0, q, q) sums up all of the information incoming at q.

30 APPENDIX A. SPECIFICATION

InvGloballncomingInfo Upright =
Vk € Nat :
Vp € Proc:
VY q € Proc:
IsDeltaVecUpright(lleq, GloballIncomingInfo(k, p, q))

Invariant: For all processors g, the sum of all information incoming at g, plus glob[q], equals nrec.

InvGlobalRecordCount =
Vq € Proc:
nrec = DeltaVecAdd(GlobalIncomingInfo(0, q, q), glob[q])

Invariant: For all processors ¢ and points ¢, whenever all points s up thru ¢ have zero in glob|[q], then all points s up thru ¢ have no records.

InvGlobVacantUptoImpliesNrec =
V¥ q € Proc :
Vt € Point :
GlobVacantUpto(q, t) = NrecVacantUpto(t)

Safety property: For all points ¢, if Nrec VacantUpto(t) is TRUE, then it will stay TRUE.

SafeStickyNrec VacantUpto =
VvVt € Point :
NrecVacantUpto(t) = ONrecVacantUpto(t)

Unfortunately, the 7L C' model checker runs much more slowly when trying to check that a general temporal property always holds, since it has to
keep additional information about the full state graph. 7'LC' works much better if formulas can be written as an invariant (a simple state predicate)
that holds in every reachable state. This is the purpose of the fiducial variable “nrecvut”.

Init sets nrecvut[t] = NrecVacantUpto(t). The Next actions set nrecvut(t]’ = NrecVacantUpto(t). (Note the absence of a trailing
prime.) This makes nrecvut[t] the value of Nrec VacantUpto(t) from the previous state, permitting us to check that Nrec VacantUpto(t) =
NrecVacantUpto(t)’. Hence we have the following invariant.

Invariant: For all points ¢, nrecvut[t] is sticky.

InvStickyNrecVacantUpto =
Vit € Point :
nrecvut[t] = NrecVacantUpto(t)

Safety property: For all processors ¢ and points ¢, if GlobVacantUpto(q, t) is TRUE, then it will stay TRUE.

SafeStickyGlobVacantUpto =
Vq € Proc :
Vt € Point :
GlobVacantUpto(q, t) = OGlobVacantUpto(q, t)

Unfortunately, the 7'L C' model checker runs much more slowly when trying to check that a general temporal property always holds, since it has to
keep additional information about the full state graph. 7L C' works much better if formulas can be written as an invariant (a simple state predicate)
that holds in every reachable state. This is the purpose of the fiducial variable “globvut”.

31

Init sets globvut[q][t] = GlobVacantUpto(q, t). The Next actions set globvut[q][t]’ = GlobVacantUpto(q, t). (Note the absence
of a trailing prime.) This makes globvut|q][t] the value of GlobVacantUpto(q, t) from the previous state, permitting us to check that
GlobVacantUpto(q, t) is sticky. Hence we have the following invariant.

Invariant: For all processors ¢ and points ¢, globvut[q][¢] is sticky.

InvStickyGlobVacantUpto =
Y q € Proc:
VvVt € Point :
globvut[q][t] = GlobVacantUpto(q, t)

Safety property: For all processors ¢ and points ¢, whenever all points s up thru ¢ have zero in glob[g], then all points s up thru ¢ have no records
and never will in any following state.

SafeGlobVacantUptolmpliesStickyNrec =
Vq € Proc :
VvVt € Point :
GlobVacantUpto(q, t) = ONrec VacantUpto(t)

32

APPENDIX A. SPECIFICATION

Appendix B

Model

EXTENDS Naturals, Sequences

VARIABLE [leq the precedence order between points

VARIABLE nrec how many records at each point

VARIABLE glob global count for each processor and point
VARIABLE temp temporary count for each processor and point
VARIABLE msg message queues between processors

VARIABLE nrecvut in prev state nrec was vacant at all points lleq ¢
VARIABLE globvut in prev state glob was vacant at all points lleq ¢

Default configuration parameters.

MazProc = 2 number of processors
MazPoint = 3 number of points
MazRecPerPoint = 1 max records/point in nrec
MazRec = 2 max total records in nrec

MaacMsgPerQueue = 1 max length of any message queue

Proc = 1 .. MazProc
Point = 1.. MazPoint

Sum up records for all points in m.
Sum(m) =
LET RECURSIVE S(-) S(T)
IF T = {} THEN 0 ELSE LET { = CHOOSE t € T : TRUE IN
IN S(Point)

A

PointToNat = [Point — 0 .. MazRecPerPoint]
INSTANCE NaiadClock

Constraint =

33

MODULE NaiadClockModel

mlt] + S(T\{t})

34

A Sum(nrec) < MaxRec
AVt € Point : nrec[t] < MaxRecPerPoint
AY p, g € Proc: Len(msg[p]lq]) < MazMsgPerQueue

ModelEzactSeqFor(S) =
LET RECURSIVE Q(_)Q(SS) =
IF SS = {} THEN () ELSE
LET s = CHOOSE 5 € SS : TRUEIN

Append(Q(SS\ {s}), s)
IN

Q(9)

APPENDIX B. MODEL

Appendix C

Proof of Correctness

35

36 APPENDIX C. PROOF OF CORRECTNESS

C.1 Basic additional definitions

MODULE NaiadClockProofBase

EXTENDS NaiadClock, NaturalsInduction, TLAPS

Basic additional definitions.

Make a new sequence by removing the element at index n from sequence q.

RemoveAt(q, n) =
[€1..Len(q) — 1+~ IF i < n THEN q[i] ELSE ¢[i + 1]]

For the proof we need to know what delta vector information is at position k£ on the message queue from processor p to processor g. For convenience,
we define the information as Delta VecZero when position k falls outside the domain of the message queue.

InfoAt(k, p, ¢) =

LET
M = msg[p]lq]
LenM = Len(M)
IN

IF0 < k Ak < LenM THEN M[k] ELSE DeltaVecZero

A delta vector va is vb-upright iff for every positive point ¢ in va there is a strictly lower point s that is negative in va or in vb and no point at s or
yet lower is positive in va.

IsDeltaVecBetaUpright(leq, va, vb) =

LET
a=<b = legla][b]
a<b = a <bAa#b
IN
V't € Point : for any point
valt] > 0 that is positive in va
=
ds € Point : there is a point
ANs =<t strictly lower

A (va[s] < 0V vbls] < 0) that is negative in va or vb

C.1. BASIC ADDITIONAL DEFINITIONS 37

A IsDeltaVecNonposUpto(leq, va, s) and va is nonpos up thru s

We say that delta vector vecsre positive implies delta vector vecdst iff for every point ¢ such that vecsrc[t] is positive, vecdst[t] is positive.

IsDelta VecPositiveImplies(vecsre, vecdst) =
A vecsrc € DeltaVecType
A vecdst € DeltaVecType
AVt € Point : vecsre[t] > 0 = vecdst[t] > 0

Definitions for the part of each action after its existential variables have been bound. Using these definitions permits the complicated expressions
defining the actions to be hidden from the prover until needed.

NeatPerformOperation- WithPCR(p, ¢,)
NeatSendUpdate- WithPTT (p, tt)
NeatReceive Update_ WithPQ(p, q)

NextPerformOperation!(p)!(c)!(r)
NextSendUpdate ! (p) ! (tt)
NextReceive Update ! (p)!(q)

e 11> e

Definitions for an important value within each action. Using these definitions permits the complicated expressions defining these values to be
hidden from the prover until needed.

NextPerformOperation!(p)!(c)!(r)! delta
NextSendUpdate ! (p) ! (tt) ! gamma
NextReceive Update ! (p) ! (q) ! kappa

NeatPerformOperation_Delta(p, ¢, 1)
NextSendUpdate_ Gamma(p, tt)
NextReceive Update_ Kappa(p, q)

e 1> 11>

Definitions for the LET locals inside the definition of GloballncomingInfo. Using these definitions permits the complicated expressions defining
these values to be hidden from the prover until needed.

GlobalIncomingInfo_F(k, p, q) = GloballncomingInfo(k, p, ¢)! : | F'

38 APPENDIX C. PROOF OF CORRECTNESS

C.2 Facts about naturals

MODULE NaiadClockProofNaturals

EXTENDS NaiadClockProofBase

Facts about naturals.

This really ought to be a library of theorems.

Dot dot facts.

THEOREM DotDotDef = Vi, m, n € Nat: (m <iANi<n)=i € m..n BY SMTT(10)
THEOREM DotDotType = ¥Ym, n € Nat : m .. n C Nat BY SMTT(10)
THEOREM DotDotType2 = ¥Y'm, n € Nat :¥i € m .. n:i € Nat BY SMTT(10)

1 .. nisequivalent to n itself for n € Nat.

THEOREM DotDotOneThruN =
Vm,ne€ Nat:1.. m=1..n=m=n
PROOF
(1)1. SUFFICES ASSUME NEW m € Nat, NEW n € Nat, m # n PROVE 1..m # 1 .. n OBVIOUS

Without loss of generality, assume ma is smaller than na.

) DEFINE ma IF m < n THEN m ELSE n

) DEFINE na = IF m < n THEN n ELSE m

)2. ma € Nat OBVIOUS

)3. na € Nat OBVIOUS

Y4. ma < na

(2)1.CASE m <n BY(2)1, (1)1, SMTT(10)
(

(

)

)

> |l

(1
(1
(1
(1
(1

0
2)2. CASE =~(m < n) BY (2)2, (1)1, SMTT(10)
2) QED BY (2)1, (2)2
(1) SUFFICES 1 .. ma # 1 .. na BY SMTT(10)
(1
na shows that the ranges differ.
(1)5.0 < na BY (1)2, (1)3, (1)4, SMTT(10)
(1)6.1 < na BY (1)3, (1)5, SMTT(10)
(1)7.na €1..na BY<)3, (1)6, SMTT(10)

HIDE DEF ma, na

C.2. FACTS ABOUT NATURALS

(1)8.na ¢ 1..ma BY (1)2, (1)3, (1)4, SMTT(10)
(1) QED BY (1)7, (1)8

39

Any non-empty subset of Nat has a minimum element. You would think this would be a library theorem, but I could not find it. We use the classic

inductive proof by contradiction for this theorem.

THEOREM Nat WellFounded =
VN € SUBSET Nat : N #{} =3Ine N:Vme N:n<m
PROOF
(1)1. SUFFICES ASSUME NEW N € SUBSET Nat, N # {}
PROVE dn € N:Vme N:n<m
OBVIOUS

Assuming that no minimum element of N exists, we prove that N must be empty, which is a contradiction.

(1)2. SUFFICES ASSUME =dn € N :Vm € N : n < m PROVE N = {} BY (1)1

P(%) says that no naturals less than 4 are in N. We prove this for all ¢ in Nat using induction.

(1)DEFINE P(i) = Vk e Nat:k<i=k ¢ N
(1)3.i € Nat : P(i)
(2)1. P(0) BY SMTT(10)
(2)2.Vi € Nat: P(i) = P(i + 1)
(3)1. SUFFICES ASSUME NEW ¢ € Nat, P(i) PROVE P(i+ 1) OBVIOUS
(3)2. SUFFICES ASSUME NEW k € Nat, k < i+ 1 PROVE k ¢ N OBVIOUS
(3)3.CASE k < i BY (3)1, (3)3
(3)4. CASE k = i
(4)1. SUFFICES ASSUME k£ € N PROVE FALSE OBVIOUS
()2.Vj € N :k <j BY (3)1, (3)4, SMTT(10)
(4) QED BY (4)1, (4)2, (1)2
(3) QED BY (3)2, (3)3, (3)4, SMTT(10)

(2) HIDE DEF P
(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa
Since P(¢) is true for all ¢ in Nat, N must be empty.
(1)4.Vi€ Nat: i ¢ N
(2) SUFFICES ASSUME NEW i € Nat PROVE i ¢ N OBVIOUS
(2)1.14+1 € Nat BY SMTT(10)
(2)2. P(i +1) BY (2)1, (1)3
(2)3.i < i+1 BY SMTT(10)
(2) QED BY (2)2, (2)3
(1) QED BY (1)4

40 APPENDIX C. PROOF OF CORRECTNESS

C.3 Facts about sequences

MODULE NaiadClockProofSequences

EXTENDS NaiadClockProofNaturals

Facts about sequences.

This really ought to be a library of theorems.

The following definitions are essentially copied from the standard Sequences module. We could prove them if the definitions of Seq, Len, Head,
Tail, and Append could be expanded, but unfortunately the current proof system does not permit this.

A

THEOREM SegDef = V.5 : Seq(S) =UNION{[l..n — S]:n € Nat}

THEOREM LenDef = VS :Vseq € Seq(S): DOMAIN seq =1 .. Len(seq)
THEOREM HeadDef = V seq: Head(seq) = seq[1]

THEOREM TuilDef = Vseq: Tail(seq) =i € 1.. (Len(seq) — 1) — seq[i + 1]]

THEOREM AppendDef =
V seq, elt :
Append(seq, elt) =[i € 1.. (Len(seq) + 1) —
IF ¢ < Len(seq) THEN seq[i] ELSE elt]

Prove that ¢ € Seq(S).

For some reason, the provers find it difficult to deduce this from the given predicates using just SegDef, so it helps to prove it once here.

THEOREM IsASeq =
ASSUME
NEW S,
NEW n € Nat,
NEW g € [1..n— 5]
PROVE
q € Seq(S)
PROOF
(1) QED BY SeqDef, IsaT(120)

C.3. FACTS ABOUT SEQUENCES

Axiom about Len.

THEOREM LenAziom =
VS
Vseq € Seq(S) :
Len(seq) € Nat A seq € [1.. Len(seq) — S]
PROOF
(1)1. SUFFICES ASSUME
NEW S,
NEW ¢ € Seq(S)
PROVE
A Len(q) € Nat
ANqg€e[l..Len(q) — S|
OBVIOUS

(1)2. Len(q) € Nat BY Isa isabelle knows this axiomatically

)

(1)3.q € [1.. Len(q) — 9]
(2)1. DOMAIN g = 1 .. Len(q) BY LenDef
(2)2.3n € Nat: g € [1..n — S] BY SeqDef, Isa
(2) QED BY (2)1, (2)2

)

(1) QED BY (1)2, (1)3

The length of a sequence is a natural number.

COROLLARY LenInNat =

VS :Vseq € Seq(S): Len(seq) € Nat
PROOF

BY LenAziom

When the domain of a sequence is 1 .. n, then 7 is the length of the sequence.

THEOREM LenDomain =
VS

41

42 APPENDIX C. PROOF OF CORRECTNESS

Vseq € Seq(S) :
Vn € Nat :
DOMAIN seq =1 .. n = n = Len(seq)
PROOF
(1)1. SUFFICES ASSUME
NEW S,
NEW ¢ € Seq(S),
NEW n € Nat,
DOMAINg=1..7n
PROVE n = Len(q)
OBVIOUS

(1)2. Len(q) € Nat BY LenAziom
(1)3. DOMAIN g = 1 .. Len(q) BY LenAxiom
(1) QeD BY (1)1, (1)2, (1)3, DotDotOneThruN

The element of a Seq(S) isin S.

THEOREM ElementOfSeq =
VS
Vseq € Seq(S) :
Vnel.. Len(seq):
seq[n] € S
PROOF
(1)1. SUFFICES ASSUME
NEW S,
NEW ¢ € Seq(95),
NEW n € 1.. Len(q)
PROVE ¢[n] € S
OBVIOUS

(1)2. ¢ € [1 .. Len(q) — S| BY LenAxiom
(1) QED BY (1)2

Properties of the empty sequence.

THEOREM EmptySeq =

C.3. FACTS ABOUT SEQUENCES

VS
A () € Seq(55)
AV seq € Seq(9) : (seq = () = (Len(seq) = 0)
PROOF
(1)1. ASSUME NEW S
PROVE () € Seq(S)
BY Isa isabelle knows this axiomatically

(1)2. ASSUME NEW S, NEW ¢ € Seq(S)
PROVE (q = ()) = (Len(q) = 0)
BY Isa isabelle knows this axiomatically

(1) QeD BY (1)1, (1)2

The empty sequence is a sequence.

COROLLARY EmptySeqlsASeq =
VS : () € Seq(9)

PROOF
BY EmptySeq

An empty sequence has length zero.

THEOREM LenEmptylsZero =
Len(()) = 0

PROOF
OBVIOUS

The head of a non-empty Seq(S) is an S.

THEOREM Head Type =
VS :Vqe€ Seq(S): q# () = Head(q) € S

43

44 APPENDIX C. PROOF OF CORRECTNESS

PROOF
(1)1. SUFFICES ASSUME
NEW S,
NEW ¢ € Seq(S),
q# ()
PROVE Head(q) € S
OBVIOUS

DEFINE n = Len(q)
HIDE DEF n

(1)
{1
(1) SUFFICES 1 € 1 .. n BY (1)1, HeadDef, ElementOfSeq DEF n
(1)2.n # 0 BY (1)1, EmptySeq DEF n

(1)3. n € Nat BY LenAziom DEF n

(1)4.n > 0 BY (1)2, (1)3, SMTT(10)

(1) QeD BY (1)3, (1)4, SMTT(10)

Properties of Tasl.

THEOREM TailProp =
VS
Vseq € Seq(S) :
seq # ()
=
A Tail(seq) € Seq(S)
A Len(Tail(seq)) = Len(seq) — 1
AVi € 1.. Len(Tail(seq)) :
ANi+1€1l..Len(seq)
A Tail(seq)[i] = seq[i + 1]
PROOF
(1)1. SUFFICES ASSUME
NEW S,
NEW ¢ € Seq(S),
g7 ()
PROVE
A Tail(q) € Seq(S)
A Len(Tail(q)) = Len(q) — 1
AYi € l.. Len(Tail(q)) :
ANi+1€l..Len(q)
A Tail(q)[i] = qi + 1]
OBVIOUS

C.3. FACTS ABOUT SEQUENCES

DEFINE n
DEFINE m

Len(q)

1> e

n—1
HIDE DEF n, m

)
)
)
)2.n € Nat BY LenInNat DEF n
)3.n #0 BY (1)1, EmptySeq DEF n
1)4. m € Nat BY (1)2, (1)3, SMTT(10) DEF m
)
)
)
(

5.q €[1..n— S] BY LenAxziom DEF n
6. Tail(q) =[i € 1.. m — q[i + 1]] BY TailDef DEF n, m

7. Tail(q) € Seq(S)

Jiel..me qli+1]] € Seq(S)

(3)1. ASSUMENEW ¢ € 1 .. m PROVE ¢[i +1] € §

DHl.i+1el..nBY (31, (1)2, (1)3, SMTT(10) DEF m
(4) QED BY (4)1, (1)5

(3)2.iel..mm—yqli+1)]e[l..m—S] BY (3)1

(3) QED BY (1)4, (3)2, IsASeq

—~

2) QED BY (2)1, (1)6
(1)8. Len(Tail(q)) = m
2)1. Len(Tail(q)) € Nat BY (1)7, LenInNat
2)2 DOMAIN Tail(q) =1 .. Len(Tail(q)) BY (1)7, LenDef
2)3.1.. Len(Tail(q)) =1 .. m BY (2)2, (1)6
2) QED BY(1, (2)3, (1)4, DotDotOneThruN

(1)9. ASSUMENEW ¢ € 1 .. m PROVE i+1€l..n
2) QED BY (1)2, (1)3, (1)9, SMTT(10) DEF m

(
)
(
(
(
(
)
(
(1)10. ASSUME NEW i € 1 .. m PROVE Tail(q)[i] = q[i + 1]
(2) QED BY (1)6, (1)9
(1) QED BY (1)7, (1)8, (1)9, (1)10 DEF n, m

The tail of a non-empty Seq(.S) is a Seq(.S).

COROLLARY TailType =

VS :Vqe Seq(S): q+# () = Tail(q) € Seq(S)
PROOF

BY TailProp

45

46 APPENDIX C. PROOF OF CORRECTNESS

Properties of Append.

THEOREM AppendProperties =
VS
Vseq € Seq(S), elt € S :
A Append(seq, elt) € Seq(S)
A Len(Append(seq, elt)) = Len(seq) + 1
AV i € 1.. Len(seq) : Append(seq, elt)[i] = seq[i]
A Append(seq, elt)[Len(seq) + 1] = elt
PROOF
(1)1. SUFFICES ASSUME
NEW S,
NEW ¢ € Seq(S),
NEW e € S
PROVE
N Append(q, e) € Seq(S)
A Len(Append(q, e)) = Len(q) + 1
AYi € 1..Len(q): Append(q, e)[i] = qi]
A Append(q, €)[Len(q) +1] = e

OBVIOUS
A
1) DEFINEn = Len(q)
1)DEFINEm = n+1

1) HIDE DEF n, m

)

)

)

1)2. n € Nat BY LenInNat DEF n
)3.m # 0 BY (1)2, SMTT(10) DEF m
Y4. m € Nat BY (1)2, SMTT(10) DEF m
)5.
6.
)
(

1
1

(

(

(

(

(1

(1

(€[1..n— S] BY LenAziom DEF n

(Append(q, e)=1[i €1..m—IFi<nTHEN q[i] ELSE e| BY AppendDef DEF n, m

(1y7. Append(q, e) € Seq(S)

2)1. ASSUME NEW i € 1 .. m PROVE Append(q, e)[i] € S

(3)1.CASEi < n
$Hl.ie€l..n BY(
4)2. Append(q, e)[i
4) QED BY (4)1, (4)

)

(1, (1)2, (1)4, SMTT(10)
(

(

(3)2. CASE (3 < n)

(

(

)

3
] = qli] BY (3)1, (1)6
2, (1)5

4)1. Append(q, e)[i] = e BY (3)2, (1)6
4) QED BY (4)1

(3) QED BY (3)1, (3)2
(2)2. Append(q, e) € [1.. m — S] BY (2)1, (1)6
(2) QED BY (2)2, (1)4, IsASeq

C.3. FACTS ABOUT SEQUENCES

(1)8. Len(Append(q, e)) = m
2)1. Len(Append(q, e)) € Nat BY (1)7, LenInNat
2)2. DOMAIN Append(q, e) =1 .. Len(Append(q, €)) BY (1)7, LenDef
2)3.1.. Len(Append(q, €)) = 1 ..m BY (2)2, (1)6
2) QED BY(1, (2)3, (1)4, DotDotOneThruN

)
(
(
(
(
(1)9. ASSUME NEW ¢ € 1 .. n PROVE Append(q, e)[i] = q[i]
(2)1.9 <n BY (1)2, (1)9, SMTT(10)
(2)2.1i€1..m BY (1)2, (1)9, SMTT(10) DEF m
(2) QED BY (2)1, (2)2, <1>6
)
(
(
(
)

)

(1)10. Append(q, e)[m] = e
9l.m e 1..m BY (1)3, (1)4, SMTT(10)
2)2. =~(m < n) BY (1)2, SMTT(10) DEF m
2) QED BY (2)1, (2)2, (1)6

(1) QeD BY (1)7, (1)8, (1)9, (1)10 DEF n, m

The elements at positions 1 .. Len (@) are unchanged by appending a new element to Q).

This is a trivial corollary of AppendProperties, but it is difficult for the provers to conclude it in some contexts. So we make it explicit.

COROLLARY AppendPropertiesOldElems =
ASSUME
NEW S,
NEW @ € Seq(S),
NEW s € 85,
NEW i € 1..Len(Q)
PROVE Append(Q, s)[i] = Q[i]
PROOF
BY Isa, AppendProperties

The element at position Len(Q) + 1 in Append(Q, s) is s.

This is a trivial corollary of AppendProperties, but it is difficult for the provers to conclude it in some contexts. So we make it explicit.

COROLLARY AppendPropertiesNewElem =
ASSUME
NEW S,

47

48

NEW @ € Seq(S5),
NEWs € 8
PROVE Append(Q, s)[Len(Q)+ 1] =s
PROOF
BY AppendProperties

Q € Seq(S) implies Q € Seq(T) for T any superset of S.

THEOREM SegSupset =
ASSUME
NEW S,
NEW @ € Seq(95),
NEW T, SCT
PROVE
Q € Seq(T)
PROOF
BY Isa

APPENDIX C. PROOF OF CORRECTNESS

C.4. PROPERTIES OF REMOVEAT 49

C.4 Properties of RemoveAt

MODULE NaiadClockProofRemoveAt

EXTENDS NaiadClockProofSequences

Properties of RemoveAt.

This really ought to be a library of theorems.

To make life easier for the theorem prover, we define operators for each of the complicated properties. These operators assume that we have
Q € Seq(S)andn € 1.. Len(Q).

Mapping index ¢ forward from @ to RemoveAt(Q, n).
RemoveAt_ForwardIndex(Q, n, qi) 2 IF ¢i < n THEN ¢i ELSE ¢i — 1

Mapping index 7 backward from RemoveAt(Q, n) to Q.
RemoveAt_BackwardIndez(Q, n, ri) £ IF ri < n THEN ri ELSE 7i + 1

How each index maps forward.

RemoveAt_MapForward(Q, n) =
LET
R £ RemoveAt(Q, n)
IN
Vagi€l..Len(Q) :
qi#n
=
LET
ri = RemoveAt_ForwardIndex(Q, n, qi)
IN
ri € 1.. Len(R) A Q[qi] = R][ri]

How each index maps backward.
RemoveAt_MapBackward(Q, n) =
LET
R = RemoveAt(Q, n)
IN
Vri€l..Len(R):

50 APPENDIX C. PROOF OF CORRECTNESS

LET
g = RemoveAt_BackwardIndex(Q, n, 1)
IN

qgi € 1.. Len(Q) A qi # n A Q[qi] = R[ri]

Each index maps forward.
RemoveAt_EachForward(Q, n) =

LET

R = RemoveAt(Q, n)

IN

Vgi€l.. Len(Q) :

qi = n

=

dri €1..Len(R):

Qlqi] = R[ri]

Each index maps backward.
RemoveAt_EachBackward(Q, n) =
LET
R = RemoveAt(Q, n)
IN
Vriel..Len(R) :
Jqiel.. Len(Q):
gi # n A Qlgi] = Rlri

Indexes map forward preserving order.
RemoveAt_OrderedForward(Q, n) =

LET

R = RemoveAt(Q, n)

IN

Vqil, q¢i2 € 1.. Len(Q) :

qil < qi2 A qil #n A qi2 #n

=

dril, ri2 € 1.. Len(R) :

ril < ri2 A Q[qil] = R[ril] A Q[qi2] = R[ri2]

Indexes map backward preserving order.
RemoveAt_OrderedBackward(Q, n) =
LET
R = RemoveAt(Q, n)
IN
Vril, ri2 € 1.. Len(R) :
ril < ri2

C.4. PROPERTIES OF REMOVEAT

=
Jqil, gi2 € 1.. Len(Q) :
@il < @2 A qil £ n A qi2 # n A Qqil] = R[ril] A Q[qi2] = R[ri2]

Indexes map forward preserving distinctness.
RemoveAt_DistinctForward(Q, n) =

LET

R = RemoveAt(Q, n)

IN

Vqil, ¢i2 € 1.. Len(Q) :

qil # 2 N qil £ n AN\ q2#n

=

Iril, ri2 € 1.. Len(R) :

ril # ri2 A Q[qil] = R[ril] A Q[qi2] = R[ri2]

Indexes map backward preserving distinctness.

RemoveAt_DistinctBackward(Q, n) =

LET

R = RemoveAt(Q, n)
IN
Vril, ri2 € 1.. Len(R) :
ril # ri2
=

Jqil, gi2 € 1.. Len(Q) :
@il # @2 A qil #n A @2 # n A Q[qil] = R[ril] A Q[qi2] = R[ri2]

The theorem.

THEOREM RemoveAtProperties =
ASSUME
NEW S,
NEW @ € Seq(S),
NEWn € 1.. Len(Q)
PROVE
LET
R = RemoveAt(Q, n)
IN
AR € Seq(S)
A Len(R) = Len(Q) — 1
A RemoveAt_MapForward(Q, n)
A RemoveAt_MapBackward(Q, n)
A RemoveAt_EachForward(Q, n)

51

52 APPENDIX C. PROOF OF CORRECTNESS

A RemoveAt_EachBackward(Q, n)

A RemoveAt_OrderedForward(Q, n)

A RemoveAt_OrderedBackward(Q, n)

A RemoveAt_DistinctForward(Q, n)

A RemoveAt_DistinctBackward(Q, n)
PROOF

)

) DEFINE R = RemoveAt(, n)
) DEFINE Len() = Len()

) DEFINE LenR = Len(R)

) HIDE DEF R, LenQ LenR

1)1.Q € [1.. Len@Q — S] BY LenAziom DEF Len(@)

1)2.n € 1.. Len@ BY DEF Len@

1)3. Len@ € Nat BY LenInNat DEF Len()

1)4. Len@Q > 0 BY (1)2, (1)3, SMTT(10)

1)5. Len@ — 1 € Nat BY (1)3, (1)4, SMTT(10)

1)6.R=[ri € 1.. LenQ — 1 — Q[RemoveAt_BackwardIndez(Q, n, 7i)]]

BY DEF R, Len@, RemoveAt

(Y7.Viel..LenQ—1:R[i] € S
(2)1. SUFFICES ASSUME NEW 7, i € 1.. Len@ — 1 PROVE R[i] € S OBVIOUS
(2)2.CASE i < n
(3)1.i € 1.. Len@ BY (2)1, (1)3, SMTT(10)
(3)2. Rli) = Qli] BY (16, (2)1, (2)2
(3

(2)3. CASE =(i < n)
3
3
3

) QED BY <3>1 (3)2, (1)1

(3)1.i4+1 € 1..Len@Q BY (2)1, (1)3, SMTT(10)
é)2. R[i] = Q[i + 1] BY (1)6, (2)1, (2)3

(2) QED BY (2)2, (2)3

Y QED BY (3)1, (3)2, (1)1
(8. Re[1..Len@ —1— S| BY (1)6, (1)7
(1)9. R € Seq(S) BY (1)5, (1)8, IsASeq

Prove that Len(R) = Len(Q) — 1.

(1)10. DOMAIN R =1 .. Len) — 1 BY (1)8

(1)11. DOMAIN R =1 .. LenR BY (1)9, LenDef DEF LenR

(1)12. LenR € Nat BY (1)9, LenAxziom DEF LenR

(1)13. LenR = Len® — 1 BY (1)5, (1)10, (1)11, (1)12, DotDotOneThruN
(1)14. Len(R) = Len(Q) — 1BY (1)13 DEF Len@Q, LenR

The mapping of indexes forward.

(1)15. RemoveAt_MapForward(Q, n)
(2)1. SUFFICES ASSUME

C.4. PROPERTIES OF REMOVEAT

NEW g¢i, gi € 1.. LenQ, qi # n,
NEW 71, 7i = RemoveAt_ForwardIndez(Q, n, qi)

PROVE 77 € 1.. Len@ — 1 A Q|qi] = R|[ri]

BY (1)13 DEF R, Len(@, LenR, RemoveAt_MapForward
2.qgi €1..Len@Q A qi # n BY (2)1
3.CASE i < n
3)1.ri = qi BY (2)1, (2)3
3)2.n < Len@Q BY (1)2, (1)3, SMTT(10)
3)3.ri € 1.. LenQ — 1 BY (1)3, (2)2, (2)3, (3)1, (3)2, SMTT(10)
3)4. R[ri] = Q[qi] BY (1)6, (2)2, (2)3, (3)1, (3)3
3) QED BY (3)3, (3)4
4. CASE qi > n
1. =(¢i < n) BY (1)3, (2)2, (2)4, SMTT(10)
2.1 =¢qi—1 BY (2)1, (3)1
3.qi > 1 BY (1)2, (1)3, (2)2, (2)4, SMTT(10)
4.7i €1..LenQ — 1 BY (1)3, (2)2, (3)2, (3)3, SMTT(10)
5.ri+1=qi BY (1)3, (2)2, (3)2, SMTT(lO)
6.—(ri < n) BY (1)3, (2)2, (2)4, (3)2, SMTT(10)
7. R[ri] = Q[q¢i] BY (1)6, (3)4, (3) (3)6, SMTT(10)
) QED BY (3)4, (3)7
(2) QED BY (2)2, (2)3, (2)4, SMTT(10)

The mapping of indexes backward.

(1)16. RemoveAt_MapBackward(Q, n)
(2)1. SUFFICES ASSUME
NEW 7%, 70 6 1.. LenR,
NEW qi, ¢i = RemoveAt_BackwardIndex(Q, n, i)
PROVE ¢i E 1 . LenQ A qi # n A Q[qi] = R[ri]
BY DEF R, LenR, Len(, RemoveAt_MapBackward
(2)2.ri € 1.. LenR BY (2)1
(2)3.CASEri < n
3)1. i = 71 BY (2)1, (2)3
3)2.qi € 1.. Len@ BY (1)3, (1)13, (2)2, (3)1, SMTT(10)
3)3. qi # n BY (2)1, (2)3, SMTT(10)
3)
3)

1
4. R[ri] = Qlgi] BY (1)6, (1)13, (2)2, (2)3, (3)1

3)1 qgi =i+ 1 BY (2)1, (2)4

3)2.qi € 1.. Len@ BY (1)3, (1)13, (2)2, (3)1, SMTT(10)
3)3. ¢i # n BY (2)2, (2)4, (3)1, SMTT(10)

3)4. R[ri] = Qlgi] BY (1)6, (1)13, (2)2, (2)4, (3)1
3>QEDBY<> (3)3, (3)4

Each index maps forward.

53

54

(1)17. RemoveAt_EachForward(Q, n)

(2)1. SUFFICES ASSUME NEW g¢i, qi € 1 .. Len(Q), ¢i # n
PROVE Jri € 1.. Len(R) : Q[q¢i] = R[ri]
BY DEF RemoveAt_FEachForward, R

(2) DEFINE 77 = RemoveAt_ForwardIndex(Q, n, qi)

(2)2.1i € 1.. Len(R) A Q[qi] = R[ri]
BY (1)15, (2)1 DEF RemoveAt_MapForward, R

(2) QED BY (2)2

Each index maps backward.

(1)18. RemoveAt_FEachBackward(Q, n)
(2)1. SUFFICES ASSUME NEW 74, i € 1 .. Len(R)
PROVE J¢qi € 1.. Len(Q) : qi # n A Q[qi] = R[ri]
BY DEF RemoveAt_FEachBackward, R
(2) DEFINE gi = RemoveAt_BackwardIndez(Q, n, ri)
(2)2.qi € 1.. Len(Q) A qi # n A Qlqi] = R][ri]
BY (1)16, (2)1 DEF RemoveAt_MapBackward, R
(2) QED BY (2)2

Indexes map forward preserving order.

(1)19. RemoveAt_OrderedForward(Q, n)
(2)1. SUFFICES ASSUME
NEW qil, qil € 1.. Len@, qil # n,
NEW ¢i2, qi2 € 1.. LenQ, qi2 # n,
gl < qi2
PROVE
Iril, ri2 € 1.. Len(R) :
ril < ri2 A Q[gil] = R[ril] A Q[qi2] = R[ri2]
BY Isa DEF RemoveAt_OrderedForward, R, Len@)
(2) DEFINE 791 = RemoveAt_ForwardIndez(Q, n, qil)
(2) DEFINE 712 = RemoveAt_ForwardIndez(Q, n, qi2)
(2)2.ril € 1.. Len(R) A Q[qil] = R[ril]
BY (1)15, (2)1 DEF RemoveAt_MapForward, R, Len@)
(2)3. 712 € 1.. Len(R) A Q[qi2] = R[ri2]
BY (1)15, (2)1 DEF RemoveAt_MapForward, R, Len@)
(2)4. ril < ri2 BY (1)2, (1)3, (2)1, SMTT(10)
(2) QED BY (2)2, (2)3, (2)4

Indexes map backward preserving order.

(1)20. RemoveAt_OrderedBackward(Q, n)
(2)1. SUFFICES ASSUME
NEW 71, i1 € 1 .. LenR,
NEW 72, 112 € 1 .. LenR,
il < ri2
PROVE
Jqil, gi2 € 1.. Len(Q) :

APPENDIX C. PROOF OF CORRECTNESS

C.4. PROPERTIES OF REMOVEAT

qil < qi2 A qil £ n A qi2 # n A Q[qil] = R[ril] A Q[qi2] = R[ri2]
BY Isa DEF RemoveAt_OrderedBackward, R, LenR
(2) DEFINE ¢il = RemoveAt_BackwardIndez(Q, n, ril)
(2) DEFINE ¢i2 = RemoveAt_BackwardIndez(Q, n, ri2)
(2)2.qil € 1.. Len(Q) A qil # n A Q[qil] = R[ril]
BY (1)16, (2)1 DEF RemoveAt_-MapBackward, R, LenR
(2)3.qi2 € 1.. Len(Q) A qi2 # n A Q[qi2] = R[ri2]
BY (1)16, (2)1 DEF RemoveAt_-MapBackward, R, LenR
(2)4. qil < ¢i2 BY (1)2, (1)12, (2)1, SMTT(10)
(2) QED BY (2)2, (2)3, (2)4

Indexes map forward preserving distinctness. Essentially an identical proof to RemoveAt_OrderedForward(Q, n).

(1)21. RemoveAt_DistinctForward(Q, n)
(2)1. SUFFICES ASSUME
NEW q¢il, ¢qil € 1.. Len@, qil # n,
NEW ¢i2, ¢qi2 € 1.. Len@, qi2 # n,
qil # qi2
PROVE
Iril, ri2 € 1.. Len(R) :
ril # ri2 A Q[qil] = R[ril] A Q[qi2] = R[ri2]
BY Isa DEF RemoveAt_DistinctForward, R, Len@
(2) DEFINE il = RemoveAt_ForwardIndez(Q, n, qil)
(2) DEFINE 772 = RemoveAt_ForwardIndez(Q, n, qi2)
(2)2.ri1 € 1.. Len(R) A Q[qil] = R[ril]
BY (1)15, (2)1 DEF RemoveAt_MapForward, R, Len@
(2)3. 712 € 1.. Len(R) A Q[qi2] = R[ri2]
BY (1)15, (2)1 DEF RemoveAt_MapForward, R, Len@
(2)4. ril # ri2 BY (1)2, (1)3, (2)1, SMTT(10)
(2) QED BY (2)2, (2)3, (2)4

Indexes map backward preserving distinctness. Essentially an identical proof to RemoveAt_OrderedBackward(Q, n).

(1)22. RemoveAt_DistinctBackward(Q, n)
(2)1. SUFFICES ASSUME
NEW i1, il € 1.. LenR,
NEW 72, 112 € 1 .. LenR,
ril £ 12
PROVE
Jqil, qi2 € 1.. Len(Q) :
qil # qi2 A qil # n A qi2 # n A Q[qil] = R[ril] A Q[qi2] = R[ri2]
BY Isa DEF RemoveAt_DistinctBackward, R, LenR
(2) DEFINE ¢il = RemoveAt_BackwardIndez(Q, n, ril)
(2) DEFINE ¢i2 = RemoveAt_BackwardIndez(Q, n, ri2)
(2)2.qil € 1.. Len(Q) A qil # n A Q[qil] = R[ril]
BY (1)16, (2)1 DEF RemoveAt_MapBackward, R, LenR
(2)3.qi2 € 1.. Len(Q) A qi2 # n A Q[qi2] = R[ri2]
BY (1)16, (2)1 DEF RemoveAt_MapBackward, R, LenR

> >

55

56 APPENDIX C. PROOF OF CORRECTNESS

(2)4. qil # ¢i2 BY (1)2, (1)12, (2)1, SMTT(10)
(2) QED BY (2)2, (2)3, (2)4

(1) QED BY (1)9, (1)14, (1)15, (1)16, (1)17, (1)18, (1)19, (1)20, (1)21, (1)22 DEF R

C.5. FACTS ABOUT FINITE SETS

C.5 Facts about finite sets

MODULE NaiadClockProofFiniteSets

57

EXTENDS NaiadClockProofRemoveAt

Facts about finite sets.

This really ought to be a library of theorems.

The built-in definition of IsFiniteSet in T'LAPS version 1.0.25464 has a typo. This is the correct definition. 15 June 2012
Still wrong in TLAPM version 1.1.1 (commit 29945). 7 December 2012

THEOREM CorrectlsFiniteSet =
VS : IsFiniteSet(S) = 3seq € Seq(S):Vs € S:3n €1.. Len(seq) : seq[n] = s

The empty set is finite.

THEOREM FiniteSetEmpty =
IsFiniteSet({})

PROOF
(1) DEFINE Q = ()
()1. Q € Seq({}) BY IsASeq, IsaT(120)
(H2.Vse{}:Fiel.. Len(Q) : Q[i] = s OBVIOUS
(1) QED BY (1)1, (1)2, CorrectisFiniteSet

A singleton set is finite.

THEOREM FiniteSetSingleton =
ASSUME NEW s0
PROVE IsFiniteSet({s0})
PROOF
(1) DEFINE Q = (s0)
(1) DEFINE LenQ = Len(Q)

58 APPENDIX C. PROOF OF CORRECTNESS

(1
(1
1

{

y1. Len@ = 1 OBVIOUS

Y2, Q € Seq({s0}) BY IsASeq, IsaT(120)

13.Vs € {s0}:3iel.. LenQ: Q[i] =s

(2) SUFFICES 34 € 1 .. Len@ : Q[i] = sO OBVIOUS
(2)1.1€1.. LenQ

(3) HIDE DEF Len(@

(3) QED BY (1)1, SMTT(10)

(2)2. Q[1] = sO oBVIOUS

(2) QED BY (2)1, (2)2

(1) QED BY (1)2, (1)3, CorrectlsFiniteSet

Any subset of a finite set is finite.

THEOREM FiniteSetSubset =
ASSUME
NEW S, IsFiniteSet(S),
NEW D € SUBSET S
PROVE IsFiniteSet(D)
PROOF
(1)1. SUFFICES ASSUME D # {} PROVE IsFiniteSet(D) BY FiniteSetEmpty
Now we only have to consider non-empty D. Hence we can pick an element of D.
(1) PICK d0 € D : TRUE BY (1)1
Since S is finite, we can pick a @ € Segq(.S) on which each element of S appears.
(1)2.PICK Q € Seq(S) :Vs e S:3iel..Len(Q): Q[i] =s BY CorrectlsFiniteSet
(1) DEFINE LenQ = Len(Q)
(1) HIDE DEF Len@
(1)3. Len@ € Nat BY LenInNat DEF Len@)
Using @ construct P € Seq(D) on which each element of D appears.

(1)DEFINE P = [i € 1.. LenQ — IF Q[i] € D THEN Q[i] ELSE d0]

(1) HIDE DEF P

(1)4. P € Seq(D)
(2)1. Vz €1..Len@: P[i] € D BY DEF P
(2)2. P €[1.. Len@Q — D] BY (2)1 DEF P
(2) QED BY (1 >3 (2)2, IsASeq

(1) DEFINE LenP = Len(P)

(1) HIDE DEF LenP

(1)5. LenP = Len@
(2)1. DOMAIN P =1 .. Len@ BY DEF P

(2) QED BY (1)3, (1)4, (2)1, LenDomain DEF LenP

Prove that each element of D appears on P.

C.5. FACTS ABOUT FINITE SETS

(1)6.vd € D:3i€1..LenP: Pli|=d
(2) SUFFICES ASSUME NEW d € D PROVE Ji € 1.. LenP : P[i] = d BY DEF LenP
(2)1. d € S oBVIOUS
(2)2.3i€1..Len@: Q[i] =d BY (1)2, (2)1 DEF Len@
(2)3.3i € 1.. LenP : P[i] = d BY (1)5, (2)2 DEF P
(2) QED BY (2)3
(1) QED BY (1)4, (1)6, CorrectisFiniteSet DEF LenP

The union of two finite sets is finite.

THEOREM FiniteSetUnion =
ASSUME
NEW S1, IsFiniteSet(S1),
NEW 52, IsFiniteSet(S52)
PROVE IsFiniteSet(S1U S2)
PROOF
Since S1 is finite, we can pick a Q1 € Seq(S1) on which each element of S1 appears.
y1.PICK Q1 € Seq(Sl) Vse S1:3iel..Len(QL): Q1[i] = s BY CorrectIsFiniteSet
1) DEFINE LenQ1 = Len(Q1)
1) HIDE DEF Len@1
1)2. LenQ1 € Nat BY LenInNat DEF LenQ1
Da. Q1 € [1.. LenQ1 — S1] BY LenAziom DEF LenQ1

(1
(
(
(
(
Since S2 is finite, we can pick a Q2 € Seq(S2) on which each element of S2 appears.
(
(
(
(
(1

1)3. PICK Q2 € Seq(S2):Vs € 52:3i € 1.. Len(Q2) : Q2[i] = s BY CorrectIsFiniteSet
1) DEFINE LenQ2 = Len(Q2)
1) HIDE DEF Len()2
1)4. LenQ2 € Nat BY LenInNat DEF LenQ)2
)b. Q2 € [1.. LenQ2 — S2] BY LenAxiom DEF Len(2
From @1 and Q2 construct a sequence @ € Seq(S1 U S2) on which each element of S1 U S2 appears.

(1) DEFINE § = S1U S2
(1) DEFINE n. = LenQ1 + LenQ2
(1)5.n € Nat BY (1)2, (1)4, SMTT(10)
(1) DEFINE Q = [i € 1..n IFi < LenQ1 THEN Q1[i] ELSE Q2[i — LenQ1]]
(1) HIDE DEF Q)
(1)6. Q € Seq(9)
(2)1.Viel..n: Qi es

3) SUFFICES ASSUME NEW ¢ € 1 .. n PROVE Q[i] € S OBVIOUS
(3)1. CASE ¢ < Len@1

(H1. Q) = Q1[i] BY (3)1 DEF Q

(4)2.7 € 1.. LenQ1 BY (3)1, (1)2, (1)4, DotDotDef, SMTT(10)

59

60 APPENDIX C. PROOF OF CORRECTNESS

(4)3. Q1[i] € S1 BY (4)2, (1)a
(4) QED BY (4)1, (4)3
(3)2. CASE ~(i < LenQ1)
4)1. Q[i] = Q2[i — LenQ1] BY (3)2 DEF)
(4)2. 9 — Len@Q1 € 1.. Len@2 BY (3)2, (1)2, (1)4, DotDotDef, SMTT(10)
(4)3. Q2[i — LenQ1] € S2 BY (4)2, (1)b
(4) QED BY (4)1, (4)3
(3) QED BY (3)1, (3)2
(2)2.Q € [1..n— S] BY (2)1 DEF Q
(2 >QED BY (1 >5 (2)2, IsASeq
(1) DEFINE Len@ = Len(Q)
(1) HIDE DEF Len@
1)
(2

4
4
4
4

(1y7. Len@Q = n
)1.DOMAIN Q@ =1..n BY DEF)
(2) QED BY (1)5, (1)6, (2)1, LenDomain DEF Len@
Prove that each element of S appears on Q.

(1)8.Vse S:3iel.. Len@: Q[i] =
(2) SUFFICES ASSUME NEW s € S PROVE Ji € 1..n: Q[i] =s BY (1)7
(2)1.CASE s € S1
3)1.PICK il € 1.. LenQ1 : Q1[il] = s BY (2)1, (1)1 DEF LenQ1
3)2. 11 < Len@1 BY (1)2, DotDotDef, SMTT(10)
3)3.i11 € 1..n BY (1)2, (1)4, DotDotDef, SMTT(10)
3)4. Q[il] = s BY (3)1, (3)2, (3)3 DEF Q
3) QED BY (3)3, (3)4
CASE s € 52
YILPICK 92 € 1 .. Len@2 : Q2[i2] = s BY (2)2, (1)3 DEF LenQ2
12. (12 4+ LenQ1 < LenQ1) BY (1)2, (1)4, DotDotDef, SMTT(10)
)3.92 4+ LenQ1 € 1 .. n BY (1)2, (14, DotDotDef, SMTT(10)
Y4 Q[i2 4+ LenQ1] = s
(
(
(

)
)
(
(
(
(
(
(2)2.
(
(
(
(

3
3
3
3

1. (i2 + LenQ1) — LenQ1 = i2 BY (1)2, (1)4, SMTT(10)
4)2. Q[i2 + LenQ1] = Q2[i2] BY (4)1, (3)2, (3)3 DEF @
4) QED BY (4)2, (3)1
(3) QED BY (3)3, (3)4
(2) QE DBY(', (2)2
(1) QeED BY (1)6, (1)8, CorrectlsFiniteSet DEF Len@

C.6. FACTS ABOUT EXACT SEQUENCES 61

C.6 Facts about exact sequences

MODULE NaiadClockProofExactSeqs

EXTENDS NaiadClockProofFiniteSets

Facts about exact sequences.

This really ought to be a library of theorems.

An exact sequence exists for any finite set.

THEOREM EzactSeqEzists =
ASSUME
NEW S, IsFiniteSet(S)
PROVE
3Q : IsEzactSeqFor(Q, S)
PROOF
(1) USE DEF EzactSeq-Fach
(1) USE DEF EzactSeq-Once
(1) DEFINE each(Q) = ErzactSeq_Each(Q, S)
(1) DEFINE once(Q) EzactSeq-Once(Q)
(

1>

2)1.PICKn € Nat:3Q € [1..n— S]: each(Q) A once(Q) OBVIOUS

2)2.PICK Q € [1..n — S]: each(Q) A once(Q) OBVIOUS

2)3. Q € Seq(S) BY IsASeq
)

)
)
)
1) SUFFICES Jn € Nat:3Q € [1..n — S]: each(Q) A once(Q)
(
5
(2) QED BY (2)2, (2)3 DEF IsExactSeqFor

Define N as the set of all natural numbers n such that there exists a sequence of length n that contains each element of S. Because S is finite,
such a sequence exmts and hence N is non-empty.

(1)DEFINEN = {n € Nat:3Q € [1..n — 8] : each(Q)}
(V1N £ ()
(2)1. PICK @ € Seq(S) : each(Q) BY CorrectIsFiniteSet
(2)2. Len(Q) € Nat BY LenInNat
(2)3.Q € [1.. Len(Q) — S] BY (2)1, LenAxiom
(2)4. Len(Q) € NBY (2)1, (2)2, (2)3
(2) QED BY (2)4
(1) HIDE DEF N
Pick the smallest n € N.

62 APPENDIX C. PROOF OF CORRECTNESS

(1)2. PICK n € Nat :
AN neN
AN VmeN:n<m
(2)1.PICKn e N:Vme N:n<m
(3)1. N € SUBSET Nat BY DEF N
(3) QED BY (3)1, (1)1, NatWellFounded
(2)2.n € Nat BY DEF N
(2) QED BY (2)1, (2)2
Pick @ a sequence of length n that contains each element of S. Since this is the smallest such length,) can contain no duplicates.
(H3.PICK Q € [1..n — S]: each(Q)
(2)1.n € N BY (1)2
(2) QED BY (2)1 DEF N
(1)4. SUFFICES once(Q)
(2) HIDE DEF each, once
(2) QED BY (1)2, (1)3, (1)4 DEF N

To show that every element on () appears at most once, we assume that () contains duplicates and derive a contradiction.

(1)5. SUFFICES ASSUME —once(()) PROVE FALSE OBVIOUS

It turns out to be important to know that Len(Q) = n and is a natural.

(1) DEFINE LenQ = Len(Q)

(1) HIDE DEF Len@

(1)6. Len@ = n A Len@ € Nat

(2)1. Q € Seq(S) BY IsASeq

(2)2. Len@ € Nat BY (2)1, LenInNat DEF Len(

(2)3. DOMAIN Q=1..LenQ BY (2)1, LenAziom DEF Len(@
(2)4.1.. LenQ =1 .. nBY (2)3

(2)5. LenQ = n BY (2)2, (2)4, DotDotOneThruN

(2) QED BY (2)5

Under the assumption that) has duplicate elements, we can pick two distinct indexes j and & containing the same element. Without loss of
generality, let j be the smaller index.

(1)7.PICK j, k € Nat : Q[j] = QIk]AN1<jAj<kANk< LenQ
) Len@ € Nat BY (1)6
Y1. PICK ja, ka € 1 .. Len@ : Q[ja] = Qlka] A ja # ka BY (1)5 DEF Len@Q
) ja € Nat BY (2)1, SMTT(10)
2) ka € Nat BY (2)1, SMTT(10)
2)2.1 < ja BY (2)1, SMTT(10)
2)3.1 < ka BY (2)1, SMTT(10)
2)4. ja < Len@ BY (2)1, SMTT(1
2)5. ka < Len@ BY (2)1, SMTT(10
2)6. CASE ja < ka BY (2)6, (2)1, (2
2)7. CASE ka < ja BY (2)7, (2)1, (2
2)8. ja < ka V ka < ja
(3)1. Len@ € Nat BY (1)6
(3)2. ja € Nat BY (3)1, DotDotType
(3)3. ka € Nat BY (3)1, DotDotType

0)
)
)2
)3, (2)4

C.6. FACTS ABOUT EXACT SEQUENCES 63

(3) QED BY (2)1, (3)2, (3)3, SMTT(10)

(2) QED BY (2)1, (2)6, (2)7, (2)8, (1)6, SMTT(10)
Definem 2 n — 1and prove some properties of j, k, m, n. Later we construct a sequence P of length m.
)8.1 < j BY (1)7, SMTT(10)
9.5 <k BY (1)7
110, k < n BY (1)6, (1)7, SMTT(10)
VL1 < k BY (1)8, (1)9, SMTT(10)
V12.1 < k BY <1>11 SMTT(10)
}13.2 < n BY (1)10, (1)11, SMTT(10)
V14.n # 0 BY (1 >13 SMTT(10)
)15.n — 1 € Nat BY (1)14, SMTT(10)
y16. PICK m € Nat: m =n —1 BY (1)15
)17.m < n BY (1)16, SMTT(10)
}18. ~(n < m) BY (1)17, SMTT(10)
y19. 5 < nBY (1)9, (1)10, SMTT(10)
)20.j < m BY (1)16, (119, SMTT(10)
)21.5 € 1..m BY (1)8, (1)20, SMTT(10)
)22.n € 1..n BY (1)14, SMTT(10)
)
(
(
)
(
(
(
(
(

2)1. k < m BY (1)10, (1)16, (1)23, SMTT(10)
2) QED BY (1)12, (2)1, SMTT(10)

(1)24. ASSUMENEW i € 1 ..7m,i%# n PROVE i € 1..m
2)1.1 < i BY (1)24, SMTT(10)
2)2.1 < n BY (1)24, SMTT(10)
2)3.4 < n BY (1)24, (2)2, SMTT(10)
2)4. 1 < m BY (2)3, (1)16, SMTT(10)
2) QED BY (2)1, (2)4, SMTT(10)

Construct P from () as a shorter sequence in which each element of S appears. However, since () is the shortest such sequence, this is a
contradiction.

(1) DEFINEP = [i € 1.. m+ IF i = k THEN Q[n] ELSE Q[i]]
(125.Pel..m— S
(2) SUFFICES ASSUME NEW i € 1 .. m PROVE PJi] € S BY SMTT(10)
(2)1.i €1..n BY (1)16, SMTT(10)
(2)2.n€1..n BY (1)22
(2)3. Q] € S BY (2)1
(2)4. Q[n] € S BY (2)2
(2) QED BY (2)3, (2)4
(1) HIDE DEF P
(1)26. SUFFICES each(P)
(2)2.m € N BY (1)25, {
(2) HIDE DEF each
(2)3.=(n < m)BY (1)18
(2) QED BY (2)2, (2)3, (1)2, SMTT(10)

1)26 DEF N

64 APPENDIX C. PROOF OF CORRECTNESS

To show that each element of .S appears in P, we assume that P has missing elements and derive a contradiction.

(1)27. SUFFICES ASSUME —each(P) PROVE FALSE OBVIOUS

It turns out to be important to know that Len(P) = m and is a natural.

(1) DEFINE LenP = Len(P)

(1) HIDE DEF LenP
(1)28. LenP = m A LenP € Nat
(2) HIDE DEF P
(2)2. P € Seq(S) BY (1)25, IsASeq
(2)3. LenP € Nat BY (2)2, LenInNat DEF LenP
(2)4. DOMAIN P =1..LenP BY (2)2, LenAziom DEF LenP
(2)5.1.. LenP =1 .. mBY (2)4, (1)25
(2)6. LenP m BY (2)3, (2)5, DotDotOneThruN
(2) QED BY (2)6

Since we assume that P has missing elements, we can pick an element that fails to appear. But this element appears on (), from which we can
find it on P, thus establishing a contradiction.

(1)29.PIcK s € S : =3i € 1.. LenP : P[i] = s BY (1)27 DEF LenP
(1)30.PICK i € 1..7n: Q[i] =s BY (1)3, (1)6 DEF Len@®
(1)31.cASEi =k

A duplicate of Q[k] appears in Q[j]. Since j # kand j € 1 .. m, we copied Q[j] to P[j].
Y1.j # k BY (1)9, SMTT(10)
)2. P[j] = Q[j] BY (2)1, (1)21 DEF P
)3. Qlj] = Q[K] BY (1)7
Y4, Pj] = s BY (2)2, (2)3, (1)31, (1)30
2)5.5 € 1.. LenP BY (1)21, (1)28

ince k € 1 .. m, we copied Q[n] to P[k].

2.k el..m BY (1)32, (1)23

2)2. P[k] = Q[n] BY (2)1 DEF P

2)3. P[k] = s BY (2)2, (1)32, (1)30

4.k €1..LenP BY (2)1, (1)28, SMTT(10)
2) QED BY (2)3, (2)4, (1)29

ince s # kand ¢ € 1 .. m, we copied Q] to P[4].
2Ql.i#£kANi€l..mBY((1)33, (1)24
2)2. P[i] = Q[¢] BY (2)1 DEF P

2)3. P[i] = s BY (2)2, (1)31, (1)30

2)4. 0 € 1.. LenP BY (2)1, (1)28

2) QED BY (2)3, (2)4, (1)29

C.6. FACTS ABOUT EXACT SEQUENCES

Having an exact sequence is the same as being a finite set.

THEOREM FzactSeqlsFiniteSet =

ASSUME

NEW S

PROVE

IsFiniteSet(S) = (3 Q : IsEzactSeqFor(Q, S))
PROOF

(1) 1. IsFiniteSet(S) = (3 Q : IsEzactSeqFor(Q, S)) BY EzactSeqEwists

(1)2. (3 Q : IsEzactSeqFor(Q, S)) = IsFiniteSet(S)
(2)1. SUFFICES ASSUME NEW @, IsEzactSeqFor(Q, S) PROVE IsFiniteSet(S) OBVIOUS
(2)2. Q € Seq(S) BY (2)1 DEF IsEzactSeqFor
(2)3. EzactSeq-Each(Q, S) BY (2)1 DEF IsEzactSeqFor
(2)4.Vse S:3qgel..Len(Q): Q[g] =s BY (2)3 DEF EzactSeq-Each
(2) QED BY (2)2, (2)4, CorrectisFiniteSet
(1) QD BY (1)1, (1)2

If S is a finite set, then EzactSeqFor(S) is an exact sequence for S.

THEOREM FEzactSeqForProperties =
ASSUME
NEW S, IsFiniteSet(S)
PROVE
IsEzactSeqFor(ExactSeqFor(S), S)
PROOF
(1) QED BY EzxactSeqFErists DEF EzactSeqFor

The exact sequence for the empty set is the empty sequence.

THEOREM FEzxactSeqEmpty =

ASSUME

NEW S,

NEW @Q, IsEzactSeqFor(Q, S)
PROVE
Q=0 = 5={}

PROOF

65

66 APPENDIX C. PROOF OF CORRECTNESS

DEFINE LenQ = Len(Q)
1. Q € Seq(S) BY DEF IsEzactSeqFor
2. Len@ € Nat BY (1)1, LenInNat
3.Q € [1.. Len@Q — S] BY (1)1, LenAziom
4Vse S:3Jiel..LenQ : Q[i] = s BY DEF IsEzactSeqFor, ExactSeq_Each
HIDE DEF Len(@
=0 = 5={}
2)1 SUFFICES ASSUME @ = (), S # {} PROVE FALSE OBVIOUS
2)2. Len@ = 0 BY (2)1, EmptySeq DEF LenQ
2)3.PICK s € S : TRUE BY (2)1
)
)

(1
(1
(1
(1
(1
(1
(1

2)4.3i € 1.. Len@ : Q[i] = s BY (1)4, (2)3

2) QED BY (2)2, (2)4, SMTT(10)

(16.5={} = Q=

2)1. SUFFICES ASSUME S = {} PROVE @ = () OBVIOUS
2)2. Len@ =0

(3)1. SUFFICES ASSUME Len(# 0 PROVE FALSE OBVIOUS
(3)2. LenQ > 0 BY (1)2, (3)1, SMTT(10)

(3) PICK i € 1.. Len@ : TRUE BY (1)2, (3)2, SMTT(10)

)
)

<3§ Q] < {} BY ()3, (2)1
Q

)
)
)
)
)
)
)5.
(
(
(
(
(
)
(
(

(3) QED BY (3)3
(2) QED BY (1)1, (2)2, EmptySeq DEF Len(
(1) QeD BY (1)35, <1>6

Removing one element from an exact sequence yields a smaller exact sequence.

THEOREM EzactSeqRemoveAt =
ASSUME
NEW S,
NEW @, IsEzactSeqFor(Q, S),
NEWn € 1.. Len(Q)
PROVE
IsEzactSeqFor(RemoveAt(Q, n), S\ {Q[n]})
PROOF
) DEFINE 50 Q[n]
) DEFINE S1 S\ {s0}
) DEFINE Q1 RemoveAt(Q, n)
)
)

e 11> e

DEFINE LenQ = Len(Q)
DEFINE LenQ1 = Len(Q1)
) HIDE DEF s0, S1, Q1, Len@®, LenQ1

irst establish some preliminary facts.

(1

(1
(1
(1
(1
(1
Fi

C.6. FACTS ABOUT EXACT SEQUENCES 67

)1. @ € Seq(S) BY DEF IsEzactSeqFor

2. ExactSeq-Each(Q, S) BY DEF IsEzactSeqFor

)3. EzactSeq-Once(Q) BY DEF IsExactSeqFor

4. Q €[1.. LenQ — S] BY (1)1, LenAziom DEF LenQ

)5. Len@ € Nat BY (1)1, LenInNat DEF Len@)

Y6.n € 1.. Len@ BY DEF Len@

V7. Len@ > 1 BY (1)5, (1)6, SMTT(10)

)8.50 € S BY (1)4, (1)6 DEF s0

Y9. Q1 € Seq(S) BY (1)1, RemoveAtProperties DEF Q1

y10. LenQ1 € Nat BY (1)9, LenInNat DEF LenQ1

y11. Q1 € [1.. LenQ1 — S] BY (1)9, LenAziom DEF LenQ1
Y12, Len@Q1 = Len@ — 1 BY (1)1, RemoveAtProperties DEF Len@, Q1, LenQ1

Now proceed to prove each of the three conjuncts in IsEzactSeqFor.

1)13. Q1 € Seq(S1)

(2)1.¥Vql € 1.. Len@1 : Q1[ql] € S1
(3)1. SUFFICES ASSUME 3¢l € 1.. LenQ1 : Q1[¢l] ¢ S1 PROVE FALSE OBVIOUS
(3)2.PICK gl : ql € 1.. LenQ1 A Q1[ql] ¢ S1 BY (3)1
(3)3. Q1[q1] = s0
(4)1. Q1[q1] € S BY (1)11, (3)2
(4) QED BY (1)8, (3)2, (4)1 DEF S1

(3Y4.3q€l..Len@:q#nA Qg =s0
(4)1. RemoveAt_FachBackward(Q, n) BY (1)1, RemoveAtProperties
(4) QED BY (3)2, (3)3, (4)1 DEF RemoveAt_FEachBackward, Len@, LenQ1, Q1

(3)7. mEzactSeq-Once(Q) BY (1)6, (3)4 DEF ExactSeq_Once, s0, Len@

(3) QED BY (1)3, (3)7

)2. Q1 € [1.. Len@1 — S1] BY (1)11, (2)1

) QED BY (1)10, (2)2, IsASeq

4

)

(2
(2
(1)14. EzactSeq_Each(Q1, S1)
(2)1. SUFFICES ASSUME NEW s1, s1 € S1 PROVE Jql € 1.. LenQ1 : Q1[ql] = s1
BY DEF ExactSeq_Fach, LenQ1
)2.s1 € S BY (2)1 DEF S1
2)3.PICK ¢: g € 1.. LenQ A Q[q] = s1 BY (1)2, (2)2 DEF EzactSeq_Fach, LenQ
2)4.s1 # s0 BY (2)1 DEF S1
2)5. ¢ # n BY (2)3, (2)4 DEF s0
6. RemoveAt_EachForward(Q, n) BY (1)1, RemoveAtProperties
2) QED BY (2)3, (2)5, (2)6 DEF RemoveAt_FEachForward, Len@, LenQ1, Q1

)
5. EzactSeq_Once(Q1)
)1. SUFFICES ASSUME —EzactSeq-Once(Q1) PROVE FALSE OBVIOUS
)2.PICK qla, qlb € 1.. LenQ1: qla # qlb A Q1llgla] = Q1[qlD]
Y (2)1 DEF EzactSeq_Once, LenQ1
(2)3.3qa, gb € 1.. Len@ : qa # ¢b A Qlqa] = Q[¢b]
(3)1. PICK ga, gb € 1 .. Len@ :
qa # gb A ga # n A gb # n A Qlga] = Q1[gla] A Q[gb] = Q1[q1D]
(4)1. RemoveAt_DistinctBackward(Q, n) BY (1)1, RemoveAtProperties

68 APPENDIX C. PROOF OF CORRECTNESS

(4) QED BY (2)2, (4)1 DEF RemoveAt_DistinctBackward, Len@, Len@Q1, Q1
(3)2. qa £ b A Qlga] = Qlab] BY (3)1, (22
(3) QED BY (3)1, (3)2
(2)4. = EzactSeq-Once(Q) BY (2)3 DEF ExactSeq—Once, Len@Q
(2) QED BY (1)3, (2)4

(1) QD BY (1)13, (1)14, (1)15 DEF IsEzactSeqFor, @1, S1, sO

Every exact sequence for a given set has the same length.

THEOREM EzactSeqLength =
ASSUME
NEW S,
NEW Q, IsEzactSeqFor(Q, S),
NEW R, IsEzactSeqFor(R, S)
PROVE
Len(Q) = Len(R)
PROOF

A counterexample to this theorem is a set S1 with exact sequences 1 and R1 that have different lengths.
A

(1) DEFINE IsCounterexample(S1, Q1, R1) =
A IsEzactSeqFor(Q1, S1)
A IsEzactSeqFor(R1, S1)
A Len(Q1) # Len(R1)

(1) HIDE DEF IsCounterezample

Let N be the set of all natural numbers 7 such that there is a counterexample and the length of one of the exact sequences is n.

(1) DEFINE N = {n € Nat : 351, Q1, R1 : IsCounterexzample(S1, Q1, R1) An = Len(Q1)}

(1) HIDE DEF N

(1)1. SUFFICES N = {}
(2)1. SUFFICES ASSUME Len(Q) # Len(R) PROVE FALSE OBVIOUS
(2)2. IsCounterexample(S, @, R) BY (2)1 DEF IsCounterexample
(2)3. @ € Seq(S) BY DEF IsEzactSeqFor
(2)4. Len(Q) € Nat BY (2)3, LenInNat
(2)5. Len(Q) € N BY (2)2, (2)4 DEF N
(2) QED BY (1)1, (2)5

(1)2. SUFFICES ASSUME N # {} PROVE FALSE OBVIOUS

If there is a counterexample, there must be a smallest one.

()3.PICKn € N :¥m € N :n <m BY (1)2, NatWellFounded DEF N

(1y4. picK S1, Q1, R1: IsCounterexample(S1, @1, R1) An = Len(Q1) BY (1)3 DEF N
(1) DEFINE LenQ1 = Len(Q1)

(1) DEFINE LenR1 Len(R1)

1> 1>

C.6. FACTS ABOUT EXACT SEQUENCES 69

(1) HIDE DEF Len@1, LenR1

Based on this “smallest” counterexample, we will construct a smaller one, thus establishing a contradiction.

First we establish various useful facts about S1, @1, and R1.

(1)5. IsEzactSeqFor(Q1, S1) BY (1)4 DEF IsCounterexample
(1)6. Q1 € Seq(S1) BY (1)5 DEF IsEzactSeqFor

(1)7. EzactSeq-Each(Q1, S1) BY (1)5 DEF IsEzactSeqFor
(1)8. Len@1 € Nat BY (1)6, LenInNat DEF LenQ1

(1)9. IsEzactSeqFor(R1, S1) BY (1)4 DEF IsCounterexample

(1)10. R1 € Seq(S1) BY (1)9 DEF IsEzactSeqFor

(1)11. EzactSeq_FEach(R1, S1) BY (1)9 DEF IsExactSeqFor

(1)12. LenR1 € Nat BY (1)10, LenInNat DEF LenR1

(1)13. Len@1 # LenR1 BY (1)4 DEF Len@1, LenR1, IsCounterezample
(1)14. n = LenQ1 BY (1)4 DEF Len@Q1
(1)
(
(
(
(
(
(

1)15. 51 # {}

1
2)1. SUFFICES ASSUME S1 = {} PROVE FALSE OBVIOUS
2)2. Q1 = () BY (1)5, (2)1, EzactSeqEmpty

2)3. R1 = () BY (1)9, (2)1, EzactSeqEmpty

2)4. Q1 = R1 BY (2)2, (2)3

2)5. LenQ1 = LenR1 BY (2)4 DEF LenQ1, LenR1

2) QED BY (1)13, (2)5

Since S1 # {}, we pick some element s1 € S1 and remove it from S1, @1, and R1. This creates a smaller counterexample.

(1)16. PICK 51 : s1 € S1 BY (1)15

()17.PICK g1 : q1 € 1.. LenQ1 A Q1[q1] = s1 BY (1)7, (1)16 DEF EzactSeq_Fach, LenQ1
()18.PICK r1 : 71 € 1.. LenR1 A R1[r1] = s1 BY (1)11, (1)16 DEF FzactSeq_Fach, LenR1
(1) DEFINE §2 = S1\ {s1}

(1) DEFINE Q2 = RemoveAt(Q1, q1)

(1) DEFINE R2 = RemoveAt(R1, r1)

(1) DEFINE LenQ2 = Len(Q2)

(1) DEFINE LenR2 = Len(R2)

(1) HIDE DEF 52, Q2, R2, LenQ2, LenR2

(1)19. LenQ2 = LenQ1 — 1 BY (1)6, (1)17, RemoveAtProperties DEF @2, Len()2, LenQ1
(1)20. LenR2 = LenR1 — 1 BY (1)10, (1)18, RemoveAtProperties DEF R2, LenR2, LenR1
(1)21. IsEzactSeqFor(Q2, S2) BY (1)5, (1)17, EzactSeqRemoveAt DEF Q2, S2, LenQ1
(1)22. IsEzactSeqFor(R2, S2) BY (1)9, (1)18, EractSeqRemoveAt DEF R2, S2, LenR1

(1)23. Q2 € Seq(S2) BY (1)21 DEF IsEzactSeqFor

(1)24. Len@2 € Nat BY (1)23, LenInNat DEF Len(Q)2

(1)25. LenQ2 # LenR2 BY (1)8, (1)12, (1)13, (1)19, (1)20, SMTT(10)

(1)26. IsCounterexample(S2, @2, R2) BY (1)21, (1)22, (1)25 DEF LenQ2, LenR2, IsCounterexample
(1)27. Len@Q2 € N BY (1)24, (1)26 DEF LenQ2, N

70 APPENDIX C. PROOF OF CORRECTNESS

(1)28. =(LenQ1 < Len@2) BY (1)8, (1)19, SMTT(10)
(1) QED BY (1)3, (1)14, (1)27, (1)28

C.7. FACTS ABOUT PARTIAL ORDERS 71

C.7 Facts about partial orders

MODULE NaiadClockProofPartialOrders

EXTENDS NaiadClockProofEzactSeqs

Facts about partial orders.

This really ought to be a library of theorems.

Although most of these theorems follow immediately from the definition, appealing to the theorem name in subsequent proofs rather than to the
definition makes the subsequent proofs easier to understand.

A partial order is reflexive. This follows immediately from the definition.

THEOREM PartialOrderReflexive =
ASSUME
NEW leq € PointRelationType, IsPartialOrder(leq),
NEW s € Point
PROVE
LET
a=<b
a=<b
IN
s<s
PROOF
(1) QED BY DEF IsPartialOrder

leg[a][b]
a=bANa#b

e 11>

A partial order is antisymmetric. This follows immediately from the definition.

THEOREM PartialOrder Antisymmetric =
ASSUME
NEW leq € PointRelationType, IsPartialOrder(leq),
NEW s € Point,
NEW ¢ € Point
PROVE

72

LET
a=<b
a=<b

IN

SXINts=>s=1

PROOF
(1) QED BY DEF IsPartialOrder

leqla][b]
a=bANa#b

A
A

A partial order is transitive. This follows immediately from the definition.

THEOREM PartialOrder Transitive =
ASSUME
NEW leq € PointRelationType, IsPartialOrder(leq),
NEW s € Point,
NEW t € Point,
NEW u € Point

PROVE
LET
a=<b = legla][b]
a<b=a<bAa#b
IN
sXtAtu=s=31u
PROOF

(1) QED BY DEF IsPartialOrder

A partial order is strictly transitive.

THEOREM PartialOrderStrictly Transitive =

ASSUME
NEW leq € PointRelationType, IsPartialOrder(leq),
NEW s € Point,
NEW t € Point,
NEW u € Point

PROVE

LET
a=<b = legla][b]

APPENDIX C. PROOF OF CORRECTNESS

C.7. FACTS ABOUT PARTIAL ORDERS

a<b = a=bANa#b

IN
ANsRIANt<Lu=s=<u
ANs<tANt=u=s<u

PROOF

(

1) DEFINE a < b = leg[a][b]
1)DEFINEa < b = a<bAa#b

1. SUFFICES ASSUME s =X t, t R u, s #tV t # u PROVE s < u OBVIOUS

1)2. s < u BY (1)1, PartialOrderTransitive
1)3. SUFFICES ASSUME s = u PROVE FALSE BY (1)2

1)4. u < s BY (1)3, PartialOrderReflexive
1)5.u =<t BY (1)1, (1)4, PartialOrderTransitive
1)6. u =t BY (1)1, (1)5, PartialOrderAntisymmetric
1)7.s =t BY (1)3, (1)6
(

1) Qep BY (1)1, (1)6, (1)7

73

74 APPENDIX C. PROOF OF CORRECTNESS

C.8 Facts about delta vectors

MODULE NaiadClockProofDeltaVecs

EXTENDS NaiadClockProofPartialOrders

Facts about delta vectors.

Addition of delta vectors is closed.

THEOREM DeltaVecAdd Type =
ASSUME
NEW a € DeltaVecType,
NEW b € DeltaVecType
PROVE
DeltaVecAdd(a, b) € DeltaVecType
PROOF
(1) QED BY Isa DEF DeltaVecType, DeltaVecAdd

Zero is a delta vec.

THEOREM Delta VecZero Type =
DeltaVecZero € DeltaVecType
PROOF
(1) QED BY Isa DEF DeltaVecType, DeltaVecZero

Zero is the identity.

THEOREM DeltaVecAddZero =
ASSUME
NEW a € DeltaVecType
PROVE
A DeltaVecAdd(a, DeltaVecZero) = a
A DeltaVecAdd(DeltaVecZero, a) = a

C.8. FACTS ABOUT DELTA VECTORS

PROOF
(1) QED BY Isa DEF DeltaVecType, DeltaVecAdd, DeltaVecZero

Addition of delta vectors is commutative.

THEOREM Delta VecAddCommutative =
ASSUME
NEW a € DeltaVecType,
NEW b € DeltaVecType
PROVE
DeltaVecAdd(a, b) = DeltaVecAdd(b, a)
PROOF
(1) SUFFICES ASSUME NEW t € Point
PROVE a[t] + b[t] = b[t] + a[t]
BY DEF DeltaVecAdd
(1) QED BY SMTT(10) DEF DeltaVecType

Addition of delta vectors is associative.

THEOREM Delta VecAddAssociative =
ASSUME
NEW a € DeltaVecType,
NEW b € DeltaVecType,
NEW ¢ € DeltaVecType
PROVE
DeltaVecAdd(DeltaVecAdd(a, b), ¢) = DeltaVecAdd(a, DeltaVecAdd(b, ¢))
PROOF
(1) SUFFICES ASSUME NEW t € Point
PROVE (a[t] + b[t]) + c[t] = a[t] + (b[t] + c[t])
BY DEF DeltaVecAdd
(1) QED BY SMTT(10) DEF DeltaVec Type

Negation of delta vectors is closed.

THEOREM DeltaVecNegType =

75

76

ASSUME
NEW a € DeltaVecType
PROVE
DeltaVecNeg(a) € DeltaVecType
PROOF
(1) QED BY Isa DEF DeltaVecType, DeltaVecNeg

Negation of a delta vector creates the additive inverse.

THEOREM DeltaVecAddNeg =
ASSUME
NEW a € DeltaVecType
PROVE
A DeltaVecAdd(a, DeltaVecNeg(a)) = DeltaVecZero
A DeltaVecAdd(DeltaVecNeg(a), a) = DeltaVecZero
PROOF
(1) SUFFICES ASSUME NEW ¢ € Point
PROVE alt] 4+ (0 — a[t]) =0A (0 — a[t]) + a[t] =0
BY DEF DeltaVecAdd, DeltaVecNeg, DeltaVecZero
(1) QED BY SMTT(10) DEF DeltaVecType

APPENDIX C. PROOF OF CORRECTNESS

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 77

C.9 Facts about summing up sequences of delta vectors

MODULE NaiadClockProofDeltaVecSeqs

EXTENDS NaiadClockProofDeltaVecs

Facts about summing up sequences of delta vectors.

This really ought to be a library of theorems.

Let Prop be any predicate satisfied by Zero and preserved by Add. Let () be a sequence of delta vectors in which each element after the first &
satisfies Prop. Then the skip k& sum of @ is a delta vector that satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecSeqSkipSumProp_Hypothesis(Prop(-), Q, k) =
A Prop(DeltaVecZero)
AYa, b € DeltaVecType : Prop(a) A Prop(b) = Prop(DeltaVecAdd(a, b))
A Q € Seq(DeltaVecType)
ANk € Nat
AYi € Nat: k <iNni<Len(Q)= Prop(Qli])

DeltaVecSeqSkipSumProp_ Conclusion(Prop(_), Q, k) =
A DeltaVecSeqSkipSum(k, Q) € DeltaVecType
A Prop(DeltaVecSeqSkipSum(k, Q))

THEOREM Delta VecSeqSkipSumProp =
ASSUME NEW Prop(_), NEW @, NEW k, DeltaVecSeqSkipSumProp_Hypothesis(Prop, Q, k)
PROVE DeltaVecSeqSkipSumProp_ Conclusion(Prop, Q, k)

PROOF

(1) DEFINE Type 2 DeltaVecType

(1) DEFINE Zero = DeltaVecZero

(1) DEFINE Add(a, b) = DeltaVecAdd(a, b)

(1) USE DEF DeltaVecSeqSkipSumProp_Hypothesis

(1)1. Prop(Zero) OBVIOUS
(1)2.V a, b € Type : Prop(a) A Prop(b) = Prop(Add(a, b)) OBVIOUS
(1)3. Q € Seq(Type) OBVIOUS
(1)4. k € Nat OBVIOUS
(1)5.Vi € Nat : k <iNi< Len(Q) = Prop(Q[i]) OBVIOUS

(1) HIDE DEF Delta VecSeqSkipSumProp_ Hypothesis

78 APPENDIX C. PROOF OF CORRECTNESS

(1) DEFINE TypeProp(a) = a € Type A Prop(a)

Show the definition of the recursive function used to define the sum.

(1) DEFINE Elem(i) = DeltaVecSeqSkipSum(k, Q)! : ! Elem (i)
(1) DEFINE f0 = Zero
(1) DEFINE Def (v, i) = Add(v, Elem(i))
(1) DEFINE f = C HOOSEf :f =1[i € Nat — IF i = 0 THEN f0 ELSE Def(f[i — 1], 7)]
(1) DEFINE Len@ = Len(Q)
(1)6. Len@ € Nat BY (1)3, LenInNat
(1)7. DeltaVecSeqSkipSum(k, Q) = f[LenQ] BY DEF Delta VecSeqSkipSum
(1)8.Vi € Nat : f[i] = 1F ¢ = 0 THEN f0 ELSE Def (f[i — 1], 4)
(2) HIDE DEF f0, Def, f
(2) SUFFICES NatInductiveDefConclusion(f, f0, Def) BY DEF NatinductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(f, f0, Def) BY NatInductiveDef
(2) QED BY DEF NatInductiveDefHypothesis, f

Each Elem has TypeProp.

(1)9.Vi € Nat\ {0} : TypeProp(Elem(i))

SUFFICES ASSUME NEW i € Nat \ {0} PROVE TypeProp(Elem(i)) OBVIOUS
HIDE DEF Len()

1.CASEk < iNi < Len@

3) SUFFICES TypeProp(Q[i]) BY (2)1 DEF Len@

3)1.i e 1.. Len@BY (2)1, (1)6, DotDotDef, SMTT(10)

3)2. Q[i] € Type BY (3)1, (1)3, LenAziom DEF Len(Q

3) 5
3)

(2
(2
(2

(
3. Prop(Qli]) BY (2)1, (1) DEF Len(
QED BY (3)2, (3)3
(2)2. CASE ~(k < i Ai < LenQ)
3) Elem(i) = Zero BY (2)2 DEF Len@
3) QED BY (1)1, DeltaVecZeroType
(2) QED BY (2)1, (2)2

The sum of the sequence evaluates its recursive function at the length of the sequence. Showing that this satisfies Prop requires induction.

(1)10. TypeProp(f[Len@Q))

) DEFINE P(i) = TypeProp(f[i])

) HIDE DEF Len@, f

Y SUFFICES Vi € Nat : P(i) BY (1)6

y1. P(0) BY (1)1, (1)8, DeltaVecZeroType DEF f, fO
)

(3

(3

)
)
)
(
(
(
(
(
)
(
(

(2
(2
(2
(2
(2)2.V1i € Nat : P()= P(i+1)

)1. SUFFICES ASSUME NEW i € Nat, P(i) PROVE P(i+ 1) OBVIOUS
>2 Trivial facts to help the prover match known facts or proof obligations.

ANi+1¢€ Nat
ANi+1¢€ Nat\ {0}
Ni+1#0
AGi+1)—1=3i
BY SMTT(10)
(3)3. fli + 1] = Add(f[i], Elem(i+ 1)) BY (3)2, (1)8

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS

(3)4. TypeProp(Elem(i+ 1)) BY (3)2, (1)9

(3) QED BY (3)3, (3)4, (3)1, (1)2, DeltaVecAddType

) HIDE DEF P

) QED BY ONLY (2)1, (2)2, NatInduction, Isa

(1) QED BY (1)7, (1)10 DEF Delta VecSeqSkipSumProp_ Conclusion

The skip k£ sum of a sequence of delta vectors is a delta vector.

THEOREM Delta VecSeqSkipSum Type =
ASSUME
NEW @ € Seq(DeltaVecType),
NEW k € Nat
PROVE
DeltaVecSeqSkipSum(k, Q) € DeltaVecType
PROOF
(1) DEFINE Prop(a) = TRUE
(1) DeltaVecSeqSkipSumProp_ Conclusion(Prop, @, k)
(2) DeltaVecSeqSkipSumProp_Hypothesis(Prop, @, k) BY DEF Delta VecSeqSkipSumProp_ Hypothesis
(2) QED BY DeltaVecSeqSkipSumProp
(1) QED BY DEF Delta VecSeqSkipSumProp_ Conclusion

The skip k£ sum of a sequence of zero delta vectors is zero.

THEOREM Delta VecSeqSkipSumAllZero =
ASSUME
NEW @ € Seq(DeltaVecType),
NEW k € Nat,
Vi € DOMAIN Q : Q[i] = DeltaVecZero
PROVE
DeltaVecSeqSkipSum(k, Q) = DeltaVecZero
PROOF
(1) DEFINE Prop(a) = a = DeltaVecZero
HIDE DEF Prop

1) DeltaVecSeqSkipSumProp_Hypothesis(Prop, Q, k)
2) Prop(DeltaVecZero) BY DEF Prop

(1)
(1) SUFFICES Prop(DeltaVecSeqSkipSum(k, @Q))) BY DEF Prop
(1)
(
(2)V a, b € DeltaVecType : Prop(a) A Prop(b) = Prop(DeltaVecAdd(a, b))

80 APPENDIX C. PROOF OF CORRECTNESS

BY DeltaVecZeroType, DeltaVecAddZero DEF Prop

(2) DEFINE LenQ = Len(Q)
(2)Vi e Nat: k <iNi<Len@Q = Prop(Qli])

(3) TAKE i € Nat

(3Y HAVE k < i A i < Len@
(3) SUFFICES 7 € DOMAIN () OBVIOUS
(3) SUFFICES ¢ € 1 .. Len@ BY LenDef
(3) Len@ € Nat BY LenInNat
(3) HIDE DEF Len@
(3) QED BY SMTT(10)
(2) HIDE DEF Prop
(2) QED BY DEF Delta VecSeqSkipSum.Prop_ Hypothesis
(1) DeltaVecSeqSkipSumProp_ Conclusion(Prop, @, k) BY Isa, DeltaVecSeqSkipSumProp
(1) QED BY DEF Delta VecSeqSkipSumProp_ Conclusion

2

The skip k£ sum of a sequence of delta vectors is zero when you skip all of the elements of the sequence.

THEOREM Delta VecSeqSkipSumSkipAll =
ASSUME
NEW @ € Seq(DeltaVecType),
NEW &k € Nat, k > Len(Q)
PROVE
DeltaVecSeqSkipSum(k, Q) = DeltaVecZero
PROOF
Show the definition of the recursive function used to define the sum.

(1) DEFINE Elem(i) = DeltaVecSeqSkipSum(k, Q)! : ! Elem (i)
(1) DEFINE f0 = DeltaVecZero
(1) DEFINE Def (v, i) = DeltaVecAdd (v, Elem(i))
(1) DEFINE f = CHOOSE f : f = [i € Nat — IF i = 0 THEN f0 ELSE Def(f[i — 1],)]
(1) DEFINE LenQ = Len(Q)
(1)1. Len@ € Nat BY LenInNat
(1)2. DeltaVecSeqSkipSum(k, Q) = f[Len@] BY DEF DeltaVecSeqSkipSum
(1)3.Vi € Nat : f[i] =1F i = 0 THEN fO ELSE Def (f[i — 1], 1)
(2) HIDE DEF f0, Def, f
(2) SUFFICES NatInductiveDefConclusion(f, f0, Def) BY DEF NatInductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(f, f0, Def) BY NatInductiveDef
(2) QED BY DEF NatInductiveDefHypothesis, f

The sum of the sequence evaluates its recursive function at the length of the sequence. Showing that this is zero requires induction.

(1)4. f[LenQ] = DeltaVecZero
(2) DEFINE P(i) = f[i] = DeltaVecZero

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 81

(2) HIDE DEF Len@, f
(2) SUFFICES Vi € Nat : P(i) BY (1)1, SMTT(10)
(2)1. P(0) BY (1)3 DEF /, f0
(2)2. ASSUME NEW ¢ € Nat, P(i) PROVE P(i+1)
Hl.i+1le Nat/\z+17é0/\(z+1)—lfz BY SMTT(10)
(3)2. f[i + 1] = DeltaVecAdd(f[i], Elem(i+ 1)) BY (1)3, (3)1
(3)3. Elem(i + 1) = DeltaVecZero
(4) SUFFICES =(k < i+ 1A i+ 1< LenQ®) BY DEF Len@
(4)1. k > Len@ BY DEF Len@
(4) QED BY (4)1, (1)1, SMTT(10)
(3)4. f[i] € DeltaVecType BY (2)2, DeltaVecZeroType
(3) QED BY (3)2, (3)3, (3)4, (2)2, DeltaVecAddZero
(2) HIDE DEF P
(2) QED BY (2)1, (2)2, NatInduction, Isa

(1) QED BY (1)2, (1)4

The skip k£ sum of an empty sequence of delta vectors is zero. This is a simple corollary of the previous theorem.

THEOREM Delta VecSeqSkipSumEmpty =
ASSUME
NEW @ € Seq(DeltaVecType), Q = (),
NEW k € Nat
PROVE
DeltaVecSeqSkipSum(k, Q) = DeltaVecZero
PROOF
(1) DEFINE LenQ = Len(Q)
(1)1. Len@ = 0 BY EmptySeq
(1)2. k > Len@®
(2) HIDE DEF Len(@
(2) QED BY (1)1, SMTT(10)
(1) QED BY (1)2, DeltaVecSeqSkipSumSkipAll

The skip k& sum of a sequence @ is the same as adding delta to the skip k + 1 sum, where deltais Q[k + 1] if k+1 < Len(Q) and Delta VecZero
otherwise.

THEOREM Delta VecSeqSkipSumNext =
ASSUME

82 APPENDIX C. PROOF OF CORRECTNESS

NEW @ € Seq(DeltaVecType),
NEW k € Nat

PROVE

LET
delta = 18k +1 < Len(Q) THEN Q[k 4 1] ELSE DeltaVecZero
SSk = DeltaVecSeqSkipSum(k, Q)
S8k1 = DeltaVecSeqSkipSum(k + 1, Q)

IN

SSk = DeltaVecAdd(SSk1, delta)

PROOF

(1) DEFINE delta
(1) DEFINE SSk
(1) DEFINE SSk1

IFk+ 1< Len(Q) THEN Q[k + 1] ELSE DeltaVecZero
DeltaVecSeqSkipSum(k, Q)
DeltaVecSeqSkipSum(k + 1, Q)

e 11> 1>

XXXa definitions are related to the skip £ sum.
(1) DEFINE Qu = Q

(1) DEFINE Elema() = DeltaVecSeqSkipSum(k, Qa)! : | Elem (i)

(1) DEFINE fO0a = DeltaVecZero

(1) DEFINE Defa(v, i) = DeltaVecAdd(v, Elema(i))

(1) DEFINE fa = CHOOSE f : f =[i € Nat — IF i = 0 THEN fOa ELSE Defa(f[i — 1], i)]

(1) DEFINE LenQa = Len(Qa)

()1. Qa € Seq(DeltaVecType) OBVIOUS

(1)2. Qa € [1 .. LenQa — DeltaVecType] BY (1)1, LenAziom

(1)3. LenQa € Nat BY LenInNat

(1)4. DeltaVecSeqSkipSum(k, Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum.

(1)5.Vi € Nat : fa[i] = IF i = 0 THEN fOa ELSE Defa(fali — 1], i)

(2) HIDE DEF fOa, Defa, fa

(2) SUFFICES NatInductiveDefConclusion(fa, fOa, Defa) BY DEF NatInductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(fa, fOa, Defa) BY NatInductiveDef

(2) QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the skip £ + 1 sum.
(1) DEFINE Qb = Q

(1) DEFINE Elemb() = DeltaVecSeqSkipSum(k + 1, Qb)! : ! Elem(i)

(1) DEFINE f0b = DeltaVecZero

(1) DEFINE Defb(v i) = DeltaVecAdd (v, Elemb(i))

(1) DEFINE fb = CHOOSEf f =1i € Nat — 1F i = 0 THEN f0b ELSE Defb(f[i — 1], 1)]
(1) DEFINE LenQb = Len(Qb)

(1)6. Qb € Seq(DeltaVecType) OBVIOUS

(1)7. Qb € [1 .. LenQb — DeltaVecType] BY (1)6, LenAxiom

(1)8. Len@b € Nat BY (1)6, LenInNat

(1)9. DeltaVecSeqSkipSum(k + 1, Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum
(1)10.Vi € Nat : fb[i] = 1F ¢ = 0 THEN f0b ELSE Defb(fb[i — 1],)

(2) HIDE DEF f0b, Defb, fb

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS

83

(2) SUFFICES NatInductiveDefConclusion(fb, f0b, Defb) BY DEF NatInductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(fb, f0b, Defb) BY NatInductiveDef

(2) QED BY DEF NatInductiveDefHypothesis, fb

Lengths are equal.
(1)11. LenQa = Len@b OBVIOUS

Suffices to assume k < LenQa.

(1)12. SUFFICES ASSUME k < LenQa PROVE SSk = DeltaVecAdd(SSk1, delta)
(2)1. SUFFICES ASSUME —(k < LenQa) PROVE SSk = DeltaVecAdd(SSk1, delta) OBVIOUS

(2)2. DeltaVecSeqSkipSum(k, Q) = DeltaVecZero
(3)1. k > LenQa
(4) HIDE DEF LenQa
(4) QED BY (2)1, (1)3, SMTT(10)
(3) QED BY (3)1, DeltaVecSeqSkipSumSkipAll
(2)3. DeltaVecSeqSkipSum(k + 1, Q) = DeltaVecZero
(3Y1.k+1> LenQa
(4) HIDE DEF LenQa
(4) QED BY (2)1, (1)3, SMTT(10)
(3) QED BY (3)1, DeltaVecSeqSkipSumSkipAll
(2)4. delta = DeltaVecZero
(3)1. =(k 4+ 1 < LenQa)
(4) HIDE DEF LenQa
(4) QED BY (2)1, (1)3, SMTT(10)
(3) QED BY (3)1
(2)5. DeltaVecAdd(DeltaVecSeqSkipSum(k + 1, Q), delta)

BY (2)3, (2)4, DeltaVecAddZero, DeltaVecZeroType
(2) QED BY (2)2, (2)5

delta a delta vec.

(1)13. delta € DeltaVecType
(2)1. delta = Q[k + 1]
(3)1.k+ 1< LenQa
(4) HIDE DEF LenQa
(4) QED BY (1)3, (1)12, SMTT(10)
(3) QED BY (3)1
(2)2. Q[k + 1] € DeltaVecType
3.k +1€1..LenQa
(4) HIDE DEF LenQa
(4) QED BY (1)3, (1)12, DotDotDef, SMTT(10)
(3) QED BY (3)1, LenAziom
(2) QED BY (2)1, (2)2

Each Elema is a delta vec.

= DeltaVecZero

(1)14. ASSUME NEW i € Nat \ {0} PROVE Elema(i) € DeltaVecType

(2)1.CASEk < iAi < LenQa

84 APPENDIX C. PROOF OF CORRECTNESS

(3Yl.i e 1..LenQa
(4) HIDE DEF LenQa
(4 >QED BY (2)1, (1)3, DotDotDef, SMTT(10)
)2. Qali] € DeltaVecType BY (3)1, (1)6, LenAziom
) QED BY (3)2, (2)1
CASE ~(k < iAi < LenQa)
Y1. Elema(i) = DeltaVecZero BY (2)2
) QED BY (3)1, DeltaVecZeroType, DeltaVecAddZero
(2) QED BY (2)1, (2)2

Each Elemb is a delta vec.

(1)15. ASSUME NEW i € Nat\ {0} PROVE Elemb(i) € DeltaVecType
(2)1.CASEk +1 < iAi< LenQb
(3)1.i €1..LenQb
(4) HIDE DEF Len@b
(4) QED BY (2)1, (1)8, DotDotDef, SMTT(10)
)
)

3
3
(2)2.

(
(
)
(3
(3
)

2. Qbli] € DeltaVecType BY (3)1, (1)6, LenAziom
QED BY (3)2, (2)1
CASE ~(k+1 < iAi< LenQb)
Y1. Elemb(i) = DeltaVecZero BY (2)2
) QED BY (3)1, DeltaVecZeroType, DeltaVecAddZero
17

(2)2

Each Elema(i) = Elemb(t) for all ¢ > 0 except k + 1, where we have Elema(k + 1) = Elemb(k + 1) + delta.

(1)16. ASSUME NEW ¢ € Nat \ {0}

PROVE FElema(i) = 1F ¢ = k 4+ 1 THEN DeltaVecAdd(Elemb(i), delta) ELSE Elemb(i)

(2)1. ASSUME i = k + 1 PROVE Elema(i) = DeltaVecAdd(Elemb(3), delta)
(3)1. Elema(k + 1) = delta

M. k+1< LenQa
5) HIDE DEF LenQa
5) QED BY (1)3, (1)12, SMTT(10)
2. Elema(k + 1) = Q[k + 1]
5
5
3.

3
3
(2)2.

(
(
)
(3
(3
)

(2) QED BY (2)

4
)l.k<k +1BYSMTT(10)
) QED BY (5)1, (4)1
delta = Q[k + 1] BY (4)1
QED BY (4)2, (4)3
2. Elemb(k + 1) = DeltaVecZero
M. ~(k+1<k+1) BY SMTT(10)
4) QED BY (4)1
(3) QED BY (3)1, (3)2, (2)1, (1)13, DeltaVecAddZero
(2)2. ASSUME i # k + 1 PROVE Elema(i) = Elemb(i)
(3) H
{

)
(
{
)
(
{
4)
4)

(
{
(3)
{
{
)

IDE DEF Qa, Qb, LenQa, LenQb, Elema, Elemb
1.CASEk < iNi < LenQa
Dl k<iNni<LenQaANi€l..LenQa BY (3)1, (1)3, DotDotDef, SMTT(10)
2. k+1<ini<LenQbAi€1..LenQb BY (4)1, (111, (2)2, SMTT(10)
4

)
)
E
(4)3. Elema(i) = Q] BY (4)1 DEF LenQa, Elema, Qa

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 85

(4)4. Elemb(i) = Q4] BY (4)2 DEF LenQb, Elemb, Qb
(4) QED BY (4)3, (4)4
(3)2. CASE ~(k < i A i < LenQa)
(1. =(k <iNni < LenQa) BY (3)2
(4)2. ~(k+1 < iAi< LenQb) BY (4)1, (1)11, (2)2, SMTT(10)
(4)3. Elema(i) = DeltaVecZero BY (4)1 DEF LenQa, Elema
(4)4. Elemb(i) = DeltaVecZero BY (4)2 DEF LenQb, Elemb
(4) QED BY (4)3, (4)4
(3) QED BY (3)1, <)2

(2) QED BY (2)1, (2)2

fa[i] is a delta vector

(1)17.V4i € Nat : fa[] € DeltaVecType

2) DEFINE P(i) = fali] € DeltaVecType

2) HIDE DEF LenQa, LenQb, fa, fb

2) SUFFICES Vi € Nat : P(i) OBVIOUS

21 P(0)

3)1. fa[0] = DeltaVecZero BY (1)5 DEF fa, f0a

3)2. fal0] € DeltaVecType BY (3)1, DeltaVecZeroType, DeltaVecAddZero
3) QED BY (3)2

2.Vi € Nat: P(i) = P(i + 1)

3)1. SUFFICES ASSUME NEW i € Nat, P(i) PROVE P(i+ 1) OBVIOUS

3)2 Trivial facts to help the prover match known facts or proof obligations.

Ait+ 1€ Nat
ANi+1¢€ Nat\{0}
Nit1#0
ANi+1)—1=i
BY SMTT(10)
3)3. fali + 1] = DeltaVecAdd(fa[i], Elema(i + 1)) BY (3)2, (1)5
3)4. fali] € DeltaVecType BY (3)1
3)5. Elema(i + 1) € DeltaVecType BY (3)2, (1)14
3)
3)

o~ o~~~

)
)
)1
(
(
(
(2)
(
(

6. fa[i + 1] € DeltaVecType BY (3)3, (3)4, (3)5, DeltaVecAddType

QED BY (3)6
(2) HIDE DEF P
(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa

fblé] is a delta vector

(1)18.V4 € Nat : fb[i] € DeltaVecType

2) DEFINE P(i) = fb[i] € DeltaVecType
2) HIDE DEF LenQa, LenQb, fa, fb

2) SUFFICES Vi € Nat : P(i) OBVIOUS

3)2. fb[0] € DeltaVecType BY (3)1, DeltaVecZeroType, DeltaVecAddZero

)
|
(3)1. fb[0] = DeltaVecZero BY (1)10 DEF fb, f0b
(
(3) QED BY (3)2

86 APPENDIX C. PROOF OF CORRECTNESS

(2)2.Yi € Nat : P(i) = P(i +1)
(3)1. SUFFICES ASSUME NEW i € Nat, P(i) PROVE P(i+ 1) OBVIOUS
<3>2. Trivial facts to help the prover match known facts or proof obligations.

ANi+1 € Nat
Ai+1 € Nat\ {0}
Ai+1#0
AG+1)—1=7i
BY SMTT(10)

(3)3. fbli + 1] = DeltaVecAdd(fb[i], Elemb(i + 1)) BY (3)2, (1)10
(3Y4. fb[i] € DeltaVecType BY (3)1
(3)5. Elemb(i + 1) € DeltaVecType BY (3)2, (1)15
(3)6. fbli + 1] € DeltaVecType BY (3)3, (3)4, (3)5, DeltaVecAddType
(3) QED BY (3)6

(2) HIDE DEF P

(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa

Each sum evaluates its recursive function at the length of its sequence.
N

(1) DEFINE AddD(v) = DeltaVecAdd(v, delta)

(1)19. fa[LenQa] :AAddD(fb[LenQb])

(2) DEFINE P(i) = fa[i] =1F i < k+ 1 THEN fb[¢] ELSE AddD(fb[i])
(

(

3
3) LenQb € Nat BY (1)8

3) LenQa = LenQb BY (1)11

3)k+1< LenQa BY (1)12, SMTT(10)

3) QED BY SMTT(10)

. P(0)

0<k+1BYSMTT(10)

fb[0] = DeltaVecZero BY (1)10 DEE fb, f0b

fal0] = DeltaVecZero BY (1)5 DEF fa, fOa

QED BY (3)1, (3)2, (3)3

2.Vi € Nat: P(i) = P(i+1)

3)1. SUFFICES ASSUME NEW ¢ € Nat, P(i) PROVE P(i+ 1) OBVIOUS
3>2. Trivial facts to help the prover match known facts or proof obligations.

ANt+1¢€ Nat
Ai+1 € Nat\ {0}
ANi+14£0
Ai4+1)—1=1i
BY SMTT(lO)

(3) DEFINE fai = fa[i]

(3) DEFINE fbi = fb]i]

(3) DEFINE fail = fali+1]
(3) DEFINE fbil = fb[i + 1]
(3) =

DEFINE vail = Elema(i+ 1)

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS

(3) DEFINE vbil = Elemb(i + 1)

(3)3. fail = DeltaVecAdd(fai, vail) BY (3)2, (1)5

(3)4. fbil = DeltaVecAdd(fbi, vbil) BY (3)2, (1)10

(3)5. fbi € DeltaVecType BY (3)2, (1)18

(3)6. vbil € DeltaVecType BY <3>2 (1)15

(3)7.CASEt +1#k+1

(4)1. vail = vbil BY (3)2, (3)7, (1)16

(4)2. CASE i < k+1

Y. foi = fai BY (4)2, (3)1

V2.0 +1 < k+1 By (4)2, (3)7, SMTT(10)

) SUFFICES fail = fbil BY (5)2

) HIDE DEF fai, fbi, fail, fbil, vail, vbil

)3. fbil = DeltaVecAdd(fai, vail) BY (3)4, (5)1, (4)1
Y4, foil = fail BY (5)3, (3)3

) QED BY (5)4

CASE —(i < k+1)

1. fai = AddD(fbi) BY (4)3, (3)1
12.2(i +1< k+1) BY (4)3, (3)7, SMTT(10)
) SUFFICES fail = AddD(szl) BY (5)2
) HIDE DEF fai, fbi, fail, fbil, vail, vbil
) fbi € DeltaVecType BY (3)5

) vbil € DeltaVecType BY (3)6

) delta € DeltaVecType BY (1)13
)

)

)

)

)

)

4

3. fail = DeltaVecAdd(DeltaVecAdd(fbi, delta), vbil) B

() BY (51,
4. fail = DeltaVecAdd(fbi, DeltaVecAdd(delta, vbil)) BY
5. fail = DeltaVecAdd(fbi, DeltaVecAdd(vbil, delta)) BY
6. fail = DeltaVecAdd(DeltaVecAdd(fbi, vbil), delta) BY
7. fail = AddD(fbil) BY (5)6, (3)4 DEF AddD

QED BY (5)7

5
5
5
5
5
5
5
3.
5
5
5
5
5
5
5
5 (3
5 (5
5 (5
5 (5
5

5

)
)
(
(
(
(
(
(
(
)
(
(
(
(
(
(
(
(
(
(
(
(
(
) Q

4) QED BY (4)2, (4)3
(3)8.CASEi +1=Fk+1
1. vail = AddD(vbil) BY (3)2, (3)8, (1)16 DEF AddD
4)2.i < k+1 BY (3)8, SMTT(10)
4)3. fai = fbi BY (4)2, (3)1
4. (i +1 < k+1) BY (3)8, SMTT(10)

)

)

)

)4
4) SUFFICES fail = AddD(fbil) BY (4)4
4) HIDE DEF fai, fbi, fail, fbil, vail, vbil
4) fbi € DeltaVecType BY (3)5

) vbil € DeltaVecType BY (3)6

)

)

)

)

(
)
(
(
(
(
(
(
E
(4) delta € DeltaVecType BY (1)13

B~

(4)3. fail = DeltaVecAdd(fbi, DeltaVecAdd(vbil, delta)) BY (3)3, (4)3, (4)1 DEF AddD
(4)6. fail = DeltaVecAdd(DeltaVecAdd(fbi, vbil), delta) BY (4)5, DeltaVecAddAssociative

(4)7. fail = AddD(fbil) BY (4)6, (34 DEF AddD
(4) QED BY (4)7
(3) QED BY (3)7, (3)8
(2) HIDE DEF P

)3, (4)1 DEF AddD

)3, Delta VecAddAssociative
Y4, DeltaVecAddCommutative
)5, DeltaVecAddAssociative

87

88 APPENDIX C. PROOF OF CORRECTNESS

(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa
(1) HIDE DEF fa, fb
(1) QED BY (1)4, (1)9, (1)19

When you append a value d to a sequence @ of delta vecs, the sums increase by d for all skip counts & < Len(Q).

THEOREM Delta VecSeqSkipSumAppend =
ASSUME
NEW Q € Seq(DeltaVecType),
NEW d € DeltaVecType,
NEW k € Nat, k < Len(Q)
PROVE
DeltaVecSeqSkipSum(k, Append(Q, d)) = DeltaVecAdd(DeltaVecSeqSkipSum(k, @), d)
PROOF
XX Xa definitions are related to the sum based on the original Q.
1) DEFINE Qa = Q
) DEFINE Elema(i) = DeltaVecSeqSkipSum(k, Qa)! : ! Elem(i)
) DEFINE fOa = DeltaVecZero
) DEFINE Defa(v, i) = DeltaVecAdd(v, Elema(i))
) DEFINE fa = CHOOSE f : f = [i € Nat — IF i = 0 THEN fOa ELSE Defa(f[i — 1],)]
) DEFINE LenQa = Len(Qa)
y1. LenQa € Nat BY LenInNat
)2. DeltaVecSeqSkipSum(k, Qa) = fa[LenQa] BY DEF Delta VecSeqSkipSum
)
(
(
(
(

)

) SUFFICES NatInductiveDefConclusion(fa, fOa, Defa) BY DEF NatInductiveDefConclusion
2) SUFFICES NatInductiveDefHypothesis(fa, fOa, Defa) BY NatInductiveDef

)

XX Xb definitions are related to the sum after appending d to Q.

1) DEFINE Qb = Append(Q, d)

) DEFINE Elemb(i) = DeltaVecSeqSkipSum (k, Qb)! : 1 Elem(i)

) DEFINE f0b = DeltaVecZero

) DEFINE Defb(v, i) = DeltaVecAdd(v, Elemb(i))

) DEFINE fb = CHOOSE f : f = [i € Nat — IF i = 0 THEN f0b ELSE Defb(f[i — 1], i)]
) DEFINE LenQb = Len(Qb)

y4. Len@b € Nat BY LenInNat, IsaT(120)

)5. DeltaVecSeqSkipSum(k, Qb) = fb[LenQb] BY DEF Delta VecSeqSkipSum.
6.V i € Nat : fb[i] = 1F i = 0 THEN f0b ELSE Defb(fb[i — 1],)

(2) HIDE DEF f0b, Defb, fb

{

(1
(1
(1
(1
(1
(1
(1
(1

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 89

(2) SUFFICES NatInductiveDefConclusion(fb, f0b, Defb) BY DEF NatInductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(fb, f0b, Defb) BY NatInductiveDef
(2) QED BY DEF NatInductiveDefHypothesis, fb

Now relate the two sums. We show that Qb is one element longer than Qa , that the extra element on the end of Qb is d , and that Elemb and
Elema are identical for the length of Qa .

(1)7. Len@b = LenQa + 1 BY AppendProperties

(1)8.Vi € 1.. LenQa : Qb[i] = Qa[i] BY AppendProperties, IsaT(120)
(1)9. Qb[LenQa + 1] = d BY AppendProperties, IsaT(120)
(1)10.Vi € 1.. LenQa : Elemb(i) = Elema(1)
(2) HIDE DEF Qa, Qb
(2) SUFFICES ASSUME NEW i € 1 .. LenQa PROVE Elemb(i) = Elema(i) OBVIOUS
(2)1. Qbli] = Qali] BY (1)8
(2

3) HIDE DEF LenQa, LenQb
3) QED BY (1)1, (1)4, (1)7, SMTT(10)
(2) QED BY (2)1, (2)2
The sum of the sequence evaluates its recursive function at the length of the sequence. Since b is one element longer than Qa , we use the
recursive definition of fb to express fb[LenQb] in terms of fo[LenQal .
(I)11. fo[LenQa + 1] = DeltaVecAdd(fb[LenQal, Elemb(LenQa + 1))
(2) HIDE DEF LenQa, fb, Defb
(2)1. LenQa + 1 € Nat BY (1)1, SMTT(10)
(2)2. LenQa + 1 # 0 BY (1)1, SMTT(10)
(2)3. (LenQa + 1) — 1 = LenQa BY (1)1, SMTT(10)
(2) QED BY (1)6, (2)1, (2)2, (2)3 DEF Defb

)
)
)2.1 < LenQa N i < LenQb
(
(

Now we show that evaluating fb at the length of Qa is the same as evaluating fa at the length of Qa . Proving this requires induction.
(1)12. fo[LenQa] = fa]LenQa]
(2) DEFINE P(i) = i < LenQa = fb[i] = fal[i]
(2) HIDE DEF LenQa, fa, fb
(2) SUFFICES Vi € Nat : P(i) BY (1)1, SMTT(10)
(2)1. P(0) BY (1)3, (1)6 DEF fa, f0a, fb, f0b
(2)2. ASSUME NEW i € Nat, P(i) PROVE P(i+1)
(> . Trivial facts to help the prover match known facts or proof obligations.
ANt+1¢€ Nat
ANi4+1#0

AGi+1)—1=3i

BY SMTT(10)
)2. SUFFICES ASSUME i + 1 < LenQa PROVE fb[i + 1] = fa[i + 1] OBVIOUS
V3. fali + 1] = DeltaVecAdd(fa|i], Elema(i + 1)) BY (3)1, (1)3
Y4, foli + 1] = DeltaVecAdd(fb[i], Elemb(i + 1)) BY (3)1, (1)6
)S. bli] = fali]
(4)1. i < LenQa BY (3)2, (1)1, SMTT(10)
(4) QED BY (4)1, (2)2
)6. Elemb(i + 1) = Elema(i + 1)
(4)1.i+1 € 1.. LenQa BY (3)2, (1)1, DotDotDef, SMTT(10)
(4) QED BY (4)1, (1)10

90 APPENDIX C. PROOF OF CORRECTNESS

(3) QED BY (3)3, (3)4, (3)5, (3)6

(2) HIDE DEF P

(2) QED BY (2)1, (2)2, NatInduction, Isa
Now we show that Elemb(LenQb) is in fact d , the additional element that was appended to Qa . Proving this requires that & < Len(Q) .
(1)13. Elemb(LenQa + 1) = d
(2) SUFFICES k < LenQa + 1 A LenQa + 1 < LenQb BY (1)9
(2)1. k < LenQa OBVIOUS
(2) HIDE DEF LenQa, LenQb
(2)2. k < LenQa + 1 BY (1)1, (2)1, SMTT(10)
(2)3. LenQa + 1 < Len@b BY (1)1, (1)7, SMTT(10)
(2) QED BY (2)2, (2)3
) HIDE DEF fa, fb
Y QED BY (1)2, (1)5, (1)11, (1)12, (1)13, IsaT'(120)

For a non-empty sequence @ of delta vecs, the sums skipping & of Tail(Q) are the same as the sums skipping & + 1 of Q.

THEOREM Delta VecSeqSkipSumTail =
ASSUME
NEW @ € Seq(DeltaVecType), Q # (),
NEW k € Nat
PROVE
DeltaVecSeqSkipSum(k, Tail(Q)) = DeltaVecSeqSkipSum(k + 1, Q)
PROOF
XX Xa definitions are related to the sum of @ skipping k& + 1.

(1) DEFINE Qa = Q
(1) DEFINE Elema(i) = DeltaVecSeqSkipSum(k + 1, Qa)! : ! Elem(i)

(1) DEFINE fOa = DeltaVecZero

(1) DEFINE Defa(v, i) = DeltaVecAdd(v, Elema(i))

(1) DEFINE fa = CHOOSE f : f = [i € Nat — IF i = 0 THEN fOa ELSE Defa(f[i — 1],)]

(1) DEFINE LenQa = Len(Qa)

(1)1. % +1 € Nat BY SMTT(10)

(1)2. LenQa € Nat BY LenInNat

(1)3. DeltaVecSeqSkipSum(k + 1, Qa) = fa[LenQa] BY (1)1 DEF DeltaVecSeqSkipSum
(1)4.Vi € Nat : fa[i] = IF i = 0 THEN f0Oa ELSE Defa(fali — 1], i)

(2) HIDE DEF fOa, Defa, fa

(2) SUFFICES NatInductiveDefConclusion(fa, fOa, Defa) BY DEF NatInductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(fa, fOa, Defa) BY NatInductiveDef
(2)

2) QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the sum of Ta:l(Q) skipping k.

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 91

1) DEFINE Qb = Taz‘l(Q)

1) DEFINE Elemb() = DeltaVecSeqSkipSum(k, Qb)! : ! Elem(i)

1) DEFINE f0b = DeltaVecZero

1) DEFINE Defb(v i) = DeltaVecAdd(v, Elemb(i))

1) DEFINE fb = CHOOSEf :f =[i € Nat — IF i = 0 THEN f0b ELSE Defb(f[i — 1], 7)]
1) DEFINE Len@b = Len(Qb)

1)5. Qb € Seq(DeltaVecType) BY TailProp

1)6. LenQb € Nat BY (1)5, LenInNat
1)
)
(
(
(
(

(
(
(
(
(
(
2
(1)7. DeltaVecSeqSkipSum(k, Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum
(

1)8.Vi € Nat : fb[i] = IF ¢ = 0 THEN f0b ELSE Defb(fb[i — 1], 7)

8.

2) HIDE DEF f0b, Defb, fb

2) SUFFICES NatInductiveDefConclusion(fb, f0b, Defb) BY DEF NatInductiveDefConclusion

2) SUFFICES NatInductiveDefHypothesis(fb, f0b, Defb) BY NatInductiveDef
)

2) QED BY DEF NatInductiveDefHypothesis, fb

Now relate the two sums. We show that Elemb(¢) is the same as Elema (i + 1) and that Elema(1) is zero.
(1)9. Len@Qb = LenQa — 1 BY TailProp
(1)10.V4i € Nat\ {0} : Elemb(i) = Elema(i + 1)
2)1.Viel.. LenQb : Qbli] = Qal[i + 1] BY TailProp
2) HIDE DEF Qa, Qb, LenQa, LenQb
SUFFICES ASSUME NEW i € Nat\ {0} PROVE Elemb(i) = Elema(i + 1) OBVIOUS
(i € 1..Len@Qb) V (i > Len@b) BY (1)6, DotDotDef, SMTT(10)
CASEi € 1.. LenQb
)L Qbli] = Qali +1] BY (2)1, (2)3
)2.0 < Len@bANi 4+ 1< LenQa BY (2)3, (1)2, (1)6, (1)9, DotDotDef, SMTT(10)
$B.k<i=k+1<i+1BYSMTT(10)
) QED BY (3)1, (3)2, (3)3 DEF LenQa, LenQb
(2)4. CASE ¢ > LenQb
3)1.=(i < Len@b) A—(i + 1 < LenQa) BY (2)4, (1)2, (1)6, (1)9, SMTT(10)
(3) QED BY (3)1 DEF LenQa, LenQb
) QED BY (2)2, (2)3, (2)4
L.
)

)
(
(
(2
(2
(2

)
)
)2.
)3.
(3
(3
(3
(3
)
{

(2
(1)11. Elema(1) = DeltaVecZero

(2)1. ~(k +1 < 1) BY SMTT(10)

(2) QED BY (2)1
Each sum evaluates its recursive function at the length of its sequence. Now we show that the results are the same for each sum. Proving this
requires induction.

(1)12. fb[Len@b] = fa[LenQa]

(2) DEFINE P(i) = fb[i] = fa[i + 1]
(2) HIDE DEF LenQa, LenQb, fa, fb
(2) SUFFICES Vi € Nat : P(i) BY (1)2, (1)6, (1)9, SMTT(10)
(2)1. P(0)
<3> . Trivial facts to help the prover match known facts or proof obligations.
ANO+1 € Nat
AO+1#0

AO+1)—1=0

92 APPENDIX C. PROOF OF CORRECTNESS

ANO+1=1
BY SMTT(10)
fb[0] = DeltaVecZero BY (1)8 DEF fb, f0b
fa[l] = DeltaVecZero
2. fa[1] = DeltaVecAdd(fa[0], Elema(1)) BY (3)1, (1)4 DEF fa, Defa

(3)2.

)3.

{4)

(4)3. fa|0] = DeltaVecZero BY (1)4 DEF fa, f0a
(4)

(

)

(3

4)4. Elema(1) = DeltaVecZero BY (3)1, (1)11
4) QED BY (4)2, (4)3, (4)4, DeltaVecZeroType, DeltaVecAddZero
(3) QED BY (3)1, (3)2, (3)3
(2)2. ASSUME NEW ¢ € Nat, P(i) PROVE P(i+1)
<3> 1. Trivial facts to help the prover match known facts or proof obligations.
ANi+1 € Nat
ANi+1¢€ Nat\ {0}
ANi+1#0
ANi+1)—1=1
ANi+1)+1=1i+2
Ai+2 € Nal
Ai+2 € Nat\ {0}
ANi+2#0
AGi42)—1=i+1
BY SMTT(10)
(3)2. fb[i + 1] = DeltaVecAdd(fb[i], Elemb(i + 1)) BY (3)1, (1)8
(3)3. fa[i + 2] = DeltaVecAdd(fa[i + 1], Elema(i +2)) BY (3)1, (1)4
(3)4. foli] = fali + 1] BY (2)2
(3)5. Elemb(i + 1) = Elema(i + 2) BY (1)10, (3)1
(3) QED BY (3)1, (3)2, (3)3, (3)4, (3)5
(2) HIDE DEF P
(2) QED BY (2)1, (2)2, NatInduction, Isa
(1) HIDE DEF fa, fb
(1) QeD BY (1)3, (1)7, (1)12

For a non-empty sequence) of delta vectors, Head(Q) plus the sum of all delta vectors on Tail(Q) is the same as the sum of all delta vecs on

Q.

THEOREM Delta VecSeqSkipSumHead Tail =
ASSUME
NEW @ € Seq(DeltaVecType), Q # ()
PROVE
DeltaVecAdd(Head(Q), DeltaVecSeqSkipSum(0, Tail(Q))) = DeltaVecSeqSkipSum(0, Q)
PROOF
XX Xa definitions are related to the sum of @) skipping 0.

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 93

DEFINE Qa = @

DEFINE Elema(i) = DeltaVecSeqSkipSum(0, Qa)! : ! Elem(i)

DEFINE f0a = DeltaVecZero

DEFINE Defa(v, i) = DeltaVecAdd(v, Elema(i))

DEFINE fa = CHOOSE f : f = [i € Nat — IF i = 0 THEN fOa ELSE Defa(f[i — 1], i)
DEFINE LenQa = Len(Qa)

1. LenQa € Nat BY LenInNat

2. DeltaVecSeqSkipSum(0, Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum

1

3.Vi € Nat : fa[i] = IF ¢ = 0 THEN fOa ELSE Defa(fa[i — 1], 4)

2) HIDE DEF f0a, Defa, fa

2) SUFFICES NatInductiveDefConclusion(fa, fOa, Defa) BY DEF NatInductiveDefConclusion
2) SUFFICES NatInductiveDefHypothesis(fa, fOa, Defa) BY NatInductiveDef

2) QED BY DEF NatInductiveDefHypothesis, fa

o~ o~~~ ~— —~— ~—— ~— ~— ~— ~— ~— ~——

XXXb definitions are related to the sum of Tasl(Q) skipping 0.
(1) DEFINE Qb = Tail(Q)

(1) DEFINE Elemb(i) = DeltaVecSeqSkipSum(0, Qb)! : ! Elem (i)
(1) DEFINE f0b = DeltaVecZero

(1) DEFINE Defb(v, i) = DeltaVecAdd (v, Elemb(i))
(1) DEFINE fb = CHOOSE f : f = [i € Nat ~— IF i = 0 THEN f0b ELSE Defb(f[i — 1], 1)]
(1) DEFINE LenQb = Len(Qb)

(1)4. Qb € Seq(DeltaVecType) BY TailProp
(1)5. Len@b € Nat BY (1)4, LenInNat
(1)6. DeltaVecSeqSkipSum(0, Qb) = fb[Len@b] BY DEF Delta VecSeqSkipSum

(1)7.V4 € Nat : fb[i] = 1F ¢ = 0 THEN f0b ELSE Defb(fb[i — 1], 7)

(2) HIDE DEF f0b, Defb, fb

(2) SUFFICES NatInductiveDefConclusion(fb, f0b, Defb) BY DEF NatInductiveDefConclusion
(2) SUFFICES NatInductiveDefHypothesis(fb, f0b, Defb) BY NatInductiveDef

(2) QED BY DEF NatInductiveDefHypothesis, fb

2
2
2
2

ROANGAANGA A

Each Elemb is a delta vec.

(1)8.Vi € Nat\ {0} : Elemb(i) € DeltaVecType
(2) SUFFICES ASSUME NEW i € Nat\ {0} PROVE Elemb(i) € DeltaVecType OBVIOUS
(2) HIDE DEF Len@b
(2)1.CASEO0 < i A i < LenQb
(3)1. 4 E 1.. LenQb BY (2)1, (1)5, DotDotDef, SMTT(10)
(3)2. Qb[i] € DeltaVecType BY (3)1, (1)4, LenAziom DEF LenQb
(3) QED BY (3)2, (2)1 DEF LenQb
(2)2. CASE =(0 < i A i < Len@b)
(3)1. Elemb(i) = DeltaVecZero BY (2)2 DEF LenQb
(3) QED BY (3)1, DeltaVecZeroType
(2) QED BY (2)1, (2)2

Now relate the two sums. We show that Elemb (%) is the same as Elema(i + 1) .

94 APPENDIX C. PROOF OF CORRECTNESS
(1)9. Len@b = LenQa — 1 BY TailProp
0.Vi € Nat\ {0} : Elemb(i) = Elema(i + 1)
V1.Vi e 1..LenQb : Qbli] = Qali + 1] BY TailProp
)2.Vi € 1.. LenQb : Qb[i] € DeltaVecType BY TailProp, ElementOfSeq
)} HIDE DEF Qa, Qb, LenQa, LenQb
2)3. SUFFICES ASSUME NEW i € Nat \ {0}
PROVE Elemb(i) = Elema(i + 1)
OBVIOUS
(2)4. (i € 1.. Len@b) V (i > LenQb) BY (1)5, DotDotDef, SMTT(10)
(2)5.CASE i € 1.. Len@b
(3)1. Qb[i] = Qali + 1] BY (2)1, (2)5
(3)2.7 < LenQb A i + 1 < LenQa BY (2)5, (1)1, (1)5, (1)9, DotDotDef, SMTT(10)
(33.0 < i A0 < i+1BY SMTT(10)
(3) QED BY (3)1, (3)2, (3)3 DEF LenQa, LenQb
)
(
(

)
)10
(2
(2
(2
(

5.
3
3
3
3

s

(2)6. CASE i > LenQb

3)1. =(i < LenQb) A —(i + 1 < LenQa) BY (2)6, (1)1, (1)5, (1)9, SMTT(10)
3) QED BY (3)1 DEF LenQa, LenQb

(2) QED BY (2)4, (2)5, (2)6
We show that Elema(1) is Head(Q) .
(1)11. Head(Q) € DeltaVecType BY HeadType
(1)12. LenQa > 0

2)2. LenQa # 0 BY EmptySeq
2) HIDE DEF LenQa

2) QED BY (2)2, (1)1, SMTT(10)

13. Elema(1) = Head(Q)
2) HIDE DEF LenQa
2)1. Qa[l] = Head(Q) BY HeadDef

2)3.0 < 1A 1< LenQa BY (1)12, (1)1, SMTT(10)
(2) QED BY (2)1, (2)3 DEF LenQa

Each sum evaluates its recursive function at the length of its sequence. Now we show that adding Head(Q) to the sum of Tazl(Q) is the same
as the sum of Q. Proving this requires induction.

(1) DEFINE AddHeadQ(v) = DeltaVecAdd(Head(Q), v)

(1

/\/\/\\//\/\/\\/

(1)14. AddHeadQ(fb[LenQb]) = fa[LenQa]
(2) DEFINE P(i) = AddHeadQ(fb[i]) = fa[i + 1] A fb[i] € DeltaVec Type
(2) HIDE DEF LenQa, LenQb, fa, fb, AddHeadQ
(2) SUFFICES Vi € Nat : P(i) BY (1)1, (1)5, (1)9, (1)12, SMTT(10)
(2)1. P(0)
<3> . Trivial facts to help the prover match known facts or proof obligations.
AO+1 € Nat
AO+1+£0
AO+1)—1=0
ANO+1=1
BY SMTT(10)

(3)2. fb]0] = DeltaVecZero BY (1)7 DEF fb, f0b
(3)3. fb[0] € DeltaVecType BY (3)2, DeltaVecZeroType

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS

AddHeadQ(fb[0]) = Head(Q) BY (3)4 DEF AddHeadQ)

a[0] = DeltaVecZero BY (1)3 DEF fa, fOa

= DeltaVecAdd(fa[0], Elema(1)) BY (3)1, (1)3 DEF fa, Defa
a[l] = Head(Q) BY (3)7, (3)6, (1)13, (1)11, DeltaVecAddZero
QED BY (3)1, (3)3, (3)5, (3)8

2. ASSUME NEW i € Nat, P(i) PROVE P(i+ 1)

3> 1. Trivial facts to help the prover match known facts or proof obligations.

ANi+1 € Nat
Ai+1 € Nat\{0}
ANi+1#0
ANi+1l)—1=1
ANi+1)+1=1i+2
ANi+2 € Nat
Ai+2 € Nat\ {0}
Ni+2#0
ANi+2)—1=i+1
BY SMTT(10)

Write in terms of definitions that can be hidden.

=T

(3) DEFINE hqg = Head(Q)

(3) DEFINE fbi = fb[i]

(3) DEFINE fbil = fb[i + 1]

(3) DEFINE vbil = Elemb(i+1)
(3) DEFINE fail = fa[i+1]

(3) DEFINE fai2 = fa[i + 2|

(3) DEFINE vai2 = Elema(i + 2)

Expose one level of recursion and re-associate adding Head(Q).

(3)2. fai2 = DeltaVecAdd(fail, vai2) BY (3)1, (1)3
(3)3. vbil = wai2 BY (3)1, (1)10
(3Y4. fai2 = DeltaVecAdd(fazl vbil) BY (3)2, (3)3
(3)5. AddHeadQ(fbi) = fail BY (2)2
(3)6. DeltaVecAdd(hq, fbi) = fail BY (3)5 DEF AddHead®
(3)7. fai2 = DeltaVecAdd(DeltaVecAdd(hq, fbi), vbil) BY (3)4, (3)6
(3)8. hq € DeltaVecType BY (1)11
(3)9. fbi € DeltaVecType BY (2)2
(3)10. vbil € DeltaVecType BY (3)1, (1)8
(3)11. fai2 = DeltaVecAdd(hq, DeltaVecAdd(fbi, vbil))
(4) HIDE DEF fai2, hq, fbi, vbil
(4) QED BY (3)7, (3)8, (3)9, (3)10, DeltaVecAddAssociative
(3)12. fbil = DeltaVecAdd(fbi, vbil) BY (3)1, (1)7
(3)13. fbil € DeltaVecType
(4) HIDE DEF fbil, fbi, vbil
(4) QED BY (3)9, (3)10, (3)12, DeltaVecAddType
(3)14. fai2 = DeltaVecAdd(hgq, fbil) BY (3)11, (3)12
(3)15. fai2 = AddHeadQ(fbil) BY (3)14 DEF AddHead(Q)

DeltaVecAdd(Head(Q), fb[0]) = Head(Q) BY (3)2, (1)11, DeltaVecAddZero

95

96 APPENDIX C. PROOF OF CORRECTNESS

(3) QED BY (3)1, (3)13, (3)15

(2) HIDE DEF P

(2) QED BY (2)1, (2)2, NatInduction, Isa
(1) HIDE DEF fa, fb
(1) QED BY (1)2, (1)6, (1)14

For a sequence @ of delta vectors and an index n € 1 .. Len(Q), @[n] plus the sum of all delta vectors on RemoveAt(Q, n) is the same as the
sum of all delta vectors on Q.

THEOREM Delta VecSeqSkipSumRemove At =

ASSUME

NEW @ € Seq(DeltaVecType),
NEWn €1..Len(Q)

PROVE

DeltaVecAdd(Q[n], DeltaVecSeqSkipSum(0, RemoveAt(Q, n))) = DeltaVecSeqSkipSum(0, Q)
PROOF

XXXa definitions are related to the sum of @ skipping 0.
(1) DEFINE Qa = Q
(1) DEFINE Elema(i) = DeltaVecSeqSkipSum(0, Qa)! : ! Elem (i)
(1) DEFINE fOa = DeltaVecZero
(1) DEFINE Defa(v, i) = DeltaVecAdd(v, Elema(i))
(1) DEFINE fa = CHOOSE f : f = [i € Nat +— IF i = 0 THEN fOa ELSE Defa(f[i — 1], 1)]
(1) DEFINE LenQa = Len(Qa)
(1) HIDE DEF Qa, Elema, f0a, Defa, fa, LenQa
()1. Qa € Seq(DeltaVecType) BY DEF Qa
(1)2. Qa € [1.. LenQa — DeltaVecType] BY (1)1, LenAziom DEF LenQa
(1)3. LenQa € Nat BY (1)1, LenInNat DEF LenQa
(1)4. DeltaVecSeqSkipSum(0, Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum, fa, fOa, Defa, Elema, LenQa
(1)5.Vi € Nat : fa[i] = 1F i = 0 THEN f0Oa ELSE Defa(fali — 1], i)

(2) SUFFICES NatInductiveDefConclusion(fa, fOa, Defa) BY DEF NatInductiveDefConclusion

(2) SUFFICES NatInductiveDefHypothesis(fa, f0a, Defa) BY NatInductiveDef

(2) QED BY DEF NatlnductiveDefHypothesis, fa
)
(
(

(1)6.V i € Nat\ {0} : Elema(i) € DeltaVecType
2) SUFFICES ASSUME NEW i € Nat \ {0} PROVE Elema(i) € DeltaVecType OBVIOUS
2)1.CASEO0 < i A i < LenQa
(3)1. 4 G 1.. LenQa BY (2)1, (1)3, DotDotDef, SMTT(10)
(3)2. Qali] € DeltaVecType BY (3)1, (1)2

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 97

(3) QED BY (3)2, (2)1 DEF LenQa, Elema

(2)2.cASE (0 < i A i < LenQa)
(3)1. Elema(i) = DeltaVecZero BY (2)2 DEF LenQa, Elema
(3) QED BY (3)1, DeltaVecZero Type

(2) QED BY ()1, (2)2

(1)7.¥i € Nat : fa[i] € DeltaVecType

(2) DEFINE P(i) = fa[i] € DeltaVecType

(2) HIDE DEF P

(2) SUFFICES Vi € Nat : P(i) BY DEF P

(2

3)1. fa[0] = DeltaVecZero BY (1)5 DEF f0a
3) QED BY (3)1, DeltaVecZeroType DEF P

Rewrite (7,7 + 1) to (— 1,5) to match inductive def.

3)1.PICKj :j =i+ 1 OBVIOUS

3)2.5 € Nat\ {0} BY (3)1, SMTT(10)

3)3.5 — 1 =i BY (3)1, SMTT(10)

3)4. fa[j] = DeltaVecAdd(falj — 1], Elema(j)) BY (1)5, (3)2 DEF Defa
3)5. fa[j — 1] € DeltaVecType BY (2)2, (3)3 DEF P

3)6. Elema(j) € DeltaVecType BY (3)1, (3)2, (1)6

3)7. fa[j] € DeltaVecType BY (3)4, (3)3, (3)6, DeltaVecAddType

3) QED BY (3)1, (3)7 DEF P

XXXb definitions are related to the sum of RemoveAt(Q, n) skipping 0.

(1) DEFINE Qb = RemoveAt(Q, n)
(1) DEFINE Elemb(i) = DeltaVecSeqSkipSum(0, Qb)! : | Elem(4)

(1) DEFINE f0b = DeltaVecZero

(1) DEFINE Defb(v, i) = DeltaVecAdd(v, Elemb(i))

(1) DEFINE fb = CHOOSE f : f = [€ Nat — IF i = 0 THEN f0b ELSE Defb(f[i — 1], i)]
(1) DEFINE LenQb = Len(Qb)

(1) HIDE DEF Qb, Elemb, f0b, Defb, fb, LenQb

(1)8. @b € Seq(DeltaVecType) BY RemoveAtProperties DEF Qb

(1)9. @b € [1 .. LenQb — DeltaVecType] BY (1)8, LenAxiom DEF LenQb

(1)10. Len@b € Nat BY (1)8, LenInNat DEF LenQb

(1)11. DeltaVecSeqSkipSum (0, @b) = fb[Len@Qb] BY DEF DeltaVecSeqSkipSum, fb, f0b, Defb, Elemb, LenQb
(1)12.V4 € Nat : fb[i] = 1IF ¢ = 0 THEN f0b ELSE Defb(fb[i — 1], ©)

(2) SUFFICES NatInductiveDefConclusion(fb, f0b, Defb) BY DEF NatInductiveDefConclusion

(2) SUFFICES NatInductiveDefHypothesis(fb, f0b, Defb) BY NatInductiveDef

(2) QED BY DEF NatInductiveDefHypothesis, fb

)
(
(

(1)13.Vi € Nat\ {0} : Elemb(i) € DeltaVecType
2) SUFFICES ASSUME NEW i € Nat \ {0} PROVE Elemb(i) € DeltaVecType OBVIOUS
2)1.CASEO0 < i A i < LenQb

98 APPENDIX C. PROOF OF CORRECTNESS

(3Yl.i € 1.. Len@b BY (2)1, (1)10, DotDotDef, SMTT(10)
(3)2. Qbli] € DeltaVecType BY (3)1, (1)9
(3) QED BY (3)2, (2)1 DEF LenQb, Elemb

(2)2. CASE =(0 < i A i < Len@b)
(3)1. Elemb(i) = DeltaVecZero BY (2)2 DEF LenQb, Elemb
(3) QED BY (3)1, DeltaVecZero Type

2) QED BY (2)1, (2)2

_';\/

(1)14.Vi € Nat : fb[i] € DeltaVecType

DEFINE P (i) = fb[i] € DeltaVecType

HIDE DEF P

SUFFICES Vi € Nat : P(i) BY DEF P

1. P(0)

3)1. fb[0] = DeltaVecZero BY (1)12 DEF f0b

3) QED BY (3)1, DeltaVecZeroType DEF P

(2)2. ASSUME NEW ¢ € Nat, P(i) PROVE P(i+1)
Rewrite (7,7 + 1) to (— 1,5) to match inductive def.

3)1.PICKj :j =i+ 1 OBVIOUS

3)2.j € Nat\ {0} BY (3)1, SMTT(10)

3)3.j—1=1BY (3)1, SMTT(10)

3)4. fo[j] = DeltaVecAdd(fb[j — 1], Elemb(j)) BY (1

3)5. fblj — 1] € DeltaVecType BY (2)2, (3)3 DEF P

3))13

3)

3)

(
)14,
(2
(2
(2
(

)
)
)
2)
(
(
)

y12, (3)2 DEF Defb

)3
6. Elemb(j) € DeltaVecType BY (3)1, (3)2, (1
7. fol§] € DeltaVecType BY (3)4, (3)5, (3)6, DeltaVecAddType
QED BY (3)1, (3)7 DEF P
ED BY (2)1, (2)2, NatInduction, Isa

]

Now relate the two sums.

(1)15. Len@b = LenQa — 1 BY RemoveAtProperties DEF Qa, Qb, LenQa, LenQb
(1)16. n € 1 .. LenQa BY DEF Qa, LenQa
(1)17.0 < nAn < LenQa BY (1)3, (1)16, SMTT(10)
(1)18.Vi € Nat\ {0} : i # n = Elema(i) = Elemb(IF i < n THEN ¢ ELSE i — 1)
(2)1. SUFFICES ASSUME
NEW ia, ia € Nat\ {0}, ia # n,
NEW 4b, tb = IF ta < m THEN ¢a ELSE ia — 1
PROVE Flema(ia) = Elemb(ib)
OBVIOUS
(2)2.Vi€1l..LenQa:i#n= Qali] = Qb[IF i < n THEN i ELSE i — 1]
3Y1.Viel..LenQa: i #n = Qali] = Qb[RemoveAt_ForwardIndex(Qa, n, i)]
(4)1. RemoveAt_MapForward(Qa, n) BY RemoveAtProperties DEF Qa
(4) QED BY (4)1 DEF RemoveAt_MapForward, Qa, Qb, LenQa
3) QED BY (3)1 DEF RemoveAt_ForwardIndex
3.CASE O < ia A ia < LenQa
3)1.0 < ib A ib < LenQb BY (1)3, (1)10, (1)15, (1)16, (2)1, (2)3, SMTT(10)
3

(
<2z
(3)2. Elema(ia) = Qalia] BY (2)3 DEF Elema, LenQa

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 99

(3)3. Elemb(ib) = Qb[ib] BY (3)1 DEF Elemb, LenQb
(3Y4.ia € 1.. LenQa BY (1)3, (1)10, (2)1, (2)3, DotDotDef, SMTT(10)
(3)5. Qalia] = Qblib] BY (2)1, (2)2, (3)4
(3) QED BY (3)2, (3)3, (3)5
(2)4. CASE =(0 < ia A ia < LenQa)
(3)1. ~(0 < ib A ib < LenQb) BY (1)3, (1)10, (1)15, (1)16, (2)1, (2)4, SMTT(10)
(3)2. Elema(ia) = DeltaVecZero BY (2)4 DEF Elema, LenQa
(3)3. Elemb(ib) = DeltaVecZero BY (3)1 DEF Elemb, LenQb
(3) QED BY (3)2, (3)3
2) QD BY (2)3, (2)4
9.

Elema(n) = Qa[n]
1.0 < nAn<LenQa BY (1)3, (1)16, SMTT(10)
QED BY (2)1 DEF Elema, LenQa

(H1
(2)
(2)

Each sum evaluates its recursive function at the length of its sequence.

(1)20. DeltaVecAdd(Qa[n], fo[Len@b]) = fa[LenQa]

(2) DEFINE P(i) = fa[i] = IF i < n THEN fb[i] ELSE DeltaVecAdd(Qa[n], fbli — 1))
(2) HIDE DEF P
(2)1.Vi € Nat : P(i)
(3)1. P(0)
(4) SUFFICES fa[0] = fb[0] BY (1)17 DEF P
(4) QED BY (1)5, (1)12 DEF f0a, f0b
(3)2. ASSUME NEW ¢ € Nat, P(i) PROVE P(i+1)
(4)1.PICK j : j =i+ 1 OBVIOUS
(4)2.5 € Nat\ {0} BY (4)1, SMTT(10)
(4)3.7 —1 =1 BY (4)1, SMTT(10)
(4)4. CASEj < n

Before the removal point.

y1.j #n BY (4)1, (4)4, SMTT(10)

)2.5 —1<n BY (4)1, (1)4, SMTT(10)

)3. falj — 1] = folj — 1] BY (3)2, (4)3, (5)2 DEF P

Y4. Elema(j) = Elemb(j) BY (1)18, (4)2, (4)4, (5)1

)5. falj] = DeltaVecAdd(fa[j — 1], Elema(j)) BY (1)5, (4)2 DEF Defa
)6. fb[j] = DeltaVecAdd(fb]j — 1], Elemb(j)) BY (1)12, (4)2 DEF Defb
V7. falj] = Bli] BY ()3, (5)4, (5)5, (5)6

) QED BY (4)1, (4)4, (5)7 DEF P

(4)5.CASEj =n
At the removal point.
YI.=(j < m) BY (4)1, (4)5, SMTT(10)
12,5 — 1 <n BY (4)1, (4)5, SMTT(10)
)3. falj — 1] = folj — 1] BY (3)2, (4)3, (5)2 DEF P
i;l Elema(j) = Qa[n] BY (1)19, (4)5

(5
(5
(5
(5
(5)5. falj] = DeltaVecAdd(fa[j — 1], Elema(j)) BY (1)5, (4)2 DEF Defa

100 APPENDIX C. PROOF OF CORRECTNESS

alj] = DeltaVecAdd(fb[j — 1], Qa[n]) BY (5)3, (5)4, (5)5
alj] = DeltaVecAdd(Qaln], fblj — 1])

. Qa[n] € DeltaVecType BY (1)2, (1)16

. fblj — 1] € DeltaVecType BY (1)14, (4)3

ED BY (5)6, (6)1, (6)2, DeltaVecAddCommutative

ED BY (4)1, (5)1, (5)7 DEF P

ONH\\

Q

(
(4)6.CASEj > n
After the removal point.
y1.7 # n BY (4)1, (4)6, SMTT(10)
=(j < n) BY (4)1, (4)6, SMTT(10)
3.5(j = 1< n) BY (4)1, (4)6, SMTT(10)
4.7 € Nat\ {0} BY (4)3, (5)3, SMTT(10)
5.i—1 € Nat BY (4)3, ()3, SMTT(10)
6. falj — 1] = DeltaVecAdd(Qa[] foli —1]) BY (3)2, (4)3, (5)3 DEF P
7. Elema(j) = Elemb(i) BY (1)18, (4)2, (4)3, (5)1, (5)2
falj] = DeltaVecAdd(falj — 1], Elema()) BY (1)5, (4)2 DEF Defa
fbli] = DeltaVecAdd(fb[i — 1], Elemb(i)) BY (1)12, (5)4 DEF Defb
0. fa[j] = DeltaVecAdd(falj — 1], Elemb(i)) BY (5)8, (5)7
[j] = DeltaVecAdd(DeltaVecAdd(Qaln], fb[i — 1]), Elemb(i)) BY (5)10, (5)6

(
(
(
(
(
(
(
(
(
2
([j] = DeltaVecAdd(Qa[n], DeltaVecAdd(fb[i — 1], Elemb(1)))

5)
5
5
5
5
5
5
5)
5
5
5
5

[i
fa
1. fa
2. fa
1. Qa[n] € DeltaVecType BY (1)2, (1)16
2. fbli — 1] € DeltaVecType BY <1>14, (5)5
3. Elemb(i) € DeltaVecType BY (1)13, (5)4
QED BY (5)11, (6)1, (6)2, (6)3, DeltaVecAddAssociative, Isa
3. falj] = DeltaVecAdd(Qa[n], fb[i]) BY (5)9, (5)12
QED BY (4)1, (5)2, (5)13, Isa DEF P

)
)
)
)

)2.
)
)
)
)
)
)8.
)9.
)1
)
)1
(6
(6
(6
(6
)1
)

(5
(5
(4) QED BY (4)2, (4)4, (4)5, (4)6, SMTT(10)

(3) QED BY (3)1, (3)2, NatInduction, Isa

(
(2)2. =(LenQa < n;

BY (1)3, (1)16, SMTT(10)
(2) QED BY (1)3, (1)15,

15, (2)1, (2)2 DEF P

(1) QED BY (1)4, (1)11, (1)20 DEF Qa, Qb

Adding a delta vector to one of a sequence of delta vectors.

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS

AddAt makes a sequence of delta vectors.

THEOREM DeltaVecSeqAddAt Type =
ASSUME
NEW Q € Seq(DeltaVecType),
NEW n € 1.. Len(Q),
NEW d € DeltaVecType
PROVE
LET R = DeltaVecSeqAddAt(Q, n, d) IN
A R € Seq(DeltaVecType)
A Len(Q) = Len(R)
PROOF
(1) DEFINE R = DeltaVecSeqAddAt(Q, n, d)
DEFINE Len() Len(Q)
DEFINE LenR = Len(R)
1. Len@ € Nat BY LenInNat
SUFFICES R € Seq(DeltaVecType) A Len@ = LenR OBVIOUS
HIDE DEF R, Len(), LenR
€ [1.. LenQ — DeltaVecType]
2 1 n 6 1.. Len@® BY DEF Len(@
2 € [1.. Len@ — DeltaVecType] BY LenAxiom DEF Len@

)
)
)
)
)
)2.
(2)
(2)2.
(2)3. [| € DeltaVecType BY (2)1, (2)2
(2)
(2)
)3.
)4.

(

(

)

> 11>

(1
(
(
(
(
(

1
1
1
1
1

2)4. DeltaVecAdd(Q[n], d) € DeltaVecType BY (2)3, DeltaVecAddType

2) QED BY (2)1, (2)2, (2)4 DEF R, DeltaVecSeqAddAt
R € Seq(DeltaVecType) BY (1)1, (1)2, SeqDef
Len@ = LenR

2)1.DOMAIN R =1 .. Len@ BY (1)2

2) QD BY (1)1, (1)3, (2)1, LenDomain DEF LenR

(1) QED BY (1)3, (1)4

(1
(1

101

Adding a value d to the sum of a sequence of delta vectors gives the same result as adding d to one of the elements of the sequence and then taking

the sum.

A

THEOREM Delta VecSeqSkipSumAddAt =
ASSUME
NEW @ € Seq(DeltaVecType),
NEW n € 1.. Len(@Q),
NEW d € DeltaVecType
PROVE

102 APPENDIX C. PROOF OF CORRECTNESS

DeltaVecAdd(DeltaVecSeqSkipSum(0, @), d) = DeltaVecSeqSkipSum (0, DeltaVecSeqAddAt(Q, n, d))
PROOF

XXXa definitions are related to the sum of Q.

(1) DEFINE Qu = Q
(1) DEFINE Elema(i) = DeltaVecSeqSkipSum/(0, Qa)! : ! Elem (i)
(1) DEFINE fOa = DeltaVecZero
(1) DEFINE Defa(v, i) = DeltaVecAdd (v, Elema(i))
(1) DEFINE fa = CHOOSE f : f = [i € Nat +— IF i = 0 THEN fOa ELSE Defa(f[i — 1], i)]
(1) DEFINE LenQa = Len(Qa)
()1. Qa € Seq(DeltaVecType) OBVIOUS
(1)2. Qa € [1 .. LenQa — DeltaVecType] BY (1)1, LenAxiom
(1)3. LenQa € Nat BY LenInNat
(1)4. DeltaVecSeqSkipSum(0, Qa) = fa[LenQa] BY DEF Delta VecSeqSkipSum
(1)
(
(
(
(

1)5.Vi € Nat : fa[i] = 1F ¢ = 0 THEN f0a ELSE Defa(fa[i — 1], i)
2
2
2
2

HIDE DEF fOa, Defa, fa

SUFFICES NatInductiveDefConclusion(fa, fOa, Defa) BY DEF NatInductiveDefConclusion
SUFFICES NatInductiveDefHypothesis(fa, fOa, Defa) BY NatInductiveDef

QED BY DEF NatInductiveDefHypothesis, fa

—_ — ~ ~—

XXXb definitions are related to the sum of) except d added to Q[n].

(1) DEFINE Qb = DeltaVecSeqAddAt(Qa, n, d)

(1) DEFINE Elemb(i) = DeltaVecSeqSkipSum(0, Qb)! : | Elem (i)

(1) DEFINE f0b = DeltaVecZero

(1) DEFINE Defb(v, i) = DeltaVecAdd(v, Elemb(i))

(1) DEFINE fb = CHOOSE f : f = [i € Nat — IF i = 0 THEN f0b ELSE Defb(f[i — 1], i)]
(1) DEFINE LenQb = Len(Qb)

(1)6. Qb € Seq(DeltaVecType) BY DeltaVecSeqAddAtType

(1y7. Qb € [1 .. LenQb — DeltaVecType] BY (1)6, LenAxiom

(1)8. Len@b € Nat BY (1)6, LenInNat

(1)9. DeltaVecSeqSkipSum (0, Qb) = fb[LenQb] BY DEF Delta VecSeqSkipSum

{1
(
(
(

1)10. Vi € Nat : fb[i] = IF ¢ = 0 THEN f0b ELSE Defb(fb[i — 1], 1)
2) HIDE DEF f0b, Defb, fb
2) SUFFICES NatInductiveDefConclusion(fb, f0b, Defb) BY DEF NatInductiveDefConclusion
2) SUFFICES NatInductiveDefHypothesis(fb, f0b, Defb) BY NatInductiveDef
(2) QED BY DEF NatInductiveDefHypothesis, fb

Miscellaneous facts about LenQa, Len@b, and n.

(1)11. Len@b = LenQa BY DeltaVecSeqAddAtType
()12.0<nAn < LenQa

(2)1.n € 1.. LenQa BY DEF LenQa, Qa

(2) HIDE DEF LenQa

(2) QED BY (2)1, (1)3, DotDotDef, SMTT(10)

Each Elema is a delta vec.

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 103

(1)13. V4 € Nat\ {0} : Elema(i) € DeltaVecType
(2) SUFFICES ASSUME NEW i € Nat \ {0} PROVE Flema(i) € DeltaVecType OBVIOUS
(2) HIDE DEF LenQa
(2)1.CASEO0 < i A < LenQa
(3)1. 4 E 1.. LenQa BY (2)1, (1)8, DotDotDef, SMTT(10)
(3)2. Qali] € DeltaVecType BY (3)1, (1)6, LenAziom DEF LenQa
(3) QED BY (3)2, (2)1 DEF LenQa
(2)2.CASE (0 < i A i < LenQa)
(3)1. Elema(i) = DeltaVecZero BY (2)2 DEF LenQa
(3) QED BY (3)1, DeltaVecZeroType, DeltaVecAddZero

(2) QED BY (2)1, (2)2
Each Elemb is a delta vec.

(1)14. Vi € Nat\ {0} : Elemb(i) € DeltaVecType
2) SUFFICES ASSUME NEW i € Nat \ {0} PROVE Elemb(i) € DeltaVecType OBVIOUS

3)1.i€1.. Len@b BY (2)1, (1)8, DotDotDef, SMTT(10)
3)2. Qbli] € DeltaVecType BY (3)1, (1)6, LenAziom DEF LenQb
3) QED BY (3)2, (2)1 DEF LenQb
2.CASE =(0 < i A% < LenQb)
3)1. Elemb(i) = DeltaVecZero BY (2)2 DEF LenQb
3) QED BY (3)1, DeltaVecZeroType, DeltaVecAddZero

(2) QED BY (2)1, (2)2
Each Elemb is the same as Flema except at [n], where it is Elema(n) + d.
(1)15. V4 € Nat\ {0} :

Elemb(i) = IF i = n THEN DeltaVecAdd(Elema(i), d) ELSE Elema(i)

(2) SUFFICES ASSUME NEW i € Nat \ {0}
PROVE Elemb(i) =1Fi = n THEN DeltaVecAdd(Elema(i), d) ELSE Elema(i)
OBVIOUS
HIDE DEF Qa, Qb, LenQa, LenQb, Elema, Elemb
1.CASEO0 < i At < LenQa

(2
2

)
)
3Y.0<ini<LenQaAi€l..LenQa BY (2)1, (1)3, DotDotDef, SMTT(10)
(3)2.0<iNi<Len@QbANi€l..Len@Qb BY (3)1, (1)11
(3)3. Elema(i) Qali] BY (3)1 DEF LenQa, Elema
(3)4. Elemb(i) = Qb[i] BY (3)2 DEF LenQb, Elemb
(3)5.CASEi=n
(4)1. Qbli] = DeltaVecAdd(Qali], d)

BY (1)2, (1)3, (3)1, (3)5 DEF DeltaVecSeqAddAt, Qb
(4) QED BY (4)1, (3)3, (3)4, (3)5
(3)6. CASE i £ n
(1. Qbli] = Qali]
BY (1)2, (1)
(4) QED BY (4)1,
(3) QED BY (3)3,
(2)2. CASE —(0 < &

3, (3)1, (3)6 DEF DeltaVecSeqAddAt, Qb
;)3, (3)4, (3)6

(3)6
A LenQa)

104 APPENDIX C. PROOF OF CORRECTNESS

1. =(0 < i A < LenQa) BY (2)2
2.4(0 < iAi< Len@b) BY (3)1, (1)11
3. Elema(i) = DeltaVecZero BY (3)1 DEF LenQa, Elema
4. Elemb(i) = DeltaVecZero BY (3)2 DEF LenQb, Elemb
5.0 # n BY (3)1, (1)12, SMTT(10)
) QED BY (3)3, (3)4, (3)5

(2) QED BY (2)1, (2)2
fali] is a delta vector
(1)16.Vi € Nat : fa[| € DeltaVecType
(2) DEFINE P(i) = fa[i] € DeltaVecType
(2) HIDE DEF LenQa, LenQb, fa, fb
(
(

(3)
(3)
(3)
(3)
(3)
(3

2) SUFFICES Vi € Nat : P(i) OBVIOUS
1. P(0)
3)1. fa[0] = DeltaVecZero BY (1)5 DEF fa, f0a

)
)
2)
(
(3)2. fal0] € DeltaVecType BY (3)1, DeltaVecZeroType, DeltaVecAddZero
(
)
(
(

3) QED BY (3)2
(2)2.Vi € Nat : P(i) = P(i + 1)
3)1. SUFFICES ASSUME NEW i € Nat, P(i) PROVE P(i+ 1) OBVIOUS
3>2 Trivial facts to help the prover match known facts or proof obligations.
ANi+1 € Nat
Ai+1 € Nat\ {0}
ANi+1#0
ANi+1)—1=4
BY SMTT(10)
3)3. fali + 1] = DeltaVecAdd(fali], Elema(i + 1)) BY (3)2, (1)5
3)4. fali] € DeltaVecType BY (3)1
3)5. Elema(i + 1) € DeltaVecType BY (3)2, (1)13
3)6. fali + 1] € DeltaVecType BY (3)3, (3)4, (3)5, DeltaVecAddType
3) QED BY (3)6

(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa
fb[4] is a delta vector

17.Vi € Nat : ﬂ)[/| € DeltaVecType

) DEFINE P(i) = fb[i] € DeltaVecType

)} HIDE DEF LenQa, LenQ@b, fa, fb

} SUFFICES Vi € Nat : P(i) OBVIOUS

)1. P(0)

(3)1. fb[0] = DeltaVecZero BY (1)10 DEF fb, f0b
(3)2. fb[0] € DeltaVecType BY (3)1, DeltaVecZeroType, DeltaVecAddZero
(

)

(

(

(1

)
(2
(2
(2
(2

3) QED BY (3)2
2.Yi € Nat: P(i) = P(i + 1)
3)1. SUFFICES ASSUME NEW i € Nat, P(i) PROVE P(i+ 1) OBVIOUS
3>2. Trivial facts to help the prover match known facts or proof obligations.
ANi4+1 € Nat
Ai+1 e Nat\ {0}

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 105

Nit+14£0
ANi+1)—1=4
BY SMTT(10)
3)3. fo[i + 1] = DeltaVecAdd(fb[i], Elemb(i + 1)) BY (3)2, (1)10
3)4. fbli] € DeltaVecType BY (3)1
3)5. Elemb(i + 1) € DeltaVecType BY (3)2, (1)14
3)6. fbli + 1] € DeltaVecType BY (3)3, (3)4, (3)5, DeltaVecAddType
3) QED BY (3)6
(2) HIDE DEF P
(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa

Each sum evaluates its recursive function at the length of its sequence.

(1) DEFINE AddD(v) = DeltaVecAdd(v, d)
(1218.fb[LenQb] = AddD(fa[LenQa])

(

(

(
(
(
(
(
)

) DEFINE P(i) = fb[i] = IF i < n THEN fa[i] ELSE AddD(fa[i])
HIDE DEF LenQa, LenQb, fa, fb, Elema, Elemb, AddD
SUFFICES Vi € Nat : P(1)

) LenQa € Nat BY (1)3

) LenQb € Nat BY (1)8

) LenQa = Len@Qb BY (1)11

yn < LenQa BY (1)12

) QED BY SMTT(10)

. P(0)

1.0 < n BY (1)12

2. f5]0] = DeltaVecZero BY (1)10 DEF fb, f0b

6. fa[0] = DeltaVecZero BY (1)5 DEF fa, fOa

QED BY (3)1, (3)2, (3)6

.Vi € Nat: P(i) = P(i+1)

)1. SUFFICES ASSUME NEW i € Nat, P(i) PROVE P(i+ 1) OBVIOUS
>2. Trivial facts to help the prover match known facts or proof obligations.

ANit+1¢€ Nat
Ai+1¢€ Nat\{0}
Ni+1#0
ANi+1l)—1=1
BY SMTT(10)

2
2
2

DEFINE fai = fali]

DEFINE fbi = fb]i]

DEFINE fail = fa[i 4 1]
DEFINE fbil = fb[i + 1]
DEFINE vail % Elema(i + 1)

3. fail = DeltaVecAdd(fai, vail) BY (3)2, (1)5
4. fbil = DeltaVecAdd(fbi, vbil) BY (3)2, (1)10
5. fai € DeltaVecType BY (3)2, (1)16

6. vail € DeltaVecType BY <3>2 (1)13

(3)
(3)
(3)
(3)
(3)
(3) DEFINE vbil Elemb(i + 1)
(3)
(3)
(3)
(3)
(3)7.CASEi+1#n

106

1. vail = vbil BY (3)2, (3)7, (1)15

2.CASEi < n

y1.fbi = fai BY (4)2, (3)1

)2.i+1 < n BY (4)2, (3)7, SMTT(10)

) SUFFICES fail = fbil BY (5)2

) HIDE DEF fai, fbi, fail, fbil, vail, vbil

)3. fbil = DeltaVecAdd(fai, vail) BY (3)4, (5)1, (4)1
4. fbil = fail BY (5)3, (3)3

) QED BY (5)4

.CASE =(7 < n)

1. foi = AddD(fai) BY (4)3, (3)1

)2, =(i + 1 < n) BY (4)3, (3)7, SMTT(10)

) SUFFICES fbil = AddD(fail) BY (5)2

) HIDE DEF fai, fbi, fail, fbil, vail, vbil

3. fbil = DeltaVecAdd(DeltaVecAdd(fai, d), vail
4. fbil = DeltaVecAdd(fai, DeltaVecAdd(d, vail)
)5. fbil = DeltaVecAdd(fai, DeltaVecAdd(vail, d)
Y6. fbil = DeltaVecAdd(DeltaVecAdd(fai, vail), d
V7. fbil = AddD(fail) BY (5)6, (3)3 DEF AddD

) QED BY (5)7

8

4)1. vbil = AddD(vail) BY (3)2, (3)8, (1)15 DEF AddD
4)2. 9 < n BY (3)8, SMTT(10)

4)3. fbi = fai BY (4)2, (3)1

4. —(i + 1 < n) BY (3)8, SMTT(10)

4) SUFFICES fbil = AddD(fail) BY (4)4

4) HIDE DEF fai, fbi, fail, fbil, vail, vbil

4)5. fbil = DeltaVecAdd(fai, DeltaVecAdd(vail, d)) BY
4)6. fbil = DeltaVecAdd(DeltaVecAdd(fai, vail), d) BY
4Y7. fbil = AddD(fail) BY (4)6, (3)3 DEF AddD

(2) HIDE DEF P

(2) QED BY ONLY (2)1, (2)2, NatInduction, Isa
(1) HIDE DEF fa, fb
(1) QED BY (1)4, (1)9, (1)18

NN N
s3]

APPENDIX C. PROOF OF CORRECTNESS

)1 DEF AddD

)6, DeltaVecAddAssociative
)6, DeltaVecAddCommutative
Y6, DeltaVecAddAssociative

(3)4, (4)3, (4)1 DEF AddD
(4)5, (3)5, (3)6, DeltaVecAddAssociative

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 107

Facts about summing up sequences of delta vectors. Corollaries for the special case of k = 0.

Let Prop be any predicate satisfied by Zero and preserved by Add. Let @) be a sequence of delta vectors in which each element satisfies Prop.
Then the sum of @ is a delta vector that satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecSeqSumProp_ Hypothesis(Prop(-), Q) =
A Prop(DeltaVecZero)
AY a, b € DeltaVecType : Prop(a) A Prop(b) = Prop(DeltaVecAdd(a, b))
A Q € Seq(DeltaVecType)
AViel..Len(Q): Prop(Qli])

DeltaVecSeqSumProp_ Conclusion(Prop(-), Q) =
A DeltaVecSeqSum(Q) € DeltaVecType
A Prop(DeltaVecSeqSum(Q))

THEOREM Delta VecSeqSumProp =
ASSUME NEW Prop(_), NEW @, DeltaVecSeqSumProp_Hypothesis(Prop, Q)
PROVE DeltaVecSeqSumProp_Conclusion(Prop, Q)
PROOF
(1) DeltaVecSeqSkipSum(0, @) € DeltaVecType N\ Prop(DeltaVecSeqSkipSum(0, Q))
(2) DeltaVecSeqSkipSumProp_ Conclusion(Prop, @, 0)
(3) DeltaVecSeqSkipSumProp_ Hypothesis(Prop, @, 0)
(4) USE DEF Delta VecSeqSumProp_Hypothesis
(4YyVi € Nat:0<iNi<Len(Q)= Prop(Q[i])
5) DEFINE LenQ = Len(Q)

5YVi € Nat:0<iANi<LenQ=1i€1l..LenQ BY SMTT(10)
5) QED BY DEF Len@
(4) QED BY DEF Delta VecSeqSkipSumProp_ Hypothesis
(3) QED BY DeltaVecSeqSkipSumProp
(2) QED BY DEF Delta VecSeqSkipSumProp_ Conclusion
(1) QED BY DEF DeltaVecSeqSum, DeltaVecSeqSumProp_Conclusion

4)
(
(
(
(
(
(

108 APPENDIX C. PROOF OF CORRECTNESS

The sum of a sequence of delta vectors is a delta vector.

COROLLARY DeltaVecSeqSum Type =
ASSUME
NEW @ € Seq(DeltaVecType)
PROVE
DeltaVecSeqSum(Q) € DeltaVecType
PROOF
(1) QED BY DeltaVecSeqSkipSumType DEF DeltaVecSeqSum

The sum of a sequence of zero delta vectors is zero.

COROLLARY DeltaVecSeqSumAllZero =
ASSUME
NEW @ € Seq(DeltaVecType),
Vi € DOMAIN @ : Q[i] = DeltaVecZero
PROVE
DeltaVecSeqSum(Q) = DeltaVecZero
PROOF
(1) QED BY DeltaVecSeqSkipSumAllZero DEF DeltaVecSeqSum

The sum of an empty sequence of delta vectors is zero.

COROLLARY DeltaVecSeqSumEmpty =

ASSUME
NEW @ € Seq(DeltaVecType), Q = ()
PROVE
DeltaVecSeqSum/(Q) = DeltaVecZero
PROOF

(1) QED BY Delta VecSeqSkipSumEmpty DEF DeltaVecSeqSum

‘When you append a delta vector d to a sequence of delta vectors, the sum increases by d.

C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 109

COROLLARY DeltaVecSeqSumAppend =
ASSUME
NEW Q € Seq(DeltaVecType),
NEW d € DeltaVecType
PROVE
DeltaVecSeqSum(Append(Q, d)) = DeltaVecAdd(DeltaVecSeqSum(Q), d)
PROOF
(1)1.0 < Len(Q)
2) DEFINE LenQ = Len(Q)
2) Len@ € Nat BY LenInNat
2) SUFFICES 0 < Len(@ OBVIOUS
2) HIDE DEF Len@
2) QED BY SMTT(10)
QED BY (1)1, DeltaVecSeqSkipSumAppend, Isa DEF DeltaVecSeqSum

~— o~~~ o~~~

(1

For a sequence @ of values and an index n € 1 .. Len(Q), Q[n] plus the sum of all values on RemoveAt(Q, n) is the same as the sum of all
values on Q.

COROLLARY DeltaVecSeqSumRemoveAt =
ASSUME
NEW @ € Seq(DeltaVecType),
NEWn € 1..Len(Q)
PROVE
DeltaVecAdd(Q[n], DeltaVecSeqSum(RemoveAt(Q, n))) = DeltaVecSeqSum(Q)
PROOF
(1) QED BY DeltaVecSeqSkipSumRemoveAt DEF DeltaVecSegSum

Adding a value d to the sum of a sequence of delta vectors gives the same result as adding d to one of the elements of the sequence and then taking
the sum.

A

COROLLARY DeltaVecSeqSumAddAt =
ASSUME
NEW @ € Seq(DeltaVecType),
NEWn € 1..Len(Q),
NEW d € DeltaVecType
PROVE

110 APPENDIX C. PROOF OF CORRECTNESS

DeltaVecAdd(DeltaVecSeqSum(Q), d) = DeltaVecSeqSum(DeltaVecSeqAddAt(Q, n, d))
PROOF
(1) QED BY DeltaVecSeqSkipSumAddAt DEF DeltaVecSeqSum

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 111

C.10 Facts about summing up delta vectors in the range of a function

MODULE NaiadClockProofDeltaVecFuns

EXTENDS NaiadClockProofDeltaVecSeqs

Facts about summing up delta vectors in the range of a function.

This really ought to be a library of theorems.

Let Prop be any predicate satisfied by Zero and preserved by Add. Let F be a function to delta vectors in which F'[d] satisfies Prop for each
d € DOMAIN F. Then any index sum of F' satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

A

DeltaVecFunIndexSumProp_Hypothesis(Prop(-), F, I)
A Prop(DeltaVecZero)
AY a, b € DeltaVecType : Prop(a) A Prop(b) = Prop(DeltaVecAdd(a, b))
A F € [DOMAIN F' — DeltaVecType]
AV s € DOMAIN F : Prop(F|s])
AT € Seq(DOMAIN F)

A

DeltaVecFunIndexSumProp- Conclusion(Prop(-), F, I) =
A DeltaVecFunIndexSum(F, I) € DeltaVecType
A Prop(DeltaVecFunIndexSum(F, I))

THEOREM Delta VecFunIndezSumProp =
ASSUME NEW Prop(_), NEW F'| NEW I, DeltaVecFunIndexSumProp_Hypothesis(Prop, F, I)
PROVE DeltaVecFunIndexSumProp_Conclusion(Prop, F', I)
PROOF
(1) I € Seq(DOMAIN F') BY DEF DeltaVecFunIndexSumProp_ Hypothesis
(1) DEFINE Lenl = Len(I)
(1) DEFINE Q = [i € 1.. LenI — F[I[i]]]
(1) HIDE DEF Lenl, Q
(1) DeltaVecSeqSum(Q) € DeltaVec Type A Prop(DeltaVecSeqSum(Q))
(2) DeltaVecSeqSumProp— Conclusion(Prop, Q)
(3) DeltaVecSeqSumProp_ Hypothesis(Prop, Q)
(4) Lenl € Nat BY LenInNat DEF Lenl

(4y @ € [1.. LenI — DeltaVecType]
(5) I €[1..LenI — DOMAIN F| BY LenAxiom DEF Lenl
(5) F € [DOMAIN F — DeltaVecType| BY DEF DeltaVecFunIndexSumProp_ Hypothesis

112 APPENDIX C. PROOF OF CORRECTNESS

5) QED BY DEF ()

Q € Seq(DeltaVecType) BY IsASeq
Lenl = Len(Q)

) Len(Q) € Nat BY LenInNat

Yy DOMAIN @ = 1.. Len(Q) BY LenDef
)

)

(4
(4

(
)
)
(5
(5
(5) DOMAIN Q =1 .. Lenl OBVIOUS
(5) QED BY DotDotOneThruN
(4)Vq e 1..Lenl: Prop(Q[q])
(5YVq e 1..Lenl: Q[q] = F[I[q]] BY DEF Q
(5) I € Seq(DOMAIN F) BY DEF DeltaVecFunIndexSumProp_Hypothesis
(5YVq € 1..Lenl : I[q] € DOMAIN F BY ElementOfSeq DEF Lenl
(5) Vs € DOMAIN F : Prop(F[s]) BY DEF DeltaVecFunIndexSumProp-Hypothesis
(5) QED OBVIOUS
(4) QED BY DEF DeltaVecSeqSumProp_Hypothesis, DeltaVecFunIndexSumProp_Hypothesis

(3) QED BY Delta VecSeqSumProp
2) QED BY DEF Delta VecSeqSumProp_Conclusion

DeltaVecSeqSum(Q) € DeltaVecType BY DeltaVecSeqSum Type

DeltaVecFunIndexSum(F, I) = DeltaVecSeqSum(Q) BY DEF DeltaVecFunIndexSum, Lenl, Q
ED BY DEF Delta VecFunIndexSumProp_Conclusion

(
(1)
(1)
1 a

Let Prop be any predicate satisfied by Zero and preserved by Add. Let F be a function to delta vectors in which F'[d] satisfies Prop for each
d € DOMAIN F'. Then any finite subset sum of F satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

Delta VecFunSubsetSumProp_Hypothesis(Prop(_), F, §) =
A Prop(DeltaVecZero)
AY a, b € DeltaVecType : Prop(a) A Prop(b) = Prop(DeltaVecAdd(a, b))
A F € [DOMAIN F — DeltaVecType]
AY s € DOMAIN F : Prop(F[s])
A S € DOMAIN F
A IsFiniteSet(S)

DeltaVecFunSubsetSumProp_Conclusion(Prop(Z), F, §) =
A DeltaVecFunSubsetSum(F', S) € DeltaVecType
A Prop(Delta VecFunSubsetSum(F', S))

THEOREM Delta VecFunSubsetSumProp =
ASSUME NEW Prop(_), NEW F', NEW S, DeltaVecFunSubsetSumProp_Hypothesis(Prop, F, S)
PROVE Delta VecFunSubsetSumProp_Conclusion(Prop, F', S)

PROOF
(1) DEFINE I = EzactSeqFor(S)

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 113

(1) HIDE DEF [

(1) DeltaVecFunIndexSumProp_Conclusion(Prop, F, I)
(2) DeltaVecFunIndexSumProp_Hypothesis(Prop, F, T)
(3) USE DEF DeltaVecFunSubsetSumProp_Hypothesis

(3) I € Seq(DOMAIN F)
(4)y I € Seq(S)
(5) IsExactSeqFor(I, S) BY EzactSeqForProperties DEF I
(5) QED BY DEF IsExactSeqFor
(4) QED BY SegSupset
(3) QED BY DEF DeltaVecFunIndexSumProp_Hypothesis
(2) QED BY DeltaVecFunIndexSumProp
(1) QED
(2) USE DEF DeltaVecFunSubsetSumProp_Conclusion
(2) USE DEF DeltaVecFunIndexSumProp- Conclusion
(2) USE DEF DeltaVecFunSubsetSum
(2) USE DEF [
(2) QED OBVIOUS

Let Prop be any predicate satisfied by Zero and preserved by Add. Let
F be a function to delta vectors with finite non-zero range in which
F[d] satisfies Prop for each d € DOMAIN F. Then the sum of F satisfies Prop.

‘We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

1>

DeltaVecFunSumProp_ Hypothesis(Prop(-), F)
A Prop(DeltaVecZero)
AY a, b € DeltaVecType : Prop(a) A Prop(b) = Prop(DeltaVecAdd(a, b))
A F € [DOMAIN F — DeltaVec Type]
AY s € DOMAIN F : Prop(F|[s])
A DeltaVecFunHasFiniteNonZeroRange(F')

=

DeltaVecFunSumProp_ Conclusion(Prop(-), F)
A DeltaVecFunSum/(F) € DeltaVecType
A Prop(DeltaVecFunSum(F))

THEOREM Delta VecFunSumProp =
ASSUME NEW Prop(_), NEW F, DeltaVecFunSumProp_Hypothesis(Prop, F)
PROVE DeltaVecFunSumProp_ Conclusion(Prop, F)
PROOF
(1) DEFINE § = {s € DOMAIN F : F[s] # DeltaVecZero}
(1) HIDE DEF S

114 APPENDIX C. PROOF OF CORRECTNESS

(1) DeltaVecFunSubsetSumProp_Conclusion(Prop, F, S)

(2) DeltaVecFunSubsetSumProp_Hypothesis(Prop, F, S)
(3) USE DEF Delta VecFunSumProp_Hypothesis

(3) S C DOMAIN F' BY DEF S

(3) IsFiniteSet(S) BY DEF DeltaVecFunHasFiniteNonZeroRange, S

(3) QED BY DEF Delta VecFunSubsetSumProp_ Hypothesis

(2) QED BY Delta VecFunSubsetSumProp

(1) QED

(2) USE DEF DeltaVecFunSumProp_ Conclusion

(

(

(

(

W W W Ww

)
2) USE DEF Delta VecFunSubsetSumProp_ Conclusion
2) USE DEF DeltaVecFunSum
2) USE DEF S

)

2) QED OBVIOUS

The index sum is a delta vector.

THEOREM Delta VecFunIndezSum Type =
ASSUME
NEW D,
NEW F € [D — DeltaVecType],
NEW [€ Seq(D)
PROVE
DeltaVecFunIndexSum(F, I) € DeltaVecType
PROOF
(1) DEFINE Prop(a) = TRUE
(1) DeltaVecFunIndexSumProp_Hypothesis(Prop, F, I) BY DEE DeltaVecFunIndexSumProp_Hypothesis
(1) DeltaVecFunIndexSumProp_ Conclusion(Prop, F, I) BY DeltaVecFunIndexSumProp
(1) QED BY DEF Delta VecFunIndexSumProp_Conclusion

The subset sum is a delta vector.

THEOREM Delta VecFunSubsetSum Type =
ASSUME
NEW D,
NEW F' € [D — DeltaVecType],
NEW S, IsFiniteSet(S), S C D
PROVE

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 115

DeltaVecFunSubsetSum(F, S) € DeltaVecType
PROOF
(1) DEFINE Prop(a) = TRUE
(1) DeltaVecFunSubsetSumProp_Hypothesis(Prop, F, S) BY DEF DeltaVecFunSubsetSumProp_Hypothesis
(1) DeltaVecFunSubsetSumProp_ Conclusion(Prop, F, S) BY DeltaVecFunSubsetSumProp
(1) QED BY DEF DeltaVecFunSubsetSumProp_ Conclusion

The sum is a delta vector.

THEOREM Delta VecFunSum Type
ASSUME
NEW D,
NEW F' € [D — DeltaVecType|, DeltaVecFunHasFiniteNonZeroRange(F')
PROVE
DeltaVecFunSum(F') € DeltaVecType
PROOF
(1) DEFINE Prop(a) = TRUE
(1) DeltaVecFunSumProp_Hypothesis(Prop, F) BY DEF DeltaVecFunSumProp_Hypothesis
(1) DeltaVecFunSumProp_Conclusion(Prop, F) BY DeltaVecFunSumProp
(1) QED BY DEF Delta VecFunSumProp_Conclusion

Removing an index from an index sum produces the expected partial sum.

THEOREM Delta VecFunIndexSumRemove At =
ASSUME
NEW D,
NEW F' € [D — DeltaVecType],
NEW I € Seq(D),
NEW i € 1.. Len(I)
PROVE
DeltaVecFunIndexSum(F, I) = DeltaVecAdd(F[I[i]], DeltaVecFunIndexSum(F, RemoveAt(I, i)))
PROOF
(1) DEFINE LenI = Len(I)
1) DEFINE Q = [k € 1.. Lenl — F[I[k]]]
DEFINE LenQ = Len(Q)
HIDE DEF Lenl,), Len@

(
(1
(1
(1)1. 1 € Seq(D) OBVIOUS

—~— ~— ~— ~

116 APPENDIX C. PROOF OF CORRECTNESS

(1)2.4 € 1.. Lenl BY DEF Lenl
(1)3. LenI € Nat BY LenInNat DEF Lenl
()4.1 € [1.. Lenl — D] BY LenAziom DEF Lenl
(1)5.Q € [1.. Lenl — DeltaVecType] BY (1)4 DEF Q
(1Y6. @ € Seq(DeltaVecType) BY (1)3, (1)5, IsASeq
(1)7. Len@ = Lenl BY (1)3, (1)5, (1)6, LenDomain DEF Len@
(1)8.4 € 1.. Len@ BY (1)2, (1)7
(1)9. DeltaVecSeqSum(Q) = DeltaVecAdd(Q|i], DeltaVecSeqSum(RemoveAt(Q, i))) BY (1)6, (1)8, DeltaVecSeqSumRer
(1)10. DeltaVecFunIndexSum(F, I) = DeltaVecSeqSum(Q) BY DEF DeltaVecFunIndexSum, @, Lenl
(Y11. F[I[i]] = Q[¢] BY (1)2 DEF @
(1)12. DeltaVecFunIndexSum(F, RemoveAt(I, 1)) = DeltaVecSegSum(RemoveAt(Q, i))
(2) DEFINE I1 = RemoveAt(I, i)
(2) DEFINE Q1 = RemoveAt(Q, i)
(2) DEFINE LenI1 = Len(I1)
(2) DEFINE LenQ1 = Len(Q1)
(2) HIDE DEF I1, Q1, Lenll, LenQ@1
(2)1. I1 € Seq(D) BY (1)1, (1)2, RemoveAtProperties DEF I1, Lenl
(2)2. Q1 € Seq(DeltaVecType) BY (1)6, (1)8, RemoveAtProperties DEF Q1, Len@
(2)3. LenI1 = LenQ@1
(3)3. LenI1 = LenI —1 BY (1)1, (1)2, RemoveAtProperties DEF I1, Lenl, Lenl1
(3Y4. LenQ1 = Len@ — 1 BY (1)6, (1)8, RemoveAtProperties DEF Q1, Len@, LenQ1
(3) QED BY (1)7, (3)3, (3)4
(2)4. DeltaVecFunIndexSum(F, I1) = DeltaVecSeqSum([k € 1 .. LenIl — F[I1[k]]]) BY DEF DeltaVecFunIndexSum,
(2) SUFFICES Q1 = [k € 1.. LenQ1 — F[I1[k]]] BY (2)3, (2)4 DEFI1, Q1
(2)5. Q1 € [1 .. LenQ1 — DeltaVecType] BY (2)2, LenAziom DEF Len@Q1
(2)6. SUFFICES ASSUME NEW k, k € 1 .. LenQ1 PROVE Q1[k] = F[I1[k]] BY (2)5
(2)7.k € 1.. LenI1 BY (2)3, (2)6
(2)8.k € 1.. LenQ1 OBVIOUS
(2)9. RemoveAt_MapBackward(I, i) BY (1)1, (1)2, RemoveAtProperties DEF I1, Lenl
(2)10. RemoveAt_MapBackward(Q, i) BY (1)6, (1)8, RemoveAtProperties DEF Q1, Len@
(2) DEFINE ik é RemoveAt_BackwardIndex(I, i, k)
(2) DEFINE Qik = RemoveAt_BackwardIndex(Q, i, k)
(2Y11. Iik € 1.. Lenl AI1[k] = I[Iik] BY (2)7, (2 >9 DEF RemoveAt_MapBackward, I1, Lenl, Lenl1
(2)12. Qik € 1 .. Len@Q A Q1[k] = Q[Qik] BY (2 >8 (2)10 DEF RemoveAt_MapBackward, Q1, Len@, LenQ1
(2)13. Iik = Qik BY DEF RemoveAt-BackwardIndex
(2) QED BY (1)7, (2)11, (2)12, (2)13 DEF Q
(1) QeD BY (1)9, (1)10, (1)11, (1)12

All exact sequences for a given subset produce the same index sum.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 117

DeltaVecFunIndexSumAnyEzactSeq_Hypothesis(F', S, I, J) =
LET
D = DOMAIN F
IN
A F € [D — DeltaVecType]
ANSCD
A IsEzactSeqFor(I, S)
A IsEzxactSeqFor(J, S)

DeltaVecFunIndezSumAnyEzactSeq_ Conclusion(F, S, I, J) =
DeltaVecFunIndexSum(F, I) = DeltaVecFunIndexSum(F', J)

THEOREM Delta VecFunIndezSumAnyEzactSeq =
ASSUME NEW F', NEW S, NEW I, NEW J, Delta VecFunIndexSumAnyFEzactSeq_Hypothesis(F, S, I, J)
PROVE DeltaVecFunIndexSumAnyExactSeq_ Conclusion(F, S, I, J)
PROOF
(1) DEFINE D = DOMAIN F
Y F € [D — DeltaVecType] BY DEF DeltaVecFunIndexSumAnyExactSeq— Hypothesis
1)SCD BY DEF Delta VecFunIndexSumAnyFEzactSeq_ Hypothesis
1) IsExactSeqFor(I, S) BY DEF DeltaVecFunIndexSumAnyExactSeq_ Hypothesis
1) IsEzactSeqFor(J, S) BY DEF DeltaVecFunIndexSumAnyEzactSeq_Hypothesis
1) HIDE DEF D
1) USE DEF DeltaVecFunIndexSumAnyEzactSeq_ Conclusion

A counterexample to this theorem is a subset S'1 with exact sequences /1 and J1 that produce different index sums.
N

1) DEFINE IsCounterexample(S1, I1, J1) =
ASTCD
A IsEzactSeqFor(I1, S1)
A IsEzactSeqFor(J1, S1)
A DeltaVecFunIndexSum(F, I1) # DeltaVecFunIndezSum(F, J1)
(1) HIDE DEF IsCounterezample
Let N be the set of all natural numbers n such that there is a counterexample and the length of one of the exact sequences is 7.
(1) DEFINE N = {n € Nat : 351, I1, J1 : IsCounterezample(S1, I1, J1) A n = Len(I1)}
(1) HIDE DEF N
(1)1. SUFFICES N = {}
2)1. SUFFICES ASSUME DeltaVecFunIndexSum(F, I) # DeltaVecFunIndezSum(F, J) PROVE FALSE OBVIOUS
2)2. IsCounterexample(S, I, J) BY (2)1 DEF IsCounterezample
2)3. I € Seq(S) BY DEF IsEzactSeqFor
2)4. Len(I) € Nat BY (2)3, LenInNat
)
)

(1
(
(
(
(
(

2)5. Len(I) € N BY (2)2, (2)4 DEF N
2) QED BY (1)1, (2)5
(1)2. SUFFICES ASSUME N # {} PROVE FALSE OBVIOUS

If there is a counterexample, there must be a smallest one.

)
)
(
(
(
(
(
(

118 APPENDIX C. PROOF OF CORRECTNESS

()3.PiICKn € N :¥m € N :n <m BY (1)2, NatWellFounded DEF N

(1ya. pick S1, I1, J1: IsCounterexample(S1, I1, J1) An = Len(I1) BY (1)3 DEF N
(1) DEFINE LenI1 = Len(I1)

(1) DEFINE LenJ1 = Len(J1)

(1) HIDE DEF Lenl1, LenJ1

Based on this “smallest” counterexample, we will construct a smaller one, thus establishing a contradiction.
First we establish various useful facts about S1, /1, and J1.

1)5. 51 C D BY (1)4 DEF IsCounterexample
6. IsEzactSeqFor(I1, S1) BY (1)4 DEF IsCounterexample
7. IsEzactSeqFor(J1, S1) BY (1)4 DEF IsCounterexample

1)8.I1 € Seq(S1) BY (1)6 DEF IsEzxactSeqFor
1)9. J1 € Seq(S1) BY (1)7 DEF IsEzactSeqFor

0. EzactSeq-Each(I1, S1) BY (1)6 DEF IsExactSeqFor
1. EzactSeq-Each(J1, S1) BY (1)7 DEF IsEzactSeqFor

1)12. LenI1 € Nat BY (1)8, LenInNat DEF Lenl1
1)13. LenJ1 € Nat BY (1)9, LenInNat DEF LenJ1
(1)s,
(1

.11 € Seq(D)

4 (1)8, SeqSupset
5.J1 € Seq(D)

6

7

BY
BY (1)5, (1)9, SeqSupset

. DeltaVecFunIndexSum(F, I1) # DeltaVecFunIndexSum(F, J1) BY (1)4 DEF IsCounterexample
.n = LenI1 BY (1)4 DEF Lenl1

1)18. 51 # {}

)1. SUFFICES ASSUME S1 = {} PROVE FALSE OBVIOUS

)2.I1 = () BY (1)6, (2)1, EzactSeqEmpty

)3. J1 =) BY (1)7, (2)1, EzactSeqEmpty

2)4. 11 = J1 BY (2)2, (2)3

2)5. DeltaVecFunIndexSum(F, I1) = DeltaVecFunIndexSum(F, J1) BY (2)4
Y QED BY (1)16, (2)5

Since S1 # {}, we pick some element s1 € S1 and remove it from S1, I1, and J1. This creates a smaller counterexample.

119. PICK s1 : s1 € S1 BY (1)18
20.PICK il : i1 € 1 .. LenI1 A I1[il] = s1 BY (1)10, (1)19 DEF EzactSeq-Fach, Lenl1
21.PICK j1:j1 € 1.. LenJ1 A J1[j1] = s1 BY (1)11, (1)19 DEF EzxactSeq_Each, LenJ1

)
)
) DEFINE S2 = S1\{sl}

) DEFINE 2 RemoveAt(I1, il)
) DEFINE J2 = RemoveAt(J1, j1)
)

)

)

)

111> 11>

DEFINE LenI2 = Len(I2)
DEFINE LenJ2 = Len(J2)
HIDE DEF S2, 12, J2, Lenl2, LenJ2

(1
(1
(1
(1
(1
(1
(1
(1
(1
{

1)22. LenI2 = LenI1 — 1 BY (1)8, (1)20, RemoveAtProperties DEF 12, Lenl2, Lenl1

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 119

1)23. LenJ2 = LenJ1 — 1 BY (1)9, (1)21, RemoveAtProperties DEF J2, LenJ2, LenJ1

24.52 C D BY (1)5 DEF S2
25. IsEzactSeqFor (12, S2) BY (1)6, (1)20, EzactSeqRemoveAt DEF I2, S2, Lenl1
26. IsExactSeqFor(J2, S2) BY (1)7, (1)21, ExactSeqRemoveAt DEF J2, S2, LenJ1

28. J2 € Seq(S2) BY (1)26 DEF IsEzactSeqFor

)

)

)

)

)27. 12 € Seq(S2) BY (1)25 DEF IsEzactSeqFor

)

1)29. Lenl2 € Nat BY (1)27, LenInNat DEF Lenl2
)

1)30. DeltaVecFunIndexSum(F, I1) = DeltaVecAdd(F[s1], DeltaVecFunIndexSum(F, 12))
Y (1)14, (1)20, DeltaVecFunIndexSumRemoveAt DEF 12, Lenl1

(1)31. DeltaVecFunIndexSum(F, J1) = DeltaVecAdd(F|s1], DeltaVecFunIndexSum(F, J2))
Y (1)15, (1)21, DeltaVecFunIndexSumRemoveAt DEF J2, LenJ1

32. DeltaVecFunIndexSum(F, 12) # DeltaVecFunIndexSum(F, J2)

2)1. SUFFICES ASSUME Delta VecFunIndexSum(F, 12) = DeltaVecFunIndezSum(F, J2) PROVE FALSE OBVIOUS
2)2. DeltaVecFunIndexSum(F, I1) = DeltaVecFunIndexSum(F, J1) BY (1)30, (1)31, (2)1

2) QED BY (1)16, (2)2

(1

)
1)33. IsCounterezample(S2, 12, J2) BY (1)24, (1)25, (1)26, (1)32 DEF IsCounterezample

34. LenI2 € N BY (1)29, (1)33 DEF Leni2, N
35. =(Lenll < LenIZ) Y (1)12, (1)22, SMTT(10)

)
(
(
(
)
|
) QED BY (1)3, (1)17, (1)34, (1)35

(

a
a
a

The index sum of an empty sequence is zero.

THEOREM Delta VecFuniIndexSumEmpty =
ASSUME
NEW D,
NEW F' € [D — DeltaVecType]
PROVE
DeltaVecFunIndexSum(F, ()) = DeltaVecZero
PROOF
(1) DEFINE I = ()
) DEFINE Lenl = = Len(I)
) DEFINE Q = [i € 1.. Lenl — F[I]i]]]
) HIDE DEF I, Lenl, Q
Y1. DeltaVecFunIndexSum(F, I) = DeltaVecSeqSum(Q)) BY DEF DeltaVecFunIndexSum, Lenl, Q
y2. Lenl = 0 BY EmptySeq DEF I, Lenl

(1
§!
§!
a
(1

120 APPENDIX C. PROOF OF CORRECTNESS

3.1.. LenI = {} BY (1)2, SMTT(10)
4. 161 . LenI : I[i] € D BY (1)3
5.Q € [1.. Lenl — DeltaVecType] BY (1)4 DEF Q
6. DOMAIN Q@ =1..Lenl BY (1)5
7. Q € Seq(DeltaVecType) BY (1)2, (1)5, IsASeq
8. Len() =0 BY (1)2, (1)6, (1)7, LenDomain
— () BY (1)7, (1)8, EmptySeq
10. DeltaVecSeqSum(Q) = DeltaVecZero BY (1)7, (1)9, DeltaVecSeqSumEmpty

(1)
(1)
(1)
(1)
(1)
(1)
(1)9.
(1)
(1) Qep BY (1)1, (1)10 DEF [

The subset sum of an empty subset is zero.

THEOREM Delta VecFunSubsetSumEmpty =
ASSUME
NEW D,
NEW F € [D — DeltaVecType]
PROVE
DeltaVecFunSubsetSum(F, {}) = DeltaVecZero
PROOF
()1. DeltaVecFunIndexSum(F, ()) = DeltaVecZero BY DeltaVecFunIndexSumEmpty
(1)2. () = EzxactSeqFor({})
BY FiniteSetEmpty, ExactSeqForProperties, ExactSeqEmpty
(1) QeD BY (1)1, (1)2 DEF DeltaVecFunSubsetSum

The sum of an all-zero function is zero.

THEOREM Delta VecFunSumAllZero =
ASSUME
NEW D,
NEW F € [D — DeltaVecType],
Vd € D : F[d] = DeltaVecZero
PROVE
A DeltaVecFunHasFiniteNonZeroRange(F')
A DeltaVecFunSum(F) = DeltaVecZero
PROOF
(1) DEFINE S = {d € DOMAIN F : F[d] # DeltaVecZero}
(1) HIDE DEF S

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 121
(1)1. DeltaVecFPunHasFiniteNonZeroRange(F)

2) S ={} BYDEF S

2) IsFiniteSet(S) BY FiniteSetEmpty

2) QED BY DEF S, DeltaVecFunHasFiniteNonZeroRange

2) S={} BYDEF S

2) DeltaVecFunSum(F') = DeltaVecFunSubsetSum(F, S) BY DEF DeltaVecFunSum, S

)
(
(
(
(1)2. DeltaVecFunSum/(F) = DeltaVecZero
(
(
(2) QED BY DeltaVecFunSubsetSumEmpty
)

(1) QeD BY (1)1, (1)2

Adding a new element = ¢ S to subset S causes the subset sum to increase by F'[z].

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSubsetSumNewElem_Hypothesis(F', S, z) =
LET

D A
IN
A F € [D — DeltaVecType]
ANSCD
A IsFiniteSet(S)
ANz €D
Nz ¢S

DOMAIN F'

DeltaVecFunSubsetSumNewElem_Conclusion(F, S, z) =
LET
D DOMAIN F

T = SU{z}

e 1>

IN

A DeltaVecAdd(F[z], DeltaVecFunSubsetSum(F, S)) = DeltaVecFunSubsetSum(F, T)

A DeltaVecAdd(DeltaVecFunSubsetSum(F, S), F[z]) = DeltaVecFunSubsetSum(F, T)
ANTCD

A IsFiniteSet(T)

THEOREM DeltaVecFunSubsetSumNewElem =

ASSUME NEW F'| NEW S, NEW z, DeltaVecFunSubsetSumNewElem_Hypothesis(F, S, x)
PROVE DeltaVecFunSubsetSumNewElem_Conclusion(F, S,)
PROOF

(1) DEFINE D = DOMAIN F

122 APPENDIX C. PROOF OF CORRECTNESS

DEFINE T
DEFINE [
DEFINE J
HIDEDEF D, T, 1, J

Su{z}
EzactSeqFor(S)
EzactSeqFor(T)

[11> 11>

)

)

)

)

)1

)2.

)3. IsFiniteSet(S) BY DEF DeltaVecFunSubsetSumNewElem_Hypothesis
4. IsFiniteSet(T) BY (1)2, (1)3, FiniteSetUnion DEF T
)

)

)

)
1)
1)

)

5.z € D BY DEF DeltaVecFunSubsetSumNewElem_Hypothesis, D
6.z ¢ S BY DEF DeltaVecFunSubsetSumNewFElem_Hypothesis

7.z € T BYDEF T
8. T\{z} =S5 BY(1)6 DEF T

9.8 C D BY DEF DeltaVecFunSubsetSumNewElem_Hypothesis, D
10. T € D BY (1)5,(1)9 DEF T

1)11. DeltaVecFunSubsetSum/(F, S) = DeltaVecFunIndezSum(F, I)
Y (1)3 DEF DeltaVecFunSubsetSum, I

(1)12. DeltaVecFunSubsetSum(F, T) = DeltaVecFunIndexSum(F, J)
Y (1)4 DEF DeltaVecFunSubsetSum, J

. IsEzxactSeqFor(I, S) BY (1)3, FxactSeqForProperties DEF I
. IsEzactSeqFor(J, T) BY (1)4, EzactSeqForProperties DEF J

1)15. ExactSeq-Each(J, T) BY (1)14 DEF IsExactSeqFor

.J € Seq(T) BY (1)14 DEF IsEzactSeqFor
.J € Seq(D) BY (1)10, (1)16, SeqSupset

1)18.PICKj: j € 1.. Len(J) A J[j] = =z BY (1)7, (1)15 DEF EzactSeq_Each

)13
)14
)15
)16
)7
)
) DEFINE K = RemoveAt(J, j)

)} HIDE DEF K

119. IsEzactSeqFor(K, S) BY (1)8, (1)14, (1)18, EzactSeqRemoveAt DEF K
)20. K € Seq(S) BY (1)19 DEF IsEzactSeqFor

)21. K € Seq(D) BY (1)9, (1)20, SeqSupset

)

)

(

(

(

(

)

(1
(1
(
(1
(1
(
(1
(1
(1
(1
(1
(1)22. DeltaVecFunIndexSum(F, K) € DeltaVecType BY (1)1, (1)21, Delta VecFunIndexSum Type
(

1)23. DeltaVecFunIndexSum(F J) = DeltaVecAdd(F[z], DeltaVecFunIndexSum(F, K))
2) use (1)1, (1)17, (1)18
2) USE Delta VecFunIndexSumRemoveAt
2) USE DEF K
2) QED OBVIOUS

(1)24. DeltaVecFunIndexSum(F, I) = DeltaVecFunIndexSum(F, K)

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 123

(2) DeltaVecFunIndexSumAnyEzactSeq- Conclusion(F, S, I, K)
(3) DeltaVecFunIndexSumAnyEzactSeq-Hypothesis(F, S, I, K)
(4) UsE (1)1, (1)9, (1)13, (1)19
(4) QED BY DEF Delta VecFunInde:z:SumAnyExactSeq_Hypotheszs
(3) QED BY DeltaVecFunIndexzSumAnyEzactSeq
(2) QED BY DEF Delta VecFunIndexSumAnyEzactSeq- Conclusion

(1)25. DeltaVecAdd(F[z], DeltaVecFunIndexSum(F, I)) = DeltaVecFunlIndexSum(F, J)
Y (1)23, (1)24

(1)26. DeltaVecAdd(F[z], DeltaVecFunSubsetSum(F, S)) = DeltaVecFunSubsetSum(F, T)
Y (1)25 DEF DeltaVecFunSubsetSum, I, J

(1)27. DeltaVecAdd(DeltaVecFunSubsetSum(F, S), F|z]) = DeltaVecFunSubsetSum(F, T)
(2)1. F[z] € DeltaVecType BY (1)1, (1)5
(2)2. DeltaVecFunSubsetSum(F, S) € DeltaVecType
BY (1)1, (1)3, (1)9, DeltaVecFunSubsetSum Type DEF D
2) QED BY (1)26, (2)1, (2)2, DeltaVecAddCommutative

(
(1) QED
22 E (1)4, (1)10, (1)26, (1)27

) Us
2) QED BY DEF DeltaVecFunSubsetSumNewElem_ Conclusion, D, T

Adding element z to subset S does not change the subset sum when either already z € S or F[z] = Zero.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

Delta VecFunSubsetSumElemNoChange_Hypothesis(F, S,) =
LET

D = DOMAIN F
IN
A F € [D — DeltaVecType)
ANSCD
A IsFiniteSet(S)
ANz €D
ANz € SV Flz] = DeltaVecZero

Delta VecFunSubsetSumElemNoChange_ Conclusion(F, S, z) =
LET
D DOMAIN F'
T = SU{z}

e 11>

IN

124 APPENDIX C. PROOF OF CORRECTNESS

A DeltaVecFunSubsetSum(F, S) = DeltaVecFunSubsetSum(F', T')
ANTCD
A IsFiniteSet(T)

THEOREM Delta VecFunSubsetSumElemNoChange =
ASSUME NEW F'| NEW S, NEW z, DeltaVecFunSubsetSumElemNoChange_Hypothesis(F, S, x)
PROVE DeltaVecFunSubsetSumElemNoChange_Conclusion(F, S,)
PROOF
1) DEFINE D
1) DEFINE T'
1

DOMAIN F
Su{z}
HIDE DEF D, T

=
=
1

F € [D — DeltaVecType] BY DEF DeltaVecFunSubsetSumElemNoChange- Hypothesis, D

1
1

x € D BY DEF DeltaVecFunSubsetSumFElemNoChange— Hypothesis, D
.z € SV Flz] = DeltaVecZero BY DEF DeltaVecFunSubsetSumElemNoChange— Hypothesis

)
)
)
)2.
)3
1)4. S C D BY DEF DeltaVecFunSubsetSumFElemNoChange_Hypothesis, D
1)5. T C D BY(1)2,(1)4 DEF T
)6
)7
)8
)
(
(

1
1
1

. IsFiniteSet({z}) BY FiniteSetSingleton
. IsFiniteSet(S) BY DEF DeltaVecFunSubsetSumElemNoChange_ Hypothesis
(

8. IsFiniteSet(T) BY (1)6, (1)7, FiniteSetUnion DEF T

o~ o~~~ o~ o~ o~ o~ o~ o~~~

1

Nel

. DeltaVecFunSubsetSum(F, S) = DeltaVecFunSubsetSum(F, T)
2)1.CASEz € S BY (2)1 DEF T
2)2.CASEz ¢ S
(3)1. DeltaVecAdd(F[z], DeltaVecFunSubsetSum(F, S)) = DeltaVecFunSubsetSum(F, T)
(4) DeltaVecFunSubsetSumNewElem_Conclusion(F, S, z)
(5) DeltaVecFunSubsetSumNewElem_Hypothesis(F, S,)
(6) USE (1)1, (1)2, (1)4, (1)7, (2)2
(6) QED BY DEF DeltaVecFunSubsetSumNewFElem_Hypothesis, D
(5) QED BY Delta VecFunSubsetSumNewElem
(4) QED BY DEF Delta VecFunSubsetSumNewElem- Conclusion, T
(3)2. F[z] = DeltaVecZero BY (1)3, (2)2
(3)3. DeltaVecFunSubsetSum(F', S) € DeltaVecType
(4) USE (1)1, (1)4, (1)7
(4) QED BY DeltaVecFunSubsetSum Type DEF D
(3) QED BY (3)1, (3)2, (3)3, DeltaVecZeroType, DeltaVecAddZero
2) QED BY (2)1, (2)2

2 13, (18, (1)9

{

(1) QED
(2) USE
(2) QED BY DEF DeltaVecFunSubsetSumElemNoChange_ Conclusion, D, T

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION 125

If two functions F' and G have the same value on every s € S, then their subset sums on S are the same.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSubsetSumSameSubset_Hypothesis(F, G, §) =

LET
DF £ DOMAIN F
DG = DOMAIN G

IN

A F € [DF — DeltaVecType]
A G € [DG — DeltaVecType]
NS C DF

NS C DG

A IsFiniteSet(S)

AVs € S: Fls] = Gls]

Delta VecFunSubsetSumSameSubset_Conclusion(F, G, §) =
A DeltaVecFunSubsetSum(F, S) = DeltaVecFunSubsetSum(G, S)

THEOREM Delta VecFunSubsetSumSameSubset =
ASSUME NEW F'| NEW G, NEW S, DeltaVecFunSubsetSumSameSubset_Hypothesis(F, G, S)
PROVE DeltaVecFunSubsetSumSameSubset_ Conclusion(F', G, S)

PROOF
(1) DEFINE DF £ DOMAIN F
1) DEFINE DG = DOMAIN G
1) DEFINE I = EzactSeqFor(S)
1) DEFINE QF = [i € 1.. Len(I) — F|I[i]]]
1) DEFINE QG = [i € 1.. Len(I) — G[I[d]]]
1) HIDE DEF DF, DG, I, QF, QG

1. F € [DF — DeltaVecType] BY DEF DeltaVecFunSubsetSumSameSubset_Hypothesis, DF
2. G € [DG — DeltaVecType] BY DEF DeltaVecFunSubsetSumSameSubset_Hypothesis, DG

1)3. S C DF BY DEF DeltaVecFunSubsetSumSameSubset_Hypothesis, DF
1)4. S C DG BY DEF DeltaVecFunSubsetSumSameSubset_Hypothesis, DG

1)5. IsFiniteSet(S) BY DEF Delta VecFunSubsetSumSameSubset_ Hypothesis
1)6.Vs € S : F[s] = G[s] BY DEF DeltaVecFunSubsetSumSameSubset_ Hypothesis

7. DeltaVecFunSubsetSum(F, S) = DeltaVecSeqSum(QF)

2)1. DeltaVecFunSubsetSum(F, S) = DeltaVecFunIndexSum(F, I) BY DEF DeltaVecFunSubsetSum, I
2)2. DeltaVecFunIndexSum(F, I) = DeltaVecSeqSum(QF) BY DEF Delta VecFunIndexSum, QF

2) QED BY (2)1, (2)2

o~ o~~~ \./\/ \/\/ ~ ~— NN

126 APPENDIX C. PROOF OF CORRECTNESS

(1)8. DeltaVecFunSubsetSum(G, S) = DeltaVecSeqSum(QG)

2)1. DeltaVecFunSubsetSum(G, S) = DeltaVecFunIndexSum(G, I) BY DEF Delta VecFunSubsetSum, I
2)2. DeltaVecFunIndexSum(G, I) = DeltaVecSeqSum(QG) BY DEF DeltaVecFunIndexSum, QG

2) QED BY (2)1, (2)2

9. QF = QG

1. IsEzactSeqFor(I, S) BY (1)5, ExactSeqForProperties DEF I
2)2.I € Seq(S) BY (2)1 DEF IsExactSeqFor

2)3.Viel. Len(I) I[i] € S BY (2)2, ElementOfSeq

2)4. QF € [1.. Len(I) — DeltaVecType] BY (1)1, (1)3, (2)3 DEF QF
2)

2)

2)

(1

(1
5.0G € 1. Len() — DeltaVecType] BY (1)2, (1)4, (2)3 DEF QG
6.Viel..Len(I): QF[i] = QG[i] BY (1)6, (2)3 DEF QF, QG
QED BY (2)4, (2)5, (2)6, Isa

)
(
(
(
)
(
(
(
(
(
(
(
(1)10. DeltaVecFunSubsetSum(F, S) = DeltaVecFunSubsetSum(G, S) BY (1)7, (1)8, (1)9

)

(1) QED BY (1)10 DEF DeltaVecFunSubsetSumSameSubset_ Conclusion

Adding a delta vector at a point in a function preserves the condition that the function has a range of delta vectors.

THEOREM Delta VecFunAddAtPreserves Type =
ASSUME
NEW D,
NEW F' € [D — DeltaVecType],
NEW d € D,
NEW v € DeltaVecType
PROVE
DeltaVecFunAddAt(F, d, v) € [D — DeltaVecType]
PROOF
) DEFINE E = DeltaVecFunAddAt(F, d, v)
HIDE DEF F
SUFFICES E € [D — DeltaVecType] BY DEF F
= [F EXCEPT ![d] = DeltaVecAdd(F[d], v)] BY DEF DeltaVecFunAddAt, E
SUFFICES ASSUME NEW k € D PROVE E[k] € DeltaVecType BY (1)1
2.CASEk # d
2)1. E[k] = F[k] BY (1)1, (1)2
2)2. F[k] € DeltaVecType OBVIOUS
2) QED BY (2)1, (2)2
3.
2
2

(1

(1
(1
(1
(1
(1

(1)3.CASEk =d
y1. E[k] = DeltaVecAdd(Fk], v) BY (1)1, (1)3
)2. F[k] € DeltaVecType OBVIOUS

)
)
)1
)
)
(
(
(
)
2
(2) QED BY (2)1, (2)2, DeltaVecAddType

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION

(1) QED BY (1)2, (1)3

Adding a delta vector at a point in a function preserves the condition that the function has a finite non-zero range.

THEOREM Delta VecFunAddAtPreservesFiniteNonZeroRange =
ASSUME
NEW D,
NEW F € [D — DeltaVecType], DeltaVecFunHasFiniteNonZeroRange(F),
NEW d € D,
NEW v € DeltaVecType
PROVE
DeltaVecFunHasFiniteNonZeroRange(Delta VecFunAddAt(F, d, v))
PROOF
(1) DEFINE E = DeltaVecFunAddAt(F, d, v)
) DEFINE SF' {k € D: F[k] # DeltaVecZero}
) DEFINE SE = {k € D : E[k] # DeltaVecZero}
) HIDE DEF E, SF, SE
) SUFFICES Delta VecFunHastmteNonZemRange(E) BY DEF £
V1. E € [D — DeltaVecType| BY DeltaVecFunAddAtPreservesType DEF E
) SUFFICES IsFiniteSet(SE) BY (1)1 DEF DeltaVecFunHasFiniteNonZeroRange, SE
)2. E = [F EXCEPT ![d] = DeltaVecAdd(F[d], v)] BY DEF DeltaVecFunAddAt, E
)3. IsszteSet(SF) BY DEF DeltaVecFunHasFiniteNonZeroRange, SF
4. IsFiniteSet({d}) BY FiniteSetSingleton
)
)
)
)
)8.
9.
)
) Q

1> Hl>

5. IsFiniteSet(SF U {d}) BY (1)3, (1)4, FiniteSetUnion
SUFFICES SE C (SF U {d}) BY (1)5, FiniteSetSubset
6. SUFFICES ASSUME NEW k € SE, k ¢ SF, k # d PROVE FALSE OBVIOUS
7.k € D BY (1)6 DEFSE
E[k] # DeltaVecZero BY (1)6 DEF SE
F[k] = DeltaVecZero BY (1)6, (1)7 DEF SF
10. Flk] BY (1)1, (1)2, (1)6, (1)7

(1
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(E[k] =

(ED BY (1)8, (1)9, (1)10

1
1
1
1
1
1
1
1
1
1
1
1
1)8
1
1
1

Adding delta vector v to F'[z] increases the sum of the function by v.

127

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this

theorem.

The strategy of the proof is as follows. We define G as the function produced by adding v to component z in function F'. Clearly, /' and G have

the same domain and if F' has a finite non-zero range of delta vectors, so will G.

128 APPENDIX C. PROOF OF CORRECTNESS

We define S as the subset of the domain of F' that maps to non-zero values, and likewise 7" as the subset of the domain of G that maps to non-zero
values. Note that since F' and G are identical everywhere except possibly at z, S and 7" will be the same except that possibly one or the other will
include z.

To get rid of this “possibly”, we expand S to S1 by adding the element z if it was not already included. Note that SubsetSum(F, S) =
SubsetSum(F, S1) because S already contained all domain elements that map to non-zero values under F.

We do the same thing with 7', and now we have sets S1 and 7'1 that are identical and include z. From these sets we construct S2 and 7'2
respectively by taking z out. Since F' and G are identical everywhere except possibly at =, we can conclude that S2 = 7'2 and consequently that
SubsetSum(F, S2) = SubsetSum(G, T2).

We use the Delta VecFunSubsetSumNewElem lemma to relate the S1 and 7'1 subset sums to the respective S2 and 7'2 subset sums. Putting
everything together with a little commutativity and associativity gives us the conclusion of the theorem.

A

DeltaVecFunSumAddAt_Hypothesis(F, x, v)
LET
D = DOMAIN F
IN
A F € [D — DeltaVecType]
A DeltaVecFunHasFiniteNonZeroRange(F)
Nz €D
A v € DeltaVecType

DeltaVecFunSumAddAt_Conclusion(F, z, v) =

LET

D = DOMAIN F

G = DeltaVecFunAddAt(F, , v)
IN

A G € [D — DeltaVecType]

A DeltaVecFunHasFiniteNonZeroRange(G)

A DeltaVecFunSum(G) € DeltaVecType

A DeltaVecFunSum(G) = DeltaVecAdd(v, DeltaVecFunSum(F'))
A DeltaVecFunSum(G) = DeltaVecAdd(DeltaVecFunSum(F'), v)

A

THEOREM Delta VecFunSumAddAt =
ASSUME NEW F', NEW z, NEW v, DeltaVecFunSumAddAt_Hypothesis(F, x, v)
PROVE DeltaVecFunSumAddAt_Conclusion(F, z, v)

PROOF
Define some convenient abbreviations for this proof.

(1) DEFINE Type DeltaVecType

(1) DEFINE Zero DeltaVecZero

(1) DEFINE Add(_a, _b) DeltaVecAdd(-a, _b)

(1) DEFINE SubsetSum(_F, _S) DeltaVecFunSubsetSum(_F, _S)
(1) DEFINE Sum(_F) DeltaVecFunSum(-F)

(1)

(1)

e e e e 11> e

1) DEFINE AddAt(-F, _z, _v) DeltaVecFPunAddAt(-F, _z, _v)

1) DEFINE D 2 DOMAIN F'

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION

(1) DEFINE G = AddAt(F, z, v)

(1) DEFINE S % {k € D: F[k] # Zero}
21; DEFINE T = {k € ? :}G[k] # Zero}

1) DEFINE S1 = S U {x

(1) DEFINE T1 = T U {z}

(1) DEFINE §2 = S1\ {z}

(1) DEFINE T2 = T1\ {z}

(1) HIDEDEF D, G, S, T, S1, T1, 52, T2

Some easy initial facts.

(I)1. 2 € D BY DEF DeltaVecFunSumAddAt-Hypothesis, D
2.v € Type BY DEF DeltaVecFunSumAddAt_Hypothesis

3. F € [D — Type| BY DEF DeltaVecFunSumAddAt_Hypothesis, D
G € [D — Type]

2) USE (1)1, (1)2, (1)3

2) QED BY DeltaVecFunAddAtPreservesType DEF G

(1
a
a

5. DeltaVecFunHasFiniteNonZeroRange(F) BY DEF DeltaVecFunSumAddAt_Hypothesis
6. DeltaVecFunHasFiniteNonZeroRange(G)

2) USE (1)1, (1)2, (1)3, (1)5

2) QED BY DeltaVecFunAddAtPreservesFiniteNonZeroRange DEF G

)

)3.

)4.

(

(

1)

1)

(

(

)

)8.5 C D BYDEF S

)9. T C D BYDEF T

»10. S1 C D BY (1)1, (1)8 DEF S1
y11. T1 C D BY (1)1, (1)9 DEF T1
y12..52 C D BY (1)10 DEF 52
y13. T2 C D BY (1)11 DEF T2

)
)
)
)
)
)
)

14. IsFiniteSet({z}) BY FiniteSetSingleton
15. IsFiniteSet(S) BY (1)3, (1)5 DEF DeltaVecFunHasFiniteNonZeroRange, S
16. IsFiniteSet(T) BY (1)4, (1)6 DEF DeltaVecFunHasFiniteNonZeroRange, T
17. IsFiniteSet(S1) BY (1 >14 (1)15, FiniteSetUnion DEF S1
18. IsFiniteSet(T1) BY (1)14, (1)16, FiniteSetUnion DEF T1

(S2) BY (1)17, FiniteSetSubset DEF S2

(T2) BY (1)18, FiniteSetSubset DEF T2

Sum(F) and Sum(G) are the same as the respective subset sums over S1 and T'1.
(1)21. Sum(F) = SubsetSum(F', S1)
(2)1. Sum(F) = SubsetSum(F, S) BY (1)3 DEF DeltaVecFunSum, S
(2)2. SubsetSum(F, S) = SubsetSum(F, S1)
(3) DeltaVecFunSubsetSumElemNoChange_Conclusion(F, S, x)
(4) DeltaVecFunSubsetSumElemNoChange_Hypothesis(F, S, x)
(5y x € SV F|z] = DeltaVecZero BY (1)1 DEF S

19. IsFiniteSet
20. IsFiniteSet

129

130 APPENDIX C. PROOF OF CORRECTNESS

(5) UsE ()1, (1)3, (1)8, (1)15
(5) QED BY DEF DeltaVecFunSubsetSumElemNoChange_Hypothesis
(4) QED BY Delta VecFunSubsetSumElemNoChange
(3) QED BY DEF Delta VecFunSubsetSumFElemNoChange_ Conclusion, S1
2) QED BY (2)1, (2)2

2)1. Sum(G) = SubsetSum (G, T) BY (1)4 DEF DeltaVecFunSum, T
2)2. SubsetSum(G, T) = SubsetSum (G, T1)
(3) DeltaVecFunSubsetSumElemNoChange_Conclusion(G, T, z)

(4

(

(1)22. Sum(G) = SubsetSum(G, T1)
(
(

DeltaVecFunSubsetSumFElemNoChange_Hypothesis(G, T,)
5Yz € TV Glz] = Zero BY (1)1 DEF T
5) Use (1)1, (1)4, (1)9, (1)16
5) QED BY DEF Delta VecFunSubsetSumElemNoChange_Hypothesis
(4) QED BY Delta VecFunSubsetSumElemNoChange
(3) QED BY DEF Delta VecFunSubsetSumElemNoChange- Conclusion, T1
(2) QED BY (2)1, (2)2

)
(
(
(

Relate the S'1 and T'1 subset sums to the respective sums over the smaller subsets S2 and 7'2.
(1)23. SubsetSum(F, S1) = Add(F[z], SubsetSum(F, S2))
(2)1. SubsetSum(F, S2U {z}) = Add(F[z], SubsetSum(F, S2))
(3) DeltaVecFunSubsetSumNewFElem_ Conclusion(F, S2, 1)
(4) DeltaVecFunSubsetSumNewElem_Hypothesis(F, S2,)
(5) z ¢ S2 BY DEF 52
(5) UsE (1)1, (1)3, (1)12, {1)19
(5) QED BY DEF Delta VecFunSubsetSumNewElem Hypothesis
(4) QED BY DeltaVecFunSubsetSumNewElem,
(3) QED BY DEF Delta VecFunSubsetSumNewElem_ Conclusion
(2)2. S1 = §2U {z}
(3
(3
(2)
(1)24. SubsetSum(G, T1) = Add(G[z], SubsetSum (G, T2))
(2)1. SubsetSum (G, T2U {z}) = Add(G|z], SubsetSum (G, T2))
(3) DeltaVecFunSubsetSumNewElem_Conclusion(G, T2, x)
(4) DeltaVecFunSubsetSumNewElem_Hypothesis(G, T2, x)
(5) z ¢ T2 BY DEF T2
(5) UsE (1)1, (1)4, (1)13, (1)20
(5) QED BY DEF Delta VecFunSubsetSumNewElem_Hypothesis
(4) QED BY DeltaVecFunSubsetSumNewElem
(3) QED BY DEF Delta VecFunSubsetSumNewElem_Conclusion
)2. T1= T2U {2}
(3yz € T1 BY DEF T'1
(3
)

Yz € S1 BY DEF S1
} QED BY DEF 52
QED BY (2)1, (2)2

(2

) QED BY DEF T2

(2) QED BY (2)1, (2)2

C.10. FACTS ABOUT SUMMING UP DELTA VECTORS IN THE RANGE OF A FUNCTION

The consequences of G = AddAt(F, z, v)
(1)25. G = [F EXCEPT ![z] = Add(F[z], v)] BY DEF DeltaVecFunAddAt, G

(1)26. G[z] = Add(v, F[z])
(2) Glz] = Add(F[z], v) BY (1)1, (1)3, (1)25
(2) Flz] € Type BY (1)1, (1)3
(2) v € Type BY (1)2
(2) QED BY DeltaVecAddCommutative
(1)27. 82 = T2
(2) §1=T1
(3)Vk e D:k+#z= F[k] = G[k] BY (1)3, (1)4, (1)25
(3) QEDBY DEF S, T, S1, T'1
2) QED BY DEF 52, T2

2) SUFFICES SubsetSum(F, §2) = SubsetSum(G, S2) BY (1)27
2) DeltaVecFunSubsetSumSameSubset_Conclusion(F', G, S2)
(3) DeltaVecFunSubsetSumSameSubset_Hypothesis(F, G, S2)
(4) USE (1)3, (1)4, (1)12, (1)19, (1)25
(4) © ¢ S2 BY DEF 52
(4yVs € S2: F[s] = G[s] oBVIOUS
(4) QED BY DEF Delta VecFunSubsetSumSameSubset_Hypothesis
(3) QED BY DeltaVecFunSubsetSumSameSubset
(2) QED BY DEF Delta VecFunSubsetSumSameSubset_Conclusion

(

(1)28. SubsetSum(F', S2) = SubsetSum(G, T2)
(
(

(1)29. SubsetSum (G, T1) = Add(v, SubsetSum(F, S1))
(2) SubsetSum(G, T1) = Add(v, Add(Fz], SubsetSum(F, 52)))

3) SubsetSum (G, T1) = Add(Add(v, F|z]), SubsetSum(F, S2)) BY (1)24, (1)26, (1)28

(
(3) Flz] € Type BY (1)1, (1)3
(3) v € Type BY (1)2
(3) SubsetSum(F, S2) € Type BY (1)3, (1)12, (1)19, DeltaVecFunSubsetSum Type
(3) QED BY DeltaVecAddAssociative

2) QED BY (1)23

(1)30. Sum(G) = Add(v, Sum(F)) BY (1)21, (1)22, (1)29

(
)
(1)31. Sum(G) = Add(Sum(F), v)
(2)1. v € Type BY (1)2
(2)2. Sum(F) € TypeBY (1)3, (1)5, DeltaVecFunSumType
(2) QED BY (1)30, (2)1, (2)2, DeltaVecAddCommutative
)
(
(

(1) QED

2) USE (1)4, (1)6, (1)7, (1)30, (1)31
2) QED BY DEF DeltaVecFunSumAddAt_Conclusion, G, D

131

132 APPENDIX C. PROOF OF CORRECTNESS

C.11. FACTS ABOUT UPRIGHT DELTA VECTORS 133

C.11 Facts about upright delta vectors

MODULE NaiadClockProofDeltaVec Upright

EXTENDS NaiadClockProofDeltaVecFuns

Facts about upright delta vectors.

If v is an upright delta vector then for every positive point ¢ there is some negative point s < ¢ such that v is nonpos up thru s. We call point s a
support in v for point ¢.

THEOREM Delta Vec Upright_ ExistsSupport =
ASSUME
NEW leq € PointRelationType,
NEW v € DeltaVecType,
NEW t € Point,
IsPartialOrder(leq),
IsDeltaVecUpright(leq, v),
v[t] >0
PROVE
LET
a=<b
a=<b

2 eglallt]
= a=xbAa#b
IN
ds € Point :
Ns <t
Av[s] <0
A IsDeltaVecNonposUpto(leq, v, s)
PROOF
(1)1. IsDeltaVecSupported(leq, v, t) BY DEF IsDeltaVecUpright

(1) QED BY (1)1 DEF IsDelta VecSupported

DeltaVecZero is an upright delta vector.

THEOREM Delta Vec Upright_Zero =

134 APPENDIX C. PROOF OF CORRECTNESS

ASSUME
NEW leq € PointRelationType,
IsPartialOrder(leq)
PROVE
IsDeltaVecUpright(leq, DeltaVecZero)
PROOF
(1) QED BY DEF DeltaVecZero, IsDeltaVecUpright, IsDeltaVecSupported, Isa

The sum of two upright delta vectors is an upright delta vector.

THEOREM Delta VecUpright_Add =
ASSUME
NEW leq € PointRelationType,
NEW vl € DeltaVecType,
NEW v2 € DeltaVecType,
IsPartialOrder(leq),
IsDeltaVecUpright(leq, vl),
IsDeltaVecUpright(leq, v2)
PROVE
IsDeltaVecUpright(leq, DeltaVecAdd(vl, v2))
PROOF
(1)1. PICK v0 € DeltaVecType : v0 = DeltaVecAdd(vl, v2) BY DeltaVecAddType

(1) DEFINE a < b = leg[a][b]
(I)DEFINEa < b = a<bAa#b

Assume that point ¢ is positive in v0. It suffices to find a support for ¢. A support is a point lower than ¢ that is negative in v0 and no yet lower
point is positive in v0.
<1>2. SUFFICES ASSUME
NEW t € Point,
v0[t] >0
PROVE
ds € Point :
Ns =<t
Av0[s] <0
A—=Ju € Point: u < s Av0[u] >0
BY (1)1 DEF IsDeltaVecUpright, IsDeltaVecSupported, IsDeltaVecNonposUpto

(1)3. v1[t] > 0V w2[t] > 0 BY (1)1, (1)2, SMTT(10) DEF DeltaVecAdd, DeltaVecType

Without loss of generality, pick va as whichever of v1 or v2 is positive at point ¢, and pick vb as the other.

C.11. FACTS ABOUT UPRIGHT DELTA VECTORS 135

1) DEFINE vaisvl = v1[t] > 0
1) HIDE DEF wvaisvl

1)4. PICK va € DeltaVecType : va = IF vaisvl THEN vl ELSE v2 OBVIOUS
1)5. PICK vb € DeltaVecType : vb = IF vaisvl THEN v2 ELSE vl OBVIOUS
1)6. IsDeltaVec Upright(leq, va) BY (1)4
1)7. IsDeltaVecUpright(leg, vb) BY (1)5

1)8. v0 = DeltaVecAdd(va, vb) BY (1)1, (1)4, (1)5, DeltaVecAddCommutative
1)9. v (1

a[t] > 0 BY (1)3, (1)4 DEF vaisvl

Since va is upright and va[t] > 0, we can pick a lower point z that is negative in va and no yet lower point is positive in va.

(1)10. PICK = € Point :
N x <t
A walz] <0
A IsDeltaVecNonposUpto(legq, va, x)
BY (1)6, (1)9, DeltaVecUpright_ExistsSupport

State what we know about z as separate facts.

(H1l.z <t BY (1)10

(1)12. val[z] < 0 BY (1)10

(1)13. IsDelta VecNonposUpto(leq, va, x) BY (1)10
(

1)14. CASE —3s € Point : s < x Avb[s] >0

No point up thru z is positive in vb. In this case, point z is a support in v0 for point ¢, since in v0 point z must be negative and no lower point
can be positive.

(2)1. =(vb[z] > 0) BY (1)14, PartialOrderReflexive
(2)2. v0[z] < 0 BY (2)1, (1)8, (1)12, SMTT(10) DEF DeltaVecAdd, DeltaVecType
(2)3. ASSUME NEW u € Point, u < z, v0[u] > 0 PROVE FALSE
(3)1. =(valu] > 0) BY (2)3, (1)13 DEF IsDelta VecNonposUpto
(3)2. ~(0b[u] > 0) BY (2)3, (1)14
(3)3. =(v0[u] > 0) BY (3)1, (3)2, (1)8, SMTT(10) DEF DeltaVecAdd, DeltaVecType
(3) QED BY (3)3, (2)3
(2) QED BY (1)1, (2)2, (23
(1)15. CASE 3s € Point : s <z Avb[s] >0
Some point at or lower than z is positive in vb. We pick one.
(2)1. PICK s € Point : s < z Awvb[s] >0 BY (1)15
State what we know about s as separate facts.
(2)2. s 2z BY (2)1
(2)3. vb[s] > 0 BY (2)1

Since vb is upright and vb[s] > 0, we can pick a lower point y that is negative in vb and no yet lower point is positive in vb.
Since point y < s =X z, no point at or lower than y can be positive in va. Therefore, in v0 point y must be negative and no yet lower point
can be positive. Hence point y is a support in v0 for point ¢.
(2)4. PICK y € Point :
N y<s
A wbly] <0

136 APPENDIX C. PROOF OF CORRECTNESS

(

A IsDeltaVecNonposUpto(leg, vb, y)
BY (1)7, (2)3, DeltaVecUpright_ ExistsSupport
State what we know about y as separate facts.
2)5.y < s BY (2)4
)6. vb[y] < 0 BY (2)4
2)7. IsDeltaVecNonposUpto(leq, vb, y) BY (2)4

.y =2z BY (2)2, (2)5, PartialOrderTransitive
.=(valy] > 0) BY (1)13, (2)8 DEF IsDeltaVecNonposUpto
0. v0[y] < 0 BY (2)6, (2)9, (1)8, SMTT(10) DEF DeltaVecAdd, DeltaVecType
1. ASSUME NEW u € Point, u < y, v0[u] > 0 PROVE FALSE
y1.u =2 BY (2)8, (2)11, PartialOrderTransitive
2. =(vafu] > 0) BY (3)1, (1)13 DEF IsDelta VecNonposUpto
(3)3. =(wb[u] > 0) BY (2)7, (2)11 DEF IsDeltaVecNonposUpto
Y4, = (v0[u] > 0) BY (3)2, (3)3, (1)8, SMTT(10) DEF DeltaVecAdd, DeltaVec Type
(3) QED BY (3)4, (2)11
(2)12. y < t BY (2)8, (1)11, PartialOrderStrictly Transitive
(2) QED BY (2)10, (2)11, (2)12

1) QeD BY (1)14, (1)15

The skip k£ sum of a sequence of upright delta vectors is an upright delta vector.

CO

ROLLARY DeltaVecUpright_SeqSkipSum =

ASSUME

NEW leg € PointRelationType,

NEW @ € Seq(DeltaVecType),

NEW k € Nat,

IsPartialOrder(leq),

Vi€ Nat: k <iANi<Len(Q)= IsDeltaVecUpright(leq, Qli])

PROVE
IsDeltaVecUpright(leq, DeltaVecSeqSkipSum(k, Q))
PROOF

(
(1
(
(

1) DEFINE Prop(a) = IsDeltaVecUpright(leq, a)
)} USE Delta VecUpright_Zero

1) USE DeltaVecUpright_Add

)

(2

1) DeltaVecSeqSkipSumProp_Conclusion(Prop, Q, k)
) DeltaVecSeqSkipSumProp_ Hypothesis(Prop, Q, k)
(3) QED BY DEF Delta VecSeqSkipSumProp_ Hypothesis
(2) QED BY Delta VecSeqSkipSumProp

C.11. FACTS ABOUT UPRIGHT DELTA VECTORS 137

(1) QED BY DEF DeltaVecSeqSkipSumProp_Conclusion, Prop

The sum of a sequence of upright delta vectors is an upright delta vector.

COROLLARY DeltaVec Upright_SeqSum =
ASSUME
NEW leq € PointRelationType,
NEW Q € Seq(DeltaVecType),
NEW k € Nat,
IsPartialOrder(leq),
Viel.. Len(Q) : IsDeltaVecUpright(leq, Qi)
PROVE
IsDeltaVecUpright(leq, DeltaVecSeqSum(Q))
PROOF
(1) DEFINE Prop(a) £ IsDeltaVecUpright(leq, a)
(1) USE DeltaVecUpright_Zero
(1) USE DeltaVecUpright_Add
(

1) DeltaVecSeqSumProp_Conclusion(Prop, Q)
2) DeltaVecSeqSumProp_Hypothesis(Prop, Q)

(3) QED BY DEF Delta VecSeqSumProp_Hypothesis
(2) QED BY DeltaVecSeqSumProp

(1) QED BY DEF Delta VecSeqSumProp_ Conclusion, Prop

o~~~ ~ ~

The sum of the delta vectors in the range of a function, all of which are upright, is an upright delta vector.

COROLLARY DeltaVec Upright_FunSum =
ASSUME
NEW leq € PointRelationType,
NEW D,
NEW F € [D — DeltaVecType],
IsPartialOrder(leq),
DeltaVecFunHasFiniteNonZeroRange(F'),
Vd € D : IsDeltaVecUpright(leq, F[d])
PROVE
IsDeltaVecUpright(leq, DeltaVecFunSum(F))

138

PROOF
(1) DEFINE Prop(a) = IsDeltaVecUpright(leq, a)
(1) USE DeltaVecUpright_Zero
(1) USE DeltaVecUpright-Add
(1)
(

1) DeltaVecFunSumProp_ Conclusion(Prop, F)
2) DeltaVecFunSumProp_Hypothesis(Prop, F)
(3) QED BY DEF Delta VecFunSumProp_Hypothesis
(2) QED BY Delta VecFunSumProp
(1) QED BY DEF Delta VecFunSumProp_Conclusion, Prop

APPENDIX C. PROOF OF CORRECTNESS

C.12. FACTS ABOUT BETA-UPRIGHT DELTA VECTORS 139

C.12 Facts about beta-upright delta vectors

MODULE NaiadClockProofDeltaVecBetaUpright

EXTENDS NaiadClockProofDeltaVecUpright

Facts about beta-upright delta vectors.

Given a vb-upright delta vector va, then for every positive point ¢ in va there is in va or vb some negative point s < ¢ such that va is nonpos up
thru s. We call point s a vb-foundation for point ¢ in va.

THEOREM Delta VecBetaUpright_ ExistsFoundation =
ASSUME
NEW leq € PointRelationType,
NEW va € DeltaVecType,
NEW vb € DeltaVecType,
IsPartialOrder(leq),
IsDeltaVecBetaUpright(leq, va, vb),
NEW ¢ € Point, va[t] > 0

PROVE

LET

a=<b = legla)[b]
a<b = a=bANa#b
IN

ds € Point :

ANs =<t

Awals] <0V wvb[s] <0

A IsDeltaVecNonposUpto(leq, va, s)
PROOF

(1) QED BY DEF IsDelta VecBetaUpright

A zero delta vector is vb-upright for any vb.

THEOREM Delta VecBetaUpright_Zero =
ASSUME

140 APPENDIX C. PROOF OF CORRECTNESS

NEW leg € PointRelationType,
NEW vb € DeltaVecType,
IsPartialOrder(leq)
PROVE
IsDeltaVecBetaUpright(leq, DeltaVecZero, vb)
PROOF
(1) QED BY DEF DeltaVecZero, IsDeltaVecBetaUpright, Isa

If delta vector va is vb-upright, and vb and vc are upright delta vectors, then va is (vb + vc)-upright.

THEOREM Delta VecBetaUpright_Add =
ASSUME
NEW leq € PointRelation Type,
NEW va € DeltaVecType,
NEW vb € DeltaVecType,
NEW vc € DeltaVecType,
IsPartialOrder(leq),
IsDeltaVecBetaUpright(leq, va, vb),
IsDeltaVecUpright(leq, vb),
IsDeltaVecUpright(leq, ve)
PROVE
IsDeltaVecBetaUpright(leq, va, DeltaVecAdd(vb, vc))
PROOF
(1) DEFINE a < b = leg[a][b]
(I)DEFINEa < b = a<bAa#b

Assume that ¢ is a positive point in va and that there is no (vb + vc)-foundation for ¢ in va. It suffices to show a contradiction.

(1)1. SUFFICES ASSUME
NEW t € Point,

valt] >0,
—-ds € Point :
Ns <t

Awvals] <0V (vb[s] 4+ vc[s] < 0)
A—Ju € Point : u < s Avalu] >0
PROVE FALSE

(2) USE DEF DeltaVecAdd

(2) USE DEF Delta VecType

(2) USE DEF IsDeltaVecBetaUpright

(2) USE DEF IsDeltaVecNonposUpto

(2) QED BY SMTT(10)

C.12. FACTS ABOUT BETA-UPRIGHT DELTA VECTORS 141

Since va is vb-upright, we can pick z as a vb-foundation for ¢.

(1)2. PICK © € Point :

N <t

A walz] <0V wvblz] <0

A IsDeltaVecNonposUpto(leq, va, x)

BY (1)1, DeltaVecBetaUpright_ EzistsFoundation

State what we know about z as separate facts.
()3.z <t BY (1)2
(1)4. valz] <0V vb[z] <0 BY (1)2
(1)5. IsDeltaVecNonposUpto(leq, va, x) BY (1)2

If va[z] < O then z is a (vb + vc)-foundation for ¢ in va. So this must not be. We deduce that vb[z] < 0.
(1)6. =(va[z] < 0) BY (1)1, (1)3, (1)5 DEF IsDeltaVecNonposUpto
(1)7. vb[z] < 0 BY (1)4, (1)6

If vb[z] + ve[z] < O then z is a (vb + vc)-foundation for ¢ in va. So this must not be. We deduce by arithmetic that ve[z] > 0.
(1)8. =(vb[z] + velz] < 0) BY (1)1, (1)3, (1)5 DEF IsDeltaVecNonposUpto
(1)9. ve[z] > 0 BY (1)7, (1)8, SMTT(10) DEF DeltaVecAdd, DeltaVecType

Since vc is upright, we can pick y as a support in ve for z.

(1)10. PICK y € Point :

ANy <z

Awvely] <0

A IsDeltaVecNonposUpto(leq, ve, y)

BY (1)9, DeltaVecUpright_EzistsSupport

State what we know about y as separate facts.
()11, y < z BY (1)10
(1)12. ve[y] < 0 BY (1)10
(1)13. IsDeltaVecNonposUpto(leq, ve, y) BY (1)10

By transitivity, we almost have y as (vb + vc)-support for ¢ in va.

()14, y < t BY (1)3, (1)11, PartialOrderStrictly Transitive

(1)15. ASSUME NEW u € Point, u < y, va[u] > 0 PROVE FALSE

(2) w =z BY (1)11, (1)15, PartialOrderTransitive

(2) QED BY (1)5, (1)15 DEF IsDeltaVecNonposUpto

If vb[y] + ve[y] < O then y is a (vb + vc)-support for ¢ in va. So this must not be. We deduce by arithmetic that vb[y] > 0.
(1)16. =(vb[y] 4+ vely] < 0) BY (1)1, (1)14, (1)15

(1)17. vb[y] > 0 BY (1)12, (1)16, SMTT(10) DEF DeltaVecAdd, DeltaVecType

Since vb is upright, we can pick z as a support in vb for y.

(1)18. PICK z € Point :
Nz =<y
A wvblz] <0
A IsDeltaVecNonposUpto(leq, vb, z)
BY (1)17, DeltaVecUpright_EzistsSupport

142 APPENDIX C. PROOF OF CORRECTNESS

State what we know about 2 as separate facts.

(1)19. z < y BY (1)18

(1)20. vb[z] < 0 BY (1)18

(1)21. IsDeltaVecNonposUpto(leq, vb, z) BY {1)18

By transitivity, we almost have z as (vb + wvc)-support for ¢ in va.

(1)22. z < t BY (1)14, (1)19, PartialOrderStrictly Transitive
(1)23. ASSUME NEW u € Point, u < z, va[u] > 0 PROVE FALSE
(2) v =y BY (1)19, (1)23, PartialOrderTransitive
(2) QED BY (1)15, (1)23
If vb[z] 4 vc[z] < O then z is a (vb + vc)-support for ¢ in va. So this must not be. We deduce by arithmetic that vc[z] > 0.
(1)24. = (vb[2] + velz] < 0) BY (1)1, (1)22, (1)23
(1)25. ve[z] > 0 BY (1)20, (1)24, SMTT(10) DEF DeltaVecAdd, DeltaVec Type

But z < y and y is a support in vc, so we cannot have vc[z] > 0. This completes the proof.

(1) QED BY (1)13, (1)19, (1)25 DEF IsDeltaVecNonposUpto

Given F mapping to upright delta vectors with a finite non-zero range, if delta vector va is F'[d]-upright for some d, then va is also Sum(F)-
upright.

=

DeltaVecBetaUpright— FunSum_Hypothesis(leq, F, va, d0)
LET
D = DOMAIN F
IN
A leq € PointRelationType
A IsPartialOrder(leq)
A F € [D — DeltaVecType]
A va € DeltaVecType
A DeltaVecFunHasFiniteNonZeroRange(F')
AN d € D : IsDeltaVecUpright(leq, F[d])
NdO e D
A IsDeltaVecBetaUpright(leq, va, F[dO0])

THEOREM Delta VecBetaUpright_FunSum =
ASSUME
NEW leq,
NEW F',
NEW va,
NEW d0,
DeltaVecBetaUpright_ FunSum_Hypothesis(leq, F, va, d0)

C.12. FACTS ABOUT BETA-UPRIGHT DELTA VECTORS

PROVE

IsDeltaVecBetaUpright(leq, va, DeltaVecFunSum(F))
PROOF

(1) USE DEF Delta VecBetaUpright_ FunSum_Hypothesis
1) DEFINE D = DOMAIN F

1) leq € PointRelationType OBVIOUS
1) IsPartialOrder(leq) OBVIOUS
1) F € [D — DeltaVecType] OBVIOUS
1) va € DeltaVecType OBVIOUS
1) DeltaVecFunHasFiniteNonZeroRange(F) OBVIOUS
1)Vd € D : IsDeltaVecUpright(leq, F[d]) OBVIOUS
doe D OBVIOUS

1)1. IsDeltaVecBetaUpright(leq, va, F[d0]) OBVIOUS
1) HIDE DEF Delta VecBetaUpright_ FunSum_Hypothesis

)

)

)

)

)

)

)

)

)

)

1) DEFINE G = [F EXCEPT ![d0] = DeltaVecZero)

1) DEFINE SumF = Delta VecFunSum/(F)
)
)2.
)3.
(
(
(
(
(
(
)
)
)

1) DEFINE SumG = DeltaVecFunSum(G)

1
1)3

G € [D — DeltaVecType| BY DeltaVecZeroType
DeltaVecFunHasFiniteNonZeroRange(G)

{d € D : F[d] # DeltaVecZero}
{d € D : G[d] # DeltaVecZero}

(
(
(
(
(
(
(
(1
(
(
(
(
(
(
(

2) DEFINE Fnz

1> 1>

YD

2) DEFINE Gnz

2)1.

2)2. Gnz C Fnz OBVIOUS
)
)

2)3. IsFiniteSet(Gnz) BY (2)1, (2)2, FiniteSetSubset

2) QED BY (2)3 DEF DeltaVecFunHasFiniteNonZeroRange

(1
(1
(1)6. IsDeltaVchpmght(leq, Sum@)

BY (1)2, (1)3, (1)5, DeltaVecUpright_FunSum

(1)7. F = DeltaVecFunAddAt(G, d0, F[d0])

2) QED BY (2)1 DEF DeltaVecFunAddAt

(1)8. SumF' = DeltaVecAdd(F[d0], SumG)
2) HIDE DEF G

)
(
(
)
(
(2)1. DeltaVecFunSumAddAt_Hypothesis(G, d0, F[d0])

BY (1)2, (1)3 DEF DeltaVecFunSumAddAt_Hypothesis

(2)2. DeltaVecFunSumAddAt_ Conclusion(G, d0, F[d0])
Y (2)1, DeltaVecFunSumAddAt

(2) QED BY (2)2, (1)7 DEF DeltaVecFunSumAddAt_Conclusion

(1) QED BY (1)1, (1)4, (1)6, (1)8, DeltaVecBetaUpright-Add

IsFiniteSet(Fnz) BY DEF DeltaVecFunHasFiniteNonZeroRange

4., SumG € DeltaVecType BY (1)2, (1)3, DeltaVecFunSum Type
5.V € D : IsDeltaVecUpright(leq, G[d]) BY DeltaVecUpright_Zero

2)1. F[d0] = DeltaVecAdd(DeltaVecZero, F[d0]) BY DeltaVecAddZero

143

144

APPENDIX C. PROOF OF CORRECTNESS

If we have delta vectors va and vb such that va + vb is upright and va positive implies va + vb, then va is vb-upright.

THEOREM Delta VecBetaUpright_PositiveImplies =
ASSUME
NEW leg € PointRelationType,
NEW va € DeltaVecType,
NEW vb € DeltaVecType,
IsPartialOrder(leq),
IsDeltaVecUpright(leq, DeltaVecAdd(va, vb)),
IsDeltaVecPositiveImplies(va, DeltaVecAdd(va, vb))
PROVE
IsDeltaVecBetaUpright(leq, va, vb)
PROOF
(1) DEFINE @ < b
(1) DEFINE @ < b

legla][b]
a=<bANa#b

A
A

(1)1. PICK v0 € DeltaVecType : v0 = DeltaVecAdd(va, vb) BY DeltaVecAddType

Assume that ¢ is a positive point in va. It suffices to show that there is a vb-foundation for ¢ in va.

(1)2. SUFFICES ASSUME
NEW t € Point,
va[t] >0
PROVE
ds € Point :
Ns =<1
Awal[s] <0V wvbl[s] <0
A IsDeltaVecNonposUpto(leq, va, s)
BY DEF IsDelta VecBetaUpright

(1)3. v0[t] > 0 BY (1)1, (1)2 DEF IsDeltaVecPositiveImplies

Since v0 is upright, we can pick z as a support in v0 for ¢.

(1)4. PICK z € Point :

Nz =<t

A v0[z] <0

A IsDeltaVecNonposUpto(leq, v0, x)

BY (1)1, (1)3, DeltaVecUpright_ EzistsSupport

State what we know about z as separate facts.
(1)5.2 < ¢t BY (1)4
(1)6. v0[z] < 0 BY (1)4
(1y7. IsDelta VecNonposUpto(leq, v0, z) BY (1)4

Deduce that z is a vb-foundation for ¢ in va.

C.12. FACTS ABOUT BETA-UPRIGHT DELTA VECTORS 145

.va[z] < 0V wblz] <0 BY (1)1, (1)6, SMTT(10) DEF DeltaVecAdd, DeltaVecType
. ASSUME NEW u € Point, u < z, vaJu] > 0 PROVE FALSE

(1)8
1)9
2)1. ~(v0[u] > 0) BY (1)7, (1)9 DEF IsDelta VecNonposUpto
2
2

(

2. v0[u] > 0 BY (1)1, (1)9 DEF IsDelta VecPositiveImplies
) QED BY (2)1, (2)2

~ o~ o~~~ ~——

(1) QeD BY (1)5, (1)8, (1)9 DEF IsDeltaVecNonposUpto

146 APPENDIX C. PROOF OF CORRECTNESS

C.13 Facts about delta vectors vacant up to point t

MODULE NaiadClockProofDeltaVec VacantUpto

EXTENDS NaiadClockProofDelta VecBetaUpright

Facts about delta vectors vacant up to point t.

Given delta vectors va, vb, and vc such that ve = va + b, if any two of these delta vectors are vacant up to point ¢ then the third one is also.

THEOREM Delta Vec VacantUpto_Add =
ASSUME
NEW leq € PointRelationType,
NEW va € DeltaVecType,
NEW vb € DeltaVecType,
NEW ¢ € Point

PROVE
LET

ve = DeltaVecAdd(va, vb)

VUT(v) = IsDeltaVecVacantUpto(leq, v, t)
IN

A VUT (va) N VUT (vb) = VUT (vc)

A VUT(vb) A VUT (ve) = VUT (va)

A VUT (ve) A VUT (va) = VUT(vd)
PROOF

(1) DEFINE ve

(1) DEFINE VUT (v)

DeltaVecAdd(va, vb)
IsDeltaVecVacantUpto(leq, v, t)

> 1>

(1) USE DEF DeltaVecAdd
(1) USE DEF Delta Vec Type
(1) USE DEF IsDelta Vec VacantUpto

)
(1)2. ASSUME VUT (vb), VUT (ve) PROVE VUT(va) BY (1)2, SMTT(10)
)

)
)
)
)

(1)1. ASSUME VUT (va), VUT(vb) PROVE VUT(vc) BY (1)1, SMTT(10)
)

(1)3. ASSUME VUT (ve), VUT(va) PROVE VUT(wb) BY (1)3, SMTT(10)
)

(1) QeD BY (1)1, (1)2, (1)3

C.13. FACTS ABOUT DELTA VECTORS VACANT UP TO POINT T

If we have a delta vectors va and vb such that
(1) va is vb-upright,
(2) wb is upright, and
(3) the sum va + vb is vacant up to point %,
then we can conclude that va is vacant up to point ¢.

THEOREM Delta Vec VacantUpto_BetaUpright =
ASSUME
NEW leq € PointRelation Type,
NEW va € DeltaVecType,
NEW vb € DeltaVecType,
NEW ¢ € Point,
IsPartialOrder(leq),
IsDeltaVecBetaUpright(leq, va, vb),
IsDeltaVecUpright(leq, vb),
IsDeltaVecVacantUpto(leq, DeltaVecAdd(va, vb), t)
PROVE
IsDeltaVecVacantUpto(leq, va, t)
PROOF
(1) DEFINE a < b = leg[a][b]
(1)DEFINEa < b = a<bAa#b

(1)1.V's € Point :
Awa[s] € Int
A vb[s] € Int
As =t = va[s]+vb[s]=0
BY DEF IsDeltaVecVacantUpto, DeltaVecAdd, DeltaVec Type

LEMMA : If we can find a point s < ¢ where va[s] > 0, we can produce a contradiction.
(1)2. ASSUME
NEW s € Point,
s X t,
va[s] >0
PROVE FALSE
State what we know about s as separate facts.
(2)1.s =t BY (1)2
(2)2. vals] > 0 BY (1)2
Since va is vb-upright, let z be a vb-foundation for s in va.
(2)3. PICK z € Point :
N x<s
A walz] <0V vblz] <0
A IsDeltaVecNonposUpto(leq, va, x)
BY (2)2, DeltaVecBetaUpright_FEzistsFoundation

State what we know about z as separate facts.

147

148

(2)4.z < s BY (2)3

(2)5. valz] <0V vb[z] < 0 BY (2)3

(2)6. IsDeltaVecNonposUpto(leq, va, x) BY (2)3
(2)

2)7. CASE vb[z] < 0

We have va[z] > 0 since va + vb is vacant up to point ¢.

(3Y1.z =t BY (2)1, (2)4, PartialOrder Transitive

(3)2. valz] > 0 BY (3)1, (2)7, (1)1, SMTT(10)

But this contradicts the choice of x.

(3)3. z < & BY PartialOrderReflexive

(3) QED BY (3)2, (3)3, (2)6 DEF IsDeltaVecNonposUpto

(2)8. CASE wa[z] <0

We have vb[z] > 0 since va + vb is vacant up to point ¢.
(3)1.z =<t BY (2)1, (2)4, PartialOrderTransitive
(3)2. vb[z] > 0 BY (3)1, (2)8, (1)1, SMTT(10)
Since vb is upright, let y be a support for z in vb.
(3)3. PICK y € Point :

N y<cz

A wbly] <0

A IsDeltaVecNonposUpto(leg, vb, y)

BY (3)2, DeltaVecUpright_ExistsSupport

State what we know about y as separate facts.
(3Y4.y <z BY (3)3
(3)5. vb[y] < 0 BY (3)3
(3)6. IsDeltaVecNonposUpto(leq, vb, y) BY (3)3
We have va[y] > 0 since va + vb is vacant up to point ¢.
(3Y7.y =t BY (3)1, (3)4, PartialOrderTransitive
(3)8. va[y] > 0 BY (3)5, (3)7, (1)1, SMTT(10)
But this contradicts the choice of z.

(3) QED BY (3)4, (3)8, (2)6 DEF IsDeltaVecNonposUpto
(2) QED BY (2)3, (2)7, (2)8

APPENDIX C. PROOF OF CORRECTNESS

So let us assume that the conclusion is false and then derive a contradiction. If the conclusion is false, then there must be some point s < ¢ such
that va[s] # 0.

(1

3. SUFFICES ASSUME
NEW s € Point,
s X t,
va[s] # 0
PROVE FALSE
BY DEF IsDeltaVecVacantUpto

State what we know about s as separate facts.

()d. s =t BY (1)3

C.13. FACTS ABOUT DELTA VECTORS VACANT UP TO POINT T 149

(1)5. va[s] # 0 BY (1)3

So we have two cases: either va[s] > 0 or va[s] < 0. In either case, we find a point < ¢ where va is positive. This produces a contradiction
by our lemma.

(1)6. CASE wa[s] > 0 BY (1)2, (1)4, (1)6

(1)7. CASE wa[s] < 0
We have vb[s] > 0 since va + vb is vacant up to point .
(2)1. vb[s] > 0 BY (1)1, (1)4, (1)7, SMTT(10)
Since vb is upright, let be a support for s in vb.
(2)2. PICK © € Point :
AN A
A wblz] <0
A IsDeltaVecNonposUpto(legq, vb,)
Y (2)1, DeltaVecUpright_ ExistsSupport
State what we know about z as separate facts.
(2)3.2 < s BY (2)2
(2)4. vb[z] < 0 BY (2)2
(2)5. IsDeltaVecNonposUpto(leq, vb, z) BY (2)2

We have va[z] > 0 since va + vb is vacant up to point ¢.

(2)6. & = t BY (2)3, (1)4, PartialOrder Transitive
(2)7. valz] > 0 BY (2)4, (2)6, (1)1, SMTT(10)

(2) QED BY (1)2, (2)6, (2)7
)

(1) QED BY (1)1, (1)4, (1)5, (1)6, (1)7, SMTT(10)

150 APPENDIX C. PROOF OF CORRECTNESS

C.14 Additional invariants needed in the proof

MODULE NaiadClockProofInvariants

EXTENDS NaiadClockProofDelta Vec VacantUpto

Additional invariants needed in the proof.

For every skip count k, sending processor p, and receiving processor ¢, InfoAt(k, p, q) is a delta vector.

InvInfoAtType =
Vk € Nat :
Vp € Proc:
Vq € Proc:
LET
M
LenM
InRange
V k € DOMAIN M
Vkel..LenM
Vk#A0Ak < LenM
VO <kANEkE < LenM

msg[p][q]
Len(M)

e 11> 1>

IN

A InfoAt(k, p, q) € DeltaVecType

ANk =0= InfoAt(k, p, q) = DeltaVecZero

A LenM < k = InfoAt(k, p, q) = DeltaVecZero
A InRange = InfoAt(k, p, q) = MIK]

For every skip count k, sending processor p, and receiving processor g, IncomingInfo(k, p, q) is a delta vector.

InvIncominglInfo Type =
Vk € Nat :
Vp € Proc:
Vq € Proc:
LET
sum = IncomingInfo(k, p, q)! : sum
IN

C.14. ADDITIONAL INVARIANTS NEEDED IN THE PROOF 151

A sum € DeltaVecType
A IncomingInfo(k, p, q) € DeltaVecType

For every skip count k, sending processor p, and receiving processor g, GloballncomingInfo(k, p, q) is a delta vector.

InvGloballncomingInfo Type =
Vk € Nat :
Vp € Proc:
Vq € Proc:
LET
F = GlobalIncomingInfo_F(k, p, q)
IN
A F € [Proc — DeltaVecType]
A DeltaVecFunHasFiniteNonZeroRange(F')
A GloballncomingInfo(k, p, q) € DeltaVecType

GloballncomingInfo(0, p, q) is the same regardless of p.

InvGloballncomingInfoSkip0 =
Vpl € Proc:
Vp2 € Proc :
Vq € Proc:
GlobalIncomingInfo(0, pl, q) = GloballncomingInfo(0, p2, q)

For every skip count k, sending processor p, and receiving processor g, the InfoAt(k, p, q) is IncomingInfo(k, p, g)-upright.

Note that InfoAt(k, p, q) is an item of incoming information on the message queue from processor p to processor q. IncomingInfo(k, p, q)
is the sum of all subsequent incoming information on that message queue plus all information in temp|p] that has not yet been sent.

InvInfoAtBetaUpright =
Vk € Nat :
Vp € Proc:
Vq € Proc:
IsDeltaVecBetaUpright(lleq, InfoAt(k, p, q), IncomingInfo(k, p, q))

152 APPENDIX C. PROOF OF CORRECTNESS

For every skip count k, sending processor p, and receiving processor g, the InfoAt(k, p, q) is GlobalIncomingInfo(k, p, q)-upright.
Note that InfoAt(k, p, q) is an item of incoming information on the message queue from processor p to processor g.

GlobalIncomingInfo(k, p, q) is the sum of all incoming information to processor g except for skipping the first & messages coming from
Processor p.

InvGloballnfoAtBetaUpright =
Vk € Nat :
Vp € Proc:
Vq € Proc:
IsDeltaVecBetaUpright(lleq, InfoAt(k, p, q), Globallncominglnfo(k, p, q))

C.15. DEDUCE VARIOUS INVARIANTS FROM OTHERS 153

C.15 Deduce various invariants from others

MODULE NuaiadClockProofDeducelnv

EXTENDS NaiadClockProofInvariants

Deduce various invariants from others.

We prove these deductions in both the current state (unprimed) and the next state (primed). It is the exact same proof each way so we prove both
ways at once using goal# to represent both instances. There is no deduction rule that permits you to deduce the primed version from the unprimed
version since, in general, such a rule would be unsound.

The invariant InvinfoAtType follows from InvType.

THEOREM DeducelnvInfoAtType =
LET goal =
InvType
=
InvInfoAtType
IN
goal A goal’
PROOF
(1) DEFINE goal = DeducelnvInfoAtType! : ! goal
1) DEFINE DoPr(primeit,) = IF primeit THEN 2’ ELSE

1) SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS

1) DEFINE z# = DoPr(primeit,)

1) DEFINE I(k, p, q) = InvInfoAtType!(k)!(p)!(q)

1

(1)
(1)
(1)
(1)1. SUFFICES ASSUME InvType” PROVE InvInfoAtType” OBVIOUS
(1)
(1) HIDE DEF [

(1)

1) SUFFICES ASSUME NEW k € Nat, NEW p € Proc, NEW q € Proc PROVE I(k, p, q)*
The prover needs help to distribute Do Pr through quantifiers.

(2)Vk € Nat :¥Yp € Proc:V q € Proc: I(k, p, q)% BY DEF [
(2) (Vk € Nat :Vp € Proc:Y¥ q € Proc: I(k, p, q))*# OBVIOUS
(2) QED BY IsaDEF InuvInfoAtType, I

(1) DEFINE M = msg[p][q]

(1) DEFINE LenM = Len(M)
)

(1) HIDE DEF M, LenM

154 APPENDIX C. PROOF OF CORRECTNESS

2. M# € Seq(DeltaVecType) BY (1)1 DEF InvType, M
4. LenM?# € Nat BY (1)2, LenInNat DEF LenM
7

1
1
1)7. DOMAIN M# =1 .. LenM#* BY (1)2, LenDef DEF LenM

(1)
(1)
(1)
(1) DEFINE InRange =

V k € DOMAIN M#
Vkel.. LenM#
\/k;«éO/\kgLenM#
VO < kAk<LenM#

(1)8. InRange = 0 < k A k < LenM#* BY (1)4, (1)7, SMTT(10)

(1)9.CASEk =0

2)1.=(0 < k Ak < LenM#) BY (1)4, (1)9, SMTT(10)

2)2. InfoAt(k, p, q)# = DeltaVecZero BY (2)1 DEF InfoAt, LenM, M
2)3. InfoAt(k, p, q)% € DeltaVecType BY (2)2, DeltaVecZero Type
2)4. —(LenM# < k) BY (1)4, (1)9, SMTT(10)

2)5. ~InRangeBY (2)1, (1)8

2) QED BY (2)2, (2)3, (2)4, (2)5, (1)9 DEF M, LenM, I

(1)10. CASEO < k A k < LenM#

V1. InfoAt(k, p,)% = M[k]* BY (1)10 DEF InfoAt, LenM, M

V2. k € 1.. LenM# BY (1)4, (1)10, SMTT(10)

3. M[k]# € DeltaVecType BY (2)2, (1)2, ElementOfSeq DEF LenM
V4. k # 0BY (1)4, (1)10, SMTT(10)

V5. =(LenM# < k) Y (1)4, (1)10, SMTT(10)

2) QED BY (2)1, (2)3, (2)4, (2)5 DEF M, LenM, I

1
2
2
2
2
2

CASE LenM# < k
V. ~(0 < kA k < LenM#) BY (1)4, (1)11, SMTT(10)
V2. InfoAt(k, p, q)* = DeltaVecZero BY (2)1 DEF InfoAt, LenM, M
V3. InfoAt(k, p, q)# € DeltaVecType BY (2)2, DeltaVecZeroType
4.
)5.

(1)11.
2
2
2
2)4. k #0 BY (1)4, (1)11, SMTT(10)
2)5. LenM# < k BY (1)11

2)6. ~InRangeBY (2)1, (1)8

)
)
(
(
(
(
(
(
)
(
(
(
(
(
(
)
(
(
(
(
2
(2) QED BY (2)2, (2)3, (2)4, (2)5, (2)6 DEF M, LenM, I
)

(1) QED BY (1)4, (1)9, (1)10, (1)11, SMTT(10)

The invariant InvIncomingInfo Type follows from InvType.

THEOREM DeducelnvIncominglnfo Type =
LET goal =

C.15. DEDUCE VARIOUS INVARIANTS FROM OTHERS 155

InvType
=
InvIncominglInfo Type
IN
goal N\ goal’
PROOF
(1) DEFINE goal 2 DeducelInvIncomingInfoType! : ! goal
1) DEFINE DoPr(primeit, ©) = IF primeit THEN z’ ELSE

(1)
(1) SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS
(1) DEFINE z# = DoPr(primeit,)
(1)1. SUFFICES ASSUME InvType® PROVE InvIncomingInfo Type* OBVIOUS
(1) SUFFICES ASSUME

NEW k € Nat,

NEW p € Proc,

NEW ¢q € Proc

PROVE InvIncomingInfoType!(k)!(p)!(q)*

The prover needs help to distribute Do Pr through quantifiers.

2) DEFINE I(k, p, q¢) = InvIncomingInfoType!(k)!(p)!(q)

2) HIDE DEF [

2)Vk € Nat :¥p € Proc:V q € Proc: I(k, p, q)% BY DEF [
2) (Vk € Nat :Vp € Proc:V q € Proc: I(k, p, ¢))* OBVIOUS
2) QED BY Isa DEF InvIncominglnfo Type, I

A
1) DEFINE tempp = temp|p]
1) DEFINE msgpq = msg[p][q]
1) DEFINE sum = IncomingInfo(k, p, q)! : !sum

2. tempp? € DeltaVecType BY (1)1 DEF InvType
3. msgpq?” € Seq(DeltaVecType) BY (1)1 DEF InvType
4. sum™ € DeltaVecType BY (1)3, DeltaVecSeqSkipSum Type
5. IncomingInfo(k, p, q)* € DeltaVecType
BY (1)2, (1)4, DeltaVecAddType DEF Incominglnfo
(1) QED BY (1)4, (1)5

~— ~ ~ ~— ~ ~— ~ o~~~ o~~~

The invariant InvGloballncominglInfo Type follows from InvType.

THEOREM DeducelnvGlobalIncomingInfo Type =
LET goal =

156 APPENDIX C. PROOF OF CORRECTNESS

InvType
=
InvGlobalIncomingInfo Type
IN
goal A goal’
PROOF
} DEFINE goal £ DeduceInvGloballncomingInfo Type! : ! goal
DEFINE DoPr(primeit, ©) = IF primeit THEN z’ ELSE z

SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS
DEFINE z# = DoPr(primeit, x)

InvIncomingInfoType” BY (1)1, DeducelnvincomingInfo Type

(1
(1)
(1)
(1)
(1)1. SUFFICES ASSUME InvType” PROVE InvGloballncomingInfoType™ OBVIOUS
(1)2.
(1)

1) SUFFICES ASSUME
NEW k£ € Nat,
NEW p € Proc,
NEW ¢q € Proc

PROVE InvGloballncomingInfoType!(k)!(p)!(q)*

The prover needs help to distribute Do Pr through quantifiers.
) DEFINE I (k, p, q) = InvGlobalIncomingInfoType ! (k)!(p)!(q)
2) HIDE DEF [
2)Vk € Nat :¥p € Proc:V q € Proc: I(k, p, ¢)* BY DEF [
2) (Vk € Nat :Vp € Proc:¥ q € Proc: I(k, p, q))* OBVIOUS
2) QED BY Isa DEF InvGloballncomingInfo Type, I

DEFINE GII = GloballncomingInfo(k, p, q)
DEFINE F = GloballncomingInfo(k, p, q)! : ' F

(1
(1
(1)3. F# € [Proc — DeltaVecType] BY (1)2 DEF InvIncomingInfoType
(
DEFINE FFP {fp € Proc : F|fp] # DeltaVecZero}

DEFINE TF'P {fp € Proc : temp|fp] # DeltaVecZero}

e 11> 11>

2
2
2) DEFINE MFP {fp € Proc : msg|fp][q] # ()}

2) SUFFICES IsFiniteSet(FFP#) BY (1)3 DEF DeltaVecFunHasFiniteNonZeroRange

2. IsFiniteSet(MFP#) BY (1)1 DEF InvType, IsFiniteMsgSenders

2
2
2)3. IsFiniteSet(TEP# U MFP#) BY (2)2, (2)1, FiniteSetUnion

(2

(

(

(

(

)

)

)

1)4. DeltaVecFunHasFiniteNonZeroRange(F#)

(

(

(

(

(

(

(

(2)4. FFP#* C (TFP# U MFP¥)

>1. SUFFICES ASSUME
NEW fp € Proc,
fo ¢ TFP,
fo ¢ MPP#

)
)
)
)
V1. IsFiniteSet(TEP#) BY (1)1 DEF InvType, IsFinite TempProcs
)
)
)
(3

C.15. DEDUCE VARIOUS INVARIANTS FROM OTHERS 157

PROVE fp ¢ FFP#
OBVIOUS

(3) SUFFICES F#|[fp] = DeltaVecZero OBVIOUS
(3)2. temp™|[fp] = DeltaVecZero BY (3)1

)
)
(3)3. ASSUME NEW fk € Nat PROVE IncomingInfo(fk, fp, q)* = DeltaVecZero
(4) DEFINE sum = DeltaVecSeqSkipSum (fk, msg#[fp][q])
(4) DEFINE add = DeltaVecAdd(sum, temp#[fp))
(4)1. sum = DeltaVecZero
()1, msg*[fplla] =) BY (3)1
(5)2. msg™[fp][q] € Seq(DeltaVecType) BY (1)1 DEF InvType
(5) QED BY (5)1, (5)2, DeltaVecSeqSkipSumEmpty
4)2. add = DeltaVecZero BY (3)2, (4)1, DeltaVecAddZero, DeltaVecZero Type
) Q

4) QED BY (4)2 DEF Incominglnfo

(

(

(3)4.CASE fp =p

(4)1. F#[fp] = IncomingInfo(k, fp, q)* BY (3)4
(4)2. k € Nat OBVIOUS

(4) QED BY (4)1, (4)2, (3)3

)
(
(
(

(3)S. CASE fp # p
4)1. F#[fp] = IncomingInfo(0, fp, q)* BY (3)5
4)2.0 € Nat OBVIOUS
4) QED BY (4)1, (4)2, (3)3

(3) QED BY (3)4, (3)5
(2) QED BY (2)3, (2)4, FiniteSetSubset

(1)5. GIT* € DeltaVecType BY (1)3, (1)4, DeltaVecFunSum Type DEF Globallncominglnfo

(1) QED BY (1)3, (1)4, (1)5 DEF GloballncomingInfo_F

The invariant InvGloballncomingInfoSkipQ follows from InvType.

THEOREM DeducelnvGlobalIncomingInfoSkip0 =
LET goal =
InvType
=
InvGloballncomingInfoSkip0
IN
goal A goal’

158 APPENDIX C. PROOF OF CORRECTNESS

PROOF
)} DEFINE goal = DeducelnvGloballncomingInfoSkip0! : ! goal
1) DEFINE DoPr(primeit,) = IF primeit THEN &’ ELSE

) SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS
) DEFINE z# = DoPr(primeit,)

1) SUFFICES ASSUME InvType?# PROVE InvGloballncomingInfoSkip0# OBVIOUS

(1
(
(1
(1
(
(1) SUFFICES ASSUME
NEW pl € Proc,
NEW p2 € Proc,
NEW ¢ € Proc

PROVE (GloballncomingInfo(0, pl, q) = GloballncomingInfo(0, p2, q))*
BY DEF InuGloballncominglnfoSkip0

1) DEFINE GII(p)

(1) GloballncomingInfo(0, p, q)
(1) DEFINE F(p)

(1)

(1)

GloballncomingInfo_F (0, p, q)

A
A

1. (F(pl) = F(p2))* BY DEF Globallncominglnfo_F

1)2. ASSUME NEW p € Proc
PROVE (GII(p) = DeltaVecFunSum(F(p)))*
BY DEF Globallncominglnfo, GloballncominglInfo_F

(1) Qep BY (1)1, (1)2

The invariant InvGloballncomingInfo Upright follows from subsidiary invariants.

THEOREM DeducelnvGloballncomingInfo Upright =
LET goal =
A InvType
A InvIncomingInfo Upright
=
InvGloballncomingInfo Upright
IN
goal A\ goal’
PROOF
(1) DEFINE goal 2 DeducelnvGlobalIncomingInfoUpright! : ! goal
1) DEFINE DoPr(primeit,) = IF primeit THEN &’ ELSE

(1)
(1) SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS
(1) DEFINE z# = DoPr(primeit, =)

C.15. DEDUCE VARIOUS INVARIANTS FROM OTHERS 159

(1) s

UFFICES ASSUME
InvType™,
InvIncomingInfo Upright

PROVE InvGlobalIncomingInfo Upright?
OBVIOUS

(1)s

UFFICES ASSUME
NEW k € Nat,
NEW p € Proc,
NEW q € Proc

PROVE IsDeltaVecUpright(lleq, Globallncominglnfo(k, p, q))*
BY DEF InvGloballncomingInfoUpright

(1) InvIncominglnfo Type® BY DeducelnvincomingInfo Type
(1) InvGloballncomingInfo Type™ BY DeducelnvGloballncominglnfo Type

Pick a value corresponding to either the primed or the unprimed case. This makes things simpler for the prover in subsequent obligations by
removing the DoPr clutter.

)

(2)
(
(
(
(2)
(
(3
(3
) Q

2

. PICK llegz : lleqr = lleq™ OBVIOUS
.PICK Fr : Fx = GloballncomingInfo_F (k, p, ¢)* OBVIOUS
.PICK GIIz : GIIz = GloballncomingInfo(k, p, q¢)* OBVIOUS

. lleqz € PointRelationType BY (1)1 DEF InvType
. IsPartialOrder(llegz) BY (1)1 DEF InvType

. Fx € [Proc — DeltaVecType] BY (1)2 DEF InvGloballncomingInfo Type
. DeltaVecFunHasFiniteNonZeroRange(Fz) BY (1)2 DEF InvGloballncomingInfo Type
. GIlz = DeltaVecFunSum(Fz) BY (1)2, (1)3 DEF GloballncomingInfo_F, GlobalIncomingInfo

. ASSUME NEW pl € Proc PROVE IsDeltaVecUpright(lleqz, Fx[pl])

1. ASSUME NEW k1 € Nat PROVE IsDeltaVecUpright(lleqz, Incominglnfo(k1, pl, q)¥)
Y (1)1 DEF InvincomingInfo Upright

2.CASEpl=p
V1. Fz[pl] = IncomingInfo(k, p1,)% BY (2)2, (1)2 DEF GloballncomingInfo_F
)2. k € Nat OBVIOUS
) QED BY (3)1, (3)2, (2)1

CASE pl #p
3)1. Fz[pl] = IncomingInfo(0, p1, q)* BY (2)3, (1)2 DEF GloballncomingInfo_F
)2.0 € Nat OBVIOUS

) QED BY (3)1, (3)2, (2)1

ED BY (2)2, (2)3

3
3
3
3.

(1)10. IsDelta VecUpright(lleqz, DeltaVecFunSum(Fx))

(
)
(2)
(2)
)

USE (1)4, (1)5, (1)6, (1)7, (1)9
QED BY DeltaVecUpright_ FunSum

(1)11. IsDeltaVecUpright(lleqz, GIIz) BY (1)8, (1)10

160 APPENDIX C. PROOF OF CORRECTNESS

(1) QeD BY (1)1, (1)3, (1)11

The invariant InvGlob Vacant UptoImpliesNrec follows from subsidiary invariants.

THEOREM DeducelInvGlob VacantUptoImpliesNrec =
LET goal =
A InvType
A InvGlobalIncomingInfo Upright
A InvGlobalRecord Count
=
InvGlobVacantUptoImpliesNrec
IN
goal A goal’
PROOF
1) DEFINE goal £ DeduceInvGlobVacant UptoImpliesNrec! : ! goal
1) DEFINE DoPr(primeit,) = IF primeit THEN ' ELSE &

(
(1)

(1) SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS
(1) DEFINE z# = DoPr(primeit,)

(1)

1) SUFFICES ASSUME
InvType?,
InvGlobalIncomingInfo Upright#
InvGlobalRecord Count

PROVE InvGlobVacantUptoImpliesNrec#

OBVIOUS
(1) InvGloballncomingInfo Type® BY DeducelnvGloballncominglnfo Type

(1) SUFFICES ASSUME
NEW ¢ € Proc,
NEW t € Point,
GlobVacantUpto(q, t)*
PROVE NrecVacantUpto(t)#
BY DEF InvGlobVacantUptoImpliesNrec

Pick a value corresponding to either the primed or the unprimed case. This makes things simpler for the prover in subsequent obligations by
removing the Do Pr clutter.

(1)1. PICK nrect : nrecx = nrec? OBVIOUS
(1)2. PICK GIIz : GIIz = GloballncomingInfo(0, q, ¢)* OBVIOUS
(1)3. PICK globxzq : globzq = glob[q]* OBVIOUS
(1)4. PICK llegr : llegr = lleq™ OBVIOUS

C.15. DEDUCE VARIOUS INVARIANTS FROM OTHERS 161

(1) DEFINE a < b = llegz[a][b]

(1)DEFINEa < b = a <bAa#b

(1)5. llegx € PointRelation Type BY (1)4 DEF InvType

(1)6. IsPartialOrder(lleqx) BY (1)4 DEF InvType

(1)7. nrecx = DeltaVecAdd(GIIz, globzq) BY (1)1, (1)2, (1)3 DEF InvGlobalRecordCount
(1)8. nrecz € CountVecType BY (1)1 DEF InvType

(1)9. globzq € DeltaVecType BY (1)3 DEF InvType

(1)10. IsDeltaVec Upright (lleqx, GIIx) BY (1)2, (1)4 DEF InvGloballncomingInfo Upright
(1)11. GlIz € DeltaVecType BY (1)2 DEF InvGloballncomingInfo Type

(1)12. SUFFICES ASSUME NEW s € Point, s < t PROVE nrecz[s] =0

BY (1)1, (1)4 DEF NrecVacantUpto, IsDeltaVecVacantUpto

(1)13. nrecz[s] € Nat BY (1)8 DEF CountVecType
(1)14. globzq[s] € Int BY (1)9 DEF DeltaVecType
(1)15. GIIz[s] € Int BY (1)11 DEF DeltaVecType

Since nrec is a count vector, all its points must be non-negative. Hence if there is a point s lleg ¢ such that nrec[s] # 0, it must be the case that
nrec[s] > 0. Assume we have such an s and prove a contradiction.

(1)16. SUFFICES ASSUME nrecz[s| > 0 PROVE FALSE BY (1)13, SMTT(10)

Since point s < ¢, we have globg[s] = 0. Since nrec = GII + globg, we have GII[s] > 0.

(1)17. nrecz[s] = GIIz[s] + globzq[s] BY (1)7 DEF DeltaVecAdd

(1)18. globzq[s] = 0 BY (1)3, (1)4, (1)12 DEF GlobVacantUpto, IsDeltaVec VacantUpto
(1)19. GIIz[s] > 0 BY (1)13, (1)15, (1)16, (1)17, (1)18, SMTT(10)

Since GII is an upright delta vector and GII[s] > 0, there must be a point u < s such that GII[u] < 0.

(1)20. PICK w € Point : u < s A GlIz[u] < 0
BY (1)5, (1)6, (1)10, (1)11, (1)19, DeltaVecUpright_ ExistsSupport

But then point w < ¢, which means that globg[u] = 0. Since nrec = GII + globq, we can conclude that GII[u] < O cannot be true.
1)21.u <t BY (1)5, (1)6, (1)12, (1)20, PartialOrderTransitive

22. globzq[u] =0 BY (1)3, (1)4, (1)21 DEF GlobVacantUpto, IsDeltaVec VacantUpto
23. nrecz[u] € Nat BY (1)8 DEF CountVecType
24. GIIz[u] € Int BY (1)11 DEF DeltaVecType

25. nrecz[u] = GIlz[u] + globzq[u] BY (1)7 DEF DeltaVecAdd
26. ~(GIIz[u] < 0) BY (1)22, (1)23, (1)24, (1)25, SMTT(10)

162 APPENDIX C. PROOF OF CORRECTNESS

The invariant InvGloballnfo AtBetaUpright follows from subsidiary invariants.

THEOREM DeducelnvGloballnfoAtBetaUpright =
LET goal =
A InvType
A InvInfoAtBetaUpright
A InvIncominglInfo Upright
=
InvGloballnfoAtBetaUpright
IN
goal A goal’
PROOF
1) DEFINE goal £ DeduceInvGloballnfoAtBetaUpright ! : ! goal
DEFINE DoPr(primeit, ©) = IF primeit THEN z’ ELSE z

(
{1
(1) SUFFICES ASSUME NEW primeit € BOOLEAN PROVE DoPr(primeit, goal) OBVIOUS
(1) DEFINE z# = DoPr(primeit,)

1)

1) SUFFICES ASSUME
InvType™,
InvInfoAtBetaUpright™,
InvIncomingInfo Upright™

PROVE InvGloballnfoAtBetaUpright™

OBVIOUS

(1) InvInfoAtType* BY DeducelnvInfoAtType
(1) InvIncomingInfo Type® BY DeducelnvIncomingInfo Type
(1) InvGloballncomingInfo Type® BY DeduceInvGloballncominglnfo Type

The prover chews right through all the Do Pr clutter with no problem. It looks like the prover has gotten better since I wrote some of the other
proofs in this module.

(1) SUFFICES ASSUME
NEW k € Nat,
NEW p € Proc,
NEW ¢q € Proc

PROVE
LET

JA = InfoAt(k, p, q)

GII = GlobalIncomingInfo(k, p, q)
IN

IsDeltaVecBetaUpright(lleq, IA, GII)#
BY DEF InvGloballnfoAtBetaUpright

(1) DEFINE 1A
(1) DEFINE IT

I’I’LfOAt(k, b, Q)
IncomingInfo(k, p, q)

A
A

C.15. DEDUCE VARIOUS INVARIANTS FROM OTHERS

DEFINE GII = GlobalIncomingInfo(k, p, q)
DEFINE F = GloballncomingInfo_F (k, p, q)

1) SUFFICES IsDelta VecBetaUpright(lleq, IA, GII)# OBVIOUS

(1)
(1)
(1)
(1)6. (lleq € PointRelation Type)# BY DEF InvType
(1)7. (IsPartialOrder(lleq))# BY DEF InvType
(1)8. (IA € DeltaVecType)# BY DEF InvInfoAtType
(1)9. (IsDeltaVecBetaUpright(lleq, IA, II))# BY DEF InvinfoAtBetaUpright
(1)10. (II = F[p])# BY DEF GloballncomingInfo_F
(1)11. (GII € DeltaVecType)# BY DEF InvGlobalIncomingInfo Type
(1)12. (F' € [Proc — DeltaVecType])# BY DEF InvGloballncominglnfo Type
(1)13. (DeltaVecFunHasFiniteNonZeroRange(F))# BY DEF InvGloballncominglnfo Type
(1)14. (GII = DeltaVecFunSum(F))# BY DEF GloballncomingInfo_F, GlobalIncomingInfo
(1)15. ASSUME NEW pl € Proc PROVE IsDeltaVecUpright(lleq, F[p1])#
(

1
2)1. ASSUME NEW k1 € Nat PROVE IsDeltaVecUpright(lleq, Incominglnfo(k1, p1, q))*
BY DEF InvIncominglInfo Upright

2.CASEpl=1p
3)1. (F[p1] = Incominglnfo(k, p1, q))* BY (2)2 DEF GloballncominglInfo_F
3)2. k € Nat OBVIOUS

3) QED BY (3)1, (3)2, (2)1
(2)3. CASE pl # p
3)1. (F[p1] = Incominglnfo(0, pl, q))# BY (2)3 DEF GloballncomingInfo_F
3)2.0 € Nat OBVIOUS
3) QED BY (3)1, (3)2, (2)1
(2) QED BY (2)2, (2)3

)
(
(
(
)
(
(
(

(1)16. Delta VecBeta Upright_FunSum_Hypothesis(lleq, F, IA, p)#
BY (1)6, (1)7, (1)8, (1)9, (1)10, (1)12, (1)13, (1)15
DEF DeltaVecBetaUpright_ FunSum_Hypothesis

(1)17. IsDeltaVecBetaUpright(lleq, IA, DeltaVecFunSum(F))#
Y (1)16, DeltaVecBetaUpright_FunSum

(1) QED BY (1)14, (1)17

163

164 APPENDIX C. PROOF OF CORRECTNESS

C.16 How the actions affect the state variables

MODULE NaiadClockProofAffectState

EXTENDS NaiadClockProofDeducelnv

How the actions affect the state variables

Here we establish a lot of facts about how each action affects the various state variables. Later, we repeatedly appeal to these facts when proving
facts about how each action affects a state operator or when proving that an action preserves an invariant.

How NextCommon updates the state variables.

NextCommon_State_ Conclusion =
A UNCHANGED lleq
A nrecvut’ = [zt € Point — NrecVacantUpto(zt))
A globvut’ = [zp € Proc — [zt € Point — GlobVacantUpto(xp, xt)]]

A nrecvut’ € [Point — BOOLEAN]
A globvut’ € [Proc — [Point — BOOLEAN |]
A IsPartialOrder(lleq”)

THEOREM NeztCommon_State =
ASSUME
InvType,
NextCommon
PROVE
NextCommon_State_ Conclusion
PROOF
Type and value of Ileq’
(1)1. UNCHANGED lleq BY DEF NextCommon
(1)2. IsPartialOrder(lleq’) BY (1)1 DEF InvType

Type of nrecvut’

(1)3. nrecvut’ = [zt € Point — NrecVacantUpto(xt)]
BY DEF NexztCommon

C.16. HOW THE ACTIONS AFFECT THE STATE VARIABLES 165

(1)4. nrecvut’ € [Point — BOOLEAN |
(2) USE DEF NrecVacantUpto
(2) USE DEF IsDelta Vec VacantUpto
(2) QED BY (1)3

Type of globvut’

(1)5. globvut’ = [zp € Proc — [zt € Point — GlobVacantUpto(zp, xt)]]
BY DEF NextCommon

(1)6. globvut’ € [Proc — [Point — BOOLEAN ||
2) USE DEF GlobVacantUpto
2) USE DEF IsDelta Vec VacantUpto

2) QED BY (1)5

(1
(1

USE DEF NextCommon_State_Conclusion
QED BY (1)1, (1)2, {1)3, (1)4, (1)5, (1)6

~ ~— o~ o~~~

How the NextPerformOperation(p, ¢, r) action updates the state variables.

NeatPerformOperation_State_ Conclusion(p, ¢, 1) =
LET
delta = NextPerformOperation_Delta(p, c, r)
IN
A ¢ € [Point — Nat]
A1 € [Point — Nat]
A delta € DeltaVecType
AVat € Point : c[zt] < nrec|xzt]
A IsDeltaVecUpright(lleq, delta)

A mrec::
A nrec’ = DeltaVecAdd(nrec, delta)
A nrec’ = DeltaVecAdd(delta, nrec)

N temp::
Y fp € Proc:
IFfp=p
THEN
A temp'[fp] = DeltaVecAdd(temp|fp], delta)
A temp'[fp] = DeltaVecAdd(delta, temp[fp])
ELSE UNCHANGED temp|fp]

166 APPENDIX C. PROOF OF CORRECTNESS

A UNCHANGED glob
A UNCHANGED msg
A NextCommon_State_ Conclusion! :

A InvType’

THEOREM NeztPerformOperation_State =
ASSUME
NEW p € Proc,
NEW ¢ € PointToNat,
NEW r € PointToNat,
InvType,
NextPerformOperation_ WithPCR(p, ¢,)
PROVE
NeatPerformOperation_State_ Conclusion(p, c, r)
PROOF
(1) USE DEF NextPerformOperation_Delta

(1) DEFINE delta = NextPerformOperation_Delta(p, ¢, T)
(1) HIDE DEF delta

Type and value of c and r

(1)1. ¢ € [Point — Nat] BY AssumePointToNat
2. r € [Point — Nat] BY AssumePointToNat

(1)
(1)3.Vat € Point : c[zt] € Nat BY (1)1
(1)4.V at € Point : r[zt] € Nat BY (1)2

Type and value of delta

(1)5.Vat € Point : delta[zt] = rzt] — c[at] BY DEF NextPerformOperation- WithPCR, delta
6.V xt € Point : delta[zt] € Int BY (1)3, (1)4, (1)5, SMTT(10)

(1)

(1)7.3 S : delta € [Point — S| BY Isa DEF NextPerformOperation- WithPCR, delta
(1)8. delta € DeltaVecType BY (1)6, (1)7 DEF DeltaVecType

(1)9. IsDeltaVecUpright(lleq, delta) BY DEF NextPerformOperation- WithPCR, delta

Type and value of nrec’

)
Y12.Vat € Point : nrec[zt] € Nat BY (1)10 DEF CountVec Type

Y13.Vzt € Point : clzt] < nrec[zt] BY DEF NextPerformOperation_- WithPCR

y14.Vat € Point : nrec[zt] + (r[zt] — c[zt]) € Nat BY (1)3, (1)4, (1)12, (1)13, SMTT(10)
Y15.Vat € Point : nrec[zt] + delta[zt] € Nat BY (1)5, (1)14

)

C.16. HOW THE ACTIONS AFFECT THE STATE VARIABLES 167

1)17. nrec’ = DeltaVecAdd(delta, nrec) BY (1)8, (1)11, (1)16, Delta VecAddCommutative

8.Vat € Point : nrec'[zt] = nrec[zt] + delta[zt] BY (1)16 DEF DeltaVecAdd
.Vt € Point : nrec’[zt] € Nat BY (1)18, (1)15

9
0. nrec’ € DeltaVecType BY (1)8, (1)11, (1)16, DeltaVecAddType
1. nrec’ € CountVecType BY (1)19, (1)20 DEF DeltaVecType, CountVec Type

1)22. NeatPerformOperation_State_ Conclusion(p, ¢, r)!nrec
BY (1)16, (1)17 DEF delta

Type and value of temp’

(1)23. temp € [Proc — DeltaVecType] BY DEF InvType
(1)24. DeltaVecAdd(temp[p], delta) € DeltaVecType BY (1)8, (1)23, DeltaVecAddType

(1)25. temp’ = [temp EXCEPT ![p] = DeltaVecAdd(temp[p], delta)]
BY (1)23 DEF NextPerformOperation- WithPCR, delta

1)26. temp’ € [Proc — DeltaVecType] BY (1)23, (1)24, (1)25

(1)

(1)27. temp'[p] = DeltaVecAdd(temp[p], delta) BY (1)25, (1)26

(1)28. temp’[p] = DeltaVecAdd(delta, temp[p]) BY (1)8, (1)23, (1)27, DeltaVecAddCommutative
(1)

1)29. ASSUME NEW fp € Proc, fp # p
PROVE UNCHANGED temp|fp]
BY (1)23, (1)25, (1)29

(1)30. NextPerformOperation_State_ Conclusion(p, ¢, v)!temp
BY (1)27, (1)28, (1)29 DEF delta

Type and value of glob’

(1)31. UNCHANGED glob BY DEF NextPerformOperation_ WithPCR
(1)32. glob’ € [Proc — DeltaVecType] BY (1)31 DEF InvType

Type and value of msg’

(1)33. UNCHANGED msg BY DEF NextPerformOperation_ WithPCR
(1)34. msg’ € [Proc — [Proc — Seq(DeltaVecType)]] BY (1)33 DEF InvType

(1)35. NextCommon_State_ Conclusion ! :

(2) USE DEF NeatPerformOperation- WithPCR
(2) USE DEF NeztCommon_State— Conclusion
(2) QED BY NextCommon_State

IsFinite TempProcs’

(1)36. IsFinite TempProcs’
(2) DEFINE FP = {fp € Proc : temp|fp] # DeltaVecZero}
(2)1. IsFiniteSet(FP) BY DEF InvType, IsFinite TempProcs

168 APPENDIX C. PROOF OF CORRECTNESS

(2)2. IsFiniteSet({p}) BY FiniteSetSingleton

(2)3. IsFiniteSet(FP U{p}) BY (2)1, (2)2, FiniteSetUnion
(2)4. FP' C (FP U {p}) BY (1)29

(2)5. IstmteSet(FP) Y (2)3, (2)4, FiniteSetSubset

(2) QED BY (2)5 DEF IsFiniteTempProcs

IsFiniteMsgSenders’

(1)37. IsFiniteMsgSenders’
Y1. IsFiniteMsgSenders BY DEF InvType
) QED BY (2)1, (1)33 DEF IsFiniteMsgSenders

1)38. InvType’ BY (1)21, (1)26, (1)32, (1)34, (1)35, (1)36, (1)37 DEF InvType

USE DEF delta

(2

(2

)

) USE DEF NextPerformOperation_State_ Conclusion

)

) QED BY (1)1, (1)2, (1)8, (1)9, (1)13, (1)22, (1)30, (1)31, (1)33, (1)35, (1)38

{
(1
(1
(1

How the NeztSendUpdate(p, t) action updates the state variables.

NeatSendUpdate_State_Conclusion(p, tt) =
LET
gamma = NextSendUpdate_ Gamma(p, it)
IN
A gamma € DeltaVecType
A IsDeltaVecPositiveImplies(gamma, temp|p])
A IsDeltaVecUpright(lleq, temp[p]) = IsDeltaVecUpright(lleq, temp[p])’

A temp::
YV fp € Proc :
IFfp=p
THEN
A temp[fp] = DeltaVecAdd(temp'[fp], gamma)
A temp|fp] = DeltaVecAdd(gamma, temp’(fp])
ELSE UNCHANGED temp|fp]

A\ msg::
YV fp € Proc :
V fq € Proc :
IFfp=p
THEN msg'[fp](fq] = Append(msgfp]lfq], gamma)
ELSE UNCHANGED msg[fp][fq]

C.16. HOW THE ACTIONS AFFECT THE STATE VARIABLES

A UNCHANGED glob
/A UNCHANGED nrec
A NextCommon_State_ Conclusion! :

A InvType’

THEOREM NeztSendUpdate_State =
ASSUME
NEW p € Proc,
NEW tt € SUBSET Point,
InvType,
NextSendUpdate- WithPTT (p, tt)
PROVE
NextSendUpdate_State— Conclusion(p, tt)
PROOF
(1) USE DEF NextSendUpdate- Gamma

1) DEFINE gamma = NextSendUpdate_Gamma(p, it)
1) DEFINE newtempp = NextSendUpdate!(p)!(tt)! newtempp
1) HIDE DEF gamma, newtempp

(
(
(
(1)1. temp € [Proc — DeltaVecType] BY DEF InvType
(1

(1)3. gamma € DeltaVecType

)

)

)

)1

)2.

)

(2) USE DEF DeltaVecType
(2) QED BY (1)1, SMTT(10) DEF gamma
)

(

{

(

)

(

(1)4. newtempp € DeltaVecType
2)1.0 € Int BY SMTT(10)
2) USE DEF Delta VecType
2) QED BY (2)1, (1)1 DEF newtempp

(1)5. temp’ = [temp EXCEPT ![p] = newtempp]
2) QED BY (1)4 DEF NextSendUpdate- WithPTT, newtempp

Type and value of temp’ in relation to gamma

(1)6. temp’ € [Proc — DeltaVecType] BY (1)1, (1)4, (1)5

(1)7. ASSUME NEW t € Point
PROVE gammalt] = IF t € tt THEN temp[p][t] ELSE 0
BY DEF gamma, NextSendUpdate- WithPTT

(1)8. ASSUME NEW ¢ € Point
PROVE temp’[p][t] = IF t € {t THEN O ELSE temp[p][t]
Y (1)1 DEF NextSendUpdate- WithPTT

msg € [Proc — [Proc — Seq(DeltaVecType)]] BY DEF InvType

169

170 APPENDIX C. PROOF OF CORRECTNESS

(1)9. temp[p] = DeltaVecAdd(gamma, temp’[p])
(2) SUFFICES ASSUME NEW ¢ € Point
PROVE temp|p][t] = gammalt] + temp’[p][t]
Y (1)1 DEF DeltaVecAdd, DeltaVec Type

(2)1 gammal[t] € Int BY (1)3 DEF DeltaVec Type
(2)2. templp|[t] € Int BY (1)1 DEF DeltaVecType
(2)3. temp'[p][t] € Int BY (1)6 DEF DeltaVecType
(2)4.CASE t € tt

)3
)4.
(3)1. gammalt] = temp[p][t] BY (2)4, (1)7
(3)2. temp’[p][t] = 0 BY (2)4, (1)8
(3) QED BY (3)1, (3)2, (2)1, (2)2, (2)3, SMTT(10)
(2)5.CASE t ¢ tt
(3)1. gamma[t] = 0 BY (2)5, (1)7
(3)2. temp'[p][t] = tem
(3) QED BY (3)1, (3)2, (2
) QED BY (2)4, <2>5

[1;[] Y (2)5, (1)8

]
1, (2)2, (2)3, SMTT(10)
(2

(1y10. temp[p] = DeltaVecAdd(temp'[p], gamma)
Y (1)3, (1)6, (1)9, DeltaVecAddCommutative

(1)1
2) temp’ = [temp EXCEPT '[p] = temp'[p]] BY (1)1, (1)6 DEF NextSendUpdate_- WithPTT

y11. ASSUME NEW fp € Proc, fp # p PROVE UNCHANGED temp|fp]
(2)
(2) QED BY (1)1, (1)11
Y12,
(

(1)12. IsDelta VecPositiveImplies(gamma, temp|p])
2)1. SUFFICES ASSUME NEW ¢ € Point, gammal[t] > 0
PROVE temp[p][t] > 0
BY (1)1, (1)3 DEF IsDeltaVecPositiveImplies

(2)2. gammalt] € Int BY (1)3 DEF DeltaVec Type

(2)3. templp][t] € Int BY (1)1 DEF DeltaVecType

(2)4. temp’[p][t] € Int BY (1)6 DEF DeltaVecType

(2)5. temp[p][t] = gammalt] + temp’[p][t] BY (1)9 DEF DeltaVecAdd
(2)6. CASE t € tt

[t

3)2. temp'[p][t] = 0 BY (2)6, (1)8

3) QED BY (3)1, (3)2, (2)1, (2)2, (2)3, (2)4, (2)5, SMTT(10)
(2)7.CASE t ¢ 1t

3)1. gammal[t] = 0 BY (2)7, (1)7

3)2. temp’[p][t] = tem

3) QED BY (3)1, (3)2, (2
(2) QED BY (2)6, (2)7

)2.
)3.
)4
;
23)1 gammal[t] = temp[p][t] BY (2)6, (1)7
(
)
(
(
(

[1; (1] BY (27, (1)8

]
1, (2)2, (2)3, (2)4, (2)5, SMTT(10)

(1)13. NextSendUpdate_State_ Conclusion(p, tt)!temp
BY (1)9, (1)10, (1)11 DEF gamma

Type and value of msg’ in relation to gamma

C.16. HOW THE ACTIONS AFFECT THE STATE VARIABLES 171

(1)14. ASSUME NEW q € Proc PROVE Append(msg|[p]lq], gamma) € Seq(DeltaVecType)
(2) DEFINE msgpq = msg[p][q]
(2) HIDE DEF msgpq
(2) SUFFICES Append(msgpq, gamma) € Seq(DeltaVecType) BY DEF msgpq
(2)1. msgpq € Seq(DeltaVecType) BY (1)2 DEF msgpq
(2) QED BY (2)1, (1)3, AppendProperties
(1)15. msg’ = [msg EXCEPT ![p] = [¢ € Proc — Append(msg[p](q], gamma)]]
BY DEF NeztSendUpdate_- WithPTT, gamma

(1)16. msg’ € [Proc — [Proc — Seq(DeltaVecType)]] BY (1)2, (1)14, (1)15

(1)17. ASSUME NEW fp € Proc, NEW fq € Proc, fp = p

PROVE msg'[fp][fq] = Append(msgfp][fq], gamma)
BY (1)2, (1)15, (1)16, (1)17

(1)18. ASSUME NEW fp € Proc, NEW fq € Proc, fp # p
PROVE UNCHANGED msg|[fp][fq]
BY (1)2, (1)15, (1)16, (1)18

(1)19. NextSendUpdate_State_Conclusion(p, tt) ! msg
Y (1)17, (1)18 DEF gamma

Type and value of glob’

(1)20. UNCHANGED glob BY DEF NextSendUpdate- WithPTT
(1)21. glob” € [Proc — DeltaVecType] BY (1)20 DEF InvType

Type and value of nrec’

(1)22. UNCHANGED nrec BY DEF NextSendUpdate- WithPTT
(1)23. nrec’ € CountVecType BY (1)22 DEF InvType

(1)24. NextCommon_State_ Conclusion! :

(2) USE DEF NextSendUpdate_ WithPTT

(2) USE DEF NextCommon_State_Conclusion
(2)

2) QED BY NextCommon_State

IsFinite TempProcs’

(1)25. IsFinite TempProcs’

(2) DEFINE FP = {fp € Proc : temp|fp] # DeltaVecZero}
(2)1. IsFiniteSet(FP) BY DEF InvType, IsFinite TempProcs
(2)2. IsFiniteSet({p}) BY FiniteSetSingleton

(2)3. IsFiniteSet(FP U {p}) BY (2)1, (2)2, FiniteSetUnion
(2)4. FP' C (FP U {p}) BY (1)11

(2)

(2)

—~~

2)5. IsFiniteSet(FP’) BY (2)3, (2)4, FiniteSetSubset
2) QED BY (2)5 DEF IsFinite TempProcs

IsFiniteMsgSenders’

172 APPENDIX C. PROOF OF CORRECTNESS

(1)26. IsFiniteMsgSenders’
(2) SUFFICES ASSUME NEW fq € Proc
PROVE IsFiniteSet({fp € Proc : msqg'[fp]lfq] # ()})
BY DEF IsFiniteMsgSenders

(2) DEFINE FP = {fp € Proc : msg[fp]lfa] # ()}
(2)1. IsFiniteMsgSenders BY DEF InvType
(2)2. IsFiniteSet(FP) BY (2)1 DEF IsFiniteMsgSenders
(2)3. IsFiniteSet({p}) BY FiniteSetSingleton
(2)4. IsFiniteSet(FP U {p}) BY (2)2, (2)3, FiniteSetUnion
(2)5. FP' C FP U {p}
(3)1. SUFFICES ASSUME NEW fp € FP’ PROVE fp € FPV fp = p OBVIOUS
(3)2. CASE fp = p BY (3)2
(3)3.CASE fp # p
(4)1. fp € Proc BY (3)1
(4)2. UNCHANGED msg[fp][fq] BY (4)1, (3)3, (1)18
(4)3. msg'[fp]lfq] # () BY (3)1
(4) QeD BY (1)1, (4)2, (4)3
3) QED BY (3)2, (3)

(
(2)6. IsFiniteSet(FP’) BY (2)4, (2)5, FiniteSetSubset
(2) QED BY (2)6

(1)27. InvType’ BY (1)6, (1)16, (1)21, (1)23, (1)24, (1)25, (1)26 DEF InvType

Preservation of upright temp|p]
(1)28. ASSUME IsDeltaVecUpright(lleq, temp[p]) PROVE IsDeltaVecUpright(lleq, temp|p])’

(2) DEFINE tempp = templp]
(2) HIDE DEF tempp
(2) SUFFICES IsDeltaVecUpright(lleq, tempp’) BY (1)24 DEF tempp
(2)1. tempp’ = newtempp BY (1)1, (1)5 DEF tempp
(2)2. IsDelta VecUpright(lleq, newtempp) BY DEF NextSendUpdate_ WithPTT, newtempp
(2) QED BY (2)1, (2)2
(1) USE DEF NeztSendUpdate_State_ Conclusion
(1) USE DEF gamma
(1) QED BY (1)3, (1)12, (1)13, (1)19, (1)20, (1)22, (1)24, (1)27, (1)28

How the NeztReceiveUpdate(p, q) action updates the state variables.

C.16. HOW THE ACTIONS AFFECT THE STATE VARIABLES

>

NeatReceive Update_State_Conclusion(p, q)
LET
kappa
M
IN

AM #)

A Len(M) € Nat
A Len(M) # 0
A Len(M) >0

NextReceive Update_ Kappa(p, q)
msg[p][q]

e 11>

A kappa = Head (M)
A kappa = M1]
A kappa € DeltaVecType

A glob::
V fq € Proc :
IF fg = ¢q
THEN
A glob’[fq] = DeltaVecAdd(glob|fq], kappa)
A glob’[fq] = DeltaVecAdd (kappa, glob|fq])
ELSE UNCHANGED glob|[fq]

N\ msg::
Y fp € Proc :
Y fq € Proc :
IFfp=pAfg=g¢q
THEN msg’[fp][fq] = Tail(msg|fp]fq])
ELSE UNCHANGED msg|fp][fq]

/A UNCHANGED temp
/A UNCHANGED nrec
A NextCommon_State_ Conclusion! :

A InvType’

THEOREM NextReceive Update_State =
ASSUME
NEW p € Proc,
NEW ¢ € Proc,
InvType,
NextReceive Update WithPQ(p, q)
PROVE
NextReceive Update_State— Conclusion(p, q)

173

174 APPENDIX C. PROOF OF CORRECTNESS

PROOF
)} USE DEF NeztReceive Update— Kappa

DEFINE kappa = NeatReceiveUpdate_Kappa(p, q)
HIDE DEF kappa

DEFINE M = msg[p][q]
HIDE DEF M

DEFINE LenM = Len(M)

(1
(1
(1
(1
(1
(1
(1) HIDE DEF LenM

~ ~ ~ ~ ~ ~—

Type and value of msg’ in relation to kappa

1)1. msg € [Proc — [Proc — Seq(DeltaVecType)]] BY DEF InvType

2. M € Seq(DeltaVecType) BY (1)1 DEF M
3. M # () BY DEF NextReceive Update- WithPQ, M

4. LenM € Nat BY (1)2, LenInNat DEF LenM

5. LenM # 0 BY (1)2, (1)3, EmptySeq DEF LenM

6. LenM > 0 BY (1)4, (1)5, SMTT(10)

7.1 €1..LenM BY (1)4, (15, SMTT(10)

8. M € [1..LenM — DeltaVecType] BY (1)2, LenAziom DEF LenM
9. M[1] € DeltaVecType BY (1)7, (1)8

10. Head(M) = M[1] BY (1)2, HeadDef

11. Head(M) € DeltaVecType BY (1)9, (1)10

1)12. kappa = Head(M) BY DEF kappa, M
1)13. kappa = M[1] BY (1)10, (1)12
1)14. kappa € DeltaVecType BY (1)11, (1)12

1)15. Tail(M) € Seq(DeltaVecType) BY (1)2, (1)3, TailProp

1)16. msg’ = [msg EXCEPT ![p][q] = Tail(M)] BY DEF NextReceive Update- WithPQ), M
1)17. msg" € [Proc — [Proc — Seq(DeltaVecType)]] BY (1)1, (1)15, (1)16

1)18. msg'[p][q] = Tail(M) BY (1)1, (1)16

1)19. NextReceive Update_State_ Conclusion(p, q)!msg
BY (1)1, (1)16 DEF M

Type and value of glob’ in relation to kappa
(1)20. glob € [Proc — DeltaVecType] BY DEF InvType

(1)21. DeltaVecAdd(globlq], kappa) € DeltaVecType
Y (1)14, (1)20, DeltaVecAddType

(1)22. glob’ = [glob EXCEPT ![q] = DeltaVecAdd(glob|q], kappa)]
BY DEF NextReceive Update_ WithP(Q, kappa

C.16. HOW THE ACTIONS AFFECT THE STATE VARIABLES 175

(1)23. glob’ € [Proc — DeltaVecType] BY (1)20, (1)21, (1)22
(1)24. glob’[q] = DeltaVecAdd(globlq], kappa) BY (1)20, (1)22

(1)25. glob’[q] = DeltaVecAdd(kappa, globlq])
BY (1)14, (1)20, (1)24, DeltaVecAddCommutative

(1)26. NextReceive Update_State_ Conclusion(p, q)!glob
BY (1)20, (1)22, (1)24, (1)25 DEF kappa

Type and value of temp’

(1)27. UNCHANGED temp BY DEF NextReceive Update_ WithP(Q
(1)28. temp’ € [Proc — DeltaVecType] BY (1)27 DEF InvType

Type and value of nrec’

(1)29. UNCHANGED nrec BY DEF NextReceive Update- WithPQ)
(1)30. nrec’ € CountVecType BY (1)29 DEF InvType

(1)31. NextCommon_State_Conclusion! :
(2) USE DEF NextReceive Update_ WithP@Q
(2) USE DEF NextCommon_State_Conclusion
(2) QED BY NextCommon_State

IsFinite TempProcs’

(1)32. IsFinite TempProcs’
(2)1. IsFinite TempProcs BY DEF InvType
(2) QED BY (2)1, (1)27 DEF IsFinite TempProcs

IsFiniteMsgSenders’

(1)33. IsFiniteMsgSenders’
(2) SUFFICES ASSUME NEW fq € Proc
PROVE IsFiniteSet({fp € Proc : msg'[fp][fq] # ()})
BY DEF IsFiniteMsgSenders

2) DEFINE FP 2 {fp € Proc : msg|fp]lfq] # ()}

(2)
(2)1. IsFiniteMsgSenders BY DEF InvType
(2)2. IsFiniteSet(FP) BY (2)1 DEF IsFiniteMsgSenders
(2)3. IsFiniteSet({p}) BY FiniteSetSingleton
(2)4. IsFiniteSet(FP U{p}) BY (2)2, (2)3, FiniteSetUnion
(2)5. FP' C FPU{p}
(3)1. SUFFICES ASSUME NEW fp € FP’ PROVE fp € FPV fp = p OBVIOUS
(3)2. CASE fp = p BY (3)2
(3)3.CASEfp #£ p
(4)1. fp € Proc BY (3)1
(4)2. UNCHANGED msg[fp][fq] BY (4)1, (3)3, (1)19
(3. msg'pllfa] £ () BY (3)]

176 APPENDIX C. PROOF OF CORRECTNESS

(4) QED BY (4)1, (4)2, (4)3

(3) QED BY (3)2, (3)3

)6. IsFiniteSet(FP’) BY (2)4, (2)5, FiniteSetSubset
QED BY (2)6

)
1)34. InvType’ BY (1)17, (1)23, (1)28, (1)30, (1)31, (1)32, (1)33 DEF InvType

USE DEF kappa, M, LenM

(2

(2

)

} USE DEF NeztReceiveUpdate_State_ Conclusion

)

Y QED BY (1)3, (1)4, (1)5, (1)6, (1)12, (1)13, (1)14, (1)19, (1)26, (1)27, (1)29, (1)31, (1)34

(

(1
(1
(1

C.17. HOW THE ACTIONS AFFECT INFOAT 177

C.17 How the actions affect InfoAt

MODULE NaiadClockProofAffectInfoAt

EXTENDS NaiadClockProofAffectState

How the actions affect InfoAt.

The initial state for InfoAt(fk, fp, fq).

A

Init_InfoAt_Conclusion(fk, fp, fq) =
InfoAt(fk, fp, fq) = DeltaVecZero

THEOREM Init_InfoAt =
ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
InvType,
Init
PROVE
Init_InfoAt_Conclusion(fk, fp, fq)
PROOF
(1)1. msg[fp]fq] € Seq(DeltaVecType) BY DEF InvType
1)2. msg[fp][fq] = () BY DEF Init
1)3. Len(msg[fp][fq]) = 0 BY (1)2, EmptySeq

(
(
(1) DEFINE LenM = Len(msg[fp][fq])
(1)6. LenM =0 BY (1)3

(

2) HIDE DEF LenM
2) QED BY (1)6, SMTT(10)

)

)

)

)
1)7.=(0 < fk A fk < LenM)

E
(1)9. InfoAt(fk, fp, fq) = DeltaVecZero BY (1)7 DEF InfoAt
)

(1) QED BY (1)9 DEF Init_InfoAt_Conclusion

178 APPENDIX C. PROOF OF CORRECTNESS

What the NextPerformOperation(p, c, r) action does to InfoAt(fk, fp, fq).

NeatPerformOperation_InfoAt_Conclusion(fk, fp, fq, p, ¢, 1) =
UNCHANGED InfoAt(fk, fp, fq)

THEOREM NextPerformOperation_InfoAt =
ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
NEW p € Proc,
NEW ¢ € PointToNat,
NEW r € PointToNat,
InvType,
NeatPerformOperation_ WithPCR(p, ¢,)
PROVE
NeatPerformOperation_InfoAt_Conclusion(fk, fp, fq, p, ¢, 1)
PROOF
(1)1. NextPerformOperation_State_ Conclusion(p, ¢,) BY NextPerformOperation_State
(1) USE DEF NextPerformOperation_State_ Conclusion

(1) QED BY (1)1, Isa DEF InfoAt, NextPerformOperation_InfoAt_Conclusion

What the NextSendUpdate(p, tt) action does to InfoAt(fk, fp, fq).

=

NextSendUpdate_InfoAt_Conclusion(fk, fp, fq, p, tt)
LET
gamma
len
IN
A fp # p = UNCHANGED InfoAt(fk, fp, fq)
ANfp=p=
Afk =len + 1 = InfoAt(fk, fp, fq) = gamma
A fk # len + 1 = UNCHANGED InfoAt(fk, fp, fq)

NextSendUpdate_ Gamma(p, tt)
Len(msg[fp][fa])

e e

THEOREM NextSend Update_InfoAt =
ASSUME
NEW fk € Nat,
NEW fp € Proc,

C.17. HOW THE ACTIONS AFFECT INFOAT 179

NEW fq € Proc,
NEW p € Proc,
NEW tt € SUBSET Point,
InvType,
NextSendUpdate- WithPTT (p, tt)
PROVE
NextSendUpdate_InfoAt_Conclusion(fk, fp, fq, p, tt)
PROOF
(1) InvInfoAtType BY DeducelnvinfoAtType

(1)1. NextSendUpdate_State_Conclusion(p, tt) BY NextSendUpdate_State
(1) USE DEF NextSendUpdate_State- Conclusion
(

2)1. UNCHANGED msg|fp][fq] BY (1)1, (1)2
2)2. UNCHANGED InfoAt(fk, fp, fg) BY (2)1 DEF InfoAt
2) QED BY (2)2, (1)2 DEF NextSendUpdate_InfoAt_Conclusion

.CASE fp=17p
USE DEF NeztSendUpdate- Gamma

DEFINE gamma = NeatSendUpdate_ Gamma(p, tt)

DEFINE M msg|fp][fa]
DEFINE LenM Len(M)
HIDE DEF M, LenM

e 11>

2. msg € [Proc — [Proc — Seq(DeltaVecType)]] BY DEF InvType

3. M € Seq(DeltaVecType) BY (2)2 DEF M

4. LenM € Nat BY (2)3, LenInNat DEF LenM

5. M' = Append(M, gamma) BY (1)1, (1)3 DEF M, gamma

6. M" € Seq(DeltaVecType) BY (2)1, (2)3, (2)5, AppendProperties

7. LenM’ € Nat BY (2)6, LenInNat DEF LenM

8. LenM’ = LenM + 1 BY (2)1, (2)3, (2)5, AppendProperties DEF LenM

fk is outside the next state message queue.

(2)9.CASE fk =0V LenM + 1 < fk

1. fk # LenM + 1 BY (2)4, (2)9, SMTT(10)
=(0 < fk A fk < LenM) BY (2)4, (2)8, (2)9, SMTT(10)

3.0 < fk A fk < LenM') B <2>4 (2)8, (2)9, SMTT(10)

4. InfoAt(fk, fp, fq) = DeltaVecZero BY (3)2 DEF InfoAt, LenM, M

5. InfoAt(fk, fp, fq)' = DeltaVecZero BY (3)3 DEF InfoAt, LenM, M

6. UNCHANGED InfoAt(fk, fp, fq) BY (3)4, (3)5

Q

1
)
(
(
(
(
(
(
(3) QED BY (3)1, (3)6, (1)3 DEF NextSendUpdate_InfoAt_Conclusion, LenM, M

3)
3)2.
3)
3)
3)
3)
3)

fk is inside the previously existing elements on the next state message queue.

180 APPENDIX C. PROOF OF CORRECTNESS

(2)10.CASEO < fk A fk < LenM +1
(3)1. InfoAt(fk, fp, fq) = MIfk]
1.0 < fi A fk < LenM BY (2)4, (2)10, SMTT(10)
4) QED BY (4)1 DEF InvInfoAtType, M, LenM
(3)2. InfoAL(fk, fp, fa)' = MIfK)
1.0 < fk A fi < LenM’ BY (2)4, (2)8, (2)10, SMTT(10)
4) QED BY (4)1 DEF InfoAt, M, LenM
3. M{fk]" = Mfk]
1. fk € 1.. LenM BY (2)4, (2)10, SMTT(10)
4) QED BY (4)1, (2)1, (2)3, (2)5, AppendPropertiesOldElems DEF LenM
(3)4. UNCHANGED InfoAt(fk, fp, fq) BY (3)1, (3)2, (3)3
(3)5. fk # LenM + 1 BY (2)4, (2)10, SMTT(10)
(3) QED BY (3)4, (3)5, (1)3 DEF NextSendUpdate_InfoAt_Conclusion, LenM , M

fk is the appended element on the next state message queue.

(2)11. CASE fk = LenM + 1
(3Y1. M[fk) = gamma
4) QED BY (2)1, (2)3, (2)5, (2)11, AppendPropertiesNewElem DEF LenM

(
(
)
(
(
(3)
(
(
)
)
)

(3)2. InfoAt(fk, fp, fq)' = M[fk)
4)1.0 < fi A fk < LenM’ BY (2)4, (2)8, (2)11, SMTT(10)
42, InfoAt(fk, fp, fq)) = M|[fk])’ BY (4)1 DEF InfoAt, M, LenM

(3)3. InfoAt(fk, fp, fq) = gamma BY (3)1, (3)2
(3) QED BY (3)3, (2)11, (1)3 DEF NextSendUpdate_InfoAt_Conclusion, LenM, M, gamma

(2) QED BY (2)4, (2)9, (2)10, (2)11, (1)3, SMTT(10)

(
)
(
(
(4) QED BY (4)2
)
)

(1) QED BY (1)2, (1)3

What the NextReceive Update(p, q) action does to InfoAt(fk, fp, fq).

NextReceive Update_InfoAt_Conclusion(fk, fp, fq, p, q) =
IFfp=pAfg=qAnfk>0
THEN
InfoAt(fk, fp, fa) = InfoAt(fk + 1, fp, fq)
ELSE
UNCHANGED InfoAt(fk, fp, fq)

THEOREM NextReceive Update_InfoAt =
ASSUME
NEW fk € Nat,

C.17. HOW THE ACTIONS AFFECT INFOAT 181

NEW fp € Proc,
NEW fq € Proc,
NEW p € Proc,
NEW ¢ € Proc,
InvType,
NeztReceive Update_ WithPQ(p, q)
PROVE
NextReceive Update_InfoAt_Conclusion(fk, fp, fq, p, q)
PROOF
(1)1. NextReceive Update_State_Conclusion(p, q) BY NextReceive Update_State
(1) USE DEF NeztReceive Update_State_ Conclusion

)

(1)2. ASSUME fk = 0 PROVE UNCHANGED InfoAt(fk, fp, fq)
(2) =(0 < fk) BY (1)2, SMTT(10)

(2) QED BY DEF InfoAt

)3

(2

(1)3. ASSUME fp # p V fqg # q PROVE UNCHANGED InfoAt(fk, fp, fq)
y1. UNCHANGED msg|fp][fq]
(3)1. USE (1)1, (1)3
(3) QED BY Zenon T(20) sometimes zenon needs more time

2) QED BY (2)1 DEF InfoAt

(1)4. ASSUME fp = p, fq = g, fk > 0 PROVE InfoAt(fk, fp, fq)' = InfoAt(fk + 1, fp, fq)

(

> A

(2) DEFINE M = msg[p][q]

(2) DEFINE LenM = Len(M)

(2) HIDE DEF M, LenM

(2)1. msg € [Proc — [Proc — Seq(DeltaVecType)]] BY DEF InvType
(2)2. M # () BY (1)1 DEF M

(2)3. M € Seq(DeltaVecType) BY (2)1 DEF M

(2)4. LenM € Nat BY (2)3, LenInNat DEF LenM

(2)5. M’ = Tail(M) BY (1)1 DEF M

(2)6. M’ € Seq(DeltaVecType) BY (2)2, (2)3, (2)5, TailProp

(2)7. LenM’ € Nat BY (2)6, LenInNat DEF LenM

(2)8. LenM’ = LenM — 1 BY (2)2, (2)3, (2)5, TailProp DEF LenM
(2)9

. LenM = LenM' + 1 BY (2)4, (2)7, (2)8, SMTT(10)

Within the sequence — a simple consequence of TailProp.

(2)17. CASE fk < LenM’

Y. fk € 1.. LenM' BY (2)7
MIfk]" = M[fk +1] BY (

3.fk+1el.. LenM BY (

)2.

) 1

)4 InfoAt(fk, fp, fa)" = M[fk]

(1)1.0 < fk A fk < LenM’ BY (3)1, (2)7, SMTT(10)
(

)5.

(4

(3 , (2)17, (1)4, SMTT(10)
(3 2)2, (2 > (2)5, (3)1, TailProp DEF LenM
(3 3)1, (2)7, (2)9, SMTT(10)

(3

4) QED BY (4)1, (1)4 DEF InfoAt, M, LenM

InfoAt(fk + 1, fp, fq) = M[fk + 1]
V.0 < fle+ 1A Jk41< LenM BY (3)3, (2)4, SMTT(10)

(3

182 APPENDIX C. PROOF OF CORRECTNESS

(4) QED BY (4)1, (1)4 DEF InfoAt, M, LenM
(3) QED BY (3)2, (3)4, (3)5

Off the end of the sequence — both InfoAt are 0.

(2)18. CASE fk > LenM’
(3)1. InfoAt(fk, fp, fq)' = DeltaVecZero
(1. =0 < fk A fk < LenM’) BY (2)7, (2)18, (1)4, SMTT(10)
(4) QED BY (4)1, (1)4 DEF InfoAt, M, LenM
(3)2. InfoAt(fk + 1, fp, fq) = DeltaVecZero
()1, fk +1 € Nat BY SMTT(10)
2. -(0< fk+1Afk+1< LenM) BY (2)7, (2)9, (2)18, SMTT(10)
(4) QED BY (4)1, (4)2, (1)4 DEF InfoAt, M, LenM
(3) QED BY (3)1, (3)2

(2) QED BY (2)7, (2)17, (2)18, (1)4, SMTT(10)

(1) QED BY (1)2, (1)3, (1)4, SMTT(10) DEF NextReceive Update_InfoAt_Conclusion

What the NextReceive Update(p, ¢) action means about InfoAt(1, p, q).

THEOREM NeztReceive Update_InfoAtl =
ASSUME
NEW p € Proc,
NEW ¢q € Proc,

InvType,
NextReceive Update- WithPQ(p, q)
PROVE
InfoAt(1, p, q) = NextReceiveUpdate_Kappa(p, q)
PROOF

) DEFINE kappa = NezxtReceive Update_Kappa(p, q)

NextReceive Update_State_ Conclusion(p, q) BY NextReceive Update_State
USE DEF NextReceive Update_State_ Conclusion

glplld]
Len(M)
)1
1

2

DEFINE M

ms
DEFINE LenM =

3. LenM € Nat BY (1)

1
1
1)4. LenM > 0 BY (1)1

(1
(1
(1
(1
(1
(
(
{
(5.0 < 1A1< LenM
2) HIDE DEF LenM

)1
)
)
)
52 kappa = M[1] BY (1
)
)
(

C.17. HOW THE ACTIONS AFFECT INFOAT 183

(2) QED BY (1)3, (1)4, SMTT(10)
(1) QED BY (1)2, (1)5 DEF InfoAt

184 APPENDIX C. PROOF OF CORRECTNESS

C.18 How the actions affect IncomingInfo

MODULE NaiadClockProofAffectIncomingInfo

EXTENDS NaiadClockProofAffectInfoAt

How the actions affect IncomingInfo.

The initial state for IncomingInfo(fk, fp, fq).

A

Init_IncomingInfo_Conclusion(fk, fp, fq) =
IncomingInfo(fk, fp, fq) = DeltaVecZero

A

THEOREM Init_Incominglnfo =
ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
InvType,
Init
PROVE
Init_IncomingInfo_Conclusion(fk, fp, fq)
PROOF
1)1. msg[fp][fq] € Seq(DeltaVecType) BY DEF InvType
1)2. msg[fp][fq] = () BY DEF Init

1) DEFINE sum = IncomingInfo(fk, fp, fq)! : !sum

1)6. temp[fp] = DeltaVecZero BY DEF Init, DeltaVecAddZero
1)7. DeltaVecAdd(sum, temp[fp]) = DeltaVecZero
BY (1)5, (1)6, DeltaVecZeroType, DeltaVecAddZero
(1)8. IncomingInfo(fk, fp, fq) = DeltaVecZero BY (1)7 DEF Incominglnfo
(1) QED BY (1)8 DEF Init_IncomingInfo_ Conclusion

(
(1)
{1
(1)5. sum = DeltaVecZero BY (1)1, (1)2, DeltaVecSeqSkipSumEmpty
(1)
{1

What the NeztPerformOperation(p, ¢, r) action does to IncomingInfo(fk, fp, fq).

C.18. HOW THE ACTIONS AFFECT INCOMINGINFO

NeatPerformOperation_IncomingInfo_ Conclusion(fk, fp, fq, p, ¢, 1)
LET
delta
I
IN
IF fp = p THEN II" = DeltaVecAdd(II, delta) ELSE UNCHANGED I

NextPerformOperation_Delta(p, ¢, r)
IncomingInfo(fk, fp, fq)

1> 11>

A

THEOREM NextPerformOperation_IncominglInfo =
ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
NEW p € Proc,
NEW ¢ € PointToNat,
NEW r € PointToNat,
InvType,
NeatPerformOperation- WithPCR(p, ¢,)
PROVE
NeatPerformOperation_IncomingInfo_ Conclusion(fk, fp, fq, p, ¢, r)
PROOF
(1) InvIncomingInfo Type BY DeducelnvIncominglnfo Type

(1)1. NextPerformOperation_State_ Conclusion(p, ¢, r) BY NextPerformOperation_State

(1) USE DEF NextPerformOperation_State_ Conclusion

Not affected.

(1)3.CASE fp # p

(2)1. UNCHANGED temp[fp] BY (1)1, (1)3

(2)2. UNCHANGED msg BY (1)1

(2) USE DEF IncomingInfo

(2) USE DEF NextPerformOperation_IncominglInfo_ Conclusion
(2) QED BY (2)1, (2)2, (1)3

Affected.

(1) 4. CASE fp = p

(2)1. msg € [Proc — [Proc — Seq(DeltaVecType)]] BY DEF InvType

(2)2. msg’ = msg BY (1)1
The sum of delta vectors is associative. We have

incoming’ summsg + tempp’

= summsg + (tempp + delta)

= (summsg + tempp) + delta

= incoming + delta

(2) DEFINE tempp temp|[p]

(2) DEFINE delta NextPerformOperation_Delta(p, ¢, r)
(2)3. delta € DeltaVecType BY (1)1

(2)4. tempp € DeltaVecType BY DEF InvType

e 11>

A

185

186 APPENDIX C. PROOF OF CORRECTNESS

(2)5. tempp’ = DeltaVecAdd(tempp, delta) BY (1)1, (1)4

(2) DEFINE summsg = IncomingInfo(fk, p, fq)! : ! sum

(2)6. summsg € DeltaVecType BY DEF InvIncominglnfo Type

(2)7. UNCHANGED summsg BY (2)2

(2) DEFINE incoming = DeltaVecAdd(summsg, tempp)

(2)8. mcommg € DeltaVecType BY (2)6, (2)4, DeltaVecAddType

(2)9. incoming’ = DeltaVecAdd(summsg, tempp’) BY (2)7

(2)10. mcommg = DeltaVecAdd(summsg, DeltaVecAdd(tempp, delta)) BY (2)5, (2)9
(2)11. incoming’ = DeltaVecAdd(Delta VecAdd(summsg, tempp), delta)
(3) HIDE DEF incoming, summsg, tempp, delta

(3) QED BY <2>3 (2)4, (2)6, (2)10, DeltaVecAddAssociative

(2)12. incoming’ = DeltaVecAdd(incoming, delta) BY (2)11

(2) USE DEF IncominglInfo

(2) USE DEF NeztPerformOperation_IncomingInfo_ Conclusion

(2) QED BY (2)12, (1)4

) QED BY (1)3, (1)4

(1

What the NextSendUpdate(p, tt) action does to IncomingInfo(fk, fp, fq).

NeatSendUpdate_IncominglInfo_Conclusion(fk, fp, fq, p, tt) =

LET
I 2 IncomingInfo(fk, fp, fq)
len 2 Len(msg|fp][fq])

IN

IF fp = p A fk > len THEN II' = temp[fp]’ ELSE UNCHANGED II

THEOREM NeztSendUpdate_IncominglInfo =
ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
NEW p € Proc,
NEW ¢t € SUBSET Point,
InvType,
NeatSendUpdate_ WithPTT (p, tt)
PROVE
NeatSendUpdate_IncomingInfo_Conclusion(fk, fp, fq, p, tt)
PROOF
(1) InvIncomingInfoType BY DeduceInvIncomingInfo Type

C.18. HOW THE ACTIONS AFFECT INCOMINGINFO

(1)1. NextSendUpdate_State— Conclusion(p, tt) BY NextSendUpdate_State
(1) USE DEF NextSendUpdate_State_ Conclusion

Not affected.

(1)2. CASE fp # p
(2

(2

y1. UNCHANGED temp|fp] BY (1)1, (1)2
(2)2. UNCHANGED msg|[fp][fq] BY (1)1, (1)2
) USE DEF NextSendUpdate_IncomingInfo_ Conclusion

(2) QED BY (2)1, (2)2, (1)2 DEF Incominglnfo

Affected.
(1)3.CASE fp =p

Definitions for the current state.

2) DEFINE CurrT
DEFINE CurrM
DEFINE CurrSum

2
2
2) DEFINE Currll

temp|p]

msg|p][fq]

IncomingInfo(fk, p, fg)! : !sum
IncomingInfo(fk, p, fq)

e 11> e e 11>

2) DEFINE LenCurrM Len(CurrM)

)
)
)
)
2)1. CurrSum = DeltaVecSeqSkipSum(fk, CurrM) OBVIOUS

2)2. Currll = DeltaVecAdd(CurrSum, CurrT) BY DEF Incominglnfo
)

)

)

)

)

3. CurrT € DeltaVecType BY DEF InvType

4. CurrM € Seq(DeltaVecType) BY DEF InvType

5. CurrSum € DeltaVecType BY (2)4, DeltaVecSeqSkipSum Type

6. Currll € DeltaVecType BY (2)2, (2)5, (2)3, DeltaVecAddType
7. LenCurrM € Nat BY (2)4, LenInNat

o~ o~~~ o~ /\/\ o~~~ o~ o~

2
2
2
2
2

Definitions for the next state.

) DEFINE NextT
DEFINE NextM
DEFINE NextSum
DEFINE NextI]
DEFINE LenNextM

temp|p]’
msg|p][fgl
IncomingInfo(fk, p, fg)! : !sum’

IncomingInfo(fk, p, fq)'
Len(NextM)

2

e 11> e e 11>

2
2
2

)

)

)

)

¥8. NextSum = DeltaVecSeqSkipSum(fk, NextM) OBVIOUS
)9. NextIl = DeltaVecAdd(NextSum, NextT) BY DEF Incominglnfo
)

)

)

)

)

10. NextT € DeltaVecType BY (1)1 DEF InvType

11. NextM € Seq(DeltaVecType) BY (1)1 DEF InvType

12. NextSum € DeltaVecType BY (2)11, DeltaVecSeqSkipSum Type

13. Nextil € DeltaVecType BY (2)9, (2)12, (2)10, DeltaVecAddType

(2
(
(
(
(
(2
(2
(
(
5
(2)14. LenNextM € Nat BY (2)11, LenInNat

2
2
2
2
2

Relation between current state and next state.

(2) DEFINE gamma = NextSendUpdate_ Gamma(p, tt)
(2)15. gamma € DeltaVecType BY (1)1

(2)16. CurrT = DeltaVecAdd(gamma, NextT) BY (1)1

187

188 APPENDIX C. PROOF OF CORRECTNESS

(2)17. NextM = Append(CurrM, gamma) BY (1)1, (1)3
(2)18. LenNextM = LenCurrM + 1

(3) HIDE DEF NextM, CurrM

(

3) QED BY (2)4, (2)15, (2)17, AppendProperties

—_

When fk > LenCurrM, we have NextSum = 0, which results in NextI] = NextT.

(2)20. ASSUME fk > LenCurrM PROVE NextIl = NextT
(3)1. fk > LenNextM
(4) HIDE DEF LenCurrM, LenNextM
(4) QED BY (2)7, (2)14, (2)18, (2)20, SMTT(10)
(3)2. NextSum = DeltaVecZero BY (3)1, (2)8, (2)11, DeltaVecSeqSkipSumSkipAll
(3) QED BY (3)2, (2)9, (2)10, DeltaVecAddZero

When fk < LenCurrM, we have NextSum = CurrSum + gamma, which results in NextII = Currll.
(2)21. ASSUME —(fk > LenCurrM) PROVE NextIl = Currll

The action adds gamma to sum.

(3)1. NextSum = DeltaVecAdd(CurrSum, gamma)
M1, fk < LenCurrM
(5) HIDE DEF LenCurrM
(5) QED BY (2)7, (2)21, SMTT(10)
(4) HIDE DEF NextSum, Ne:rtM CurrSum, CurrM, gamma
(4) QED BY (4)1, (2)1, (2)4, (2 >8, (2)15, (2)17, DeltaVecSeqSkipSumAppend

Re-associate the sum of gamma vectors. We have

NextII NextSum + NextT
(CurrSum + gamma) + NextT
CurrSum + (gamma + NextT)
CurrSum + CurrT

CurrII
3) HIDE DEF CurrT, CurrSum, Currll
HIDE DEF NextT, NextSum, Nextll

)
)
) HIDE DEF gamma
)
)

W W

3)2. NextIl = DeltaVecAdd(DeltaVecAdd(CurrSum, gamma), NextT) BY (3)1, (2)9
3)3. NextIl = DeltaVecAdd(CurrSum, DeltaVecAdd(gamma, NextT))

BY (3)2, (2)5, (2)10, (2)15, DeltaVecAddAssociative
(3)4. Nextll = DeltaVecAdd(CurrSum, CurrT) BY (3)3, (2)16
(3) QED BY (3)4, (2)2
)

(
(
(
(
(
(2) QED BY (2)20, (2)21, (1)3 DEF NextSendUpdate_IncomingInfo_ Conclusion

(1) QeD BY (1)2, (1)3

What the NextReceive Update(p, q) action does to IncomingInfo(fk, fp, fq).

C.18. HOW THE ACTIONS AFFECT INCOMINGINFO 189

=

NeatReceive Update_ IncomingInfo_Conclusion(fk, fp, fq, p, q)
IFfp=pAfg=q
THEN IncomingInfo(fk, fp, fq)' = IncomingInfo(fk + 1, fp, fq)
ELSE UNCHANGED IncomingInfo(fk, fp, fq)

THEOREM NextReceive Update_IncominglInfo 2
ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
NEW p € Proc,
NEW ¢q € Proc,
InvType,
NeatReceive Update_ WithPQ(p, q)
PROVE
NextReceive Update_IncomingInfo_Conclusion(fk, fp, fa, p, q)
PROOF
(1)1. NextReceive Update_State_ Conclusion(p, q) BY NextReceiveUpdate_State
1) USE DEF NextReceive Update_State_ Conclusion

InvType’ BY (1)1

)

1) InvIncomingInfoType BY DeducelnvIncominglnfo Type
)
) InvIncomingInfo Type' BY DeducelnvIncominglnfo Type

(
(
(1
(1
Not affected.
(1)2.casE~(fp = p A fg = q)
(2)1. UNCHANGED temp BY (1)1
(2)2. UNCHANGED msg|[fp][fq] BY (1)1, (1)2
(2) USE DEF NextReceive Update_IncomingInfo_Conclusion
(2) QED BY (1)2, (2)1, (2)2 DEF Incominglnfo
Affected.
()3.CASEfp=pAfg=q
Definitions for the current state. Note that these reference fk + 1.
2) DEFINE CurrT temp|p]
2) DEFINE CurrM = msg[p][q]
A

2) DEFINE CurrSum = Incominglnfo(fk + 1, p, q)! : !sum
2) DEFINE Currll £ IncomingInfo(fk + 1, p, q)

e 11>

2)3. CurrT € DeltaVecType BY DEF InvType
2Y4. CurrM € Seq(DeltaVecType) BY DEF InvType

(
(
(
(
(2)1. Currll = DeltaVecAdd(CurrSum, CurrT) BY DEF Incominglnfo
(
(
(
(2)5. CurrSum € DeltaVecType BY DEF InvIncomingInfo Type

)
)
)
)1
2)2. CurrSum = DeltaVecSeqSkipSum(fk + 1, CurrM) OBVIOUS
)
)
)

190

(1

APPENDIX C. PROOF OF CORRECTNESS

(2)6. Currll € DeltaVecType BY DEF InvIncominglnfo Type
(2)7. CurrM # () BY (1)1

Definitions for the next state.

) DEFINE NextT
DEFINE NextM

temp[p]’

msg[p]ld]
DEFINE NeztSum = IncomingInfo(fk, p, q)! : !sum’

DEFINE Neztll = IncomingInfo(fk, p, q)’

||l> 1>

/

)

)

)

)8. NextIl = DeltaVecAdd(NextSum, NextT) BY DEF Incominglnfo
9. NextSum = DeltaVecSeqSkipSum(fk, NextM) OBVIOUS
)

)

)

)

10. NextT € DeltaVecType BY DEF InvType

11. NextM € Seq(DeltaVecType) BY DEF InvType

12. NextSum € DeltaVecType BY DEF InvIncominglnfo Type
13. Nextll € DeltaVecType BY DEF InvincomingInfoType

(2
(
(
(
(2
(2
(
(
(
(

2
2
2
2

Relation between current state and next state.

(2)14. CurrT = NextT BY (1)1

(2)15. NextM = Tail(CurrM) BY (1)1

(2)16. NextSum = DeltaVecSeqSkipSum(fk, Tail(CurrM)) BY (2)9, (2)15
(2)17. DeltaVecSeqSkipSum(fk, Tail(CurrM)) = DeltaVecSeqSkipSum(fk + 1, CurrM)
(3) HIDE DEF CurrM

(3) QED BY (2)4, (2)7, DeltaVecSeqSkipSum Tail

y18. NextSum = CurrSum BY (2)2, (2)15, (2)16, (2)17

Y19. NextII = Currll BY (2)1, (2)8, (2)14, (2)18

) USE DEF NextReceive Update_IncominglInfo_ Conclusion

) QED BY (2)19, (1)3

ED BY (1)2, (1)3

2
(2
(2
(2
) Q

C.19. HOW THE ACTIONS AFFECT GLOBALINCOMINGINFO 191

C.19 How the actions affect GlobalIncomingInfo

MODULE NaiadClockProofAffect GloballncominglInfo

EXTENDS NaiadClockProofAffectIncominglnfo

How the actions affect GloballncomingInfo.

The initial state for GlobalIncomingInfo(fk, fp, fq).

A

Init_GloballncomingInfo_Conclusion(fk, fp, fq) =
LET
GII = GloballncomingInfo(fk, fp, fq)
IN
GII = DeltaVecZero

THEOREM Init_ GloballncomingInfo =

ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc,
InvType,
Init
PROVE
Init_GloballncomingInfo_Conclusion(fk, fp, fq)
PROOF
(1) DEFINE GII = GlobalIncomingInfo(fk, fp, fq)
1) DEFINE F' £ GlobalIncomingInfo(fk, fp, fq)! : | F
HIDE DEF GII, F

)
)
) InuGloballncominglnfo Type BY DeducelnvGloballncomingInfo Type
y1. F' = GloballncomingInfo_F(fk, fp, fqg) BY DEF GloballncomingInfo_F', F
)2. F € [Proc — DeltaVecType] BY (1)1 DEF InvGloballncomingInfo Type
)3. DeltaVecFunHasFiniteNonZeroRange(F') BY (1)1 DEF InvGloballncomingInfo Type
)4. ASSUME NEW p € Proc PROVE F|[p] = DeltaVecZero
(2)1. ASSUME NEW k € Nat PROVE Incominglnfo(k, p, fq) = DeltaVecZero

(3)1. Init_IncomingInfo_Conclusion(k, p, fq) BY Init_Incominglnfo

(3) QED BY (3)1 DEF Init_IncomingInfo_ Conclusion
(2)2.CASEfp=1p

(3)1. fk € Nat OBVIOUS

(3) QED BY (3)1, (2)1, (2)2 DEF F

192 APPENDIX C. PROOF OF CORRECTNESS

(2)3. CASE fp # p

)

(3)1.0 € Nat OBVIOUS

(3) QED BY (3)1, (2)1, (2)3 DEF F

(2) QED BY (2)2, (2)3

(1)5. DeltaVecFunSum(F) = DeltaVecZero BY (1)2, (1)3, (1)4, DeltaVecFunSumAllZero
(1Y6. GII = DeltaVecZero BY (1)5 DEF GloballncomingInfo, GII, F
1)

(1) QED BY (1)6 DEF Init_GloballncomingInfo_ Conclusion, GII

What the NexztPerformOperation(p, c, r) action does to GloballncomingInfo(0, fq, fq).

A

NeatPerformOperation_ GlobalIncomingInfo_Conclusion(fq, p, ¢, r)

LET
delta = NextPerformOperation_Delta(p, ¢,)
GII = GloballncomingInfo(0, fq, fq)

IN

GII' = DeltaVecAdd(GII, delta)

THEOREM NextPerformOperation_ GloballncomingInfo =
ASSUME
NEW fq € Proc,
NEW p € Proc,
NEW ¢ € PointToNat,
NEW r € PointToNat,
InvType,
NextPerformOperation_- WithPCR(p, ¢,)
PROVE
NextPerformOperation_GlobalIncomingInfo_ Conclusion(fq, p, ¢, r)
PROOF
Y InvIncomingInfoType BY DeducelnvincomingInfo Type
InvGloballncominglInfo Type BY DeducelnvGloballncominglnfo Type

DEFINE delta

)

) NextPerformOperation_Delta(p, ¢, r)
) DEFINE GII

)

)

GloballncomingInfo(0, fq, fq)
GlobalIncomingInfo_F (0, fq, fq)

e 1> 1>

(1
(1
(1
(1
(1) DEFINE F
(1)1. NextPerformOperation_State_ Conclusion(p, ¢, 1)

BY NextPerformOperation_State
(1)2. ASSUME NEW k1 € Nat, NEW pl € Proc

PROVE NextPerformOperation_IncominglInfo_ Conclusion(kl, pl, fq, p, ¢, r)

BY NextPerformOperation_IncominglInfo

C.19. HOW THE ACTIONS AFFECT GLOBALINCOMINGINFO 193

USE DEF NextPerformOperation_State_ Conclusion
USE DEF NeztPerformOperation_IncomingInfo_ Conclusion

1) InvType’ BY (1)1

1) InvIncomingInfo Type’ BY DeducelnvIncomingInfo Type

1) InvGloballncomingInfo Type' BY DeducelnvGloballncomingInfo Type
1)3. delta € DeltaVecType BY (1)1 DEF delta

4. F € [Proc — DeltaVecType] BY DEF InvGloballncomingInfo Type
5. F' € [Proc — DeltaVecType] BY DEF InvGloballncomingInfo Type

(1
(1
(
(
(
(
(1
(1
(

)

)

)

)

)

)

)

)

1)6. ASSUME NEW pl € Proc, pl # p PROVE F'[pl] = F[p]]
(2)1.0 € Nat OBVIOUS

(2)2. UNCHANGED IncomingInfo(0, pl, fq) BY (2)1, (1)2, (1)6
(2) QED BY (2)1, (2)2 DEF GloballncominglInfo_F

)

(

(

(

)

)

)1

(2

'[p] = DeltaVecAdd(Fp], delta)

(V7. F
2)1.0 € Nat OBVIOUS
2
2

)2. IncomingInfo(0, p, fq)’ = DeltaVecAdd(IncomingInfo(0, p, fq), delta) BY (2)1, (1)2
) QED BY (2)1, (2)2 DEF GloballncomingInfo_F'

(1
(1
a

8. F/ = [F EXCEPT ![p] = DeltaVecAdd(Q, delta)] BY (1)4, (1)5, (1)6, (1)7
9. F' = DeltaVecFunAddAt(F, p, delta) BY (1)8 DEF DeltaVecFunAddAt

0. GII' = DeltaVecAdd(GII, delta)
) DeltaVecFunSumAddAt_Conclusion(F, p, delta)
(3) DeltaVecFunSumAddAt_Hypothesis(F, p, delta)
(4) DeltaVecFunHasFiniteNonZeroRange(F) BY DEF InvGloballncomingInfo Type
(4) QED BY (1)3, (1)4 DEF DeltaVecFunSumAddAt_Hypothesis
(3) QED BY DeltaVecFunSumAddAt
y GII = DeltaVecFunSum(F) BY DEF GloballncomingInfo, GloballncomingInfo_F
Y GII' = DeltaVecFunSum(F") BY DEF Globallncominglnfo, GloballncomingInfo_F
) QED BY (1)9 DEF DeltaVecFunSumAddAt_ Conclusion

USE DEF NextPerformOperation_ GlobalIncomingInfo_ Conclusion
ED BY (1)10

(1

(2
(2
2
)
(1

What the NextSendUpdate(p, tt) action does to GloballncomingInfo(0, fq, fq).

A

NeatSendUpdate_ GloballncomingInfo_ Conclusion(fq, p, tt)
LET
GII = GloballncomingInfo(0, fq, fq)

194 APPENDIX C. PROOF OF CORRECTNESS

IN
UNCHANGED GIJ

THEOREM NeztSend Update_ GloballncomingInfo =
ASSUME
NEW fq € Proc,
NEW p € Proc,
NEW tt € SUBSET Point,

InvType,
NextSendUpdate_ WithPTT (p, tt)
PROVE
NeatSendUpdate_GloballncomingInfo_ Conclusion(fq, p, tt)
PROOF
Yy InvIncomingInfo Type BY DeducelnvIncomingInfoType

InvGloballncomingInfo Type BY DeducelnvGloballncominglInfo Type

(1
(1)
(1) DEFINE GII = GlobalIncominglnfo(0, fq, fq)
(1) DEFINE F = GloballncomingInfo_F (0, fq, fq)
(1)1. NextSendUpdate_State_ Conclusion(p, tt)
BY NeztSendUpdate_State
(1)2. ASSUME NEW k1 € Nat, NEW pl € Proc
PROVE NextSendUpdate_IncomingInfo_ Conclusion(k1, pl, fq, p, tt)
BY NeztSendUpdate_Incominglnfo

USE DEF NextSendUpdate_State_Conclusion
USE DEF NextSendUpdate_IncomingInfo_Conclusion

)
)
) InvType’ BY (1)1

Y InvIncomingInfo Type' BY DeducelnvincominglInfoType

) InvGlobalIncomingInfo Type' BY DeducelnvGloballncominglnfo Type
)3.

(2

1)3. UNCHANGED F

ASSUME NEW pl € Proc PROVE UNCHANGED Incominglnfo(0, pl, fq)

(1
(1
(1
(1
(1
(

YDEFINE M = msg[p1][fq]

) DEFINE LenM = Len(M)

V1. M € Seq(DeltaVecType) BY DEF InvType
)2. LenM € Nat BY (3)1, LenInNat
)
(4
(
)

1>

)
(3
(3
(3
(3
(3)3. (0 > LenM)

) HIDE DEF LenM
4) QED BY (3)2, SMTT(10)

(3) QED BY (3)3, (1)2
2) QED BY DEF GloballncomingInfo_F

2) GII = DeltaVecFunSum(F') BY DEF GloballncomingInfo, GloballncomingInfo_F'

(
(1)4. UNCHANGED GII
(
(2) GII' = DeltaVecFunSum(F') BY DEF GloballncominglInfo, GloballncomingInfo_F

C.19. HOW THE ACTIONS AFFECT GLOBALINCOMINGINFO 195

(2) QED BY (1)3

(1) QED BY (1)4 DEF NexztSendUpdate_GloballncomingInfo_ Conclusion

What the NeztReceive Update(p, q) action does to GloballncomingInfo(0, fq, fq).

NeztReceive Update_ GlobalIncomingInfo_ Conclusion(fq, p, q) =

LET
GII = GlobalIncomingInfo(0, fq, fq)
kappa £ NextReceive Update_Kappa(p, q)
negkappa = DeltaVecNeg(kappa)
IN
IF fg=¢q
THEN
A GII = DeltaVecAdd(GII', kappa) looking backward
A GII' = DeltaVecAdd(GII, negkappa) looking forward

ELSE UNCHANGED GII

THEOREM NextReceive Update_ GloballncomingInfo
ASSUME
NEW fq € Proc,
NEW p € Proc,
NEW ¢ € Proc,

InvType,
NeatReceive Update_ WithPQ(p, q)
PROVE
NextReceive Update— GloballncomingInfo_ Conclusion(fq, p, q)
PROOF
(1) InvIncomingInfo Type BY DeducelnvIncomingInfo Type

InvGloballncomingInfoType BY DeducelnvGloballncomingInfo Type

(1)

(1) DEFINE GIT £ GlobalIncomingInfo(0, fq, fq)

(1) DEFINE kappa £ NextReceive Update_Kappa(p, q)

(1) DEFINE negkappa = DeltaVecNeg(kappa)

(1) DEFINE F = GloballncomingInfo_F (0, fq, fq)

(1) DEFINE Add(a, b) = DeltaVecAdd(a, b) a local abbreviation
DEFINE Zero = DeltaVecZero a local abbreviation

(1)

(1)1. NextReceive Update_State_ Conclusion(p, q)
BY NextReceive Update_State

196 APPENDIX C. PROOF OF CORRECTNESS

(1)2. ASSUME NEW k1 € Nat, NEW pl € Proc
PROVE NextReceive Update_IncomingInfo_ Conclusion(k1, pl, fq, p, q)
BY NextReceive Update_Incominglnfo

USE DEF NeatReceiveUpdate_State_ Conclusion
USE DEF NextReceive Update_IncomingInfo_ Conclusion

InvType’ BY (1)1
InvIncominglnfo Type’ BY DeducelnvIncominglInfo Type
InvGlobalIncominglInfo Type' BY DeducelnvGloballncomingInfo Type

)

)

)

)

)

Y3. GII € DeltaVecType BY DEF InvGloballncomingInfo Type
4. kappa € DeltaVecType BY (1)1

}5. negkappa € DeltaVecType BY (1)4, DeltaVecNegType

)
)
)
)

6. GII = DeltaVecFunSum(F) BY DEF Globallncominglnfo, GloballncomingInfo_F
7. GII' = DeltaVecFunSum(F’) BY DEF GloballncomingInfo, GloballncomingInfo_F
8. DeltaVecFunHasFiniteNonZeroRange(F') BY DEF InvGloballncominglnfo Type

9. F € [Proc — DeltaVecType] BY DEF InvGloballncomingInfo Type

No change.
(1)10. ASSUME fq # g PROVE UNCHANGED GII

(2)1. UNCHANGED F'
(3)1. ASSUME NEW pl € Proc PROVE UNCHANGED Incominglnfo(0, pl, fq)
BY (1)2, (1)10
(3) QED BY (3)1 DEF Globallncominglnfo_F

(2) QED BY (2)1, (1)6, (1)7

Change.

(1)11. ASSUME fq = q PROVE GII' = DeltaVecAdd(GII, negkappa)
(2)1. F' = DeltaVecFunAddAt(F, p, negkappa)

(3)1. ASSUME NEW pl € Proc, pl # p PROVE UNCHANGED IncomingInfo(0, p1, fq)
4) QED BY (3)1, (1)2

DEFINE 110
DEFINE 11

IncomingInfo(0, p, fq)

(3
3 IncomingInfo(1, p, fq)

)
(
)
(3)
(3) SUFFICES I10" = Add(II0, negkappa)
(
)
)
)
)

A
A

4) QED BY (3)1 DEF DeltaVecFunAddAt, GloballncominglInfo_F

2.0 € Nat OBVIOUS

3.1 € Nat OBVIOUS

4.0+ 1=1BY SMTT(10)

5.1I0 € DeltaVecType BY (3)2 DEF InvIncomingInfoType

C.19. HOW THE ACTIONS AFFECT GLOBALINCOMINGINFO 197

(3)6. II1 € DeltaVecType BY (3)3 DEF InvIncomingInfoType
(3)7. I10' = II1 BY (3)4, (1)2, (1)11
(3)8. I10 = Add(II1, kappa)

(4) DEFINE M = msg[11fq]

(4) DEFINE LenM = Len(M)

(M1, kappa = M[1] BY (1)1, (1)11

(1< LenM
5)1. LenM € Nat BY (1)1, (1)11
5)2. LenM # 0 BY (1)1, (1)11
5)
5)

4

HIDE DEF LenM

QED BY (5)1, (5)2, SMTT(10)

EFINE SS0 2 DeltaVecSeqSkszum(O, M)
A

(4) D
DEFINE SS51 DeltaVecSeqSkipSum(1, M)
3.
5

)

)

)

)2.

(

(

(

(

)

(4)

(4)3. M € Seq(DeltaVecType)
(5) USE DEF InvType
(5) QED BY ZenonT(20) sometimes zenon needs more time

(4)4. SS0 € DeltaVecType BY (4)3, (3)2, DeltaVecSeqSkipSum Type

(4)5. SS1 € DeltaVecType BY (4)3, (3)3, DeltaVecSeqSkipSum Type

(4)6. SS0 = Add(SS1, kappa)
(5) HIDE DEF kappa, M
(5) QED BY (4)1, (4)2, (4)3, (3)4, DeltaVecSeqSkipSumNext
) DEFINE tempp = temp|p]
V7. tempp € DeltaVecType BY DEF InvType
8. IT0 = Add(S50, tempp) BY DEF Incominglnfo
9. IT1 = Add(SS1, tempp) BY DEF Incominglnfo
)
(
(
(
(
(
(
(
(

<

HIDE DEF S50, SS1, 110, 111, tempp, kappa
USE (4)4, (4)5, (1)7, (3)5, (3)6, (1)4
LI0 = Add Add(SS1, kappa), tempp) BY
.I10 = Add(SS1, Add(kappa, tempp)) BY
Y
Y

E) o (51
.II0 = Add(SS1, Add(tempp, kappa)) B

()

(

(4)8
1, DeltaVecAddAssociative

)6,
)1,
)2, DeltaVecAddCommutative
)3,

W=

(
(5
(5

4. 110 = Add(Add(SS1, tempp), kappa) BY (5)3, DeltaVecAddAssociative

5. 110 = Add(II1, kappa) BY (5)4, (4)9

QED BY (5)5

)9. II1 = Add(I10, negkappa)

(4) HIDE DEF kappa, negkappa, 110, II1

(1) USE (3)5, (3)6, ()4, (1)5

(4)2. Zero = Add(kappa, negkappa) BY DeltaVecAddNeg DEF negkappa

(4)3. IT1 = Add(II1, Add(kappa, negkappa)) BY (4)2, DeltaVecAddZero

(

(

(

)

cncncncncncncncnoxooo\locﬂcﬂo
™
o

T

(3

4. 111 = Add(Add(II1, kappa), negkappa) BY (4)3, DeltaVecAddAssociative
4)5. IT1 = Add(II0, negkappa) BY (4)4, (3)8
4) QED BY (4)5

(3) QED BY (3)7, (3)9

(2)2. DeltaVecFunSumAddAt_Conclusion(F, p, negkappa)
(3) HIDE DEF F', negkappa

198 APPENDIX C. PROOF OF CORRECTNESS

(3) USE ()5, (1)8, (1)9

(3)DeltaVecFunSumAddAt Hypothesis(F, p, negkappa)
(4) QED BY DEF DeltaVecFunSumAddAt_Hypothesis

(3) QED BY DeltaVecFunSumAddAt

2) QED BY (2)1, (2)2, (1)6, (1)7, (1)9 DEF DeltaVecFunSumAddAt_Conclusion

(

(1)12. ASSUME fq = q PROVE GII = Add(GII', kappa)

(2) HIDE DEF kappa

(2) HIDE DEF negkappa

(2) HIDE DEF GII

(2) UsE (1)3, (1)4, (1)5

(2)1. Zero = Add(negkappa, kappa) BY (1)4, DeltaVecAddNeg DEF negkappa

(2)2. GII = Add(GII, Add(negkappa, kappa)) BY (2)1, DeltaVecAddZero
(2)3. GII = Add(Add(GII, negkappa), kappa) BY (2)2, DeltaVecAddAssociative
(2) QED BY (2)3, (1)11, (1)12

(1) USE DEF NextReceive Update_ GlobalIncomingInfo_Conclusion
(1) USE DEF GlobalIncomingInfo, GloballncomingInfo_F
(1) QeD BY (1)10, (1)11, (1)12

What the NeztReceiveUpdate(p, q) action does to GloballncomingInfo(fk, p, q).

THEOREM NextReceive Update_GlobalIncomingInfol =
ASSUME
NEW fk € Nat,
NEW p € Proc,
NEW ¢ € Proc,

InvType,
NeatReceive Update_ WithPQ(p, q)
PROVE
GlobalIncomingInfo(fk, p, q)' = GloballncomingInfo(fk + 1, p, q)
PROOF

(Y1, IncomingInfo(fk, p, q)' = IncomingInfo(fk + 1, p, q)
(2)1. NextReceive Update_IncomingInfo_Conclusion(fk, p, q, p, q)
BY NextReceive Update_Incominglnfo
(2) QED BY (2)1 DEF NextReceive Update_IncomingInfo_ Conclusion

(1)2. ASSUME NEW pl € Proc, pl # p PROVE UNCHANGED Incominglnfo(0, pl, q)
(2)1. NextReceive Update—IncomingInfo_ Conclusion(0, pl, q, p, q)
BY NextReceive Update_Incominglnfo

C.19. HOW THE ACTIONS AFFECT GLOBALINCOMINGINFO 199

(2) QED BY (2)1, (1)2 DEF NextReceive Update_IncomingInfo_ Conclusion

(1)3. GloballncomingInfo_F (fk, p, q)) = GloballncomingInfo_F(fk + 1, p, q)
BY (1)1, (1)2 DEF GloballncomingInfo_F

(1) QED BY (1)3 DEF GloballncomingInfo, GloballncomingInfo_F

200 APPENDIX C. PROOF OF CORRECTNESS

C.20 Proof of invariant InvType

MODULE NaiadClockProofInvType

EXTENDS NaiadClockProofAffect GloballncominglInfo

Proof of invariant InvType.

InvType holds in the initial state.

THEOREM ThmInitInvType =
Init = InvType
PROOF
)} SUFFICES ASSUME InitPROVE InvType OBVIOUS

(1
(1)1. lleq € PointRelationType BY DEF Init
(1)2. IsPartialOrder(lleq) BY DEF Init

(

(1)4.

2
2

glob € [Proc — DeltaVecType]

1. glob = [p € Proc — nrec] BY DEF Init

Y2. CountVecType C DeltaVecType

(3)1. Nat C Int BY SMTT(10)

(3) QED BY DEF CountVecType, DeltaVecType
(2) QED BY (1)3, (2)1, (2)2

)
)
1)3. nrec € CountVecType BY AssumePointToNat DEF Init, CountVecType
)
(
(

(1)5. temp € [Proc — DeltaVec Type]
BY DeltaVecZeroType, DeltaVecAddZero DEF Init

(1)6. msg € [Proc — [Proc — Seq(DeltaVecType)]]
(2)1. () € Seq(DeltaVecType) BY EmptySeq
(
)

2) QED BY (2)1 DEF Init

(1)7. nrecvut € [Point — BOOLEAN |
BY DEF Init, NrecVacantUpto, IsDeltaVecVacantUpto

(1)8. globvut € [Proc — [Point — BOOLEAN ||
BY DEF Init, GlobVacantUpto, IsDeltaVecVacantUpto

(1)9. IsFiniteTempProcs

C.20. PROOF OF INVARIANT INVTYPE

(2) DEFINE FP = {p € Proc : temp|p] # DeltaVecZero}
(2)1.Vp € Proc : temp[p] = DeltaVecZero BY DEF Init
(2)2. FP = {} BY (2)1

(2)3. IsFiniteSet(FP) BY (2)2, FiniteSetEmpty

(2) QED BY (2)3 DEF IsFinite TempProcs

)

(

)
(1)10. IsFiniteMsgSenders
2) SUFFICES ASSUME NEW ¢ € Proc
PROVE IsFiniteSet({p € Proc : msg[p][q] # ()})
BY DEF IsFiniteMsgSenders
2)1.¥p € Proc : msg[p]lq] = () BY DEF Init

(
(2)2-{p € Proc : msgpllq] # (O} = {} BY (2)1
(2) QED BY (2)2, FiniteSetEmpty

)

(1) QED BY (1)1, (1)2, (1)3, (1)4, (1)5, (1)6, (1)7, (1)8, (1)9, (1)10 DEF InvType

InvType carries through a Next step.

THEOREM ThmNextInvType =
A InvType
A [Next]yars
=
InvType’
PROOF
(1) SUFFICES ASSUME InvType, NextPROVE InvType’
Dispose of the stutter step.
(2) CASE UNCHANGED wvars BY DEF vars, InvType, IsFinite TempProcs, IsFiniteMsgSenders
(2) QED OBVIOUS

If the action is NextPerformOperation.
(1)1. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation- WithPCR(p, ¢,)
Y (1)1 DEF NeatPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State_ Conclusion(p, ¢, 1)
Y (2)1, NextPerformOperation_State

(2) USE DEF NextPerformOperation_State_ Conclusion

(2) QED BY (2)2

201

202 APPENDIX C. PROOF OF CORRECTNESS

If the action is NextSendUpdate.
(1)2. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NextSendUpdate- WithPTT (p, tt)
BY (1)2 DEF NextSendUpdate, NextSendUpdate- WithPTT

(2)2. NextSendUpdate_State— Conclusion(p, tt)
BY (2)1, NextSendUpdate_State

(2) USE DEF NeztSendUpdate_State_ Conclusion

(2) QED BY (2)2

If the action is NextReceive Update.

(1)3. CASE NextReceive Update
(2)1. PICK p € Proc, q¢ € Proc :
NextReceive Update_ WithPQ(p, q)
BY (1)3 DEF NextReceiveUpdate, NextReceiveUpdate- WithPQ

(2)2. NextReceive Update_State_ Conclusion(p, q)
BY (2)1, NextReceiveUpdate_State

(2) USE DEF NextReceive Update_State_ Conclusion
(2) QED BY (2)2
(1) QeD BY (1)1, (1)2, (1)3 DEF Next

InvType holds in all reachable states.

THEOREM ThmInvType =
Spec = OlInvType
PROOF
(1) Init = InvType BY ThmInitInvType
(1) InvType A [Next]yars = InvType’ BY ThmNextInvType
(1) Init A O[Next]yars = OInvType OMITTED TLAPS cannot check it
(1) QED OMITTED BY DEF Spec

C.21. PROOF OF INVARIANT INVTEMPUPRIGHT

C.21 Proof of invariant InvTempUpright

[MODULE NaiadClockProofInvTemp Upright

EXTENDS NaiadClockProofInvType

Proof of invariant InvTempUpright.

InvTemp Upright holds in the initial state.

THEOREM ThmlInitInvTemp Upright =
Init = InvTempUpright

PROOF
(1) SUFFICES ASSUME Init PROVE InvTempUpright OBVIOUS
(1) QED BY DeltaVecUpright_Zero DEF Init, InvTempUpright

InvTemp Upright carries through a Next step.

THEOREM ThmNextInvTemp Upright =
A InvType
A InvTemp Upright
A [Next] pars
=
InvTemp Upright’
PROOF
(1) SUFFICES ASSUME
InvType,
InvTemp Upright,
[Neat]vars
PROVE InvTempUpright’
OBVIOUS

(1) SUFFICES ASSUME Next PROVE InvTempUpright’
(2) CASE UNCHANGED wars BY DEF wvars, InvTemp Upright

203

204 APPENDIX C. PROOF OF CORRECTNESS

(2) QED OBVIOUS

(1) SUFFICES ASSUME NEW fp € Proc
PROVE IsDeltaVecUpright(lleq, temp|fp])’
BY DEF InvTemp Upright

(1)2. lleg € PointRelationType BY DEF InvType
(1)3. IsPartialOrder(lleq) BY DEF InvType

If the action is NextPerformOperation.

(1)4. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NextPerformOperation_- WithPCR(p, ¢,)
BY (1)4 DEF NextPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State— Conclusion(p, ¢, r)
BY (2)1, NextPerformOperation_State

(2) USE DEF NextPerformOperation_State_ Conclusion
(2)3. UNCHANGED lleq BY (2)2

temp|fp] unchanged.

(2)4. CASE fp # p
(3)1. UNCHANGED temp|[fp] BY (2)2, (2)4

(3) QED BY (3)1, (2)3 DEF InvTempUpright

temp|[fp] changed.
(2)5.CASEfp=1p

3) DEFINE tempp
3) DEFINE delta

temp|p]
NextPerformOperation_Delta(p, ¢, T)

1> 1>

)
)
) SUFFICES IsDeltaVecUpright(lleq, tempp’) BY (2)3, (2)5

V1. tempp € DeltaVecType BY DEF InvType

2. IsDelta Vec Upright(lleq, tempp) BY DEF InvTemp Upright

)3. delta € DeltaVecType BY (2)2

4. IsDeltaVecUpright(lleq, delta) BY (2)2

V5. tempp’ = DeltaVecAdd(tempp, delta) BY (2)2, (2)5

) HIDE DEF delta, tempp

) QED BY (3)1, (3)2, (3)3, (3)4, (3)5, (1)2, (1)3, DeltaVecUpright_Add
ED BY (2)4, (2)5

o]

If the action is NextSendUpdate.

(1)5. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :

C.21. PROOF OF INVARIANT INVTEMPUPRIGHT

NextSendUpdate- WithPTT (p, tt)
Y (1)5 DEF NextSendUpdate, NextSendUpdate- WithPTT

(2)2. NextSendUpdate_State— Conclusion(p, tt)
Y (2)1, NeztSendUpdate_State

(2) USE DEF NextSendUpdate_State_ Conclusion

temp|fp] unchanged.

(2)6. CASE fp # p
)1. UNCHANGED temp|fp] BY (2)6, (2)2

(3
(3)2. UNCHANGED lleg BY (2)2
(3) QED BY (3)1, (3)2 DEF InvTempUpright

temp|fp] changed.

(2)7. CASE fp = p

(3)1. IsDeltaVecUpright(lleq, temp[p]) BY DEE InvTemp Upright
(3)2. IsDelta VecUpright(lleq, temp[p])’ BY (3)1, (2)2

(3) QED BY (3)2, (2)7 DEF InvTempUpright
) Q

(2) QED BY (2)6, (2)7

If the action is NextReceive Update.

(1)6. CASE NextReceive Update
(2)1. PICK p € Proc, q € Proc :
NeatReceive Update- WithPQ(p, q)
Y (1)6 DEF NextReceiveUpdate, NextReceive Update— WithPQ

(2)2. NextReceive Update_State_ Conclusion(p, q)
Y (2)1, NextReceive Update_State

2) USE DEF NextReceiveUpdate_State_ Conclusion

(2)

(2)3. UNCHANGED lleg BY (2)2

(2)4. UNCHANGED temp BY (2)2

(2) QED BY (2)3, (2)4 DEF InvTempUpright

(1) QED BY (1)4, (1)5, (1)6 DEF Next

InvTemp Upright holds in all reachable states.

THEOREM ThmlInvTemp Upright 2
Spec = OInvTempUpright

205

206

PROOF
(1) DEFINE [=
A InvType
A InvTemp Upright

(1y Init = I
2) USE ThmInitInvType
2) USE ThmlInitInvTemp Upright

2) QED OBVIOUS

)

(

(

(

(1) I A [Next]pars = I’

(2) USE ThmNexztInvType
(2) USE ThmNextInvTemp Upright
(2) QED OBVIOUS

)
)
)

Init A O[Next]yqrs = OI OMITTED
Spec = OI OMITTED BY DEF Spec
QED OMITTED TLAPS cannot check it

TLAPS cannot check it

APPENDIX C. PROOF OF CORRECTNESS

C.22. PROOF OF INVARIANT INVINCOMINGINFOUPRIGHT 207

C.22 Proof of invariant InvincomingInfoUpright

MODULE NaiadClockProofInvincomingInfo Upright

EXTENDS NaiadClockProofInvTemp Upright

Proof of invariant InvincomingInfoUpright.

InvIncomingInfo Upright holds in the initial state.

THEOREM ThmInitInvIncomingInfoUpright =
Init = InvIncomingInfo Upright
PROOF
(1) SUFFICES ASSUME Init PROVE InvIncomingInfoUpright OBVIOUS
(1) InvTypeBY ThmlinitInvType
(1) InvTempUpright BY ThmlInitInvTempUpright

(1)Vk € Nat :
Vp € Proc:
Vq € Proc:
IsDeltaVecUpright(lleq, IncomingInfo(k, p, q))

(2) SUFFICES ASSUME
NEW k € Nat,
NEW p € Proc,
NEW ¢ € Proc
PROVE IsDeltaVecUpright(lleq, IncomingInfo(k, p, q))
OBVIOUS

(2) IncomingInfo(k, p, q) = DeltaVecZero
(3) Init_Incominglnfo_Conclusion(k, p, q)BY Init_Incominglnfo
(3) QED BY DEF Init_IncomingInfo_ Conclusion

(2) lleq € PointRelationType BY DEF InvType

(2) IsPartialOrder(lleq) BY DEF InvType

(2) QED BY DeltaVecUpright_Zero

(1) QED BY DEF InvIncomingInfo Upright

208 APPENDIX C. PROOF OF CORRECTNESS

InvIncominglInfo Upright carries through a Next step.

THEOREM ThmNeztInvIncomingInfo Upright =
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A [Next]yars
=
InvIncomingInfo Upright’
PROOF
(1) SUFFICES ASSUME
InvType,
InvTemp Upright,
InvIncominglInfo Upright,
[Next]vars
PROVE InvIncomingInfoUpright’
OBVIOUS

)y InvIncomingInfo Type BY DeduceInvIncomingInfoType
Y InvType’ BY ThmNextInvType

Y InvTemp Upright’ BY ThmNextInvTemp Upright

Y InvIncomingInfo Type' BY DeducelnvIncominglInfo Type
Dispose of the stutter step.

(1)1. CASE UNCHANGED vars
(2) USE DEF vars
(2) USE DEF InvIncomingInfo Upright
(2) USE DEF IncomingInfo
(2) QED BY (1)1
Set up to prove InvIncomingInfo Upright’.
(1) SUFFICES ASSUME Next PROVE InvIncomingInfoUpright’ BY (1)1
(1) SUFFICES ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc
PROVE IsDeltaVecUpright(lleq, IncominglInfo(fk, fp, fq))
BY DEF InvIncominglnfo Upright

If the action is NextPerformOperation.

(1)2. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation_ WithPCR(p, ¢,)
BY (1)2 DEF NextPerformOperation, NextPerformOperation_ WithPCR
(2)2. NextPerformOperation_State— Conclusion(p, ¢, 1)
BY (2)1, NextPerformOperation_State

C.22. PROOF OF INVARIANT INVINCOMINGINFOUPRIGHT 209

(2)3. NextPerformOperation_Incominglnfo_Conclusion(fk, fp, fq, p, ¢, r)
BY (2)1, NextPerformOperation_Incominglnfo

USE DEF NextPerformOperation_State_ Conclusion

USE DEF NextPerformOperation—IncomingInfo_ Conclusion

DEFINE [£ IncomingInfo(fk, fp, fq)
DEFINE delta = NextPerformOperation_Delta(p, ¢,)

)

)

)

)

2)4. UNCHANGED lleq BY (2)2

2)5. lleq’ € PointRelationType BY DEF InvType
2)6. IsPartialOrder(lleq") BY DEF InvType

2)7. II € DeltaVecType BY DEF InvIncomingInfo Type

2)8. delta € DeltaVecType BY (2)2

2)9. IsDeltaVecUpright(lleq’, delta) BY (2)2

2)10. IsDeltaVecUpright(lleq’, II) BY (2)4 DEF InvIncomingInfo Upright
2)11. IsDeltaVecUpright(lleq’, DeltaVecAdd(II, delta))

(3) HIDE DEF delta, IT

(3) QED BY (2)5, <2>6, (2)7, (2)8, (2)9, (2)10, DeltaVecUpright-Add
(2)12. II' = IF fp = p THEN DeltaVecAdd(II, delta) ELSE II BY (2)3

(2) QED BY (2)10, (2)11, (2)12

(2
(2
(2
(2
(
(
(
(
(
(
(
(

If the action is NextSendUpdate.

(1)3. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NeatSendUpdate- WithPTT (p, tt)
Y (1)3 DEF NexatSendUpdate, NextSendUpdate- WithPTT
(2)2. NextSendUpdate_State— Conclusion(p, tt)
Y (2)1, NextSendUpdate_State
(2)3. NextSendUpdate-]ncoming[nfo_Conclusion(fk, fo, fq, p, tt)
Y (2)1, NextSendUpdate_IncomingInfo
USE DEF NextSendUpdate_State_Conclusion
USE DEF NextSendUpdate_Incominglnfo_ Conclusion

DEFINE I] = IncomingInfo(fk, fp, fq)
A

DEFINE msgpq = msg|fp][fq]
= templfp]

5 II' =1F fp = p A fk > Len(msgpq) THEN tempp’ ELSE II BY (2)3
6. IsDeltaVecUpright(lleq’, tempp’) BY DEF InvTemp Upright

7. IsDeltaVecUpright(lleq’, IT) BY (2)4 DEF InvIncomingInfoUpright
QED BY (2)5, (2)6, (2)7

If the action is NextReceive Update.
(1)4. CASE NextReceive Update
(2)1. PICK p € Proc, q € Proc:
NextReceive Update—- WithPQ(p, q)

210 APPENDIX C. PROOF OF CORRECTNESS

Y (1)4 DEF NextReceive Update, NextReceiveUpdate- WithPQ
(2)2. NextReceive Update_State— Conclusion(p, q)
Y (2)1, NextReceiveUpdate_State
(2)3. NextReceiveUpdate_Incorm'nglnfo_C’onclusion(fk7 fo, fa, », q)
Y (2)1, NextReceiveUpdate—Incominglnfo
2) USE DEF NextReceive Update_State_ Conclusion
2) USE DEF NextReceive Update_IncomingInfo_Conclusion

DEFINE [£ IncomingInfo(fk, fp, fq)
DEFINE ITk1 = IncomingInfo(fk + 1, fp, fq)

)

)

)

)
2)4. UNCHANGED lleq BY (2)2
2)5. fk +1 € Nat BY SMTT(10)

Y6. IsDeltaVecUpright(lleq’, IT) BY (2)4 DEF InvIncomingInfoUpright

V7. IsDeltaVecUpright(lleq’, 1Ik1) BY (2)4, (2)5 DEF InvincominglnfoUpright

¥8. II' =1F fp = p A f¢ = q THEN IIk1 ELSE II BY (2)3

)

(
(
(2
(2
(
(
(2
(2
(2
(2) QED BY (2)6, (2)7, (2)8
)

(1) QeED BY (1)2, (1)3, (1)4 DEF Next

InvIncomingInfo Upright holds in all reachable states.

THEOREM ThmlinvIncominglInfoUpright =
Spec = OlInvIncominglInfo Upright
PROOF
(1) DEFINE [=
A InvType
A InvTemp Upright
A InvIncominglInfo Upright

(1) Init = I
2) USE ThmlInitInvType

2) USE ThmlInitInvTemp Upright

2) USE ThmlInitInvIncomingInfo Upright
2) QED OBVIOUS

2) USE ThmNextInvType

2) USE ThmNextInvTemp Upright

2) USE ThmNextInvIncominglnfo Upright
2) QED OBVIOUS

)
(
(
(
(
(1) I A [Next]yars = I’
(
(
(
(
)

(1) Init A O[Newt]yqrs = O OMITTED TLAPS cannot check it

C.22. PROOF OF INVARIANT INVINCOMINGINFOUPRIGHT 211

(1) Spec = OI OMITTED BY DEF Spec
(1) QED OMITTED TLAPS cannot check it

212 APPENDIX C. PROOF OF CORRECTNESS

C.23 Proof of invariant InvinfoAtBetaUpright

MODULE NaiadClockProofInvinfoAtBetaUpright

EXTENDS NaiadClockProofInvIncominglInfo Upright

Proof of invariant InvinfoAtBetaUpright.

InvInfoAtBetaUpright says that for all skip counts k, sending processors p, and receiving processors ¢, InfoAt(k, p, q) is
IncomingInfo(k, p, q)-upright. InfoAt(k, p, q) is the information at position k on the message queue from p to g. IncomingInfo(k, p, q)
is the sum of all subsequent information from p to q.

To be IncomingInfo(k, p, q)-upright means that for each positive point in InfoAt¢(k, p, q) there is a strictly lower point that either is negative
in InfoAt(k, p, q) or is negative in IncomingInfo(k, p, q) and neither that point nor any yet lower point is positive in InfoAt(k, p, q).

The invariant holds in the initial state because initially the message queues are empty, and hence no matter what position & is chosen we have
InfoAt(k, p, q) = 0, and hence there are no positive points.

The invariant carries through each next step because:

(1) A NexztPerformOperation action adds delta to temp[p]. This has the effect of adding delta to the subsequent information
IncomingInfo(k, p, q) of each item InfoA¢(k, p, q) on any given message queue sent from p. However, since both IncomingInfo(k, p, q)
and delta must be upright, this preserves the beta-upright property of InfoAt(k, p, q).

(2) A NextSendUpdate action takes gamma from temp[p] and appends it onto the message queue from p to ¢ for all ¢. For all previously
existing items InfoAt¢(k, p, q) on the message queue, IncomingInfo(k, p, ¢) is unchanged and so the beta-upright properties are unchanged.
The only question is the new item just appended onto the message queue. In other words, we require that gamma is temp|p] -upright. But this
follows from the fact that gamma must positive imply temp|p].

(3) A NezxtReceive Update action removes the head item from a message queue incoming at g. The positions of all items on the queue shift up,
but all of their existing beta-upright properties are unchanged.

InvInfoAtBetaUptight holds in the initial state.

THEOREM ThmInitInvinfoAtBetaUpright =
Init = InvInfoAtBetaUpright

PROOF
(1) SUFFICES ASSUME Init PROVE InvInfoAtBetaUpright OBVIOUS
(1) InvType BY ThmlInitInvType

(1) InvIncomingInfo Type BY DeducelnvIncominglnfo Type

(1)

1) ASSUME
NEW k € Nat,
NEW p € Proc,
NEW ¢ € Proc

PROVE IsDeltaVecBetaUpright(lleq, InfoAt(k, p, q), IncomingInfo(k, p, q))

C.23. PROOF OF INVARIANT INVINFOATBETAUPRIGHT

~

(2)
(3
(3

nfoAt(k, p, q) = DeltaVecZero
Init_InfoAt_Conclusion(k, p, q)BY Init_InfoAt
QED BY DEF Init_InfoAt_Conclusion

=

~

2) IncomingInfo(k, p, q) € DeltaVecType BY DEF InvIncominglnfoType

(
(2) lleq € PointRelationType BY DEF InvType
(2) IsPartialOrder(lleq) BY DEF InvType

(2) QED BY DeltaVecBetaUpright_Zero
(1) QED BY DEF InuvInfoAtBetaUpright

InvinfoAtBetaUpright carries through a Next step.

THEOREM ThmNeztInvInfoAtBetaUpright =
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A InvinfoAtBetaUpright
A [Next]yars
=
InvInfoAtBetaUpright’
PROOF
(1) SUFFICES ASSUME
InvType,
InvTemp Upright,
InvIncomingInfo Upright,
InvInfoAtBetaUpright,
[Newt]vars
PROVE InvInfoAtBetaUpright’
OBVIOUS

(1) InvInfoAtType BY DeducelnvinfoAtType

(1) InvIncominglnfo Type BY DeducelnvIncominglInfo Type

(1) InvType’ BY ThmNextInvType

(1) InvTempUpright’ BY ThmNextInvTempUpright

(1) InvIncomingInfo Upright’ BY ThmNextInvIncomingInfoUpright
(1) InvInfoAtType’ BY DeducelnvInfoAtType

(1) InvIncomingInfo Type’ BY DeducelnvincomingInfo Type
Dispose of the stutter step.

(1)1. CASE UNCHANGED wvars
(2) USE DEF wvars

213

214 APPENDIX C. PROOF OF CORRECTNESS

)} USE DEF InvInfoAtBetaUpright
)} USE DEF InfoAt
)} USE DEF Incominglnfo
Y QED BY (1)1
Set up to prove InvInfoAtBetaUpright’.
(1) SUFFICES ASSUME Next PROVE InvInfoAtBetaUpright’ BY (1)1
(1) SUFFICES ASSUME
NEW fk € Nat,
NEW fp € Proc,
NEW fq € Proc
PROVE IsDeltaVecBetaUpright(lleq, InfoAt(fk, fp, fq), IncomingInfo(fk, fp, fq))
BY DEF InuvInfoAtBetaUpright

InfoAt(fk, fp, fq)
IncomingInfo(fk, fp, fq)

(2
(2
(2
(2

DEFINE A

1
1) DEFINE II

A
i H

Y2. II € DeltaVecType BY DEF InvIncominglInfoType
3. IA € DeltaVecType BY DEF InvInfoAtType
)
)

4. lleq € PointRelationType BY DEF InvType

1
1
1
1)5. IsPartialOrder(lleq) BY DEF InvType

o~ o~~~ o~ o~

If the action is NextPerformOperation.

(1)6. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NextPerformOperation_- WithPCR(p, ¢,)
BY (1)6 DEF NextPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State— Conclusion(p, ¢, 1)
BY (2)1, NextPerformOperation_State

(2)3. NextPerformOperation_InfoAt_Conclusion(fk, fp, fq, p, ¢, T)
BY (2)1, NextPerformOperation_InfoAt

(2)4. NextPerformOperation_IncomingInfo_Conclusion(fk, fp, fq, p, ¢,)
BY (2)1, NextPerformOperation_Incominglnfo

2) USE DEF NextPerformOperation_State_Conclusion
2) USE DEF NeztPerformOperation_InfoAt_Conclusion
2) USE DEF NextPerformOperation_IncomingInfo_ Conclusion

2
2)6. UNCHANGED lleq BY (2)2

(
(
(
(2) DEFINE delta = NextPerformOperation_Delta(p, ¢, T)
(
(
(2)7. UNCHANGED IA BY (2)3

(

2)8.CASE fp = p
3)1. II' = DeltaVecAdd(II, delta) BY (2)4, (2)8
3

)
)
)
)
)5. delta € DeltaVecType BY (2)2
)
)
)
(
(3)2. IsDeltaVecUpright(lleq, IT) BY DEF InvIncomingInfoUpright

C.23. PROOF OF INVARIANT INVINFOATBETAUPRIGHT 215

)3. IsDelta VecBetaUpright(lleq, IA, II) BY DEF InvInfoAtBetaUpright
4. IsDeltaVecUpright(lleq, delta) BY (2)2

) USE (3)1, (3)2, (3)3, (3)4

) USE (2)5. (2)6, (217, (1)2, (1)3, (1)4, {1)5

) QED BY DeltaVecBetaUpright_Add

(2
)1. UNCHANGED I BY (2)4, (2)9
) USE DEF InvInfoAtBetaUpright
) USE DEF InfoAt

} USE DEF Incominglnfo

)

3
3
3
3
3
9.CASE fp # p
3
3
3
3
3) QED BY (3)1, (2)6, (2)7

(
(
(
(
(
)
(
(
(
(
(
)

(2) QED BY (2)8, (2)9

If the action is NextSendUpdate.

(1)7. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NextSendUpdate_ WithPTT (p, tt)
Y (1)7 DEF NeatSendUpdate, NextSendUpdate- WithPTT

(2)2. NextSendUpdate_State_Conclusion(p, tt)
Y (2)1, NexztSendUpdate_State

(2)3. NextSendUpdate_InfoAt_Conclusion(fk, fp, fq, p, tt)
Y (2)1, NexztSendUpdate_InfoAt

(2)4. NextSendUpdate_IncomingInfo_ Conclusion(fk, fp, fq, p, tt)
Y (2)1, NexztSendUpdate_IncomingInfo

(2) USE DEF NextSendUpdate_State_ Conclusion

(2) USE DEF NextSendUpdate_InfoAt_Conclusion

(2) USE DEF NextSendUpdate_IncomingInfo_Conclusion
(

(

2)5. UNCHANGED lleq BY (2)2

2)8.CASE fp = p
DEFINE M
DEFINE LenM
HIDE DEF M, LenM

) msg|fp][fq]

|

.M € Seq(DeltaVecType) BY ZenonT(20) DEF InvType, M
)

)

(

Len(M)

e 1>

5.
8.
3
3
3
3
3

2. LenM € Nat BY (3)1, LenInNat DEF LenM

O

)
)
)
)
)
(
(
(
(
(
(

3)3. CASE fk = LenM + 1

. IsDelta VecBetaUpright(lleq, IA’, temp'[p])

V1. IA" € DeltaVecType BY DEF Inv[nfoAtType

)2. IA" = NextSendUpdate- Gamma(p, tt) BY (3)3, (2)3, (2)8 DEF LenM, M
)3. IsDeltaVecPositiveImplies(IA', temp[p]) BY (5)2, (2)2

) 5)2

5)4. temp[p] = DeltaVecAdd(IA’, temp'[p]) BY (5)2, (2)2

216 APPENDIX C. PROOF OF CORRECTNESS

(5)5. IsDeltaVecUpright(lleq, temp[p]) BY DEF InvTempUpright
(5)6. temp'[p] € DeltaVecType BY DEF InvType
(5) USE (5)1, (5)3, (5)4, (5)5, (5)6, (1)4, (1)5
(5) QED BY Delta VecBetaUpright_PositiveImplies
(42, IT" = temp'[p)
(5)1. fk > LenM BY (3)3, (3)2, SMTT(10)
(5) QED BY (5)1, (2)4, (2)8 DEF LenM, M
(4)3. IsDeltaVecBeta,Upmght(lleq 1A', H’) BY (4)1, (4)2, (2)5
(4) QED BY (4)3
(3)Y4. CASE fk < LenM + 1
(4)1. UNCHANGED A
) fk # LenM + 1 BY (3)2, (3)4, SMTT(10)
) QED BY (2)3, (2)8 DEF LenM, M
(4)2. UNCHANGED I1
) = (fk > LenM) BY (3)2, (3)4, SMTT(10)
) QED BY (2)4, (2)8 DEF LenM, M
IsDeltaVecBetaUprzght(lleq IA’ 7
) USE DEF InuvInfoAtBetaUpright
) USE DEF InfoAt
) USE DEF IncominglInfo
) QED BY (4)1, (4)2, (2)5
(4) QED BY (4)3

5
5

)
{
{
)
(5
(5
(4)3.
(5
(5
(5
(5
)

(3)5. CASE fk > LenM + 1
(4)1. IA = DeltaVecZero
(5) fk > LenM BY (3)2, (3)5, SMTT(10)
(5) USE DEF InvlnfoAtType LenM, M
(5) QED BY DeducelnvInfoAtType
(4)2. UNCHANGED A
(5) fk # LenM + 1 BY (3)2, (3)5, SMTT(10)
(5) QED BY (2)3, (2)8 DEF LenM, M
(4)
(4)
(4)
(
(

3. IA" = DeltaVecZero BY (4)1, (4)2

4. II' € DeltaVecType BY DEF InvIncomingInfo Type
5. IsDeltaVecBetaUpright(lleq’, IA', II")

5) USE (4)3, (4)4, (2)5, (1)4, (1)5

5) QED BY Delta VecBetaUpright_Zero

(4) QED BY (4)5

3) QED BY (3)2, (3)3, (3)4, (3)5, SMTT(10)

(2)9.CASE fp # p

)1. UNCHANGED II BY (2)4, (2)9
)2. UNCHANGED IA BY (2)3, (2)9
)} USE DEF InvInfoAtBetaUpright
)} USE DEF InfoAt

)

USE DEF Incominglnfo

{
9.
(3
(3
(3
(3
(3

C.23. PROOF OF INVARIANT INVINFOATBETAUPRIGHT 217

(3) QED BY (3)1, (3)2, (2)5
(2) QED BY (2)8, (2)9

If the action is NextReceive Update.

(1)8. CASE NextReceive Update
(2)1. PICK p € Proc, q € Proc :
NeatReceive Update_ WithPQ(p, q)
Y (1)8 DEF NextReceiveUpdate, NextReceive Update_ WithP Q)

(2)2. NextReceive Update_State_ Conclusion(p, q)
Y (2)1, NextReceiveUpdate_State

(2)3. NextReceiveUpdate_InfoAt_Conclusion(fk, fp, fq, p, q)
Y (2)1, NextReceive Update_InfoAt

(2)4. NextReceive Update_IncomingInfo_ Conclusion(fk, fp, fa, p, q)
Y (2)1, NexztReceiveUpdate_IncomingInfo

(2) USE DEF NextReceive Update_State_ Conclusion
(2) USE DEF NextReceive Update_InfoAt_Conclusion
(2) USE DEF NextReceive Update_ IncomingInfo_Conclusion
(2)
(2)
(

2)5. UNCHANGED lleq BY (2)2

2)8.CASE fp=pAfg=q
3)1.CASE fk =0
(4)1. TA" = DeltaVecZero
(5) DEFINE M 2 msgfp] fa]
(5) DEFINE LenM Len(M)
(5) HIDE DEF M, LenM
(G)1. M’ € Seq(DeltaVecType) BY DEF InvType, M
(5)
(5)
(5)
)
)

> e

5)2. LenM' € Nat BY (5)1, LenInNat DEF LenM
5)3. (0 < fk A fk < LenM’) BY (3)1, (5)2, SMTT(10)
5) QED BY (5)3 DEF InfoAt, LenM, M
4)2. IT" € DeltaVecType BY DEF InvIncomingInfo Type
4) QED BY (4)1, (4)2, (2)5, (1)4, (1)5, DeltaVecBetaUpright-Zero

(
(
(3)2.CASE fk >0

(4) DEFINE I7k1 IncomingInfo(fk + 1, fp, fq)
(4) DEFINE TAk1l = InfoAt(fk + 1, fp, fq)
(
(
(

> >

A1 II' = IIk1 BY (2)4, (2)8
4)2. IA" = TAk1 BY (3)2, (2)3, (2)8
4)3. IsDeltaVecBetaUpright(lleq, TAk1, IIk1)
(5) fk +1 € Nat BY SMTT(10)
(5) QED BY DEF InvlnfoAtBetaUpright
(4) QED BY (4)1, (4)2, (4)3, (2)5
(3) QED BY (3)1, (3)2, SMTT(10)

218 APPENDIX C. PROOF OF CORRECTNESS

(2)9.CASE~(fp =p A fg=q)

(3)1. UNCHANGED II BY (2)4, (2)9
(3)2. UNCHANGED IA BY (2)3, (2)9
(3) USE DEF InvInfoAtBetaUpright
(3) USE DEF InfoAt

(3) USE DEF IncomingInfo

(3) QED BY (3)1, (3)2, (2)5

)

(2) QED BY (2)8, (2)9

(1) QED BY (1)6, (1)7, (1)8 DEF Next

InvInfoAtBetaUpright holds in all reachable states.

THEOREM ThmInvInvinfoAtBetaUpright =
Spec = OlInvinfoAtBetaUpright
PROOF
(1) DEFINE [=
A InvType
A InvTemp Upright
A InvIncominglInfo Upright
A InvinfoAtBetaUpright

(1y Init = I
2) USE ThmInitInvType
2) USE ThmlInitInvTemp Upright
2) USE ThmlInitInvIncomingInfo Upright
2) USE ThmInitInvInfoAtBetaUpright
2) QED OBVIOUS

)

(

(

(

(

(

(1) I A [Next]pars = I’

(2) USE ThmNextInvType
(2) USE ThmNextInvTemp Upright

(2) USE ThmNextInvIncomingInfoUpright
(2) USE ThmNextInvinfoAtBetaUpright
(2) QED OBVIOUS

)
) S
)

(1) Init A O[Newt]yqrs = O OMITTED TLAPS cannot check it
(1) Spec = OI OMITTED BY DEF Spec
(1) QED OMITTED TLAPS cannot check it

C.23. PROOF OF INVARIANT INVINFOATBETAUPRIGHT 219

220 APPENDIX C. PROOF OF CORRECTNESS

C.24 Proof of invariant InvGlobalRecordCount

MODULE NaiadClockProofInvGlobalRecord Count

EXTENDS NaiadClockProofInvInfoAtBetaUpright

Proof of invariant InvGlobalRecord Count.

InvGlobalRecordCount says that for all processors g, the sum of all information incoming at g, plus glob|q], equals nrec. This invariant holds
in the initial state and carries through each next step.

The invariant holds in the initial state because initially glob[q] = nrec, temp[p] = 0 for all processors p, and all message queues are empty,
meaning that there is no information incoming at q.

The invariant carries through each next step because:

(1) A NeztPerformOperation action adds delta to both nrec and temp|[p]. Since temp[p] is included in the sum of all information incoming
at g this preserves the invariant.

(2) A NeztSendUpdate action removes gamma from temp[p] and appends it onto all of the message queues from p. Since this has no net effect
on the sum of information incoming at ¢, the invariant is preserved.

(3) A NextReceive Update action removes kappa from a message queue incoming at g and adds it to glob[g]. Since there is no change to nrec,
this also preserves the invariant.

InvGlobalRecordCount holds in the initial state.

THEOREM ThmInitInvGlobalRecordCount =
Init = InvGlobalRecordCount
PROOF
(1) SUFFICES ASSUME Init PROVE InvGlobalRecordCount OBVIOUS
(1) InvType BY ThmlInitInvType
(1) InvGlobalRecord Count
(2) SUFFICES ASSUME NEW ¢ € Proc
PROVE nrec = DeltaVecAdd(GloballncomingInfo(0, ¢, q), globlq])
BY DEF InleobalRecordCount
(2) DEFINE GII = GlobalIncomingInfo(0, g, q)
(2)1. nrec = glob[q] BY DEF Init
(2)2. glob[q] € DeltaVecType BY DEF InvType
(2)3. GII = DeltaVecZero
(3) Init_GloballncomingInfo_ Conclusion(0, ¢, q) BY Init_GloballncomingInfo
(3) QED BY DEF Init_GloballncomingInfo_ Conclusion
(2)4. glob[q] = DeltaVecAdd(GII, globlq]) BY (2)2, (2)3, DeltaVecAddZero
(2) QED BY (2)1, (2)4

C.24. PROOF OF INVARIANT INVGLOBALRECORDCOUNT

(1) QED OBVIOUS

InvGlobalRecordCount carries through a Next step.

THEOREM ThmNexztInvGlobalRecordCount =
A InvType
A InvTemp Upright
A InvIncominglInfo Upright
A InvGlobalRecord Count
A [Next] pars
=
InvGlobalRecord Count’
PROOF
(1) SUFFICES ASSUME
InvType,
InvTemp Upright,
InvIncomingInfo Upright,
InvGlobalRecordCount,
[Neat]yars
PROVE InvGlobalRecordCount’
OBVIOUS

InvGloballncomingInfo Type BY DeducelnvGloballncominglInfo Type

InvGloballncomingInfoUpright ~ BY DeducelnvGloballncomingInfo Upright

(W
)
(1) InvType’ BY ThmNextInvType

(1) InvTempUpright’ BY ThmNextInvTemp Upright

(1) InvIncomingInfo Upright’ BY ThmNextInvIncomingInfoUpright
(1) InvGloballncomingInfo Type' BY DeducelnvGloballncominglInfo Type
(1

) InvGloballncomingInfoUpright’ BY DeducelnvGloballncomingInfo Upright

Dispose of the stutter step.

(1)1. CASE UNCHANGED vars

2) USE DEF vars

2) USE DEF InvGlobalRecord Count

2) USE DEF GloballncomingInfo

2) USE DEF Incominglnfo

2) QED BY (1)1

Set up to prove InvGlobalRecordCount’.

SUFFICES ASSUME Next PROVE InvGlobalRecordCount’ BY (1)1
SUFFICES ASSUME NEW fq € Proc

PROVE nrec’ = DeltaVecAdd(GlobalIncomingInfo(0, fq, fq)', glob[fq]")
BY DEF InvGlobalRecordCount

(
(
(
(
(
)
)

(1
(1

221

222 APPENDIX C. PROOF OF CORRECTNESS

DEFINE GII = GloballncomingInfo(0, fq, fq)
DEFINE globfq = glob[fq]

(1
(1
(
(1)2. GII € DeltaVecType BY DEF InvGloballncominglnfo Type

(1)3. GII' € DeltaVecType BY DEF InvGloballncomingInfo Type

(1)4. globfq € DeltaVecType BY DEF InvType

(1)5. globfq' € DeltaVecType BY DEF InvType

(1)6. nrec = DeltaVecAdd(GII, globfq) BY DEF InvGlobalRecordCount

If the action is NextPerformOperation.
Adds delta to both nrec and GII, and so preserves the invariant.

(1)7. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation_- WithPCR(p, ¢,)
Y (1)7 DEF NextPerformQOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State— Conclusion(p, ¢, r)
Y (2)1, NexztPerformOperation_State

(2)3. NextPerformOperation_ GloballncomingInfo_ Conclusion(fq, p, ¢, r)
Y (2)1, NextPerformOperation_GlobalIncomingInfo

USE DEF NextPerformOperation-State- Conclusion
USE DEF NegxtPerformOperation- GloballncomingInfo_ Conclusion

2) DEFINE delta = NextPerformOperation_Delta(p, ¢, r)

(2
(2
(2)p
(2)4. delta € DeltaVecType BY (2)2

(2)5. nrec’ = DeltaVecAdd(nrec, delta) BY (2)2
(2)6.

(2)7.

(

2

UNCHANGED globfq BY (2)2
GII' = DeltaVecAdd(GII, delta) BY (2)3

2) QED by commutative and associative properties of Delta VecAdd
3) HIDE DEF GII, globfq, delta hide the complicated definitions

3) USE (2)4, (1)2, (1)4 know that they are delta vectors

3) USE DeltaVecAddCommutative know that add is commutative

3) USE DeltaVecAddAssociative know that add is associative

. nrec’ = DeltaVecAdd(DeltaVecAdd(GII, globfq), delta) BY (2)5, (1)6
. nrec’ = DeltaVecAdd(GII, DeltaVecAdd(globfq, delta)) BY (3)1

. nrec’ = DeltaVecAdd(GII, DeltaVecAdd(delta, globfq)) BY (3)2

. nrec’ = DeltaVecAdd(DeltaVecAdd(GII, delta), globfq) BY (3)3
. nrec’ = DeltaVecAdd(GII', globfq) BY (3)4, (2)7

. nrec’ = DeltaVecAdd(GII', globfq") BY (3)5, (2)6

)
)
)
)
)
)
)
) Q
(
(
(
(
(
(
(
(
(
(
(3) QED BY (3)6

C.24. PROOF OF INVARIANT INVGLOBALRECORDCOUNT 223

If the action is NextSendUpdate.

No change to nrec, globfq, or GII and so preserves the invariant.

(1)8. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NeatSendUpdate_ WithPTT (p, tt)
Y (1)8 DEF NextSendUpdate, NextSendUpdate- WithPTT

(2)2. NextSendUpdate_State_Conclusion(p, tt)
Y (2)1, NexztSendUpdate_State

(2)3. NextSendUpdate_ GloballncomingInfo_ Conclusion(fq, p, tt)
Y (2)1, NexztSendUpdate_GloballncominglInfo

2) USE DEF NeztSendUpdate_State_ Conclusion
2) USE DEF NeztSendUpdate_GloballncomingInfo_ Conclusion

(2)

(2)

(2)4. UNCHANGED nrec BY (2)2
(2)5. UNCHANGED globfq BY (2)2
(2)6. UNCHANGED GII BY (2
(2) (

)3
2) QED BY (2)4, (2)5, (2)6, (1)6

If the action is NextReceive Update.
No change to nrec. When fg # ¢, no change to GII or globfq. When fq = g, removes delta from GII and adds it to globfg. In either case
preserves the invariant.
(1)9. CASE NextReceive Update
(2)1. PICK p € Proc, q € Proc:
NeatReceive Update_ WithPQ(p, q)
Y (1)9 DEF NextReceiveUpdate, NextReceive Update— WithP@Q

(2)2. NextReceive Update_State_ Conclusion(p, q)
Y (2)1, NextReceive Update_State

(2)3. NextReceive Update_ GloballncomingInfo_ Conclusion(fq, p, q)
Y (2)1, NexztReceive Update_ GlobalIncomingInfo

(2) USE DEF NextReceive Update_State_ Conclusion
(2) USE DEF NextReceive Update_ GloballncomingInfo_ Conclusion

(2)4. UNCHANGED nrec BY (2)2

GII and globfq are unchanged if fq # q.

(2)5. ASSUME fq # q PROVE nrec’ = DeltaVecAdd(GII', globfq")
(3)1. UNCHANGED GII BY (2)3, (2)5
(3)2. UNCHANGED globfq BY (2)2, (2)5
(3) QED BY (3)1, (3)2, (2)4, (1)6

Transfer delta from GII to globfq if fq = q.

(2)6. ASSUME fq = q PROVE nrec’ = DeltaVecAdd(GII', globfq')
(3) DEFINE delta = NextReceive Update_ Kappa(p, q)

224 APPENDIX C. PROOF OF CORRECTNESS

(3)1. delta € DeltaVecType BY (2)2

(3)2. GII = DeltaVecAdd(GII', delta) BY (2)3, (2)6
(3)3. globfq’ = DeltaVecAdd(globfq, delta) BY (2)2, (2)6
<3 QED by commutative and associative properties of Delta VecAdd

HIDE DEF delta, GII, globfq hide the complicated definitions
USE (3)1, (1)3, (1)4 know that they are delta vectors
USE DeltaVecAddCommutative know that add is commutative

USE DeltaVecAddAssociative know that add is associative

. nrec = DeltaVecAdd(GII', globfq') BY (4)3, (3)3
. nrec’ = DeltaVecAdd(GII', globfq") BY (4)4, (2)4
QED BY (4)5

o~~~ o~ o~ o~ o~~~ RGNS~

R R R »lkrlkdk»lk

(2) QED BY (2)5, (2)6

(1) QED BY (1)7, (1)8, (1)9 DEF Next

InvGlobalRecordCount holds in all reachable states.

THEOREM ThmInvGlobalRecordCount =
Spec = OInvGlobalRecordCount
PROOF
(1) DEFINE [=
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A InvGlobalRecord Count

(1y Init = I

(2) USE ThmInitInvType

(2) USE ThmInitInvTemp Upright

(2 USE ThmInitInvIncomingInfoUpright
(2) USE ThmInitInvGlobalRecord Count
(
)
(2
(2
(

2) QED OBVIOUS

(1) I A\ [Next]yars = I’
Y USE ThmNextInvType
Y USE ThmNextInvTemp Upright
2) USE ThmNextInvIncomingInfo Upright

1. nrec = DeltaVecAdd(DeltaVecAdd(GII', delta), globfq) BY
2. nrec = DeltaVecAdd(GII', DeltaVecAdd(delta, globfq)) BY
3. nrec = DeltaVecAdd(GII', DeltaVecAdd(globfq, delta)) BY
4
5

(3)2, (1)6
(4)1
(4)2

C.24. PROOF OF INVARIANT INVGLOBALRECORDCOUNT

2) USE ThmNextInvGlobalRecordCount
2) QED OBVIOUS

(1
(1
(1

Spec = OI OMITTED BY DEF Spec

) Init A O[Next]yors = OI OMITTED TLAPS cannot check it
> QED OMITTED TLAPS cannot check it

225

226 APPENDIX C. PROOF OF CORRECTNESS

C.25 Proof of invariant InvStickyNrecVacantUpto

MODULE NaiadClockProofInvStickyNrec Vacant Upto

EXTENDS NaiadClockProofInvGlobalRecord Count

Proof of invariant InvStickyNrecVacantUpto.

InvStickyNrec VacantUpto says that for each point t, if all points up to t have no records in the current state, then all points up to t will have no
records in the next state.

This invariant is proved by the following argument:
(1) the number of records at each point is non-negative and

(2) the only action that changes the number of records is NextPerformOperation, which makes a change expressed as a regular delta vector.

Nrec VacantUpto is sticky.

THEOREM ThmStickyNrec VacantUpto =
ASSUME
InvType,
[Neat]yars,
NEW ft € Point,
NrecVacantUpto(ft)
PROVE
NrecVacantUpto(ft)’
PROOF
(1) InuType’ BY ThmNextInvType
Dispose of the stutter step.
(1)1. CASE UNCHANGED vars
(2) USE DEF vars
(2) USE DEF NrecVacantUpto
(2) QED BY (1)1
Set up to prove that Nrec VacantUpto(ft) is sticky.
1) SUFFICES ASSUME Next PROVE NrecVacantUpto(ft)’ BY (1)1 DEF Next

(

(1)2. lleq € PointRelationType BY DEF InvType
(1)3. IsPartialOrder(lleq) BY DEF InvType
(
(

leg[a][b]

)
)

1) DEFINE @ < b
) a=<XbANa#b

1) DEFINE a < b

A
A

C.25. PROOF OF INVARIANT INVSTICKYNRECVACANTUPTO 227

If the action is NextPerformOperation.

(1)4. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation_ WithPCR(p, ¢,)
BY (1)4 DEF NextPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State_Conclusion(p, ¢, 1)
BY (2)1, NextPerformOperation_State

2) USE DEF NeztPerformOperation_State_ Conclusion

2) DEFINE delta = NextPerformOperation_Delta(p, ¢, T)

)

)

)3. UNCHANGED lleq BY (2)2

V4. delta € DeltaVecType BY (2)2
)5. IsDeltaVecUpright(lleq, delta) BY (2)2
2)6. nrec’ = DeltaVecAdd(nrec, delta) BY (2)2
)

2) HIDE DEF delta

(
(
(2
(2
(2
(
(

It suffices to show that V' s < ft : nrec’[s] = 0. So assume we have a counterexample and prove a contradiction.

(2)7. SUFFICES ASSUME NEW s € Point, s < ft, nrec'[s] # 0
PROVE FALSE
BY (2)3 DEF NrecVacantUpto, IsDeltaVec VacantUpto

(2)8. nrec’[s] = nrec[s] + delta[s] BY (2)6 DEF DeltaVecAdd

(2)9. nrec’[s] € Nat BY DEF InvType, CountVecType

(2)10. delta[s] € Int BY (2)4 DEF DeltaVecType

(2)11. nrec[s] = 0 BY (2)3, (2)7 DEF NrecVacantUpto, IsDeltaVecVacantUpto
(2)12. delta[s] > 0 BY (2)7, (2)8, (2)9, (2)10, (2)11, SMTT(10)

(2)

13. PICK u € Point : u < s A delta[u] < 0
BY (2)4, (2)5, (2)12, (1)2, (1)3, DeltaVec Upright_EzistsSupport

(2)14. uw < ft BY (2)3, (2)7, (2)13, (1)2, (1)3, PartialOrderTransitive

(2)15. nrec’[u] = nrec[u] + delta[u] BY (2)6 DEF DeltaVecAdd

(2)16. nrec’[u] € Nat BY DEF InvType, CountVecType

(2)17. nreclu] = 0 BY (2)3, (2)14 DEF NrecVacantUpto, IsDeltaVec VacantUpto
(2)18. delta[u] € Int BY (2)4 DEF DeltaVecType

(2)

(2)

2)19. nrec’[u] < 0 BY (2)13, (2)15, (2)17, (2)18, SMTT(10)

If the action is NextSendUpdate.

(1)5. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NeatSendUpdate- WithPTT (p, tt)
BY (1)5 DEF NextSendUpdate, NextSendUpdate- WithPTT

228 APPENDIX C. PROOF OF CORRECTNESS

(2)2. NextSendUpdate_State_ Conclusion(p, tt)
Y (2)1, NextSendUpdate_State

2) USE DEF NeztSendUpdate_State_Conclusion

(2)

(2)4. UNCHANGED nrec BY (2)2

(2)5. UNCHANGED lleq BY (2)2

(2)6. UNCHANGED NrecVacantUpto(ft) BY (2)4, (2)5 DEF NrecVacantUpto
(2) QED BY (2)6

If the action is NextReceive Update.

(1)6. CASE NextReceive Update
(2)1. PICK p € Proc, q € Proc:
NextReceive Update_ WithPQ(p, q)
Y (1)6 DEF NextReceive Update, NextReceiveUpdate- WithPQ)

(2)2. NextReceive Update_State_ Conclusion(p, q)
Y (2)1, NextReceiveUpdate_State

2) USE DEF NeztReceive Update_State_ Conclusion

(2)

(2)4. UNCHANGED nrec BY (2)2

(2)5. UNCHANGED lleq BY (2)2

(2)6. UNCHANGED NrecVacantUpto(ft) BY (2)4, (2)5 DEF NrecVacantUpto
(2) QED BY (2)6

(1) QED BY (1)4, (1)5, (1)6 DEF Next

InvStickyNrec VacantUpto holds in the initial state.

THEOREM ThmlInitInuStickyNrec VacantUpto =
Init = InvStickyNrec VacantUpto

PROOF
(1) QED BY DEF Init, InvStickyNrecVacantUpto

InvStickyNrec VacantUpto carries through a Nezt step.

C.25. PROOF OF INVARIANT INVSTICKYNRECVACANTUPTO

THEOREM ThmNextInvStickyNrec VacantUpto =
A InvType
A InvStickyNrec Vacant Upto
A [Next]pars
=
InvStickyNrec Vacant Upto’
PROOF
(1) SUFFICES ASSUME
InvType,
InvStickyNrec VacantUpto,
[Next] vars
PROVE [nuStickyNrec VacantUpto’
OBVIOUS

Dispose of the stutter step.
(1)1. CASE UNCHANGED vars
(2) USE DEF wvars
(2) USE DEF InuStickyNrecVacantUpto
(2) USE DEF NrecVacantUpto
(2) QED BY (1)1
Set up to prove InvStickyNrec VacantUpto’.
(1) SUFFICES ASSUME Next PROVE InuStickyNrec VacantUpto’ BY (1)1

)
(1) SUFFICES ASSUME NEW ft € Point
PROVE nrecvut[ft] = NrecVacantUpto(ft)’
BY DEF InuvStickyNrec VacantUpto

(1) SUFFICES nrecvut|ft] = NrecVacantUpto(ft) BY ThmStickyNrec VacantUpto

If the action is NextPerformOperation.

(1)7. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation- WithPCR(p, ¢,)
BY (1)7 DEF NextPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State_Conclusion(p, ¢, 1)
BY (2)1, NextPerformOperation_State

(2) USE DEF NeatPerformOperation_State_ Conclusion

(2) QED BY (2)2

If the action is NextSendUpdate.

(1)8. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :

229

230 APPENDIX C. PROOF OF CORRECTNESS

NeatSendUpdate_ WithPTT (p, tt)
BY (1)8 DEF NextSendUpdate, NextSendUpdate- WithPTT

(2)2. NextSendUpdate_State_ Conclusion(p, tt)
BY (2)1, NextSendUpdate_State

(2) USE DEF NextSendUpdate_State_Conclusion
(2) QED BY (2)2

If the action is NextReceive Update.

(1)9. CASE NextReceive Update
(2)1. PICK p € Proc, q¢ € Proc :
NextReceive Update- WithPQ(p, q)
BY (1)9 DEF NextReceiveUpdate, NextReceiveUpdate- WithPQ

(2)2. NextReceive Update_State_ Conclusion(p, q)
BY (2)1, NextReceiveUpdate_State

(2) USE DEF NextReceive Update_State_ Conclusion

(2) QED BY (2)2
(1) QeD BY (1)7, (1)8, (1)9 DEF Next

InvStickyNrec VacantUpto holds in all reachable states.

THEOREM ThmlinuvStickyNrec VacantUpto =
Spec = OlInvStickyNrec VacantUpto
PROOF
(1) DEFINE [=
A InvType
A InvStickyNrec VacantUpto

Init = 1

2) USE ThmlInitInvType

2) USE ThmInitInvStickyNrec VacantUpto
2) QED OBVIOUS

(1

2) USE ThmNextInvType
2) USE ThmNextInvStickyNrec Vacant Upto
)

2

)
(
(
(
(1y I A [Next]yars = I’
(
(
(2) QED OBVIOUS
)

(1) Init A O[Newt]yqrs = O OMITTED TLAPS cannot check it

C.25. PROOF OF INVARIANT INVSTICKYNRECVACANTUPTO 231

(1) Spec = OI OMITTED BY DEF Spec
(1) QED OMITTED TLAPS cannot check it

232 APPENDIX C. PROOF OF CORRECTNESS

C.26 Proof of invariant InvStickyGlobVacantUpto

MODULE NaiadClockProofInvStickyGlob VacantUpto

EXTENDS NaiadClockProofInvStickyNrec VacantUpto

Proof of invariant InvStickyGlobVacantUpto.

InvStickyGlob VacantUpto says that for each processor fq and point ¢, if GlobVacantUpto(fq, t) is TRUE in the current state, then it will be
TRUE in the next state. Glob VacantUpto(fgq, t) says that all points s < ¢ have glob[fq][s] = 0.

This fact is proved as follows.

NextPerformOperation makes no change to glob[fg].

NeztSendUpdate makes no change to glob[fq].

NeztReceive Update takes the oldest update from msg[p][q] and adds it to glob[q]. When fg = q this is a change to glob|[fq]. Let

GIIO Globallncominglnfo(0, q, q)
GII1 GLoballncominglInfo(1, q, q)
kappa = msg[p][q][1]

NS

‘We know that

glob[q] is vacant up to ¢
nrec is vacant up to ¢
nrec = glob[q] + GII0

Hence we have
GIIO0 is vacant up to ¢
We know that
GII0 = kappa + GII1 kappa is GII1-upright GII1 is upright
Hence by the Delta VecVacantUpto_Beta Upright theorem we know that
kappa is vacant up to ¢
Since
globlg]" = glob|q] + kappa
We know that
glob[q]’ is vacant up to ¢

This completes the proof.

GlobVacantUpto is sticky.

THEOREM ThmStickyGlobVacantUpto =

C.26. PROOF OF INVARIANT INVSTICKYGLOBVACANTUPTO 233

ASSUME
InvType,
InvTempUpright,
InvIncominglInfo Upright,
InvGlobalRecordCount,
InvinfoAtBetaUpright,
[Next]pars
NEW fq € Proc,
NEW ft € Point,
GlobVacantUpto(fq, ft)
PROVE
GlobVacantUpto(fyq, ft)'

PROOF

(1) InvGloballncomingInfo Type
1) InvGloballncomingInfoSkipQ
1) InvGloballncomingInfo Upright
1) InvGloballnfoAtBetaUpright
1) InvGlobVacantUptoImpliesNrec

1) InvType’
1) InvTemp Upright’

1) InvInfoAtBetaUpright’

1) InvGloballncomingInfo Type'
1) InvGloballncomingInfoSkip0'
1) InvGlobalIncomingInfo Upright’

)
)
)
)
)
)
1) InvIncominglInfo Upright’
)
)
)
)
)
1) InvGloballnfo AtBetaUpright’

(
(
(
(
(
(
(
(1) InvGlobalRecordCount’
(
(
(
(
(
(

1) InvGlobVacantUptoImpliesNrec'

Dispose of the stutter step.

(1)1. CASE UNCHANGED vars
(2) USE DEF wvars

BY DeducelnvGloballncominglInfo Type
BY DeducelnvGloballncominglInfoSkip0
BY DeducelnvGloballncominglInfo Upright
BY DeducelnvGloballnfo AtBetaUpright
BY DeducelnvGlobVacantUptoImpliesNrec

BY ThmNextInvType

BY ThmNextInvTemp Upright

BY ThmNextInvIncomingInfoUpright
BY ThmNextInvGlobalRecordCount
BY ThmNextInvInfoAtBetaUpright

BY DeducelnvGloballncominglInfo Type
BY DeducelnvGloballncomingInfoSkip0
BY DeducelnvGloballncominglInfo Upright
BY DeducelnvGloballnfoAtBetaUpright
BY DeducelnvGlob Vacant UptoImpliesNrec

2) USE DEF InuStickyGlobVacantUpto

(
(2) USE DEF GlobVacantUpto
(2) QED BY (1)1

t

Set up to prove that Glob VacantUpto(fq, ft) is sticky.

1) SUFFICES ASSUME Next PROVE GlobVacantUpto(fq, ft)’ BY (1)1, Isa DEF Next

(1)

(1)2. lleg € PointRelationType BY DEF InvType

(1)3. IsPartialOrder(lleq) BY DEF InvType

(1)4. NrecVacantUpto(ft) BY DEF InvGlobVacantUptoImpliesNrec

If the action is NextPerformOperation.

234 APPENDIX C. PROOF OF CORRECTNESS

(1)6. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation_ WithPCR(p, ¢,)
BY (1)6 DEF NextPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State_Conclusion(p, ¢, 1)
BY (2)1, NextPerformOperation_State

2) USE DEF NextPerformOperation_State_ Conclusion

(2)
(2)3. UNCHANGED lleq BY (2)2
(2)4. UNCHANGED glob BY (2)2
(2)5. UNCHANGED GlobVacantUpto(fq, ft)
BY (2)3, (2)4 DEF GlobVacantUpto, IsDeltaVec VacantUpto
(2) QED BY (2)5

If the action is NextSendUpdate.

(1)7. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NeatSendUpdate_ WithPTT (p, tt)
BY (1)7 DEF NextSendUpdate, NextSendUpdate- WithPTT

(2)2. NextSendUpdate_State— Conclusion(p, tt)
BY (2)1, NeztSendUpdate_State

2) USE DEF NextSendUpdate_State_ Conclusion

(2)
(2)3. UNCHANGED lleq BY (2)2
(2)4. UNCHANGED glob BY (2)2
(2)5. UNCHANGED GlobVacantUpto(fq, ft)
BY (2)3, (2)4 DEF GlobVacantUpto, IsDeltaVec VacantUpto
(2) QED BY (2)5

If the action is NextReceive Update.

(1)8. CASE NextReceive Update
(2)1. PICK p € Proc, q € Proc:
NeatReceive Update_ WithPQ(p, q)
BY (1)8 DEF NextReceiveUpdate, NextReceiveUpdate- WithPQ

(2)2. NextReceive Update_State— Conclusion(p, q)
BY (2)1, NextReceiveUpdate_State

(2)3. NextReceive Update_IncomingInfo_Conclusion(0, p, fq, p, q)
BY (2)1, NeztReceiveUpdate_IncomingInfo

(2)4. NextReceive Update— GlobalIncomingInfo_ Conclusion(fq, p, q)
BY (2)1, NextReceiveUpdate_Globallncominglnfo

(2) USE DEF NextReceive Update_State_ Conclusion

C.26. PROOF OF INVARIANT INVSTICKYGLOBVACANTUPTO 235

(2) USE DEF NextReceive Update_IncomingInfo_Conclusion
(2) USE DEF NextReceive Update_ GloballncomingInfo_ Conclusion

(2)6. UNCHANGED lleq BY (2)2

glob[fq] is unchanged if fq # q.
(2)7. ASSUME fq # q PROVE GlobVacantUpto(fq, ft)’
(3)1. UNCHANGED glob[fq] BY (2)2, (2)7
(3) QED BY (3)1, (2)6 DEF GlobVacantUpto, IsDeltaVecVacantUpto

Transfer kappa from GII to glob|fq] if fg = q.
(2)8. ASSUME fq = q PROVE GlobVacantUpto(fq, ft)’

(3) DEFINE kappa = NeatReceive Update_Kappa(p, q)
(3) DEFINE GII = GlobalIncomingInfo(0, fq, fq)
(3) DEFINE globfq = glob|fq]
(3)1. kappa € DeltaVecType BY (2)2
(3)2. GII € DeltaVecType BY DEF InvGloballncominglnfo Type
(3)3. GII' € DeltaVecType BY DEF InvGloballncominglnfo Type
(3)4. globfq € DeltaVecType BY DEF InvType
(3)5. nrec € DeltaVecType BY DEF InvType, DeltaVecType, CountVecType
(3)6. lleq’ € PointRelationType BY (2)6, (1)2
(3)7. IsPartialOrder(lleq’) BY (2)6, (1)3
(3)8. IsDeltaVecBetaUpright(lleq’, kappa, GII')
4) DEFINE GII0 = GloballncomingInfo(0, p, fq)

GloballncomingInfo(1, p, fq)

)
)
) InfoAt(1, p, fq)
4)1. IsDeltaVecBetaUpright(lleq, IA1, GII1) BY DEF InvGloballnfo AtBetaUpright
)
)
)
)

Ny
o
™
sl
(sl
Z
™
Q
~
—
(>l

4)2. kappa = IA1 BY (2)1, (2)8, NextReceiveUpdate_InfoAtl

4>1 GII = DeltaVecAdd(GH kappa) BY (2)4, (2)8
4) HIDE DEF GII, kappa
4) USE (3)1, (3)3
4) QED BY <)1, DeltaVecAddCommutative
0.

IsDeltaVecVacantUpto(lleq’, globfq, ft) BY (2)6 DEF GlobVacantUpto

(3)11. IsDeltaVec VacantUpto(lleq’, GII, ft)

V1. nrec = DeltaVecAdd(GII, globfq) BY DEF InvGlobalRecordCount

)2. IsDeltaVecVacantUpto(lleq’, nrec, ft) BY (2)6, (1)4 DEF NrecVacantUpto
4) HIDE DEF GII, globfq

) USE (3)2, (34, (3)5, (3)6

) QED BY(11, (4)2, (3)10, DeltaVecVacantUpto_Add

236 APPENDIX C. PROOF OF CORRECTNESS

(3)12. IsDeltaVecVacantUpto(lleq’, DeltaVecAdd(kappa, GII'), ft) BY (3)9, (3)11

(3)13. IsDeltaVecVacantUpto(lleq’, kappa, ft)
4)1. IsDeltaVecUpright(lleq’, GII') BY DEF InvGloballncomingInfo Upright
4) HIDE DEF GII, kappa
4) USE (3)1, (3)3, (3)6, (3)7
4) QED BY < 1, (3)8, (3)12, DeltaVecVacantUpto-BetaUpright
4.

(3 IsDeltaVecVacantUpto(lleq’, globfq’, ft)

Y1. globfq’ = DeltaVecAdd(globfq, kappa) BY (2)2, (2)8
)} HIDE DEF kappa, globfq

) USE (3)1, (3)4, (3)6

4) QED BY < Y1, (3)10, (3)13, Delta Vec VacantUpto_Add

)
)
(
(
(
(
)1
4
4
4
(3)14 DEF GlobVacantUpto

BY
Y (2)7, (2)8
Y (1)6, (1)7, (1)8 DEF Next

(

(3) QED
(2) QED B
(1) QED B

InvStickyGlob VacantUpto holds in the initial state.

THEOREM ThmInitInuStickyGlobVacantUpto =
Init = InvStickyGlobVacantUpto
PROOF
(1) QED BY Isa DEF Init, InuStickyGlobVacantUpto

InvStickyGlobVacantUpto carries through a Next step.

THEOREM ThmNextInvStickyGlobVacantUpto =
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A InvGlobalRecord Count
A InvinfoAtBetaUpright
A InuStickyGlobVacant Upto
A [Next] yars
=
InvStickyGlob Vacant Upto’

C.26. PROOF OF INVARIANT INVSTICKYGLOBVACANTUPTO

PROOF
(1) SUFFICES ASSUME

InvType,
InvTemp Upright,
InvIncominglnfo Upright,
InvGlobalRecordCount,
InvInfoAtBetaUpright,
InvStickyGlobVacantUpto,
[Neat]yars

PROVE InuStickyGlobVacantUpto’

OBVIOUS

Dispose of the stutter step.

(1)1. CASE UNCHANGED vars
(2) USE DEF vars
(2) USE DEF InuStickyGlobVacantUpto
(2) USE DEF GlobVacantUpto
(2) QED BY (1)1
Set up to prove InvStickyGlobVacantUpto'.
(1) SUFFICES ASSUME Next PROVE InuStickyGlobVacantUpto’ BY (1)1

)

(1) SUFFICES ASSUME NEW fq € Proc, NEW ft € Point

PROVE globvut[fq][ft]’ = GlobVacantUpto(fq, ft)’
BY DEF InuvStickyGlobVacantUpto

(1) SUFFICES globuut[fq][ft]' = GlobVacantUpto(fq, ft) BY ThmStickyGlobVacantUpto

If the action is NextPerformOperation.
(1)7. CASE NextPerformOperation
(2)1. PICK p € Proc, ¢ € PointToNat, r € PointToNat :
NeatPerformOperation- WithPCR(p, ¢,)
BY (1)7 DEF NextPerformOperation, NextPerformOperation_ WithPCR

(2)2. NextPerformOperation_State_Conclusion(p, ¢, 1)
BY (2)1, NextPerformOperation_State

(2) USE DEF NegtPerformOperation_State_ Conclusion

(2) QED BY (2)2

If the action is NextSendUpdate.

(1)8. CASE NextSendUpdate
(2)1. PICK p € Proc, tt € SUBSET Point :
NextSendUpdate_ WithPTT (p, tt)
BY (1)8 DEF NextSendUpdate, NextSendUpdate- WithPTT

237

238 APPENDIX C. PROOF OF CORRECTNESS

(2)2. NextSendUpdate_State_ Conclusion(p, tt)
BY (2)1, NeztSendUpdate_State

(2) USE DEF NeztSendUpdate_State_Conclusion

(2) QED BY (2)2

If the action is NextReceive Update.

(1)9. CASE NextReceive Update
(2)1. PICK p € Proc, q¢ € Proc :
NextReceive Update- WithPQ(p, q)
BY (1)9 DEF NextReceiveUpdate, NextReceiveUpdate- WithPQ

(2)2. NextReceive Update_State_ Conclusion(p, q)
BY (2)1, NextReceiveUpdate_State

(2) USE DEF NextReceive Update_State_ Conclusion

(2) QED BY (2)2
(1) QeD BY (1)7, (1)8, (1)9 DEF Next

InvStickyGlob VacantUpto holds in all reachable states.

THEOREM ThmInvStickyGlobVacantUpto =
Spec = OlInvStickyGlobVacantUpto
PROOF
(1) DEFINE [=
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A InvGlobalRecord Count
A InvinfoAtBetaUpright
A InvStickyGlobVacant Upto

Init = 1

2) USE ThmInitInvType

2) USE ThmInitInvTemp Upright

2) USE ThmlInitInvIncominglnfo Upright

2) USE ThmlInitInvGlobalRecordCount
)
)
)

(1

)
(
(
(
(
(2) USE ThmlInitInvInfoAtBetaUpright

(2) USE ThmInitInvStickyGlobVacantUpto
(2

QED OBVIOUS

C.26. PROOF OF INVARIANT INVSTICKYGLOBVACANTUPTO
(1) I A [Next]yars = I’

2) USE ThmNextInvType

2) USE ThmNextInvTemp Upright

2) USE ThmNextInvIncominglnfo Upright

2) USE ThmNextInvGlobalRecord Count

2) USE ThmNextInvInfoAtBetaUpright

2) USE ThmNextInvStickyGlobVacantUpto

2) QED OBVIOUS

(1
(1
a

Init A O[Next]yqrs = OI OMITTED TLAPS cannot check it
'pec = O OMITTED BY DEF Spec
QED OMITTED TLAPS cannot check it

)1
(
(
(
(
(
(
(
)
) S
)

239

240 APPENDIX C. PROOF OF CORRECTNESS

C.27 The top-level proof module

MODULE NaiadClockProof

EXTENDS NaiadClockProofInuStickyGlobVacantUpto

The top-level proof module.

This module presents the top-level theorems, which are proved by appealing to earlier theorems and temporal deductions. Unfortunately, 'L A PSS
is unable to check the temporal deductions.

In any execution that obeys Spec, the safety property SafeStickyNrec VacantUpto always holds.

TLAPS is unable to check the temporal steps in this proof.

THEOREM ThmSafeStickyNrec VacantUpto =
Spec = OSafeStickyNrec VacantUpto
PROOF
(1) SUFFICES ASSUME NEW ¢ € Point
PROVE
(Init A O[Next]pars)
=
O(NrecVacantUpto(t) = ONrec VacantUpto(t))
OMITTED BY DEF Spec, SafeStickyNrec VacantUpto

(1) DEFINE [=
A InvType

(WY1, Init = 1
(2) USE ThmInitInvType
(2) QED OBVIOUS

(1)2. (I A [Next]pars) = I’
(2) USE ThmNextInvType
(2) QED OBVIOUS

(1)3. (I A NrecVacantUpto(t) A [Next]yars) = NrecVacantUpto(t)'
BY ThmStickyNrec VacantUpto

(1) QED OMITTED TLAPS cannot check it

C.27. THE TOP-LEVEL PROOF MODULE 241

In any execution that obeys Spec, the safety property SafeStickyGlobVacantUpto always holds.

TLAPS is unable to check the temporal steps in this proof.

THEOREM ThmSafeStickyGlobVacantUpto =
Spec = OSafeStickyGlob VacantUpto
PROOF
(1) SUFFICES ASSUME NEW ¢ € Proc, NEW t € Point
PROVE
(Init A O[Next]pars)
=
O(GlobVacantUpto(q, t) = OGlobVacantUpto(q, t))
OMITTED BY DEF Spec, SafeStickyGlobVacantUpto

(1) DEFINE [=
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A InvGlobalRecordCount
A InvinfoAtBetaUpright

(V1. Init = I
2) USE ThmInitInvType
2) USE ThmlInitInvTemp Upright
2) USE ThmlInitInvIncominglnfo Upright
2) USE ThmInitInvGlobalRecord Count
2) USE ThmlInitInvinfoAtBetaUpright
)

2) QED OBVIOUS

2) USE ThmNextInvType
2) USE ThmNextInvTemp Upright
2) USE ThmNextInvIncominglnfo Upright
2) USE ThmNextInvGlobalRecordCount
2) USE ThmNextInvInfoAtBetaUpright

)

2) QED OBVIOUS

)
(
(
(
(
(
(
(1)2. (I A [Next]pars) = I’
(
(
(
(
(
(
)

(1)3. (I A GlobVacantUpto(q, t) A [Next]yars) = GlobVacantUpto(q, t)’
BY ThmStickyGlobVacantUpto

(1) QED OMITTED TLAPS cannot check it

242 APPENDIX C. PROOF OF CORRECTNESS

In any execution that obeys Spec, the safety property Safe GlobVacantUptoImpliesStickyNrec always holds.

TLAPS is unable to check the temporal steps in this proof.

THEOREM ThmSafeGlob VacantUptoImpliesStickyNrec =
Spec = OSafeGlobVacantUptoImpliesStickyNrec
PROOF
(1) SUFFICES ASSUME NEW ¢ € Proc, NEW ¢ € Point
PROVE
(Init A O[Next]yars)
=
O(GlobVacantUpto(q, t) = ONrecVacantUpto(t))
OMITTED BY DEF Spec, SafeGlobVacantUptoImpliesStickyNrec

(1) DEFINE [=
A InvType
A InvTemp Upright
A InvIncomingInfo Upright
A InvGlobalIncominglInfo Upright
A InvGlobalRecord Count
A InvGlob VacantUptoImpliesNrec

(WY1, Init = 1
2) USE ThmInitInvType
2) USE ThmlInitInvTemp Upright
2) USE ThmlInitInvIncominglnfo Upright
2) USE ThmInitInvGlobalRecord Count
2) USE DeduceInvGloballncomingInfo Upright
2) USE DeduceInvGlobVacantUptoImpliesNrec
)

2) QED OBVIOUS

2) USE ThmNextInvType

2) USE ThmNextInvTemp Upright

2) USE ThmNextInvIncomingInfo Upright

2) USE ThmNextInvGlobalRecord Count

2) USE DeducelInvGloballncomingInfo Upright

2) USE DeduceInvGlobVacantUptoImpliesNrec
)

2) QED OBVIOUS

)
(
(
(
(
(
(
(
(1)2. (I A [Newt]pars) = I’
(
(
(
(
(
(
(
)3

(1)3. (I A GlobVacantUpto(q, t)) = NrecVacantUpto(t)

BY DEF InvGlobVacantUptoImpliesNrec

(1)Y4. (I A NrecVacantUpto(t) A [Next]yars) = NrecVacantUpto(t)
BY ThmStickyNrec VacantUpto

(1) QED OMITTED TLAPS cannot check it

C.27. THE TOP-LEVEL PROOF MODULE 243

Index of Theorems

AppendDef, 40| DeltaVecFunSumAddAt, [128§]
AppendProperties, 6] DeltaVecFunSumAllZero, [120]
AppendPropertiesNewElem, [47] DeltaVecFunSumProp, [TT3|
AppendPropertiesOldElems, DeltaVecFunSumType, [TT3)]
DeltaVecNegType,
CorrectlsFiniteSet, DeltaVecSeqAddAtType, [101]
DeltaVecSeqSkipSumAddAt, [T01]
DeducelnvGloballncomingInfoSkip0, [157] DeltaVecSeqSkipSumAllZero, [79]
DeducelnvGloballncomingInfoType, [I53] DeltaVecSeqSkipSumAppend, [8§]
DeducelnvGloballncomingInfoUpright, [T58] DeltaVecSeqSkipSumEmpty, 1]
DeducelnvGlobalInfoAtBetaUpright, [162] DeltaVecSeqSkipSumHeadTail, [92]
DeducelnvGlobVacantUptoImpliesNrec, [I60] DeltaVecSeqSkipSumNext, [81]
DeducelnvincomingInfoType, [154] DeltaVecSeqSkipSumProp,
DeducelnvInfoAtType, [153] DeltaVecSeqSkipSumRemoveAt, 96
DeltaVecAddAssociative, DeltaVecSeqSkipSumSkipAll 80|
DeltaVecAddCommutative, DeltaVecSeqSkipSumTail, [00]
DeltaVecAddNeg, [76] DeltaVecSeqSkipSumType, [79]
DeltaVecAddType, [74] DeltaVecSeqSumAddAt, [T09]
DeltaVecAddZero, [74] DeltaVecSeqSumAllZero, [T08]
DeltaVecBetaUpright_Add, [T40] DeltaVecSeqSumAppend, [T09]
DeltaVecBetaUpright_ExistsFoundation, [T39] DeltaVecSeqSumEmpty, [T0§]
DeltaVecBetaUpright_FunSum, [42] DeltaVecSeqSumProp,
DeltaVecBetaUpright_Positivelmplies, [[44] DeltaVecSeqSumRemoveAt, [T09]
DeltaVecBetaUpright_Zero, [139] DeltaVecSeqSumType, [108]
DeltaVecFunAddAtPreservesFiniteNonZeroRange, DeltaVecUpright_Add, [T34]
DeltaVecFunAddAtPreservesType, [126] DeltaVecUpright_ExistsSupport, [I33|
DeltaVecFunIndexSumAnyExactSeq, DeltaVecUpright_FunSum, [37]
DeltaVecFunIndexSumEmpty, [TT9] DeltaVecUpright_SeqSkipSum, [[36]
DeltaVecFunIndexSumProp, [TT1] DeltaVecUpright_SeqSum,
DeltaVecFunIlndexSumRemoveAt, [T13] DeltaVecUpright_Zero, [133]
DeltaVecFunIndexSumType, [T14] DeltaVecVacantUpto_Add, [T46]
DeltaVecFunSubsetSumElemNoChange, [124] DeltaVecVacantUpto_BetaUpright, [T47]
DeltaVecFunSubsetSumEmpty, [120] DeltaVecZeroType, [74]
DeltaVecFunSubsetSumNewElem, [T21] DotDotDef, 38|
DeltaVecFunSubsetSumProp, @ DotDotOneThruN, [3§]
DeltaVecFunSubsetSumSameSubset, [123] DotDotType, 38|
DeltaVecFunSubsetSumType, [T14] DotDotType2, [3§]

244

INDEX OF THEOREMS

ElementOfSeq, [42]
EmptySeq, @2]
EmptySeqIsASeq, 43|
ExactSeqEmpty, [63]
ExactSeqExists, [61]
ExactSeqForProperties, [63]
ExactSeqlIsFiniteSet, [63]
ExactSeqLength, [68]
ExactSeqRemoveAt, [66]

FiniteSetEmpty, [57]
FiniteSetSingleton,
FiniteSetSubset, 58]
FiniteSetUnion, [59]

HeadDef,
HeadType, {3]

Init_GlobalIncomingInfo, [I91]
Init_IncomingInfo, [T84]
Init_InfoAt,[T77]

IsASeq, 40

LenAxiom, 1]
LenDef,
LenDomain, [fT]
LenEmptylsZero, 43|
LenInNat, [4T]

NatWellFounded, 39|

NextCommon_State, [164]
NextPerformOperation_GlobalIncomingInfo, [192]
NextPerformOperation_IncomingInfo, @
NextPerformOperation_InfoAt, m
NextPerformOperation_State, @
NextReceiveUpdate_GlobalIncomingInfo, [T93]
NextReceiveUpdate_GlobalIncomingInfol, [T98]
NextReceiveUpdate_IncomingInfo, [I89]
NextReceiveUpdate_InfoAt, [T80]
NextReceiveUpdate_InfoAt1,[T82]
NextReceiveUpdate_State, [[73|
NextSendUpdate_GlobalIncomingInfo, [T94]
NextSendUpdate_IncomingInfo, [T86]
NextSendUpdate_InfoAt,
NextSendUpdate_State, [[69]

PartialOrder Antisymmetric,

PartialOrderReflexive, [7]]
PartialOrderStrictly Transitive, [72]
PartialOrderTransitive,

RemoveAtProperties, [51]
SeqSupset, 48]

TailProp, [44]

TailType, [43]
ThmInitInvGlobalRecordCount, m
ThmInitInvIncomingInfoUpright, 207]
ThmInitInvInfoAtBetaUpright, 212]
ThmInitInvStickyGlobVacantUpto, 236
ThmInitInvStickyNrecVacantUpto, 22§]
ThmInitInvTempUpright, 203|
ThmInitInvType, [200]
ThmInvGlobalRecordCount, 224
ThmInvIncomingInfoUpright, 210]
ThmInvInvInfoAtBetaUpright, 218§|
ThmInvStickyGlobVacantUpto, 238]
ThmInvStickyNrecVacantUpto, 230]
ThmInvTempUpright, 203

ThmInvType, 202]
ThmNextInvGlobalRecordCount, R221]
ThmNextInvIncomingInfoUpright, @
ThmNextInvInfoAtBetaUpright, 213|
ThmNextInvStickyGlobVacantUpto, 236
ThmNextInvStickyNrecVacantUpto, 229
ThmNextInvTempUpright, [203]
ThmNextInvType, 201]
ThmSafeGlobVacantUptolmpliesStickyNrec, 242]
ThmSafeStickyGlobVacantUpto, 24T]
ThmSafeStickyNrecVacantUpto, 240]
ThmStickyGlobVacantUpto, 232]
ThmStickyNrecVacantUpto, 226

245

	The Naiad Clock Protocol
	Informal description
	Basic specification

	Discussion of the specification
	Discussion of model checking
	Discussion of the proof
	A walk through the proof
	Basic definitions
	Basic library theorems
	Properties of delta vectors
	Additional invariants
	Deduction of some invariants
	The effects of actions
	Proving invariants
	Proving the main safety properties

	Proof system overview
	Proof statistics
	What we learned
	Linear module structure
	Refactoring action effects
	Symbolic conclusions
	Parallel deduction
	Checking the entire proof

	Acknowledgements
	Specification
	Model
	Proof of Correctness
	Basic additional definitions
	Facts about naturals
	Facts about sequences
	Properties of RemoveAt
	Facts about finite sets
	Facts about exact sequences
	Facts about partial orders
	Facts about delta vectors
	Facts about summing up sequences of delta vectors
	Facts about summing up delta vectors in the range of a function
	Facts about upright delta vectors
	Facts about beta-upright delta vectors
	Facts about delta vectors vacant up to point t
	Additional invariants needed in the proof
	Deduce various invariants from others
	How the actions affect the state variables
	How the actions affect InfoAt
	How the actions affect IncomingInfo
	How the actions affect GlobalIncomingInfo
	Proof of invariant InvType
	Proof of invariant InvTempUpright
	Proof of invariant InvIncomingInfoUpright
	Proof of invariant InvInfoAtBetaUpright
	Proof of invariant InvGlobalRecordCount
	Proof of invariant InvStickyNrecVacantUpto
	Proof of invariant InvStickyGlobVacantUpto
	The top-level proof module

