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Abstract
This report presents a formal specification, written in
TLA+, for the Naiad Clock protocol, along with the re-
sults of checking the specification using the TLC model
checker. Also presented is a formal proof of the Na-
iad Clock safety properties, which has been mechanically
checked using the TLA+ proof system.

This report is based partly on work with Martı́n Abadi,
Frank McSherry, and Derek Murray.
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Chapter 1

The Naiad Clock Protocol

We describe the Naiad Clock protocol informally, fol-
lowed by a basic specification. We assume that the reader
is familiar with TLA+ [5].

1.1 Informal description
The Naiad Clock Protocol oversees the progress of a
computation running within Naiad [7, 8], a distributed
dataflow system in which records flow through an abstract
dataflow computation graph.

In any state of a Naiad computation, the existing
records can occupy different stages in the logical progress
of the computation. For example, a simple computation
may consist of several successive stages in which an input
record at each stage is transformed into an input record at
the following stage. Each stage represents a point in vir-
tual time. In this case, the points would be arranged in a
linear order.

In general, we assume a set of points in virtual time,
with a partial order, and associate each record with a point
in virtual time, but the set of points need not be finite,
and the partial order need not be linear. An operation can
consume input records from a set of points and produce
output records at another set of points.

We do require that, if an operation produces a record at
one point in virtual time, then the operation has consumed
at least one record at a strictly lower point according to
the partial order. Therefore, as the computation proceeds,
the population of records will migrate away from lower
points. Should a downward-closed set of points become
vacant, this set will always thereafter remain vacant, as
any operation that might produce a record associated with

a point in the set would need to consume such a record as
well. This monotonically increasing set of permanently
vacant points represents the progress of the Naiad com-
putation.

It is important that a Naiad processor become aware
that a set of points is permanently vacant, because some of
the Naiad operations perform an aggreation of all records
arriving at a given point. The aggregation (along with any
temporary storage it might need) is not complete until all
records have been seen.

Since a Naiad computation runs on a distributed collec-
tion of processors, each processor is not able to observe,
directly, the exact contents of the set of records in order to
measure progress. Processors must instead communicate
with each other, as they perform operations, exchanging
information about the records that those operations con-
sume and produce. With this information, each processor
can maintain a possibly delayed but always safe approx-
imation to the set of permanently vacant points in virtual
time.

More concretely, in the Naiad Clock Protocol, each
processor maintains a local occupancy vector that maps
each point to the processor’s view of the number of
records at that point, depicted in Figure 1.1. At the start
of the Naiad computation, this local vector is initialized
from the initial set of records in the system. A processor
tracks changes in occupancy due to the operations that
it performs. When convenient, the processor broadcasts
incremental updates to all processors, sending updates
about points with net poduction of records before those
about points with net consumption of records. When a
processor receives one of these updates, it adjusts its lo-
cal occupancy vector accordingly. The protocol assumes

1
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Figure 1.1: Overall structure: each processor locally accumulates a delayed view of the occupancy vector.

that communication channels between processors are re-
liable and completely ordered, so that updates are neither
dropped nor delivered out of order.

The intent of this approach is that, once a downward-
closed set of points becomes vacant in the local occupancy
vector of some processor, that same set of points is in fact
vacant thereafter in the global set of records. Although the
local occupancy vector can be a delayed view of the true
occupancy vector, it is a safe approximation, so it allows
each processor to report correct results from completed
parts of the computation to external observers; it is also a
useful input to each processor’s memory management and
scheduling decisions.

1.2 Basic specification
To progress to a more formal description of the clock pro-
tocol, we introduce the definitions shown in Figure 1.2.
Point is the set of points, Proc is the set of processors,
and � is a partial order on Point .

A count vector maps each point to a natural number, the
count of the number of records at that point. A delta vec-
tor maps each point to an integer, representing a change
in the record count at that point.

We use Z to designate the delta vector that is every-
where zero and ⊕ and 	 to indicate component-wise ad-

dition and subtraction.

Given a delta vector a , we say that point t is positive iff
a[t ] > 0 and negative iff a[t ] < 0. Since talking about the
locations of positive and negative points in delta vectors
turns out to be important in the clock protocol and in its
proof of correctness, we define several predicates for this
purpose. A delta vector a is vacant up to point t iff a[s] =
0 for all s � t and that it is non-positive up to point t iff
a[s] ≤ 0 for all s � t . A delta vector s is supported at
point t iff there exists s ≺ t such that a[s] < 0 and a is
non-positive up to s . We call s the support for t . A delta
vector is upright iff all of its positive points are supported.

This definition of upright delta vectors arises because
we use delta vectors to describe the changes in record
counts that operations cause. As indicated in Section 1.1,
we require that for any point t at which an operation
causes a net production of records there must be a lower
point s at which the operation causes a net consumption
of records; this property explains why, in an upright delta
vector, for each positive point t there must exist a negative
point s � t . For s to support t , we further require that all
points u � s be non-positive; this property prevents cases
of infinite descent. It yields, in particular, that the sum of
two upright delta vectors is upright. (In cases where � is
well-founded, infinite descent is impossible, so the further
requirement becomes superfluous.)
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CONSTANT Point set of points
CONSTANT Proc set of processors
CONSTANT � partial order on Point

CountVec
∆
= [Point → Nat ] count vectors

DeltaVec
∆
= [Point → Int ] delta vectors

Z
∆
= [t ∈ Point 7→ 0] everywhere zero

a ⊕ b
∆
= [t ∈ Point 7→ a[t ] + b[t ]] component-wise addition

a 	 b
∆
= [t ∈ Point 7→ a[t ]− b[t ]] component-wise subtraction

s ≺ t
∆
= s � t ∧ s 6= t strictly lower

IsVacantUpto(a, t)
∆
= ∀ s ∈ Point : s � t ⇒ a[s] = 0

IsNonposUpto(a, t)
∆
= ∀ s ∈ Point : s � t ⇒ a[s] ≤ 0

IsSupported(a, t)
∆
= ∃ s ∈ Point : s ≺ t ∧ a[s] < 0 ∧ IsNonposUpto(a, s)

IsUpright(a)
∆
= ∀ t ∈ Point : a[t ] > 0⇒ IsSupported(a, t)

VARIABLE nrec ∈ CountVec
VARIABLE temp ∈ [Proc → DeltaVec]
VARIABLE msg ∈ [Proc → [Proc → Seq(DeltaVec)]]
VARIABLE glob ∈ [Proc → DeltaVec]

Init
∆
=

∧ nrec ∈ CountVec any initial population of records
∧ temp = [p ∈ Proc 7→ Z ] no unsent changes
∧msg = [p ∈ Proc 7→ [q ∈ Proc 7→ 〈 〉]] no unreceived updates
∧ glob = [q ∈ Proc 7→ nrec] each processor knows the initial nrec

NextPerformOperation
∆
= ∃ p ∈ Proc, c ∈ CountVec, r ∈ CountVec :

LET delta
∆
= r 	 c IN the net change in record population

∧ ∀ t ∈ Point : c[t ] ≤ nrec[t ] only consume what exists
∧ IsUpright(delta) net change must be upright
∧ nrec′ = nrec ⊕ delta
∧ temp′ = [temp EXCEPT ! [p] = temp[p]⊕ delta]
∧ UNCHANGED msg
∧ UNCHANGED glob

NextSendUpdate
∆
= ∃ p ∈ Proc, tt ∈ SUBSET Point :

LET gamma
∆
= [t ∈ Point 7→ IF t ∈ tt THEN temp[p][t ] ELSE 0] IN

∧ gamma 6= Z update must say something
∧ IsUpright(temp[p]	 gamma) what is left must be upright
∧ UNCHANGED nrec
∧ temp′ = [temp EXCEPT ! [p] = temp[p]	 gamma]
∧msg ′ = [msg EXCEPT ! [p] = [q ∈ Proc 7→ Append(msg [p][q ], gamma)]]
∧ UNCHANGED glob

NextReceiveUpdate
∆
= ∃ p ∈ Proc, q ∈ Proc :

LET kappa
∆
= msg [p][q ][1] IN oldest unreceived update from p to q

∧msg [p][q ] 6= 〈 〉 message queue must be non-empty
∧ UNCHANGED nrec
∧ UNCHANGED temp
∧msg ′ = [msg EXCEPT ! [p][q ] = Tail(msg [p][q ])]
∧ glob′ = [glob EXCEPT ! [q ] = glob[q ]⊕ kappa]

Next
∆
= NextPerformOperation ∨NextSendUpdate ∨NextReceiveUpdate

Spec
∆
= Init ∧2Next

For any point t and processor q , if glob[q ] is vacant up to t , then, at this and all future times, nrec is vacant up to t .

Safe ∆
= ∀ t ∈ Point , q ∈ Proc : ( IsVacantUpto(glob[q ], t)⇒ 2IsVacantUpto(nrec, t) )

Safe always holds in any execution that obeys Spec.

THEOREM Spec ⇒ 2Safe

Figure 1.2: Basic specification of the clock protocol.
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Finally, the clock protocol uses four state variables:
nrec, temp, msg , and glob.

• nrec is the occupancy vector, which represents the
number of records that currently exist at each point.

• temp[p] is the local (temporary) change in the oc-
cupancy vector due to the performance of operations
at processor p. Note that the change at a given point
can be negative (net records consumed), positive (net
records produced), or zero. We call it temporary be-
cause eventually the processor takes the information
from temp[p] and broadcasts it as an incremental up-
date.

• msg [p][q ] is the queue of updates from processor p
to processor q . Each update is a delta vector that
is zero everywhere except at those points that con-
tain information about net changes. Implementations
may of course limit the number of non-zero points
and represent updates in a compact form.

• glob[q ] is the delayed view at processor q of the oc-
cupancy vector. It is a delta vector, rather than a
count vector, because glob[q ][t ] can be negative for
some point t . Such negative values can appear, for
example, when one processor p1 produces a record
at point t , a second processor p2 consumes it and,
because of different queuing delays, processor q re-
ceives the update from p2 before that from p1.

The basic specification of the clock protocol defines an
initial Init , a next-state relation Next , and then a com-
plete specification Spec which states that Init must hold
and then forever each step must satisfy the Next relation.

Init states that nrec can be any mapping from Point to
Nat ; this mapping represents an arbitrary initial popula-
tion of records. Initially, there are no unsent changes, no
unreceived updates, and each processor knows the initial
population.

Each step from a current state to a next state is an action
specified as a relation between the values of the state vari-
ables in the current state (unprimed) and in the next state
(primed). The algorithm has three actions: NextPerform-
Operation, NextSendUpdate, and NextReceiveUpdate.

• In the NextPerformOperation action, processor p
performs an operation that consumes and produces

some number of records at each point. The records
to be consumed must exist and the net change in
records delta must be an upright delta vector. The
action adds delta to nrec and to temp[p].

• In the NextSendUpdate action, processor p selects a
set of points tt and broadcasts an update about its
changes at those points. The update is represented
by gamma . The processor must choose tt in such a
way that temp[p]	 gamma is upright. This require-
ment holds, in particular, when tt consists of posi-
tive points in temp[p] if any exist, because temp[p]
is always upright. The action subtracts gamma from
temp[p] and appends gamma to msg [p][q ] for all q .

• In the NextReceiveUpdate action, processor q selects
a processor p and receives the oldest update kappa
on the message queue from p to q . For this action
to take place, the current message queue msg [p][q ]
must be non-empty. The action adds kappa to
glob[q ] and removes it from msg [p][q ].

The next-state relation Next is simply the disjunction of
the relations for these three actions.

The main safety property of the clock protocol is Safe,
which states that if any processor q has a glob[q ] that is
vacant up to some point t , then the actual set of records,
nrec is vacant up to point t . Our goal is to establish that
this safety property always holds in every execution that
obeys the specification.



Chapter 2

Discussion of the specification

Appendix A gives a full TLA+ specification of the Na-
iad Clock protocol.

The full TLA+ specification follows the outline of the
basic specification presented in Section 1.2 in most re-
gards. However, there are some differences.

The basic specification uses � for the partial order. In
order to facilitate model checking, the full specification
uses the variable lleq to hold the partial order. This vari-
able is initialized to any partial order and never changed
afterwards. This permits the model checker to explore the
state space separately for each possible partial order.1

For clarity, the basic specification uses short names for
operators and definitions. For example, it uses Z for the
everywhere zero delta vector and ⊕ and 	 for addition
and subtraction of delta vectors. The full specification
uses long names for everything. Using long names is per-
haps a bit more cumbersome, but it prevents name colli-
sions. TLA+ absolutely forbids name collisions. It is pos-
sible to perform named instantiation of TLA+ modules in
order to use multiple modules that would otherwise have
name collisions, but that solution is even more cumber-
some than using long names.

The full specification admits stutter steps (steps in
which nothing changes), in addition to steps performed by
the defined actions. TLA+ encourages writing specifica-
tions that admit stutter steps in order to make it possible to

1An alternative solution, perhaps more in the style of TLA+, would
be to declare lleq as a constant and then construct a mapping from each
possible partial order to an instantiation of the clock protocol specifi-
cation. Unfortunately, this solution would greatly explode the number
of states the model checker would have to explore, because each state
would correspond to a mapping from the partial orders to a state within
an execution for that partial order.

prove a refinement mapping by using a one-to-one corre-
lation of states. The basic specification does not envision
stutter steps.

In addition to the main safety property, the full spec-
ification includes a couple of additional safety proper-
ties and several invariants. The model checker can eas-
ily check invariants. The model checker can also check
general safety properties, but to do so it has to keep infor-
mation about the entire state graph, which causes it to run
much slower.

However, the full specification uses a trick to enable
the model checker to check two of the safety properties
as simple state predicates. These two safety properties
are “sticky” in the sense that once some state predicate is
true of some state, it remains true for all following states.
By adding a state variable to remember the value of the
predicate from the previous state, the “stickiness” can be
checked as a simple state predicate. The full specification
introduces the two state variables nrecvut and globvut for
this purpose.

5
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Chapter 3

Discussion of model checking

Appendix B gives a TLA+ extension of the Naiad
Clock protocol that defines default constants and intro-
duces a constraint so that model checking has only a finite
number of states to explore. The configuration parameters
are as follows:

• MaxProc, the number of processors.

• MaxPoint , the number of points.

• MaxRecPerPoint , the maximum number of records
per point that exist (in nrec) in any state.

• MaxRec, the maximum total number of records that
exist (in nrec) in any state.

• MaxMsgPerQueue, the maximum number of mes-
sages that can be on any single queue in any state.

We used the TLA+ toolbox [4] to construct and manage
models for model checking the specification.

Using a 2.67 GHz Intel i7 with 4 GB of memory run-
ning TLC2 version 2.05, we model checked the specifi-
cation in various configurations. For each configuration,
TLC determined the maximum depth of the state space
graph as well as the total number of distinct states. Ta-
ble 3.1 shows the statistics.

As expected, the number of distinct states and conse-
quently the model checking run time blow up enormously
as the configuration parameters are increased. This limits
the feasibility of model checking of this specification to
small configurations only.

Using the model checker, we checked the following in-
variants:
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states
run time

(sec)
2 2 1 2 1 12 2690 5
2 2 1 2 2 14 5286 5
2 2 1 2 3 14 6110 5

2 2 2 2 1 17 47192 27
2 2 2 2 2 21 271870 121
2 2 2 2 3 22 538738 201

2 2 2 4 1 18 278138 184
2 2 2 4 2 23 3418972 2053
2 2 2 4 3 28 13293954 5785

2 3 1 2 1 21 1461100 1502
2 3 1 2 2 25 16744480 19339

Table 3.1: Model checking statistics. Complete state
space exploration.

• InvType , which states that all state variables contain
values of their expected types.

• InvTempUpright , which states that temp[p] is up-
right.

• InvGlobalRecordCount , which states that glob[q ]
plus all infomation heading toward q equals nrec.

• InvStickyNrecVacantUpto, which states that if
nrec is vacant up to point t , then it will be so

7
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in the next state. This invariant is checked us-
ing the fiducial variable nrecvut , which remembers
IsVacantUpto(nrec, t) from the previous state.

• InvStickyGlobVacantUpto, which states that if
glob[q ] is vacant up to point t , then it will be so
in the next state. This invariant is checked us-
ing the fiducial variable globvut , which remembers
IsVacantUpto(glob[q ], t) from the previous state.

• InvGlobVacantUptoImpliesNrec, which states that
if glob[q ] is vacant up to a point t , then so is nrec.

In every state explored by the model checker, all of these
invariants were found to hold.

Based on these model checking results, we were fairly
confident that the specification was correct. However, be-
cause of state space explosion, we could only check some
small configurations using 2 processors and 3 points in
virtual time. In the next chapter we discuss our formal
proof.



Chapter 4

Discussion of the proof

Appendix C gives a TLA+ proof of the Naiad Clock
protocol invariants. The proof has been mechanically
checked using the TLA+ Proof System [2, 3] except for a
few minor details. Unfortunately, the current TLA+ proof
system cannot handle temporal reasoning, so any tempo-
ral deductions have to be checked manually. Fortunately,
the vast majority of the proof deals with state predicates
and next state relations, all of which is checked mechani-
cally. Only the final steps in proving that the specification
implies some temporal property require temporal deduc-
tions and thus have to be checked manually.

The proof is quite long, so we divided it into mod-
ules for ease of understanding and management. In Sec-
tion 4.1, we walk through the proof and explain what each
module accomplishes. In Section 4.2, we give a brief de-
scription of the TLA+ proof system. In Section 4.3, we
discuss the performance of the proof system in checking
our proof. In Section 4.4, we discuss what we learned
about writing and checking such a large proof.

4.1 A walk through the proof
The proof is divided into modules for ease of understand-
ing and management. Each module contains a collection
of theorems and definitions relating to a certain concept.
As we discuss in Section 4.4.1, the proof is composed of
modules that build on one another in a linear sequence.

4.1.1 Basic definitions
NaiadClockProofBase (C.1) provides some additional
definitions that are needed in the proof but do not ap-

pear in the specification. For example, the proof needs
the concept of a beta-upright delta vector, which is a gen-
eralization of the concept of an upright delta vector. It
also turns out to be useful in the proof to have symbolic
definitions for various formulas that appear written out in
the specification. This lets proof steps use these formu-
las symbolically, which helps keep the back-end provers
from getting lost when trying to check proof obligations.

4.1.2 Basic library theorems

Next follow a number of modules that contain vari-
ous theorems about naturals (C.2), sequences (C.3), the
RemoveAt sequence operator (C.4), finite sets (C.5), ex-
act sequences (C.6), and partial orders (C.7). We consider
these modules as library modules, because their theorems
are of general usefulness.

4.1.3 Properties of delta vectors

Next come several modules that prove various properties
of delta vectors.

NaiadClockProofDeltaVecs (C.8) proves that the addi-
tion of delta vectors is commutative, associative, closed,
and has an identity. In other words, that it is a commuta-
tive monoid.

NaiadClockProofDeltaVecSeqs (C.9) contains theo-
rems about the sum of a sequence of delta vectors. These
theorems have to dig inside the recursive definition of the
sum of a sequence of delta vectors and they are extremely
tedious. We consider this module as a library module be-
cause it could be recast in general terms to apply to any

9
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commutative monoid.
NaiadClockProofDeltaVecFuns (C.10) contains theo-

rems about the sum of the delta vectors in the range of a
function. These theorems are also extremely tedious. We
consider this module as a library module because it could
be recast in general terms to apply to any commutative
monoid.

NaiadClockProofDeltaVecUpright (C.11) contains the-
orems about upright delta vectors, especially the theorem
that the sum of two upright delta vectors is upright and the
corollaries for the sum of a sequence of delta vectors and
for the sum of the delta vectors in the range of a function.

NaiadClockProofDeltaVecBetaUpright (C.12) contains
theorems about beta-upright delta vectors.

NaiadClockProofDeltaVecVacantUpto (C.13) contains
theorems about delta vectors that are vacant up to a given
point.

4.1.4 Additional invariants
NaiadClockProofInvariants (C.14) introduces the defini-
tions of some additional invariants that are needed in the
proof.

4.1.5 Deduction of some invariants
NaiadClockProofDeduceInv (C.15) contains theorems
that deduce certain invariants from others. These theo-
rems state the deductions in both the current state and in
the next state, as we describe in Section 4.4.4.

4.1.6 The effects of actions
The next several modules contain theorems about the ef-
fects of the actions. As we discuss in Section 4.4.2, we
discovered that many of the same deductions about var-
ious effects of actions kept reappearing in proofs of the
various invariants. The entire proof was made much sim-
pler by refactoring these deductions into their own theo-
rems, which we call action effect theorems. As we dis-
cuss in Section 4.4.3, the conclusions of the action effect
theorems tend to be quite complicated, with multiple con-
juncts and internal case analysis, and the back-end provers
tended to have difficulty in applying them. We solved
this latter problem by defining symbolic predicates for the
conclusions.

NaiadClockProofAffectState (C.16) contains theorems
on how the actions affect the state variables.

NaiadClockProofAffectInfoAt (C.17) contains theo-
rems on how the actions affect the state operator InfoAt .

NaiadClockProofAffectIncomingInfo (C.18) contains
theorems on how the actions affect the state operator
IncomingInfo.

NaiadClockProofAffectGlobalIncomingInfo (C.19)
contains theorems on how the actions affect the state
operator GlobalIncomingInfo.

4.1.7 Proving invariants

The next several modules contain theorems that prove in-
variants. Each module deals with one invariant and con-
tains three main theorems: first a theorem that the invari-
ant holds in the initial state, then a theorem that the invari-
ant is maintained through the next state relation, and then
a finally a theorem that the specification implies that the
invariant always holds. The proof of this last theorem re-
quires a temporal deduction and therefore can not entirely
be checked mechanically by the current TLA+ proof sys-
tem.

NaiadClockProofInvType (C.20) proves that all state
variablaes always have their expected types.

NaiadClockProofInvTempUpright (C.21) proves that
temp[p] is always upright.

NaiadClockProofInvIncomingInfoUpright (C.22)
proves that any suffix of incoming infomation is always
upright.

NaiadClockProofInvInfoAtBetaUpright (C.23) proves
that any update is always beta-upright with the incoming
information behind it.

NaiadClockProofInvGlobalRecordCount (C.24) proves
that the sum of glob[q ] plus all infomation heading toward
q is always nrec.

NaiadClockProofInvStickyNrecVacantUpto (C.25)
proves that whenever nrec is vacant up to a point t , it
stays that way for all future times.

NaiadClockProofInvStickyGlobVacantUpto (C.26)
proves that whenever glob[q ] is vacant up to a point t , it
stays that way for all future times.
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4.1.8 Proving the main safety properties
Finally, NaiadClockProof (C.27) contains theorems that
prove the main safety properties. The proofs of these
theorems basically consist of appealing to prior theorems
about invariants and then making some temporal deduc-
tions. Unfortunately, the temporal deductions cannot be
checked mechanically by the current TLA+ proof system.

4.2 Proof system overview
The proof system consists of a proof manager tlapm that
parses the TLA+ modules, expands definitions, constructs
proof obligations, and employs back-end provers to dis-
charge obligations.

To discharge an obligation, tlapm itself first checks
to see if the obligation is “trivially identical” with some
known fact.1 If this fails, tlapm then hands the obligation
off to the back-end provers.

By default, tlapm first invokes Zenon [1], a tableau
prover for classical first-order logic with equality. Zenon
is generally quick to solve simple problems, but tends to
fail on anything complicated. If Zenon fails, tlapm then
invokes Isabelle [6] using a specialized TLA+ object logic
that includes propositional and first-order logic, elemen-
tary set theory, functions, and the construction of natural
numbers.

Pragmas can be used to direct tlapm to appeal to other
back-end provers. An entire catagory of provers based on
Satisfiability Modulo Theory (SMT) is especially good
with some hard problems involving arithmetic, uninter-
preted functions, and quantifiers. The back-end prover
smt3 is one such SMT prover.

4.3 Proof statistics
The entire proof contains 27 modules, 146 theorems, and
10743 lines. Using an Intel® Core™ i7 CPU M 620 lap-
top with 4 GB of memory running at 2.67 GHz, the entire
proof is verified in less than two hours.

Table 4.1 shows a number of statistics for each mod-
ule in the proof. The line counts are based on the number

1In the current implementation, “trivially identical” means identical
up to renaming of bound variables, after expanding all usable definitions.

of lines in the ASCII TLA+ source files, which may dif-
fer slightly from the number of lines in the typeset TLA+
format.

It turns out that dividing the proof into modules is also
necessary to enable the proof manager to handle the proof.
We tried combining everything into one long module and
then asking the proof manager to prove the entire thing.
It failed due to running out of Java heap space before col-
lecting even one-third of the total obligations.

As can be seen in Table 4.1, about two-thirds of the to-
tal proof obligations are discharged by tlapm itself, mean-
ing that they are “trivially identical” to some known fact.
This might seem surprising, but it results from the way the
proof manager treats the adduced facts mentioned in the
BY clause of each leaf proof step. Each of these adduced
facts is considered as a separate proof obligation that must
be discharged. In the general case, one could write an ar-
bitrary formula as an adduced fact. However, we never do
that: instead, we always just reference some earlier proof
step or theorem. Nonetheless, the way the proof manager
is currently implemented, it examines the adduced fact,
compares it against all known facts while expanding all
useable definitions, and eventually arrives at the conclu-
sion that, yes, indeed, the adduced fact is “trivially identi-
cal” to some known fact.

The remaining obligations actually require work by a
back-end prover. Almost all of these are proved by Zenon,
which shows the utility of this prover. The smt3 prover
is needed for several hundred obligations that depend on
arithmetic properties. The remaining few obligations are
proved by Isabelle.

4.4 What we learned

4.4.1 Linear module structure

The module structure in the proof is completely linear.
That is to say, each module in the proof extends the pre-
vious module, in a strictly linear order.

The linear module structure is not the most logical or-
ganization of the modules in the proof. For example,
the module NaiadClockProofDeltaVecSeqs (C.9) contains
theorems about properties of summing up sequences of
delta vectors. These properties depend on the fact that
addition of delta vectors is commutative and associative.
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run time obligations proved by
module name theorems lines (sec) isabelle smt3 tlapm zenon

C.1 NaiadClockProofBase 0 114 50 0 0 0 0
C.2 NaiadClockProofNaturals (lib) 5 120 98 1 15 37 32
C.3 NaiadClockProofSequences (lib) 18 500 139 7 12 119 73
C.4 NaiadClockProofRemoveAt (lib) 1 393 152 4 21 180 76
C.5 NaiadClockProofFiniteSets (lib) 5 225 127 2 9 114 67
C.6 NaiadClockProofExactSeqs (lib) 6 511 308 0 39 368 218
C.7 NaiadClockProofPartialOrders (lib) 4 145 62 0 0 16 11
C.8 NaiadClockProofDeltaVecs 7 153 66 4 3 0 10
C.9 NaiadClockProofDeltaVecSeqs (lib) 19 1805 674 23 98 978 602
C.10 NaiadClockProofDeltaVecFuns (lib) 17 1149 385 1 2 452 312
C.11 NaiadClockProofDeltaVecUpright 6 308 114 1 5 95 54
C.12 NaiadClockProofDeltaVecBetaUpright 5 364 128 1 5 110 68
C.13 NaiadClockProofDeltaVecVacantUpto 2 226 91 0 9 83 37
C.14 NaiadClockProofInvariants 0 153 51 0 0 0 0
C.15 NaiadClockProofDeduceInv 7 594 225 3 12 230 160
C.16 NaiadClockProofAffectState 4 677 256 1 11 328 176
C.17 NaiadClockProofAffectInfoAt 5 329 163 1 22 163 83
C.18 NaiadClockProofAffectIncomingInfo 4 383 156 2 2 140 86
C.19 NaiadClockProofAffectGlobalIncomingInfo 5 429 198 2 3 167 115
C.20 NaiadClockProofInvType 3 169 100 1 1 48 38
C.21 NaiadClockProofInvTempUpright 3 199 97 0 0 59 41
C.22 NaiadClockProofInvIncomingInfoUpright 3 224 109 0 1 69 54
C.23 NaiadClockProofInvInfoAtBetaUpright 3 382 172 0 9 176 105
C.24 NaiadClockProofInvGlobalRecordCount 3 299 131 0 0 104 71
C.25 NaiadClockProofInvStickyNrecVacantUpto 4 304 120 0 3 97 63
C.26 NaiadClockProofInvStickyGlobVacantUpto 4 417 160 4 0 145 87
C.27 NaiadClockProof 3 171 63 0 0 27 10

library (8 modules) total: 75 4848 1945 38 196 2264 1391
special (19 modules) total: 71 5895 2450 20 86 2041 1258

(27 modules) Total: 146 10743 4395 58 282 4305 2649

Table 4.1: Statistics by proof module. Modules indicated by (lib) are of general interest, or could be so rewritten, and
we consider them as library modules.
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It would be a more logical organization to have written a
library module that proved such properties for any com-
mutative and associative binary operation and then instan-
tiated this module for the particular operation of delta vec-
tor addition. And it would be more logical to make each
module extend only those modules upon which it directly
depended.

We originally tried writing the proof with this more log-
ical organization. Unfortunately, this organization had the
result of causing the current TLA+ proof manager to bog
down and become so slow that it was unusable. Our spec-
ulation is that the “logical organization” resulted in an ex-
ponentially growing number of extension paths reaching
to the more fundamental theorems and that the current
TLA+ proof manager wastes itself in searching through
these paths in trying to find “trivial” matches for each
proof obligation.

Writing the proof with a linear module structure avoids
this TLA+ proof manager performance problem.

We created an example set of modules that exhib-
ited this TLA+ proof manager performance problem and
supplied it to the implementation team at MSR-INRIA.
Damien Doligez investigated the problem and fixed the
proof manager to avoid it. However, by this time we
had already completed the linear module structure of our
proof and we did not want to spend the time to recast it
back into a more logical structure of library modules.

4.4.2 Refactoring action effects

The proof of the main safety properties relies on a num-
ber of invariants. When developing the subproofs of how
each of the actions maintain these invariants, we discov-
ered that we were often repeating many of the same de-
ductions from one invariant to another. This was tedious.

So we refactored the proof by breaking out separate
theorems about how each action affected the state vari-
ables and each of the state operators. This refactoring
greatly simplified many of the invariant proofs. Further-
more, it made it much easier later with slight revisions to
the specification, because generally much of the required
proof changes occurred in the action effect theorems with-
out impacting the rest of the proof.

4.4.3 Symbolic conclusions
We found that the back-end provers had little success
in applying theorems whose statements are complicated.
This was a particular problem with the action effect the-
orems, whose conclusions often include a case analysis.
For example, NextSendUpdate appends a delta vector on
all queues from processor p: the effect of this action on
the message queue from processor fp to processor fq de-
pends on whether p = fp or not.

The solution to this problem was to define a symbolic
predicate that captured the conclusion of such a theorem.
When the provers were faced with verifying such a sym-
bolic predicate, they usually had no difficulty applying the
theorem. Then the proof could continue, deducing any de-
sired conclusion from the predicate by expanding its def-
inition.

A few of the theorems had complicated assumptions
that seemed to suffer from the same problem. So in these
cases we created a symbolic predicate for the theorem’s
hypothesis. In order to use the theorem, we first establish
the hypothesis, using its definition. Then the back-end
provers can see how to justify the theorem’s conclusion
by applying the symbolic hypothesis.

4.4.4 Parallel deduction
Several of the invariants in the proof can be deduced from
other invariants. For example, given that all state variables
contain values of their expected types, we can deduce that
each of the state operators also compute values of their
expected types.

Since these deductions involve state predicates without
involving any temporal operators, the exact same deduc-
tion works in both the current state (unprimed) and in the
next state (primed). Essentially, what we have is a proof
macro that can be expanded to a proof in the current state
and to a proof in the next state. Unfortunately, there is no
provision for proof macros in the TLA+ proof system.

However, we found a way to express the proof macro,
as follows. What we did for each proof was define a local
operator

DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

and then wrap all state variables and state operators in
the steps in the proof inside instances of this operator.
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Then by setting the proof steps in a context in which
primeit ∈ BOOLEAN , we manage to prove a conclusion
in both the current state and in the next state simultane-
ously.

The only problem with this approach is that all of the
proof steps were more difficult for the back-end provers
to verify, since the formulas were littered with DoPr all
over the place. Usually, the provers managed to verify the
proof steps anyway. When this turned out to be too diffi-
cult, our solution was to use PICK to define new constants
for each of the state variables and state operators based on
their DoPr wrappings. The necessary properties of the
new constants could be proved from their definitions, and
then further deductions using the new constants could be
checked without difficulty.

4.4.5 Checking the entire proof
Although the TLA+ proof system provides a nice inter-
face for checking the proofs of theorems in a single mod-
ule, it currently lacks any ability to run a complete check
on a multi-module proof. So we wrote a Perl script that,
given a top-level TLA+ module, determines the closure
of all referenced modules, invokes the proof manager on
each module, and then collects and summarizes the re-
sults.

Whenever we tweaked some definition or theorem, af-
ter we were fairly sure it was correct, we would run the
Perl script to verify that the entire proof was still correct.
We also used this Perl script to prepare the statistics listed
in Table 4.1.

We found it particularly important to collect informa-
tion about proof obligations that failed to be verified by
the back-end provers. From time to time we would dis-
cover that a back-end prover would take more run time
than usual when trying to check a proof obligation, and it
would exhaust its time allocation from the proof manager,
resulting in a failed proof obligation. Also, whenever the
proof system implementers released an update, usually
the back-end provers became more capable but there were
sometimes cases in which the new release failed on some
obligation that the prior release had checked successfully.

When we found such a failed obligation, we took one
of two approaches to fix it. First, often the problem was
that the back-end prover just occasionally needed more
run time. In this case, we annotated the proof step with a

pragma that instructed the proof manager how much time
to give. After several iterations of this issue with various
proof steps that needed to be checked by SMT, we just
changed all of these steps from the 5 second SMT default
to 10 seconds.

Second, sometimes the problem was that the back-end
prover had retrogressed and was no longer capable of
checking the proof step in the context in which it ap-
peared.2 Of course, we reported these cases to the proof
system implementers, but then we still had to fix the
proof. We found two approaches that worked. Usually
we decomposed the failing proof step into simpler steps
that were easier to check. However, if the proof step
was already blindingly simple, it would work to create a
new theorem that specifically applied to the deduction we
wanted to prove. The new theorem could often be easier
for the back-end provers to check because it isolated the
deduction from whatever context existed at the proof step
where we wanted to use it.

Generally, we found that the back-end provers could
often be distracted by an excessive context containing
too many usable facts. The TLA+ proof system provides
ways of managing the set of usable facts, and such man-
agement is often an important contributor to a back-end
prover’s success. Unfortunately, the way the proof man-
ager currently works, some facts, such as the types of in-
troduced constants, cannot be excluded from the proof
obligation, even if they are irrelevant. We found a few
cases were such irrelevant facts would cause the back-end
provers to fail.

2Usually, what had happened was that the proof manager’s transla-
tion of a proof obligation into the language of the back-end prover had
retrogressed, or perhaps the description of the theory used by the back-
end prover had retrogressed. Such retrogression all looks the same to
the user of the proof system.
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Appendix A

Specification

MODULE NaiadClock

EXTENDS Naturals, Integers, FiniteSets, Sequences

CONSTANT Point set of points

CONSTANT Proc set of processors

Set of possible record-point configurations that can be initialized, consumed, or produced. In general, this is [ Point → Nat ], but for model
checking we have to be able to supply some finite set of possibilities.

CONSTANT PointToNat

ASSUME AssumePointToNat
∆
= PointToNat ⊆ [Point → Nat ]

A relation between points.

PointRelationType
∆
= [Point → [Point → BOOLEAN ]]

Definition of a partial order.

IsPartialOrder(leq)
∆
=

∧ ∀ s, t , u ∈ Point : leq [s][t ] ∧ leq [t ][u] ⇒ leq [s][u] transitive

∧ ∀ s, t ∈ Point : leq [s][t ] ∧ leq [t ][s] ⇒ (s = t) antisymmetric

∧ ∀ s ∈ Point : leq [s][s] reflexive

Design comment:

Preferably, I would create separate modules for exact sequences, the remove at operator, and delta vectors, and parameterized modules for summing
sequences and summing the range of functions. This would be a cleaner design than the presentation here in which everything appears in one
module.
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Unfortunately, since each of these modules would depend on many lower-layer modules, there would be many layers of duplicative module
extension and instantiation, which sadly creates an impossible performance drag on the current proof manager, as it tries to perform its “trivial”
identity check of each proof obligation against an apparent exponential explosion of known facts. The presentation here avoids this performance
drag.

Exact sequences.

Each s ∈ S appears on Q .

ExactSeq Each(Q , S )
∆
= ∀ s ∈ S : ∃ i ∈ 1 . . Len(Q) : Q [i ] = s

Anything on Q appears at most once.

ExactSeq Once(Q)
∆
= ∀ i , j ∈ 1 . . Len(Q) : Q [i ] = Q [j ]⇒ i = j

Q is an exact sequence for the set S .

IsExactSeqFor(Q , S )
∆
=

∧Q ∈ Seq(S )

∧ ExactSeq Each(Q , S )

∧ ExactSeq Once(Q)

For any finite set S , choose a sequence in which each element of S appears exactly once.

ExactSeqFor(S )
∆
= CHOOSE Q : IsExactSeqFor(Q , S )

Delta vectors.

A delta vector maps each point to an integer.

DeltaVecType
∆
= [Point → Int ]

The zero delta vector is everywhere zero.
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DeltaVecZero
∆
= [t ∈ Point 7→ 0]

Pointwise addition of delta vectors.

DeltaVecAdd(a, b)
∆
= [t ∈ Point 7→ a[t ] + b[t ]]

Pointwise negation of a delta vector.

DeltaVecNeg(a)
∆
= [t ∈ Point 7→ 0− a[t ]]

A delta vector v is vacant up to point t iff for all points s � t we have v [s] = 0.

IsDeltaVecVacantUpto(leq , v , t)
∆
=

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∀ s ∈ Point : s � t ⇒ v [s] = 0

A delta vector v is nonpos up to point t iff for all points s � t we have ¬(v [s] > 0).

IsDeltaVecNonposUpto(leq , v , t)
∆
=

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∀ s ∈ Point : s � t ⇒ ¬(v [s] > 0)

A delta vector v is supported at point t iff there exists a point s ≺ t such that v [s] < 0 and v is non-positive up to s .

IsDeltaVecSupported(leq , v , t)
∆
=

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∃ s ∈ Point :

∧ s ≺ t

∧ v [s] < 0

∧ IsDeltaVecNonposUpto(leq , v , s)

A delta vector v is upright iff it is supported at every positive point.
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IsDeltaVecUpright(leq , v)
∆
=

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∀ t ∈ Point : v [t ] > 0⇒ IsDeltaVecSupported(leq , v , t)

Summing up a sequence of delta vectors.

The sum of a sequence of delta vectors, skipping the first k .

We define the sum in terms of a recursive function over the naturals. Such a recursive function is the only formulation for which the current
TLAPS libraries provide theorems to help prove things. Based on the complexity of the proofs of those library theorems, I don’t want to start
trying to roll my own.

The recursive function Sumv [i ] starts at element i and recursively sums up each element going backwards towards element 1. The actual compu-
tation is

(( . . . (((0 +Q [1]) +Q [2]) +Q [3]) + . . . +Q [i − 1]) +Q [i ])

Since the recursive function has to be defined for all naturals, and not just those that are in the domain of the sequence, we make it look through an
infinte extension of the sequence created by the operator Elem . Elem(i) just returns Zero whenever i is greater than the length the sequence.

Elem(i) also handles the job of skipping the first k elements of the sequence. It does this through the simple expedient of returning Zero whenever
i is not greater than k . Note that if you feed in k = 0 you get the sum of the entire sequence.

DeltaVecSeqSkipSum(k , Q)
∆
=

LET

Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

n
∆
= Len(Q)

Elem(i)
∆
= IF k < i ∧ i ≤ n THEN Q [i ] ELSE Zero

Sumv [i ∈ Nat ]
∆
= IF i = 0 THEN Zero ELSE Add(Sumv [i − 1], Elem(i))

IN

Sumv [n]

The sum of a sequence of delta vectors. This is just the special case k = 0.

DeltaVecSeqSum(Q)
∆
= DeltaVecSeqSkipSum(0, Q)

Construct a sequence of delta vectors just like Q , but add d to element Q [n].

DeltaVecSeqAddAt(Q , n, d)
∆
=

LET
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Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

IN

[Q EXCEPT ! [n] = Add(Q [n], d)]

Summing up delta vectors in the range of a function.

Given a function F with range DeltaVecType and a sequence I ∈ Seq(DOMAIN F ), compute the sum of F [I [i ]] over all i ∈ 1 . . Len(I ).

DeltaVecFunIndexSum(F , I )
∆
=

LET

Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

SeqSum(Q)
∆
= DeltaVecSeqSum(Q)

IN

SeqSum([i ∈ 1 . . Len(I ) 7→ F [I [i ]]])

Given a function F with range DeltaVecType and a finite set S ⊆ DOMAIN F , compute the sum of F [s] for all s ∈ S .

DeltaVecFunSubsetSum(F , S )
∆
=

LET

Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

SeqSum(Q)
∆
= DeltaVecSeqSum(Q)

IN

DeltaVecFunIndexSum(F , ExactSeqFor(S ))

Given a function F with range DeltaVecType determine if the set of all s ∈ DOMAIN F such that F [s] 6= Zero is finite.

DeltaVecFunHasFiniteNonZeroRange(F )
∆
=

LET

Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

SeqSum(Q)
∆
= DeltaVecSeqSum(Q)

IN

IsFiniteSet({d ∈ DOMAIN F : F [d ] 6= Zero})

Given a function F with range DeltaVecType such that the set S of all s ∈ DOMAIN F such that F [s] 6= Zero is finite, compute the sum of F [s]
over all s ∈ S .

DeltaVecFunSum(F )
∆
=
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LET

Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

SeqSum(Q)
∆
= DeltaVecSeqSum(Q)

IN

DeltaVecFunSubsetSum(F , {d ∈ DOMAIN F : F [d ] 6= Zero})

Given a function F with range DeltaVecType, construct a function just like it but with v added to component x .

DeltaVecFunAddAt(F , x , v)
∆
=

LET

Zero
∆
= DeltaVecZero

Add(a, b)
∆
= DeltaVecAdd(a, b)

SeqSum(Q)
∆
= DeltaVecSeqSum(Q)

IN

[F EXCEPT ! [x ] = Add(F [x ], v)]

Other data types.

A count vector gives a count of records for each point.

CountVecType
∆
= [Point → Nat ]

State variables.

“lleq” is a state variable so that Init can initialize it to any partial order, for the purpose of model checking. Afterwards, it never changes.

VARIABLE lleq the precedence between points

VARIABLE nrec how many records at each point



25

VARIABLE glob global count for each processor and point

VARIABLE temp temporary count for each processor and point

VARIABLE msg clock message queues between processors

fiducial variables

VARIABLE nrecvut in prev state nrec was vacant at all points up thru t

VARIABLE globvut in prev state glob was vacant at all points up thru t

vars
∆
= 〈lleq , nrec, glob, temp, msg , nrecvut , globvut〉

State operators.

All points s up thru t have no records.

NrecVacantUpto(t)
∆
= IsDeltaVecVacantUpto(lleq , nrec, t)

All points s up thru t have zero in glob[q].

GlobVacantUpto(q , t)
∆
= IsDeltaVecVacantUpto(lleq , glob[q ], t)

After skipping the first k , the sum of the delta vectors on the message queue from p to q , plus temp[p].

IncomingInfo(k , p, q)
∆
=

LET

sum
∆
= DeltaVecSeqSkipSum(k , msg [p][q ])

IN

DeltaVecAdd(sum, temp[p])

The sum of all incoming information heading toward processor q , except for skipping the first k delta vectors coming from p.

Observe that GlobalIncomingInfo(0, q, q) is a way to refer to the sum of all incoming information heading toward processor q .

GlobalIncomingInfo(k , p, q)
∆
=

LET

F
∆
= [xp ∈ Proc 7→

LET xk
∆
= IF xp = p THEN k ELSE 0 IN
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IncomingInfo(xk , xp, q)
]

IN

DeltaVecFunSum(F )

Next state relation.

Common part of each next action.

NextCommon
∆
=

The partial order cannot change.

∧ UNCHANGED lleq
Compute fiducial variables based on old state.

∧ nrecvut ′ = [ft ∈ Point 7→ NrecVacantUpto(ft)]
∧ globvut ′ = [fq ∈ Proc 7→ [ft ∈ Point 7→ GlobVacantUpto(fq , ft)]]

Perform an operation.

NextPerformOperation
∆
=

∃ p ∈ Proc : any processor

∃ c ∈ PointToNat : consumed records per point

∃ r ∈ PointToNat : result records per point

LET

delta
∆
= [t ∈ Point 7→ r [t ]− c[t ]]

IN
Can consume only such records as exist.

∧ ∀ t ∈ Point : c[t ] ≤ nrec[t ]

delta must be an upright delta vector.

∧ IsDeltaVecUpright(lleq , delta)
∧ nrec′ = DeltaVecAdd(nrec, delta)
∧ temp′ = [temp EXCEPT ! [p] = DeltaVecAdd(temp[p], delta)]
∧ UNCHANGED glob
∧ UNCHANGED msg
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∧NextCommon

Send an update. The update is broadcast to all processors. The processor is required to choose a set of points in its temp array to send that will
leave its temp array as an upright delta vector.

One simple way to do this is to always send positive points in preference to negative points.

NextSendUpdate
∆
=

∃ p ∈ Proc :

∃ tt ∈ SUBSET Point :

LET

tempp
∆
= temp[p]

gamma
∆
= [t ∈ Point 7→ IF t ∈ tt THEN tempp[t ] ELSE 0]

newtempp
∆
= [t ∈ Point 7→ IF t ∈ tt THEN 0 ELSE tempp[t ]]

IN

∧ gamma 6= DeltaVecZero

∧ IsDeltaVecUpright(lleq , newtempp)

∧ temp′ = [temp EXCEPT ! [p] = newtempp]

∧msg ′ = [msg EXCEPT ! [p] = [q ∈ Proc 7→ Append(msg [p][q ], gamma)]]

∧ UNCHANGED nrec

∧ UNCHANGED glob

∧NextCommon

Receive an update.

NextReceiveUpdate
∆
=

∃ p ∈ Proc :

∃ q ∈ Proc :

LET

kappa
∆
= Head(msg [p][q ])

IN

∧msg [p][q ] 6= 〈〉
∧ glob′ = [glob EXCEPT ! [q ] = DeltaVecAdd(glob[q ], kappa)]

∧msg ′ = [msg EXCEPT ! [p][q ] = Tail(msg [p][q ])]

∧ UNCHANGED nrec

∧ UNCHANGED temp

∧NextCommon
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Specification.

Init
∆
=

Any point relation that is a partial order.

∧ lleq ∈ PointRelationType

∧ IsPartialOrder(lleq)

Any initial record-point arrangement.

∧ nrec ∈ PointToNat
Initial values.

∧ glob = [p ∈ Proc 7→ nrec]

∧ temp = [p ∈ Proc 7→ DeltaVecZero]

∧msg = [p ∈ Proc 7→ [q ∈ Proc 7→ 〈〉]]
Initial fiducial variables based on initial state.

∧ nrecvut = [ft ∈ Point 7→ NrecVacantUpto(ft)]

∧ globvut = [fp ∈ Proc 7→ [ft ∈ Point 7→ GlobVacantUpto(fp, ft)]]

Next
∆
=

Any action.

∨NextPerformOperation

∨NextSendUpdate

∨NextReceiveUpdate

Spec
∆
= Init ∧2[Next ]vars

Invariants.
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Only a finite number of processors have information in temp.

IsFiniteTempProcs
∆
=

IsFiniteSet({p ∈ Proc : temp[p] 6= DeltaVecZero})

Only a finite number of processors sending messages to any q .

IsFiniteMsgSenders
∆
=

∀ q ∈ Proc :
IsFiniteSet({p ∈ Proc : msg [p][q ] 6= 〈〉})

Invariant: State variables have the correct type.

InvType
∆
=

∧ lleq ∈ PointRelationType
∧ nrec ∈ CountVecType
∧ glob ∈ [Proc → DeltaVecType]
∧ temp ∈ [Proc → DeltaVecType]
∧msg ∈ [Proc → [Proc → Seq(DeltaVecType)]]
∧ nrecvut ∈ [Point → BOOLEAN ]
∧ globvut ∈ [Proc → [Point → BOOLEAN ]]
∧ IsPartialOrder(lleq)
∧ IsFiniteTempProcs
∧ IsFiniteMsgSenders

Invariant: For all processors p, temp[p] is an upright delta vector.

InvTempUpright
∆
=

∀ p ∈ Proc :
IsDeltaVecUpright(lleq , temp[p])

Invariant: For all processors p and q , the sum of all information about updates performed by p which is incoming at q , after skipping the first k
updates on the message queue, is an upright delta vector.

Note that IncomingInfo(k , p, q) sums up the delta vectors on the message queue from p to q skipping the first k , then adds temp[p]. Taking
k = 0 includes all delta vectors on the message queue in the sum.

InvIncomingInfoUpright
∆
=

∀ k ∈ Nat :
∀ p ∈ Proc :
∀ q ∈ Proc :
IsDeltaVecUpright(lleq , IncomingInfo(k , p, q))

Invariant: For all processors q the sum of all information incoming at q , except for skipping the first k updates on the message queue from processor
p, is an upright delta vector.

Note that GlobalIncomingInfo(0, q, q) sums up all of the information incoming at q .
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InvGlobalIncomingInfoUpright
∆
=

∀ k ∈ Nat :

∀ p ∈ Proc :

∀ q ∈ Proc :

IsDeltaVecUpright(lleq , GlobalIncomingInfo(k , p, q))

Invariant: For all processors q , the sum of all information incoming at q , plus glob[q], equals nrec.

InvGlobalRecordCount
∆
=

∀ q ∈ Proc :

nrec = DeltaVecAdd(GlobalIncomingInfo(0, q , q), glob[q ])

Invariant: For all processors q and points t , whenever all points s up thru t have zero in glob[q], then all points s up thru t have no records.

InvGlobVacantUptoImpliesNrec
∆
=

∀ q ∈ Proc :

∀ t ∈ Point :

GlobVacantUpto(q , t)⇒ NrecVacantUpto(t)

Safety property: For all points t , if NrecVacantUpto(t) is TRUE, then it will stay TRUE.

SafeStickyNrecVacantUpto
∆
=

∀ t ∈ Point :

NrecVacantUpto(t)⇒ 2NrecVacantUpto(t)

Unfortunately, the TLC model checker runs much more slowly when trying to check that a general temporal property always holds, since it has to
keep additional information about the full state graph. TLC works much better if formulas can be written as an invariant (a simple state predicate)
that holds in every reachable state. This is the purpose of the fiducial variable “nrecvut”.

Init sets nrecvut [t ] = NrecVacantUpto(t). The Next actions set nrecvut [t ]′ = NrecVacantUpto(t). (Note the absence of a trailing
prime.) This makes nrecvut [t ] the value of NrecVacantUpto(t) from the previous state, permitting us to check that NrecVacantUpto(t) ⇒
NrecVacantUpto(t)′. Hence we have the following invariant.

Invariant: For all points t , nrecvut [t ] is sticky.

InvStickyNrecVacantUpto
∆
=

∀ t ∈ Point :

nrecvut [t ]⇒ NrecVacantUpto(t)

Safety property: For all processors q and points t , if GlobVacantUpto(q, t) is TRUE, then it will stay TRUE.

SafeStickyGlobVacantUpto
∆
=

∀ q ∈ Proc :

∀ t ∈ Point :

GlobVacantUpto(q , t)⇒ 2GlobVacantUpto(q , t)

Unfortunately, the TLC model checker runs much more slowly when trying to check that a general temporal property always holds, since it has to
keep additional information about the full state graph. TLC works much better if formulas can be written as an invariant (a simple state predicate)
that holds in every reachable state. This is the purpose of the fiducial variable “globvut”.
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Init sets globvut [q][t ] = GlobVacantUpto(q, t). The Next actions set globvut [q][t ]′ = GlobVacantUpto(q, t). (Note the absence
of a trailing prime.) This makes globvut [q][t ] the value of GlobVacantUpto(q, t) from the previous state, permitting us to check that
GlobVacantUpto(q, t) is sticky. Hence we have the following invariant.

Invariant: For all processors q and points t , globvut [q][t ] is sticky.

InvStickyGlobVacantUpto
∆
=

∀ q ∈ Proc :
∀ t ∈ Point :
globvut [q ][t ]⇒ GlobVacantUpto(q , t)

Safety property: For all processors q and points t , whenever all points s up thru t have zero in glob[q], then all points s up thru t have no records
and never will in any following state.

SafeGlobVacantUptoImpliesStickyNrec
∆
=

∀ q ∈ Proc :
∀ t ∈ Point :
GlobVacantUpto(q , t)⇒ 2NrecVacantUpto(t)
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Appendix B

Model

MODULE NaiadClockModel
EXTENDS Naturals, Sequences

VARIABLE lleq the precedence order between points

VARIABLE nrec how many records at each point

VARIABLE glob global count for each processor and point

VARIABLE temp temporary count for each processor and point

VARIABLE msg message queues between processors

VARIABLE nrecvut in prev state nrec was vacant at all points lleq t

VARIABLE globvut in prev state glob was vacant at all points lleq t

Default configuration parameters.

MaxProc
∆
= 2 number of processors

MaxPoint
∆
= 3 number of points

MaxRecPerPoint
∆
= 1 max records/point in nrec

MaxRec
∆
= 2 max total records in nrec

MaxMsgPerQueue
∆
= 1 max length of any message queue

Proc
∆
= 1 . . MaxProc

Point
∆
= 1 . . MaxPoint

Sum up records for all points in m .

Sum(m)
∆
=

LET RECURSIVE S ( ) S (T )
∆
=

IF T = {} THEN 0 ELSE LET t
∆
= CHOOSE t ∈ T : TRUE IN m[t ] + S (T \ {t})

IN S (Point)

PointToNat
∆
= [Point → 0 . . MaxRecPerPoint ]

INSTANCE NaiadClock

Constraint
∆
=

33
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∧ Sum(nrec) ≤ MaxRec
∧ ∀ t ∈ Point : nrec[t ] ≤ MaxRecPerPoint
∧ ∀ p, q ∈ Proc : Len(msg [p][q ]) ≤ MaxMsgPerQueue

ModelExactSeqFor(S )
∆
=

LET RECURSIVE Q( )Q(SS )
∆
=

IF SS = {} THEN 〈〉 ELSE
LET s

∆
= CHOOSE s ∈ SS : TRUEIN

Append(Q(SS \ {s}), s)
IN
Q(S )
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Proof of Correctness
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C.1 Basic additional definitions
MODULE NaiadClockProofBase

EXTENDS NaiadClock , NaturalsInduction, TLAPS

Basic additional definitions.

Make a new sequence by removing the element at index n from sequence q .

RemoveAt(q , n)
∆
=

[i ∈ 1 . . Len(q)− 1 7→ IF i < n THEN q [i ] ELSE q [i + 1]]

For the proof we need to know what delta vector information is at position k on the message queue from processor p to processor q . For convenience,
we define the information as DeltaVecZero when position k falls outside the domain of the message queue.

InfoAt(k , p, q)
∆
=

LET

M
∆
= msg [p][q ]

LenM
∆
= Len(M )

IN

IF 0 < k ∧ k ≤ LenM THEN M [k ] ELSE DeltaVecZero

A delta vector va is vb-upright iff for every positive point t in va there is a strictly lower point s that is negative in va or in vb and no point at s or
yet lower is positive in va .

IsDeltaVecBetaUpright(leq , va, vb)
∆
=

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∀ t ∈ Point : for any point

va[t ] > 0 that is positive in va

⇒
∃ s ∈ Point : there is a point

∧ s ≺ t strictly lower

∧ (va[s] < 0 ∨ vb[s] < 0) that is negative in va or vb
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∧ IsDeltaVecNonposUpto(leq , va, s) and va is nonpos up thru s

We say that delta vector vecsrc positive implies delta vector vecdst iff for every point t such that vecsrc[t ] is positive, vecdst [t ] is positive.

IsDeltaVecPositiveImplies(vecsrc, vecdst)
∆
=

∧ vecsrc ∈ DeltaVecType
∧ vecdst ∈ DeltaVecType
∧ ∀ t ∈ Point : vecsrc[t ] > 0⇒ vecdst [t ] > 0

Definitions for the part of each action after its existential variables have been bound. Using these definitions permits the complicated expressions
defining the actions to be hidden from the prover until needed.

NextPerformOperation WithPCR(p, c, r)
∆
= NextPerformOperation !(p) !(c) !(r)

NextSendUpdate WithPTT (p, tt)
∆
= NextSendUpdate !(p) !(tt)

NextReceiveUpdate WithPQ(p, q)
∆
= NextReceiveUpdate !(p) !(q)

Definitions for an important value within each action. Using these definitions permits the complicated expressions defining these values to be
hidden from the prover until needed.

NextPerformOperation Delta(p, c, r)
∆
= NextPerformOperation !(p) !(c) !(r) !delta

NextSendUpdate Gamma(p, tt)
∆
= NextSendUpdate !(p) !(tt) !gamma

NextReceiveUpdate Kappa(p, q)
∆
= NextReceiveUpdate !(p) !(q) !kappa

Definitions for the LET locals inside the definition of GlobalIncomingInfo. Using these definitions permits the complicated expressions defining
these values to be hidden from the prover until needed.

GlobalIncomingInfo F (k , p, q)
∆
= GlobalIncomingInfo(k , p, q) ! : !F
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C.2 Facts about naturals
MODULE NaiadClockProofNaturals

EXTENDS NaiadClockProofBase

Facts about naturals.

This really ought to be a library of theorems.

Dot dot facts.

THEOREM DotDotDef
∆
= ∀ i , m, n ∈ Nat : (m ≤ i ∧ i ≤ n) ≡ i ∈ m . . n BY SMTT (10)

THEOREM DotDotType
∆
= ∀m, n ∈ Nat : m . . n ⊆ Nat BY SMTT (10)

THEOREM DotDotType2
∆
= ∀m, n ∈ Nat : ∀ i ∈ m . . n : i ∈ Nat BY SMTT (10)

1 . . n is equivalent to n itself for n ∈ Nat .

THEOREM DotDotOneThruN
∆
=

∀m, n ∈ Nat : 1 . . m = 1 . . n ≡ m = n
PROOF

〈1〉1. SUFFICES ASSUME NEW m ∈ Nat , NEW n ∈ Nat , m 6= n PROVE 1 . . m 6= 1 . . n OBVIOUS

Without loss of generality, assume ma is smaller than na .

〈1〉 DEFINE ma
∆
= IF m < n THEN m ELSE n

〈1〉 DEFINE na
∆
= IF m < n THEN n ELSE m

〈1〉2. ma ∈ Nat OBVIOUS

〈1〉3. na ∈ Nat OBVIOUS

〈1〉4. ma < na
〈2〉1. CASE m < n BY 〈2〉1, 〈1〉1, SMTT (10)
〈2〉2. CASE ¬(m < n) BY 〈2〉2, 〈1〉1, SMTT (10)
〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉 SUFFICES 1 . . ma 6= 1 . . na BY SMTT (10)
〈1〉 HIDE DEF ma, na

na shows that the ranges differ.

〈1〉5. 0 < na BY 〈1〉2, 〈1〉3, 〈1〉4, SMTT (10)
〈1〉6. 1 ≤ na BY 〈1〉3, 〈1〉5, SMTT (10)
〈1〉7. na ∈ 1 . . na BY 〈1〉3, 〈1〉6, SMTT (10)
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〈1〉8. na /∈ 1 . . ma BY 〈1〉2, 〈1〉3, 〈1〉4, SMTT (10)
〈1〉 QED BY 〈1〉7, 〈1〉8

Any non-empty subset of Nat has a minimum element. You would think this would be a library theorem, but I could not find it. We use the classic
inductive proof by contradiction for this theorem.

THEOREM NatWellFounded
∆
=

∀N ∈ SUBSET Nat : N 6= {} ⇒ ∃n ∈ N : ∀m ∈ N : n ≤ m
PROOF
〈1〉1. SUFFICES ASSUME NEW N ∈ SUBSET Nat , N 6= {}

PROVE ∃n ∈ N : ∀m ∈ N : n ≤ m
OBVIOUS

Assuming that no minimum element of N exists, we prove that N must be empty, which is a contradiction.

〈1〉2. SUFFICES ASSUME ¬∃n ∈ N : ∀m ∈ N : n ≤ m PROVE N = {} BY 〈1〉1
P(i) says that no naturals less than i are in N . We prove this for all i in Nat using induction.

〈1〉 DEFINE P(i)
∆
= ∀ k ∈ Nat : k < i ⇒ k /∈ N

〈1〉3. ∀ i ∈ Nat : P(i)
〈2〉1. P(0) BY SMTT (10)
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS
〈3〉2. SUFFICES ASSUME NEW k ∈ Nat , k < i + 1 PROVE k /∈ N OBVIOUS
〈3〉3. CASE k < i BY 〈3〉1, 〈3〉3
〈3〉4. CASE k = i
〈4〉1. SUFFICES ASSUME k ∈ N PROVE FALSE OBVIOUS
〈4〉2. ∀ j ∈ N : k ≤ j BY 〈3〉1, 〈3〉4, SMTT (10)
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈1〉2
〈3〉 QED BY 〈3〉2, 〈3〉3, 〈3〉4, SMTT (10)
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa

Since P(i) is true for all i in Nat , N must be empty.

〈1〉4. ∀ i ∈ Nat : i /∈ N
〈2〉 SUFFICES ASSUME NEW i ∈ Nat PROVE i /∈ N OBVIOUS
〈2〉1. i + 1 ∈ Nat BY SMTT (10)
〈2〉2. P(i + 1) BY 〈2〉1, 〈1〉3
〈2〉3. i < i + 1 BY SMTT (10)
〈2〉 QED BY 〈2〉2, 〈2〉3
〈1〉 QED BY 〈1〉4
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C.3 Facts about sequences

MODULE NaiadClockProofSequences

EXTENDS NaiadClockProofNaturals

Facts about sequences.

This really ought to be a library of theorems.

The following definitions are essentially copied from the standard Sequences module. We could prove them if the definitions of Seq , Len , Head,
Tail , and Append could be expanded, but unfortunately the current proof system does not permit this.

THEOREM SeqDef
∆
= ∀S : Seq(S ) = UNION {[1 . . n → S ] : n ∈ Nat}

THEOREM LenDef
∆
= ∀S : ∀ seq ∈ Seq(S ) : DOMAIN seq = 1 . . Len(seq)

THEOREM HeadDef
∆
= ∀ seq : Head(seq) = seq [1]

THEOREM TailDef
∆
= ∀ seq : Tail(seq) = [i ∈ 1 . . (Len(seq)− 1) 7→ seq [i + 1]]

THEOREM AppendDef
∆
=

∀ seq , elt :

Append(seq , elt) = [i ∈ 1 . . (Len(seq) + 1) 7→
IF i ≤ Len(seq) THEN seq [i ] ELSE elt ]

Prove that q ∈ Seq(S).

For some reason, the provers find it difficult to deduce this from the given predicates using just SeqDef , so it helps to prove it once here.

THEOREM IsASeq
∆
=

ASSUME

NEW S ,

NEW n ∈ Nat ,

NEW q ∈ [1 . . n → S ]

PROVE

q ∈ Seq(S )

PROOF

〈1〉 QED BY SeqDef , IsaT (120)
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Axiom about Len .

THEOREM LenAxiom
∆
=

∀S :
∀ seq ∈ Seq(S ) :
Len(seq) ∈ Nat ∧ seq ∈ [1 . . Len(seq)→ S ]

PROOF

〈1〉1. SUFFICES ASSUME

NEW S ,
NEW q ∈ Seq(S )

PROVE

∧ Len(q) ∈ Nat
∧ q ∈ [1 . . Len(q)→ S ]
OBVIOUS

〈1〉2. Len(q) ∈ Nat BY Isa isabelle knows this axiomatically

〈1〉3. q ∈ [1 . . Len(q)→ S ]
〈2〉1. DOMAIN q = 1 . . Len(q) BY LenDef
〈2〉2. ∃n ∈ Nat : q ∈ [1 . . n → S ] BY SeqDef , Isa
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉 QED BY 〈1〉2, 〈1〉3

The length of a sequence is a natural number.

COROLLARY LenInNat
∆
=

∀S : ∀ seq ∈ Seq(S ) : Len(seq) ∈ Nat
PROOF

BY LenAxiom

When the domain of a sequence is 1 . . n , then n is the length of the sequence.

THEOREM LenDomain
∆
=

∀S :
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∀ seq ∈ Seq(S ) :
∀n ∈ Nat :
DOMAIN seq = 1 . . n ⇒ n = Len(seq)

PROOF

〈1〉1. SUFFICES ASSUME

NEW S ,
NEW q ∈ Seq(S ),
NEW n ∈ Nat ,
DOMAIN q = 1 . . n

PROVE n = Len(q)
OBVIOUS

〈1〉2. Len(q) ∈ Nat BY LenAxiom
〈1〉3. DOMAIN q = 1 . . Len(q) BY LenAxiom
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, DotDotOneThruN

The element of a Seq(S) is in S .

THEOREM ElementOfSeq
∆
=

∀S :
∀ seq ∈ Seq(S ) :
∀n ∈ 1 . . Len(seq) :
seq [n] ∈ S

PROOF

〈1〉1. SUFFICES ASSUME

NEW S ,
NEW q ∈ Seq(S ),
NEW n ∈ 1 . . Len(q)

PROVE q [n] ∈ S
OBVIOUS

〈1〉2. q ∈ [1 . . Len(q)→ S ] BY LenAxiom
〈1〉 QED BY 〈1〉2

Properties of the empty sequence.

THEOREM EmptySeq
∆
=
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∀S :
∧ 〈〉 ∈ Seq(S )
∧ ∀ seq ∈ Seq(S ) : (seq = 〈〉) ≡ (Len(seq) = 0)

PROOF

〈1〉1. ASSUME NEW S
PROVE 〈〉 ∈ Seq(S )
BY Isa isabelle knows this axiomatically

〈1〉2. ASSUME NEW S , NEW q ∈ Seq(S )
PROVE (q = 〈〉) ≡ (Len(q) = 0)
BY Isa isabelle knows this axiomatically

〈1〉 QED BY 〈1〉1, 〈1〉2

The empty sequence is a sequence.

COROLLARY EmptySeqIsASeq
∆
=

∀S : 〈〉 ∈ Seq(S )
PROOF

BY EmptySeq

An empty sequence has length zero.

THEOREM LenEmptyIsZero
∆
=

Len(〈〉) = 0
PROOF

OBVIOUS

The head of a non-empty Seq(S) is an S .

THEOREM HeadType
∆
=

∀S : ∀ q ∈ Seq(S ) : q 6= 〈〉 ⇒ Head(q) ∈ S



44 APPENDIX C. PROOF OF CORRECTNESS

PROOF

〈1〉1. SUFFICES ASSUME

NEW S ,
NEW q ∈ Seq(S ),
q 6= 〈〉

PROVE Head(q) ∈ S
OBVIOUS

〈1〉 DEFINE n
∆
= Len(q)

〈1〉 HIDE DEF n

〈1〉 SUFFICES 1 ∈ 1 . . n BY 〈1〉1, HeadDef , ElementOfSeq DEF n
〈1〉2. n 6= 0 BY 〈1〉1, EmptySeq DEF n
〈1〉3. n ∈ Nat BY LenAxiom DEF n
〈1〉4. n > 0 BY 〈1〉2, 〈1〉3, SMTT (10)
〈1〉 QED BY 〈1〉3, 〈1〉4, SMTT (10)

Properties of Tail .

THEOREM TailProp
∆
=

∀S :
∀ seq ∈ Seq(S ) :
seq 6= 〈〉
⇒
∧ Tail(seq) ∈ Seq(S )
∧ Len(Tail(seq)) = Len(seq)− 1
∧ ∀ i ∈ 1 . . Len(Tail(seq)) :
∧ i + 1 ∈ 1 . . Len(seq)
∧ Tail(seq)[i ] = seq [i + 1]

PROOF

〈1〉1. SUFFICES ASSUME

NEW S ,
NEW q ∈ Seq(S ),
q 6= 〈〉

PROVE

∧ Tail(q) ∈ Seq(S )
∧ Len(Tail(q)) = Len(q)− 1
∧ ∀ i ∈ 1 . . Len(Tail(q)) :
∧ i + 1 ∈ 1 . . Len(q)
∧ Tail(q)[i ] = q [i + 1]

OBVIOUS
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〈1〉 DEFINE n
∆
= Len(q)

〈1〉 DEFINE m
∆
= n − 1

〈1〉 HIDE DEF n, m

〈1〉2. n ∈ Nat BY LenInNat DEF n

〈1〉3. n 6= 0 BY 〈1〉1, EmptySeq DEF n

〈1〉4. m ∈ Nat BY 〈1〉2, 〈1〉3, SMTT (10) DEF m

〈1〉5. q ∈ [1 . . n → S ] BY LenAxiom DEF n

〈1〉6. Tail(q) = [i ∈ 1 . . m 7→ q [i + 1]] BY TailDef DEF n, m

〈1〉7. Tail(q) ∈ Seq(S )

〈2〉1. [i ∈ 1 . . m 7→ q [i + 1]] ∈ Seq(S )

〈3〉1. ASSUME NEW i ∈ 1 . . m PROVE q [i + 1] ∈ S

〈4〉1. i + 1 ∈ 1 . . n BY 〈3〉1, 〈1〉2, 〈1〉3, SMTT (10) DEF m

〈4〉 QED BY 〈4〉1, 〈1〉5
〈3〉2. [i ∈ 1 . . m 7→ q [i + 1]] ∈ [1 . . m → S ] BY 〈3〉1
〈3〉 QED BY 〈1〉4, 〈3〉2, IsASeq

〈2〉 QED BY 〈2〉1, 〈1〉6

〈1〉8. Len(Tail(q)) = m

〈2〉1. Len(Tail(q)) ∈ Nat BY 〈1〉7, LenInNat

〈2〉2. DOMAIN Tail(q) = 1 . . Len(Tail(q)) BY 〈1〉7, LenDef

〈2〉3. 1 . . Len(Tail(q)) = 1 . . m BY 〈2〉2, 〈1〉6
〈2〉 QED BY 〈2〉1, 〈2〉3, 〈1〉4, DotDotOneThruN

〈1〉9. ASSUME NEW i ∈ 1 . . m PROVE i + 1 ∈ 1 . . n

〈2〉 QED BY 〈1〉2, 〈1〉3, 〈1〉9, SMTT (10) DEF m

〈1〉10. ASSUME NEW i ∈ 1 . . m PROVE Tail(q)[i ] = q [i + 1]

〈2〉 QED BY 〈1〉6, 〈1〉9

〈1〉 QED BY 〈1〉7, 〈1〉8, 〈1〉9, 〈1〉10 DEF n, m

The tail of a non-empty Seq(S) is a Seq(S).

COROLLARY TailType
∆
=

∀S : ∀ q ∈ Seq(S ) : q 6= 〈〉 ⇒ Tail(q) ∈ Seq(S )

PROOF

BY TailProp
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Properties of Append .

THEOREM AppendProperties
∆
=

∀S :

∀ seq ∈ Seq(S ), elt ∈ S :

∧Append(seq , elt) ∈ Seq(S )

∧ Len(Append(seq , elt)) = Len(seq) + 1

∧ ∀ i ∈ 1 . . Len(seq) : Append(seq , elt)[i ] = seq [i ]

∧Append(seq , elt)[Len(seq) + 1] = elt

PROOF

〈1〉1. SUFFICES ASSUME

NEW S ,

NEW q ∈ Seq(S ),

NEW e ∈ S

PROVE

∧Append(q , e) ∈ Seq(S )

∧ Len(Append(q , e)) = Len(q) + 1

∧ ∀ i ∈ 1 . . Len(q) : Append(q , e)[i ] = q [i ]

∧Append(q , e)[Len(q) + 1] = e

OBVIOUS

〈1〉 DEFINE n
∆
= Len(q)

〈1〉 DEFINE m
∆
= n + 1

〈1〉 HIDE DEF n, m

〈1〉2. n ∈ Nat BY LenInNat DEF n

〈1〉3. m 6= 0 BY 〈1〉2, SMTT (10) DEF m

〈1〉4. m ∈ Nat BY 〈1〉2, SMTT (10) DEF m

〈1〉5. q ∈ [1 . . n → S ] BY LenAxiom DEF n

〈1〉6. Append(q , e) = [i ∈ 1 . . m 7→ IF i ≤ n THEN q [i ] ELSE e] BY AppendDef DEF n, m

〈1〉7. Append(q , e) ∈ Seq(S )

〈2〉1. ASSUME NEW i ∈ 1 . . m PROVE Append(q , e)[i ] ∈ S

〈3〉1. CASE i ≤ n

〈4〉1. i ∈ 1 . . n BY 〈3〉1, 〈1〉2, 〈1〉4, SMTT (10)

〈4〉2. Append(q , e)[i ] = q [i ] BY 〈3〉1, 〈1〉6
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈1〉5
〈3〉2. CASE ¬(i ≤ n)

〈4〉1. Append(q , e)[i ] = e BY 〈3〉2, 〈1〉6
〈4〉 QED BY 〈4〉1
〈3〉 QED BY 〈3〉1, 〈3〉2
〈2〉2. Append(q , e) ∈ [1 . . m → S ] BY 〈2〉1, 〈1〉6
〈2〉 QED BY 〈2〉2, 〈1〉4, IsASeq
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〈1〉8. Len(Append(q , e)) = m
〈2〉1. Len(Append(q , e)) ∈ Nat BY 〈1〉7, LenInNat
〈2〉2. DOMAIN Append(q , e) = 1 . . Len(Append(q , e)) BY 〈1〉7, LenDef
〈2〉3. 1 . . Len(Append(q , e)) = 1 . . m BY 〈2〉2, 〈1〉6
〈2〉 QED BY 〈2〉1, 〈2〉3, 〈1〉4, DotDotOneThruN

〈1〉9. ASSUME NEW i ∈ 1 . . n PROVE Append(q , e)[i ] = q [i ]
〈2〉1. i ≤ n BY 〈1〉2, 〈1〉9, SMTT (10)
〈2〉2. i ∈ 1 . . m BY 〈1〉2, 〈1〉9, SMTT (10) DEF m
〈2〉 QED BY 〈2〉1, 〈2〉2, 〈1〉6

〈1〉10. Append(q , e)[m] = e
〈2〉1. m ∈ 1 . . m BY 〈1〉3, 〈1〉4, SMTT (10)
〈2〉2. ¬(m ≤ n) BY 〈1〉2, SMTT (10) DEF m
〈2〉 QED BY 〈2〉1, 〈2〉2, 〈1〉6

〈1〉 QED BY 〈1〉7, 〈1〉8, 〈1〉9, 〈1〉10 DEF n, m

The elements at positions 1 . . Len(Q) are unchanged by appending a new element to Q .

This is a trivial corollary of AppendProperties , but it is difficult for the provers to conclude it in some contexts. So we make it explicit.

COROLLARY AppendPropertiesOldElems
∆
=

ASSUME

NEW S ,
NEW Q ∈ Seq(S ),
NEW s ∈ S ,
NEW i ∈ 1 . . Len(Q)

PROVE Append(Q , s)[i ] = Q [i ]
PROOF

BY Isa, AppendProperties

The element at position Len(Q) + 1 in Append(Q , s) is s .

This is a trivial corollary of AppendProperties , but it is difficult for the provers to conclude it in some contexts. So we make it explicit.

COROLLARY AppendPropertiesNewElem
∆
=

ASSUME

NEW S ,
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NEW Q ∈ Seq(S ),
NEW s ∈ S

PROVE Append(Q , s)[Len(Q) + 1] = s
PROOF

BY AppendProperties

Q ∈ Seq(S) implies Q ∈ Seq(T ) for T any superset of S .

THEOREM SeqSupset
∆
=

ASSUME
NEW S ,
NEW Q ∈ Seq(S ),
NEW T , S ⊆ T

PROVE
Q ∈ Seq(T )

PROOF
BY Isa
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C.4 Properties of RemoveAt
MODULE NaiadClockProofRemoveAt

EXTENDS NaiadClockProofSequences

Properties of RemoveAt.

This really ought to be a library of theorems.

To make life easier for the theorem prover, we define operators for each of the complicated properties. These operators assume that we have
Q ∈ Seq(S) and n ∈ 1 . . Len(Q).

Mapping index qi forward from Q to RemoveAt(Q , n).

RemoveAt ForwardIndex (Q , n, qi)
∆
= IF qi < n THEN qi ELSE qi − 1

Mapping index ri backward from RemoveAt(Q , n) to Q .

RemoveAt BackwardIndex (Q , n, ri)
∆
= IF ri < n THEN ri ELSE ri + 1

How each index maps forward.

RemoveAt MapForward(Q , n)
∆
=

LET

R
∆
= RemoveAt(Q , n)

IN

∀ qi ∈ 1 . . Len(Q) :
qi 6= n
⇒

LET

ri
∆
= RemoveAt ForwardIndex (Q , n, qi)

IN

ri ∈ 1 . . Len(R) ∧Q [qi ] = R[ri ]

How each index maps backward.

RemoveAt MapBackward(Q , n)
∆
=

LET

R
∆
= RemoveAt(Q , n)

IN

∀ ri ∈ 1 . . Len(R) :
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LET

qi
∆
= RemoveAt BackwardIndex (Q , n, ri)

IN

qi ∈ 1 . . Len(Q) ∧ qi 6= n ∧Q [qi ] = R[ri ]

Each index maps forward.

RemoveAt EachForward(Q , n)
∆
=

LET

R
∆
= RemoveAt(Q , n)

IN

∀ qi ∈ 1 . . Len(Q) :
qi 6= n
⇒
∃ ri ∈ 1 . . Len(R) :
Q [qi ] = R[ri ]

Each index maps backward.

RemoveAt EachBackward(Q , n)
∆
=

LET

R
∆
= RemoveAt(Q , n)

IN

∀ ri ∈ 1 . . Len(R) :
∃ qi ∈ 1 . . Len(Q) :
qi 6= n ∧Q [qi ] = R[ri ]

Indexes map forward preserving order.

RemoveAt OrderedForward(Q , n)
∆
=

LET

R
∆
= RemoveAt(Q , n)

IN

∀ qi1, qi2 ∈ 1 . . Len(Q) :
qi1 < qi2 ∧ qi1 6= n ∧ qi2 6= n
⇒
∃ ri1, ri2 ∈ 1 . . Len(R) :
ri1 < ri2 ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

Indexes map backward preserving order.

RemoveAt OrderedBackward(Q , n)
∆
=

LET

R
∆
= RemoveAt(Q , n)

IN

∀ ri1, ri2 ∈ 1 . . Len(R) :
ri1 < ri2
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⇒
∃ qi1, qi2 ∈ 1 . . Len(Q) :
qi1 < qi2 ∧ qi1 6= n ∧ qi2 6= n ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

Indexes map forward preserving distinctness.

RemoveAt DistinctForward(Q , n)
∆
=

LET
R

∆
= RemoveAt(Q , n)

IN
∀ qi1, qi2 ∈ 1 . . Len(Q) :
qi1 6= qi2 ∧ qi1 6= n ∧ qi2 6= n
⇒
∃ ri1, ri2 ∈ 1 . . Len(R) :
ri1 6= ri2 ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

Indexes map backward preserving distinctness.

RemoveAt DistinctBackward(Q , n)
∆
=

LET
R

∆
= RemoveAt(Q , n)

IN
∀ ri1, ri2 ∈ 1 . . Len(R) :
ri1 6= ri2
⇒
∃ qi1, qi2 ∈ 1 . . Len(Q) :
qi1 6= qi2 ∧ qi1 6= n ∧ qi2 6= n ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

The theorem.

THEOREM RemoveAtProperties
∆
=

ASSUME
NEW S ,
NEW Q ∈ Seq(S ),
NEW n ∈ 1 . . Len(Q)

PROVE
LET

R
∆
= RemoveAt(Q , n)

IN
∧ R ∈ Seq(S )
∧ Len(R) = Len(Q)− 1
∧ RemoveAt MapForward(Q , n)
∧ RemoveAt MapBackward(Q , n)
∧ RemoveAt EachForward(Q , n)
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∧ RemoveAt EachBackward(Q , n)
∧ RemoveAt OrderedForward(Q , n)
∧ RemoveAt OrderedBackward(Q , n)
∧ RemoveAt DistinctForward(Q , n)
∧ RemoveAt DistinctBackward(Q , n)

PROOF

〈1〉 USE DEF RemoveAt ForwardIndex
〈1〉 USE DEF RemoveAt BackwardIndex

〈1〉 DEFINE R
∆
= RemoveAt(Q , n)

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉 DEFINE LenR
∆
= Len(R)

〈1〉 HIDE DEF R, LenQ , LenR

Prove that R ∈ Seq(S).

〈1〉1. Q ∈ [1 . . LenQ → S ] BY LenAxiom DEF LenQ
〈1〉2. n ∈ 1 . . LenQ BY DEF LenQ
〈1〉3. LenQ ∈ Nat BY LenInNat DEF LenQ
〈1〉4. LenQ > 0 BY 〈1〉2, 〈1〉3, SMTT (10)
〈1〉5. LenQ − 1 ∈ Nat BY 〈1〉3, 〈1〉4, SMTT (10)
〈1〉6. R = [ri ∈ 1 . . LenQ − 1 7→ Q [RemoveAt BackwardIndex (Q , n, ri)]]

BY DEF R, LenQ , RemoveAt
〈1〉7. ∀ i ∈ 1 . . LenQ − 1 : R[i ] ∈ S
〈2〉1. SUFFICES ASSUME NEW i , i ∈ 1 . . LenQ − 1 PROVE R[i ] ∈ S OBVIOUS

〈2〉2. CASE i < n
〈3〉1. i ∈ 1 . . LenQ BY 〈2〉1, 〈1〉3, SMTT (10)
〈3〉2. R[i ] = Q [i ] BY 〈1〉6, 〈2〉1, 〈2〉2
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈1〉1
〈2〉3. CASE ¬(i < n)
〈3〉1. i + 1 ∈ 1 . . LenQ BY 〈2〉1, 〈1〉3, SMTT (10)
〈3〉2. R[i ] = Q [i + 1] BY 〈1〉6, 〈2〉1, 〈2〉3
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈1〉1
〈2〉 QED BY 〈2〉2, 〈2〉3
〈1〉8. R ∈ [1 . . LenQ − 1→ S ] BY 〈1〉6, 〈1〉7
〈1〉9. R ∈ Seq(S ) BY 〈1〉5, 〈1〉8, IsASeq

Prove that Len(R) = Len(Q)− 1.

〈1〉10. DOMAIN R = 1 . . LenQ − 1 BY 〈1〉8
〈1〉11. DOMAIN R = 1 . . LenR BY 〈1〉9, LenDef DEF LenR
〈1〉12. LenR ∈ Nat BY 〈1〉9, LenAxiom DEF LenR
〈1〉13. LenR = LenQ − 1 BY 〈1〉5, 〈1〉10, 〈1〉11, 〈1〉12, DotDotOneThruN
〈1〉14. Len(R) = Len(Q)− 1BY 〈1〉13 DEF LenQ , LenR

The mapping of indexes forward.

〈1〉15. RemoveAt MapForward(Q , n)
〈2〉1. SUFFICES ASSUME
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NEW qi , qi ∈ 1 . . LenQ , qi 6= n,
NEW ri , ri = RemoveAt ForwardIndex (Q , n, qi)

PROVE ri ∈ 1 . . LenQ − 1 ∧Q [qi ] = R[ri ]
BY 〈1〉13 DEF R, LenQ , LenR, RemoveAt MapForward

〈2〉2. qi ∈ 1 . . LenQ ∧ qi 6= n BY 〈2〉1
〈2〉3. CASE qi < n
〈3〉1. ri = qi BY 〈2〉1, 〈2〉3
〈3〉2. n ≤ LenQ BY 〈1〉2, 〈1〉3, SMTT (10)
〈3〉3. ri ∈ 1 . . LenQ − 1 BY 〈1〉3, 〈2〉2, 〈2〉3, 〈3〉1, 〈3〉2, SMTT (10)
〈3〉4. R[ri ] = Q [qi ] BY 〈1〉6, 〈2〉2, 〈2〉3, 〈3〉1, 〈3〉3
〈3〉 QED BY 〈3〉3, 〈3〉4
〈2〉4. CASE qi > n
〈3〉1. ¬(qi < n) BY 〈1〉3, 〈2〉2, 〈2〉4, SMTT (10)
〈3〉2. ri = qi − 1 BY 〈2〉1, 〈3〉1
〈3〉3. qi > 1 BY 〈1〉2, 〈1〉3, 〈2〉2, 〈2〉4, SMTT (10)
〈3〉4. ri ∈ 1 . . LenQ − 1 BY 〈1〉3, 〈2〉2, 〈3〉2, 〈3〉3, SMTT (10)
〈3〉5. ri + 1 = qi BY 〈1〉3, 〈2〉2, 〈3〉2, SMTT (10)
〈3〉6. ¬(ri < n) BY 〈1〉3, 〈2〉2, 〈2〉4, 〈3〉2, SMTT (10)
〈3〉7. R[ri ] = Q [qi ] BY 〈1〉6, 〈3〉4, 〈3〉5, 〈3〉6, SMTT (10)
〈3〉 QED BY 〈3〉4, 〈3〉7
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4, SMTT (10)

The mapping of indexes backward.

〈1〉16. RemoveAt MapBackward(Q , n)
〈2〉1. SUFFICES ASSUME

NEW ri , ri ∈ 1 . . LenR,
NEW qi , qi = RemoveAt BackwardIndex (Q , n, ri)

PROVE qi ∈ 1 . . LenQ ∧ qi 6= n ∧Q [qi ] = R[ri ]
BY DEF R, LenR, LenQ , RemoveAt MapBackward

〈2〉2. ri ∈ 1 . . LenR BY 〈2〉1
〈2〉3. CASE ri < n
〈3〉1. qi = ri BY 〈2〉1, 〈2〉3
〈3〉2. qi ∈ 1 . . LenQ BY 〈1〉3, 〈1〉13, 〈2〉2, 〈3〉1, SMTT (10)
〈3〉3. qi 6= n BY 〈2〉1, 〈2〉3, SMTT (10)
〈3〉4. R[ri ] = Q [qi ] BY 〈1〉6, 〈1〉13, 〈2〉2, 〈2〉3, 〈3〉1
〈3〉 QED BY 〈3〉2, 〈3〉3, 〈3〉4
〈2〉4. CASE ¬(ri < n)
〈3〉1. qi = ri + 1 BY 〈2〉1, 〈2〉4
〈3〉2. qi ∈ 1 . . LenQ BY 〈1〉3, 〈1〉13, 〈2〉2, 〈3〉1, SMTT (10)
〈3〉3. qi 6= n BY 〈2〉2, 〈2〉4, 〈3〉1, SMTT (10)
〈3〉4. R[ri ] = Q [qi ] BY 〈1〉6, 〈1〉13, 〈2〉2, 〈2〉4, 〈3〉1
〈3〉 QED BY 〈3〉2, 〈3〉3, 〈3〉4
〈2〉 QED BY 〈2〉3, 〈2〉4

Each index maps forward.
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〈1〉17. RemoveAt EachForward(Q , n)
〈2〉1. SUFFICES ASSUME NEW qi , qi ∈ 1 . . Len(Q), qi 6= n

PROVE ∃ ri ∈ 1 . . Len(R) : Q [qi ] = R[ri ]
BY DEF RemoveAt EachForward , R

〈2〉 DEFINE ri
∆
= RemoveAt ForwardIndex (Q , n, qi)

〈2〉2. ri ∈ 1 . . Len(R) ∧Q [qi ] = R[ri ]
BY 〈1〉15, 〈2〉1 DEF RemoveAt MapForward , R

〈2〉 QED BY 〈2〉2

Each index maps backward.

〈1〉18. RemoveAt EachBackward(Q , n)
〈2〉1. SUFFICES ASSUME NEW ri , ri ∈ 1 . . Len(R)

PROVE ∃ qi ∈ 1 . . Len(Q) : qi 6= n ∧Q [qi ] = R[ri ]
BY DEF RemoveAt EachBackward , R

〈2〉 DEFINE qi
∆
= RemoveAt BackwardIndex (Q , n, ri)

〈2〉2. qi ∈ 1 . . Len(Q) ∧ qi 6= n ∧Q [qi ] = R[ri ]
BY 〈1〉16, 〈2〉1 DEF RemoveAt MapBackward , R

〈2〉 QED BY 〈2〉2

Indexes map forward preserving order.

〈1〉19. RemoveAt OrderedForward(Q , n)
〈2〉1. SUFFICES ASSUME

NEW qi1, qi1 ∈ 1 . . LenQ , qi1 6= n,
NEW qi2, qi2 ∈ 1 . . LenQ , qi2 6= n,
qi1 < qi2

PROVE

∃ ri1, ri2 ∈ 1 . . Len(R) :
ri1 < ri2 ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

BY Isa DEF RemoveAt OrderedForward , R, LenQ
〈2〉 DEFINE ri1

∆
= RemoveAt ForwardIndex (Q , n, qi1)

〈2〉 DEFINE ri2
∆
= RemoveAt ForwardIndex (Q , n, qi2)

〈2〉2. ri1 ∈ 1 . . Len(R) ∧Q [qi1] = R[ri1]
BY 〈1〉15, 〈2〉1 DEF RemoveAt MapForward , R, LenQ

〈2〉3. ri2 ∈ 1 . . Len(R) ∧Q [qi2] = R[ri2]
BY 〈1〉15, 〈2〉1 DEF RemoveAt MapForward , R, LenQ

〈2〉4. ri1 < ri2 BY 〈1〉2, 〈1〉3, 〈2〉1, SMTT (10)
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4

Indexes map backward preserving order.

〈1〉20. RemoveAt OrderedBackward(Q , n)
〈2〉1. SUFFICES ASSUME

NEW ri1, ri1 ∈ 1 . . LenR,
NEW ri2, ri2 ∈ 1 . . LenR,
ri1 < ri2

PROVE

∃ qi1, qi2 ∈ 1 . . Len(Q) :
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qi1 < qi2 ∧ qi1 6= n ∧ qi2 6= n ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]
BY Isa DEF RemoveAt OrderedBackward , R, LenR

〈2〉 DEFINE qi1
∆
= RemoveAt BackwardIndex (Q , n, ri1)

〈2〉 DEFINE qi2
∆
= RemoveAt BackwardIndex (Q , n, ri2)

〈2〉2. qi1 ∈ 1 . . Len(Q) ∧ qi1 6= n ∧Q [qi1] = R[ri1]
BY 〈1〉16, 〈2〉1 DEF RemoveAt MapBackward , R, LenR

〈2〉3. qi2 ∈ 1 . . Len(Q) ∧ qi2 6= n ∧Q [qi2] = R[ri2]
BY 〈1〉16, 〈2〉1 DEF RemoveAt MapBackward , R, LenR

〈2〉4. qi1 < qi2 BY 〈1〉2, 〈1〉12, 〈2〉1, SMTT (10)
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4

Indexes map forward preserving distinctness. Essentially an identical proof to RemoveAt OrderedForward(Q , n).

〈1〉21. RemoveAt DistinctForward(Q , n)
〈2〉1. SUFFICES ASSUME

NEW qi1, qi1 ∈ 1 . . LenQ , qi1 6= n,
NEW qi2, qi2 ∈ 1 . . LenQ , qi2 6= n,
qi1 6= qi2

PROVE
∃ ri1, ri2 ∈ 1 . . Len(R) :
ri1 6= ri2 ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

BY Isa DEF RemoveAt DistinctForward , R, LenQ
〈2〉 DEFINE ri1

∆
= RemoveAt ForwardIndex (Q , n, qi1)

〈2〉 DEFINE ri2
∆
= RemoveAt ForwardIndex (Q , n, qi2)

〈2〉2. ri1 ∈ 1 . . Len(R) ∧Q [qi1] = R[ri1]
BY 〈1〉15, 〈2〉1 DEF RemoveAt MapForward , R, LenQ

〈2〉3. ri2 ∈ 1 . . Len(R) ∧Q [qi2] = R[ri2]
BY 〈1〉15, 〈2〉1 DEF RemoveAt MapForward , R, LenQ

〈2〉4. ri1 6= ri2 BY 〈1〉2, 〈1〉3, 〈2〉1, SMTT (10)
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4

Indexes map backward preserving distinctness. Essentially an identical proof to RemoveAt OrderedBackward(Q , n).

〈1〉22. RemoveAt DistinctBackward(Q , n)
〈2〉1. SUFFICES ASSUME

NEW ri1, ri1 ∈ 1 . . LenR,
NEW ri2, ri2 ∈ 1 . . LenR,
ri1 6= ri2

PROVE
∃ qi1, qi2 ∈ 1 . . Len(Q) :
qi1 6= qi2 ∧ qi1 6= n ∧ qi2 6= n ∧Q [qi1] = R[ri1] ∧Q [qi2] = R[ri2]

BY Isa DEF RemoveAt DistinctBackward , R, LenR
〈2〉 DEFINE qi1

∆
= RemoveAt BackwardIndex (Q , n, ri1)

〈2〉 DEFINE qi2
∆
= RemoveAt BackwardIndex (Q , n, ri2)

〈2〉2. qi1 ∈ 1 . . Len(Q) ∧ qi1 6= n ∧Q [qi1] = R[ri1]
BY 〈1〉16, 〈2〉1 DEF RemoveAt MapBackward , R, LenR

〈2〉3. qi2 ∈ 1 . . Len(Q) ∧ qi2 6= n ∧Q [qi2] = R[ri2]
BY 〈1〉16, 〈2〉1 DEF RemoveAt MapBackward , R, LenR
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〈2〉4. qi1 6= qi2 BY 〈1〉2, 〈1〉12, 〈2〉1, SMTT (10)
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4

〈1〉 QED BY 〈1〉9, 〈1〉14, 〈1〉15, 〈1〉16, 〈1〉17, 〈1〉18, 〈1〉19, 〈1〉20, 〈1〉21, 〈1〉22 DEF R



C.5. FACTS ABOUT FINITE SETS 57

C.5 Facts about finite sets
MODULE NaiadClockProofFiniteSets

EXTENDS NaiadClockProofRemoveAt

Facts about finite sets.

This really ought to be a library of theorems.

The built-in definition of IsFiniteSet in TLAPS version 1.0.25464 has a typo. This is the correct definition. 15 June 2012

Still wrong in TLAPM version 1.1.1 (commit 29945). 7 December 2012

THEOREM CorrectIsFiniteSet
∆
=

∀S : IsFiniteSet(S ) ≡ ∃ seq ∈ Seq(S ) : ∀ s ∈ S : ∃n ∈ 1 . . Len(seq) : seq [n] = s

The empty set is finite.

THEOREM FiniteSetEmpty
∆
=

IsFiniteSet({})
PROOF
〈1〉 DEFINE Q

∆
= 〈〉

〈1〉1. Q ∈ Seq({}) BY IsASeq , IsaT (120)
〈1〉2. ∀ s ∈ {} : ∃ i ∈ 1 . . Len(Q) : Q [i ] = s OBVIOUS
〈1〉 QED BY 〈1〉1, 〈1〉2, CorrectIsFiniteSet

A singleton set is finite.

THEOREM FiniteSetSingleton
∆
=

ASSUME NEW s0
PROVE IsFiniteSet({s0})

PROOF
〈1〉 DEFINE Q

∆
= 〈s0〉

〈1〉 DEFINE LenQ
∆
= Len(Q)
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〈1〉1. LenQ = 1 OBVIOUS

〈1〉2. Q ∈ Seq({s0}) BY IsASeq , IsaT (120)
〈1〉3. ∀ s ∈ {s0} : ∃ i ∈ 1 . . LenQ : Q [i ] = s
〈2〉 SUFFICES ∃ i ∈ 1 . . LenQ : Q [i ] = s0 OBVIOUS

〈2〉1. 1 ∈ 1 . . LenQ
〈3〉 HIDE DEF LenQ
〈3〉 QED BY 〈1〉1, SMTT (10)
〈2〉2. Q [1] = s0 OBVIOUS

〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉 QED BY 〈1〉2, 〈1〉3, CorrectIsFiniteSet

Any subset of a finite set is finite.

THEOREM FiniteSetSubset
∆
=

ASSUME

NEW S , IsFiniteSet(S ),
NEW D ∈ SUBSET S

PROVE IsFiniteSet(D)
PROOF

〈1〉1. SUFFICES ASSUME D 6= {} PROVE IsFiniteSet(D) BY FiniteSetEmpty

Now we only have to consider non-empty D . Hence we can pick an element of D .

〈1〉 PICK d0 ∈ D : TRUE BY 〈1〉1
Since S is finite, we can pick a Q ∈ Seq(S) on which each element of S appears.

〈1〉2. PICK Q ∈ Seq(S ) : ∀ s ∈ S : ∃ i ∈ 1 . . Len(Q) : Q [i ] = s BY CorrectIsFiniteSet
〈1〉 DEFINE LenQ

∆
= Len(Q)

〈1〉 HIDE DEF LenQ
〈1〉3. LenQ ∈ Nat BY LenInNat DEF LenQ

Using Q construct P ∈ Seq(D) on which each element of D appears.

〈1〉 DEFINE P
∆
= [i ∈ 1 . . LenQ 7→ IF Q [i ] ∈ D THEN Q [i ] ELSE d0]

〈1〉 HIDE DEF P
〈1〉4. P ∈ Seq(D)
〈2〉1. ∀ i ∈ 1 . . LenQ : P [i ] ∈ D BY DEF P
〈2〉2. P ∈ [1 . . LenQ → D ] BY 〈2〉1 DEF P
〈2〉 QED BY 〈1〉3, 〈2〉2, IsASeq
〈1〉 DEFINE LenP

∆
= Len(P)

〈1〉 HIDE DEF LenP
〈1〉5. LenP = LenQ
〈2〉1. DOMAIN P = 1 . . LenQ BY DEF P
〈2〉 QED BY 〈1〉3, 〈1〉4, 〈2〉1, LenDomain DEF LenP

Prove that each element of D appears on P .



C.5. FACTS ABOUT FINITE SETS 59

〈1〉6. ∀ d ∈ D : ∃ i ∈ 1 . . LenP : P [i ] = d
〈2〉 SUFFICES ASSUME NEW d ∈ D PROVE ∃ i ∈ 1 . . LenP : P [i ] = d BY DEF LenP
〈2〉1. d ∈ S OBVIOUS

〈2〉2. ∃ i ∈ 1 . . LenQ : Q [i ] = d BY 〈1〉2, 〈2〉1 DEF LenQ
〈2〉3. ∃ i ∈ 1 . . LenP : P [i ] = d BY 〈1〉5, 〈2〉2 DEF P
〈2〉 QED BY 〈2〉3
〈1〉 QED BY 〈1〉4, 〈1〉6, CorrectIsFiniteSet DEF LenP

The union of two finite sets is finite.

THEOREM FiniteSetUnion
∆
=

ASSUME

NEW S1, IsFiniteSet(S1),
NEW S2, IsFiniteSet(S2)

PROVE IsFiniteSet(S1 ∪ S2)
PROOF

Since S1 is finite, we can pick a Q1 ∈ Seq(S1) on which each element of S1 appears.

〈1〉1. PICK Q1 ∈ Seq(S1) : ∀ s ∈ S1 : ∃ i ∈ 1 . . Len(Q1) : Q1[i ] = s BY CorrectIsFiniteSet
〈1〉 DEFINE LenQ1

∆
= Len(Q1)

〈1〉 HIDE DEF LenQ1
〈1〉2. LenQ1 ∈ Nat BY LenInNat DEF LenQ1
〈1〉a. Q1 ∈ [1 . . LenQ1→ S1] BY LenAxiom DEF LenQ1

Since S2 is finite, we can pick a Q2 ∈ Seq(S2) on which each element of S2 appears.

〈1〉3. PICK Q2 ∈ Seq(S2) : ∀ s ∈ S2 : ∃ i ∈ 1 . . Len(Q2) : Q2[i ] = s BY CorrectIsFiniteSet
〈1〉 DEFINE LenQ2

∆
= Len(Q2)

〈1〉 HIDE DEF LenQ2
〈1〉4. LenQ2 ∈ Nat BY LenInNat DEF LenQ2
〈1〉b. Q2 ∈ [1 . . LenQ2→ S2] BY LenAxiom DEF LenQ2

From Q1 and Q2 construct a sequence Q ∈ Seq(S1 ∪ S2) on which each element of S1 ∪ S2 appears.

〈1〉 DEFINE S
∆
= S1 ∪ S2

〈1〉 DEFINE n
∆
= LenQ1 + LenQ2

〈1〉5. n ∈ Nat BY 〈1〉2, 〈1〉4, SMTT (10)
〈1〉 DEFINE Q

∆
= [i ∈ 1 . . n 7→ IF i ≤ LenQ1 THEN Q1[i ] ELSE Q2[i − LenQ1]]

〈1〉 HIDE DEF Q
〈1〉6. Q ∈ Seq(S )
〈2〉1. ∀ i ∈ 1 . . n : Q [i ] ∈ S
〈3〉 SUFFICES ASSUME NEW i ∈ 1 . . n PROVE Q [i ] ∈ S OBVIOUS

〈3〉1. CASE i ≤ LenQ1
〈4〉1. Q [i ] = Q1[i ] BY 〈3〉1 DEF Q
〈4〉2. i ∈ 1 . . LenQ1 BY 〈3〉1, 〈1〉2, 〈1〉4, DotDotDef , SMTT (10)
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〈4〉3. Q1[i ] ∈ S1 BY 〈4〉2, 〈1〉a
〈4〉 QED BY 〈4〉1, 〈4〉3
〈3〉2. CASE ¬(i ≤ LenQ1)
〈4〉1. Q [i ] = Q2[i − LenQ1] BY 〈3〉2 DEF Q
〈4〉2. i − LenQ1 ∈ 1 . . LenQ2 BY 〈3〉2, 〈1〉2, 〈1〉4, DotDotDef , SMTT (10)
〈4〉3. Q2[i − LenQ1] ∈ S2 BY 〈4〉2, 〈1〉b
〈4〉 QED BY 〈4〉1, 〈4〉3
〈3〉 QED BY 〈3〉1, 〈3〉2
〈2〉2. Q ∈ [1 . . n → S ] BY 〈2〉1 DEF Q
〈2〉 QED BY 〈1〉5, 〈2〉2, IsASeq
〈1〉 DEFINE LenQ

∆
= Len(Q)

〈1〉 HIDE DEF LenQ
〈1〉7. LenQ = n
〈2〉1. DOMAIN Q = 1 . . n BY DEF Q
〈2〉 QED BY 〈1〉5, 〈1〉6, 〈2〉1, LenDomain DEF LenQ

Prove that each element of S appears on Q .

〈1〉8. ∀ s ∈ S : ∃ i ∈ 1 . . LenQ : Q [i ] = s
〈2〉 SUFFICES ASSUME NEW s ∈ S PROVE ∃ i ∈ 1 . . n : Q [i ] = s BY 〈1〉7
〈2〉1. CASE s ∈ S1
〈3〉1. PICK i1 ∈ 1 . . LenQ1 : Q1[i1] = s BY 〈2〉1, 〈1〉1 DEF LenQ1
〈3〉2. i1 ≤ LenQ1 BY 〈1〉2, DotDotDef , SMTT (10)
〈3〉3. i1 ∈ 1 . . n BY 〈1〉2, 〈1〉4, DotDotDef , SMTT (10)
〈3〉4. Q [i1] = s BY 〈3〉1, 〈3〉2, 〈3〉3 DEF Q
〈3〉 QED BY 〈3〉3, 〈3〉4
〈2〉2. CASE s ∈ S2
〈3〉1. PICK i2 ∈ 1 . . LenQ2 : Q2[i2] = s BY 〈2〉2, 〈1〉3 DEF LenQ2
〈3〉2. ¬(i2 + LenQ1 ≤ LenQ1) BY 〈1〉2, 〈1〉4, DotDotDef , SMTT (10)
〈3〉3. i2 + LenQ1 ∈ 1 . . n BY 〈1〉2, 〈1〉4, DotDotDef , SMTT (10)
〈3〉4. Q [i2 + LenQ1] = s
〈4〉1. (i2 + LenQ1)− LenQ1 = i2 BY 〈1〉2, 〈1〉4, SMTT (10)
〈4〉2. Q [i2 + LenQ1] = Q2[i2] BY 〈4〉1, 〈3〉2, 〈3〉3 DEF Q
〈4〉 QED BY 〈4〉2, 〈3〉1
〈3〉 QED BY 〈3〉3, 〈3〉4
〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉 QED BY 〈1〉6, 〈1〉8, CorrectIsFiniteSet DEF LenQ
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C.6 Facts about exact sequences
MODULE NaiadClockProofExactSeqs

EXTENDS NaiadClockProofFiniteSets

Facts about exact sequences.

This really ought to be a library of theorems.

An exact sequence exists for any finite set.

THEOREM ExactSeqExists
∆
=

ASSUME

NEW S , IsFiniteSet(S )
PROVE

∃Q : IsExactSeqFor(Q , S )
PROOF

〈1〉 USE DEF ExactSeq Each
〈1〉 USE DEF ExactSeq Once
〈1〉 DEFINE each(Q)

∆
= ExactSeq Each(Q , S )

〈1〉 DEFINE once(Q)
∆
= ExactSeq Once(Q)

〈1〉 SUFFICES ∃n ∈ Nat : ∃Q ∈ [1 . . n → S ] : each(Q) ∧ once(Q)
〈2〉1. PICK n ∈ Nat : ∃Q ∈ [1 . . n → S ] : each(Q) ∧ once(Q) OBVIOUS

〈2〉2. PICK Q ∈ [1 . . n → S ] : each(Q) ∧ once(Q) OBVIOUS

〈2〉3. Q ∈ Seq(S ) BY IsASeq
〈2〉 QED BY 〈2〉2, 〈2〉3 DEF IsExactSeqFor

Define N as the set of all natural numbers n such that there exists a sequence of length n that contains each element of S . Because S is finite,
such a sequence exists and hence N is non-empty.

〈1〉 DEFINE N
∆
= {n ∈ Nat : ∃Q ∈ [1 . . n → S ] : each(Q)}

〈1〉1. N 6= {}
〈2〉1. PICK Q ∈ Seq(S ) : each(Q) BY CorrectIsFiniteSet
〈2〉2. Len(Q) ∈ Nat BY LenInNat
〈2〉3. Q ∈ [1 . . Len(Q)→ S ] BY 〈2〉1, LenAxiom
〈2〉4. Len(Q) ∈ N BY 〈2〉1, 〈2〉2, 〈2〉3
〈2〉 QED BY 〈2〉4
〈1〉 HIDE DEF N

Pick the smallest n ∈ N .
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〈1〉2. PICK n ∈ Nat :
∧ n ∈ N
∧ ∀m ∈ N : n ≤ m

〈2〉1. PICK n ∈ N : ∀m ∈ N : n ≤ m
〈3〉1. N ∈ SUBSET Nat BY DEF N
〈3〉 QED BY 〈3〉1, 〈1〉1, NatWellFounded
〈2〉2. n ∈ Nat BY DEF N
〈2〉 QED BY 〈2〉1, 〈2〉2

Pick Q a sequence of length n that contains each element of S . Since this is the smallest such length, Q can contain no duplicates.

〈1〉3. PICK Q ∈ [1 . . n → S ] : each(Q)
〈2〉1. n ∈ N BY 〈1〉2
〈2〉 QED BY 〈2〉1 DEF N
〈1〉4. SUFFICES once(Q)
〈2〉 HIDE DEF each, once
〈2〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4 DEF N

To show that every element on Q appears at most once, we assume that Q contains duplicates and derive a contradiction.

〈1〉5. SUFFICES ASSUME ¬once(Q) PROVE FALSE OBVIOUS

It turns out to be important to know that Len(Q) = n and is a natural.

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉 HIDE DEF LenQ
〈1〉6. LenQ = n ∧ LenQ ∈ Nat
〈2〉1. Q ∈ Seq(S ) BY IsASeq
〈2〉2. LenQ ∈ Nat BY 〈2〉1, LenInNat DEF LenQ
〈2〉3. DOMAIN Q = 1 . . LenQ BY 〈2〉1, LenAxiom DEF LenQ
〈2〉4. 1 . . LenQ = 1 . . nBY 〈2〉3
〈2〉5. LenQ = n BY 〈2〉2, 〈2〉4, DotDotOneThruN
〈2〉 QED BY 〈2〉5

Under the assumption that Q has duplicate elements, we can pick two distinct indexes j and k containing the same element. Without loss of
generality, let j be the smaller index.

〈1〉7. PICK j , k ∈ Nat : Q [j ] = Q [k ] ∧ 1 ≤ j ∧ j < k ∧ k ≤ LenQ
〈2〉 LenQ ∈ Nat BY 〈1〉6
〈2〉1. PICK ja, ka ∈ 1 . . LenQ : Q [ja] = Q [ka] ∧ ja 6= ka BY 〈1〉5 DEF LenQ
〈2〉 ja ∈ Nat BY 〈2〉1, SMTT (10)
〈2〉 ka ∈ Nat BY 〈2〉1, SMTT (10)
〈2〉2. 1 ≤ ja BY 〈2〉1, SMTT (10)
〈2〉3. 1 ≤ ka BY 〈2〉1, SMTT (10)
〈2〉4. ja ≤ LenQ BY 〈2〉1, SMTT (10)
〈2〉5. ka ≤ LenQ BY 〈2〉1, SMTT (10)
〈2〉6. CASE ja < ka BY 〈2〉6, 〈2〉1, 〈2〉2, 〈2〉5
〈2〉7. CASE ka < ja BY 〈2〉7, 〈2〉1, 〈2〉3, 〈2〉4
〈2〉8. ja < ka ∨ ka < ja
〈3〉1. LenQ ∈ Nat BY 〈1〉6
〈3〉2. ja ∈ Nat BY 〈3〉1, DotDotType
〈3〉3. ka ∈ Nat BY 〈3〉1, DotDotType
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〈3〉 QED BY 〈2〉1, 〈3〉2, 〈3〉3, SMTT (10)
〈2〉 QED BY 〈2〉1, 〈2〉6, 〈2〉7, 〈2〉8, 〈1〉6, SMTT (10)

Define m
∆
= n − 1 and prove some properties of j , k , m , n . Later we construct a sequence P of length m .

〈1〉8. 1 ≤ j BY 〈1〉7, SMTT (10)
〈1〉9. j < k BY 〈1〉7
〈1〉10. k ≤ n BY 〈1〉6, 〈1〉7, SMTT (10)
〈1〉11. 1 < k BY 〈1〉8, 〈1〉9, SMTT (10)
〈1〉12. 1 ≤ k BY 〈1〉11, SMTT (10)
〈1〉13. 2 ≤ n BY 〈1〉10, 〈1〉11, SMTT (10)
〈1〉14. n 6= 0 BY 〈1〉13, SMTT (10)
〈1〉15. n − 1 ∈ Nat BY 〈1〉14, SMTT (10)
〈1〉16. PICK m ∈ Nat : m = n − 1 BY 〈1〉15
〈1〉17. m < n BY 〈1〉16, SMTT (10)
〈1〉18. ¬(n ≤ m) BY 〈1〉17, SMTT (10)
〈1〉19. j < nBY 〈1〉9, 〈1〉10, SMTT (10)
〈1〉20. j ≤ m BY 〈1〉16, 〈1〉19, SMTT (10)
〈1〉21. j ∈ 1 . . m BY 〈1〉8, 〈1〉20, SMTT (10)
〈1〉22. n ∈ 1 . . n BY 〈1〉14, SMTT (10)

〈1〉23. ASSUME k 6= n PROVE k ∈ 1 . . m
〈2〉1. k ≤ m BY 〈1〉10, 〈1〉16, 〈1〉23, SMTT (10)
〈2〉 QED BY 〈1〉12, 〈2〉1, SMTT (10)

〈1〉24. ASSUME NEW i ∈ 1 . . n, i 6= n PROVE i ∈ 1 . . m
〈2〉1. 1 ≤ i BY 〈1〉24, SMTT (10)
〈2〉2. i ≤ n BY 〈1〉24, SMTT (10)
〈2〉3. i < n BY 〈1〉24, 〈2〉2, SMTT (10)
〈2〉4. i ≤ m BY 〈2〉3, 〈1〉16, SMTT (10)
〈2〉 QED BY 〈2〉1, 〈2〉4, SMTT (10)

Construct P from Q as a shorter sequence in which each element of S appears. However, since Q is the shortest such sequence, this is a
contradiction.

〈1〉 DEFINE P
∆
= [i ∈ 1 . . m 7→ IF i = k THEN Q [n] ELSE Q [i ]]

〈1〉25. P ∈ [1 . . m → S ]
〈2〉 SUFFICES ASSUME NEW i ∈ 1 . . m PROVE P [i ] ∈ S BY SMTT (10)
〈2〉1. i ∈ 1 . . n BY 〈1〉16, SMTT (10)
〈2〉2. n ∈ 1 . . n BY 〈1〉22
〈2〉3. Q [i ] ∈ S BY 〈2〉1
〈2〉4. Q [n] ∈ S BY 〈2〉2
〈2〉 QED BY 〈2〉3, 〈2〉4
〈1〉 HIDE DEF P
〈1〉26. SUFFICES each(P)
〈2〉2. m ∈ N BY 〈1〉25, 〈1〉26 DEF N
〈2〉 HIDE DEF each
〈2〉3. ¬(n ≤ m)BY 〈1〉18
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈1〉2, SMTT (10)
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To show that each element of S appears in P , we assume that P has missing elements and derive a contradiction.

〈1〉27. SUFFICES ASSUME ¬each(P) PROVE FALSE OBVIOUS

It turns out to be important to know that Len(P) = m and is a natural.

〈1〉 DEFINE LenP
∆
= Len(P)

〈1〉 HIDE DEF LenP
〈1〉28. LenP = m ∧ LenP ∈ Nat
〈2〉 HIDE DEF P
〈2〉2. P ∈ Seq(S ) BY 〈1〉25, IsASeq
〈2〉3. LenP ∈ Nat BY 〈2〉2, LenInNat DEF LenP
〈2〉4. DOMAIN P = 1 . . LenP BY 〈2〉2, LenAxiom DEF LenP
〈2〉5. 1 . . LenP = 1 . . mBY 〈2〉4, 〈1〉25
〈2〉6. LenP = m BY 〈2〉3, 〈2〉5, DotDotOneThruN
〈2〉 QED BY 〈2〉6

Since we assume that P has missing elements, we can pick an element that fails to appear. But this element appears on Q , from which we can
find it on P , thus establishing a contradiction.

〈1〉29. PICK s ∈ S : ¬∃ i ∈ 1 . . LenP : P [i ] = s BY 〈1〉27 DEF LenP
〈1〉30. PICK i ∈ 1 . . n : Q [i ] = s BY 〈1〉3, 〈1〉6 DEF LenQ
〈1〉31. CASE i = k

A duplicate of Q [k ] appears in Q [j ]. Since j 6= k and j ∈ 1 . . m , we copied Q [j ] to P [j ].

〈2〉1. j 6= k BY 〈1〉9, SMTT (10)
〈2〉2. P [j ] = Q [j ] BY 〈2〉1, 〈1〉21 DEF P
〈2〉3. Q [j ] = Q [k ] BY 〈1〉7
〈2〉4. P [j ] = s BY 〈2〉2, 〈2〉3, 〈1〉31, 〈1〉30
〈2〉5. j ∈ 1 . . LenP BY 〈1〉21, 〈1〉28
〈2〉 QED BY 〈2〉4, 〈2〉5, 〈1〉29
〈1〉32. CASE i 6= k ∧ i = n

Since k ∈ 1 . . m , we copied Q [n] to P [k ].

〈2〉1. k ∈ 1 . . m BY 〈1〉32, 〈1〉23
〈2〉2. P [k ] = Q [n] BY 〈2〉1 DEF P
〈2〉3. P [k ] = s BY 〈2〉2, 〈1〉32, 〈1〉30
〈2〉4. k ∈ 1 . . LenP BY 〈2〉1, 〈1〉28, SMTT (10)
〈2〉 QED BY 〈2〉3, 〈2〉4, 〈1〉29
〈1〉33. CASE i 6= k ∧ i 6= n

Since i 6= k and i ∈ 1 . . m , we copied Q [i ] to P [i ].

〈2〉1. i 6= k ∧ i ∈ 1 . . m BY 〈1〉33, 〈1〉24
〈2〉2. P [i ] = Q [i ] BY 〈2〉1 DEF P
〈2〉3. P [i ] = s BY 〈2〉2, 〈1〉31, 〈1〉30
〈2〉4. i ∈ 1 . . LenP BY 〈2〉1, 〈1〉28
〈2〉 QED BY 〈2〉3, 〈2〉4, 〈1〉29
〈1〉 QED BY 〈1〉31, 〈1〉32, 〈1〉33
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Having an exact sequence is the same as being a finite set.

THEOREM ExactSeqIsFiniteSet
∆
=

ASSUME
NEW S

PROVE
IsFiniteSet(S ) ≡ (∃Q : IsExactSeqFor(Q , S ))

PROOF
〈1〉1. IsFiniteSet(S ) ⇒ (∃Q : IsExactSeqFor(Q , S )) BY ExactSeqExists
〈1〉2. (∃Q : IsExactSeqFor(Q , S )) ⇒ IsFiniteSet(S )
〈2〉1. SUFFICES ASSUME NEW Q , IsExactSeqFor(Q , S ) PROVE IsFiniteSet(S ) OBVIOUS
〈2〉2. Q ∈ Seq(S ) BY 〈2〉1 DEF IsExactSeqFor
〈2〉3. ExactSeq Each(Q , S ) BY 〈2〉1 DEF IsExactSeqFor
〈2〉4. ∀ s ∈ S : ∃ q ∈ 1 . . Len(Q) : Q [q ] = s BY 〈2〉3 DEF ExactSeq Each
〈2〉 QED BY 〈2〉2, 〈2〉4, CorrectIsFiniteSet
〈1〉 QED BY 〈1〉1, 〈1〉2

If S is a finite set, then ExactSeqFor(S) is an exact sequence for S .

THEOREM ExactSeqForProperties
∆
=

ASSUME
NEW S , IsFiniteSet(S )

PROVE
IsExactSeqFor(ExactSeqFor(S ), S )

PROOF
〈1〉 QED BY ExactSeqExists DEF ExactSeqFor

The exact sequence for the empty set is the empty sequence.

THEOREM ExactSeqEmpty
∆
=

ASSUME
NEW S ,
NEW Q , IsExactSeqFor(Q , S )

PROVE
Q = 〈〉 ≡ S = {}

PROOF
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〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉1. Q ∈ Seq(S ) BY DEF IsExactSeqFor
〈1〉2. LenQ ∈ Nat BY 〈1〉1, LenInNat
〈1〉3. Q ∈ [1 . . LenQ → S ] BY 〈1〉1, LenAxiom
〈1〉4. ∀ s ∈ S : ∃ i ∈ 1 . . LenQ : Q [i ] = s BY DEF IsExactSeqFor , ExactSeq Each
〈1〉 HIDE DEF LenQ
〈1〉5. Q = 〈〉 ⇒ S = {}
〈2〉1. SUFFICES ASSUME Q = 〈〉, S 6= {} PROVE FALSE OBVIOUS

〈2〉2. LenQ = 0 BY 〈2〉1, EmptySeq DEF LenQ
〈2〉3. PICK s ∈ S : TRUE BY 〈2〉1
〈2〉4. ∃ i ∈ 1 . . LenQ : Q [i ] = s BY 〈1〉4, 〈2〉3
〈2〉 QED BY 〈2〉2, 〈2〉4, SMTT (10)
〈1〉6. S = {} ⇒ Q = 〈〉
〈2〉1. SUFFICES ASSUME S = {} PROVE Q = 〈〉 OBVIOUS

〈2〉2. LenQ = 0
〈3〉1. SUFFICES ASSUME LenQ 6= 0 PROVE FALSE OBVIOUS

〈3〉2. LenQ > 0 BY 〈1〉2, 〈3〉1, SMTT (10)
〈3〉 PICK i ∈ 1 . . LenQ : TRUE BY 〈1〉2, 〈3〉2, SMTT (10)
〈3〉3. Q [i ] ∈ {} BY 〈1〉3, 〈2〉1
〈3〉 QED BY 〈3〉3
〈2〉 QED BY 〈1〉1, 〈2〉2, EmptySeq DEF LenQ
〈1〉 QED BY 〈1〉5, 〈1〉6

Removing one element from an exact sequence yields a smaller exact sequence.

THEOREM ExactSeqRemoveAt
∆
=

ASSUME

NEW S ,
NEW Q , IsExactSeqFor(Q , S ),
NEW n ∈ 1 . . Len(Q)

PROVE

IsExactSeqFor(RemoveAt(Q , n), S \ {Q [n]})
PROOF

〈1〉 DEFINE s0
∆
= Q [n]

〈1〉 DEFINE S1
∆
= S \ {s0}

〈1〉 DEFINE Q1
∆
= RemoveAt(Q , n)

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉 DEFINE LenQ1
∆
= Len(Q1)

〈1〉 HIDE DEF s0, S1, Q1, LenQ , LenQ1

First establish some preliminary facts.
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〈1〉1. Q ∈ Seq(S ) BY DEF IsExactSeqFor
〈1〉2. ExactSeq Each(Q , S ) BY DEF IsExactSeqFor
〈1〉3. ExactSeq Once(Q) BY DEF IsExactSeqFor
〈1〉4. Q ∈ [1 . . LenQ → S ] BY 〈1〉1, LenAxiom DEF LenQ
〈1〉5. LenQ ∈ Nat BY 〈1〉1, LenInNat DEF LenQ
〈1〉6. n ∈ 1 . . LenQ BY DEF LenQ
〈1〉7. LenQ ≥ 1 BY 〈1〉5, 〈1〉6, SMTT (10)
〈1〉8. s0 ∈ S BY 〈1〉4, 〈1〉6 DEF s0
〈1〉9. Q1 ∈ Seq(S ) BY 〈1〉1, RemoveAtProperties DEF Q1
〈1〉10. LenQ1 ∈ Nat BY 〈1〉9, LenInNat DEF LenQ1
〈1〉11. Q1 ∈ [1 . . LenQ1→ S ] BY 〈1〉9, LenAxiom DEF LenQ1
〈1〉12. LenQ1 = LenQ − 1 BY 〈1〉1, RemoveAtProperties DEF LenQ , Q1, LenQ1

Now proceed to prove each of the three conjuncts in IsExactSeqFor .

〈1〉13. Q1 ∈ Seq(S1)
〈2〉1. ∀ q1 ∈ 1 . . LenQ1 : Q1[q1] ∈ S1
〈3〉1. SUFFICES ASSUME ∃ q1 ∈ 1 . . LenQ1 : Q1[q1] /∈ S1 PROVE FALSE OBVIOUS

〈3〉2. PICK q1 : q1 ∈ 1 . . LenQ1 ∧Q1[q1] /∈ S1 BY 〈3〉1
〈3〉3. Q1[q1] = s0
〈4〉1. Q1[q1] ∈ S BY 〈1〉11, 〈3〉2
〈4〉 QED BY 〈1〉8, 〈3〉2, 〈4〉1 DEF S1
〈3〉4. ∃ q ∈ 1 . . LenQ : q 6= n ∧Q [q ] = s0
〈4〉1. RemoveAt EachBackward(Q , n) BY 〈1〉1, RemoveAtProperties
〈4〉 QED BY 〈3〉2, 〈3〉3, 〈4〉1 DEF RemoveAt EachBackward , LenQ , LenQ1, Q1
〈3〉7. ¬ExactSeq Once(Q) BY 〈1〉6, 〈3〉4 DEF ExactSeq Once, s0, LenQ
〈3〉 QED BY 〈1〉3, 〈3〉7
〈2〉2. Q1 ∈ [1 . . LenQ1→ S1] BY 〈1〉11, 〈2〉1
〈2〉 QED BY 〈1〉10, 〈2〉2, IsASeq

〈1〉14. ExactSeq Each(Q1, S1)
〈2〉1. SUFFICES ASSUME NEW s1, s1 ∈ S1 PROVE ∃ q1 ∈ 1 . . LenQ1 : Q1[q1] = s1

BY DEF ExactSeq Each, LenQ1
〈2〉2. s1 ∈ S BY 〈2〉1 DEF S1
〈2〉3. PICK q : q ∈ 1 . . LenQ ∧Q [q ] = s1 BY 〈1〉2, 〈2〉2 DEF ExactSeq Each, LenQ
〈2〉4. s1 6= s0 BY 〈2〉1 DEF S1
〈2〉5. q 6= n BY 〈2〉3, 〈2〉4 DEF s0
〈2〉6. RemoveAt EachForward(Q , n) BY 〈1〉1, RemoveAtProperties
〈2〉 QED BY 〈2〉3, 〈2〉5, 〈2〉6 DEF RemoveAt EachForward , LenQ , LenQ1, Q1

〈1〉15. ExactSeq Once(Q1)
〈2〉1. SUFFICES ASSUME ¬ExactSeq Once(Q1) PROVE FALSE OBVIOUS

〈2〉2. PICK q1a, q1b ∈ 1 . . LenQ1 : q1a 6= q1b ∧Q1[q1a] = Q1[q1b]
BY 〈2〉1 DEF ExactSeq Once, LenQ1

〈2〉3. ∃ qa, qb ∈ 1 . . LenQ : qa 6= qb ∧Q [qa] = Q [qb]
〈3〉1. PICK qa, qb ∈ 1 . . LenQ :

qa 6= qb ∧ qa 6= n ∧ qb 6= n ∧Q [qa] = Q1[q1a] ∧Q [qb] = Q1[q1b]
〈4〉1. RemoveAt DistinctBackward(Q , n) BY 〈1〉1, RemoveAtProperties
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〈4〉 QED BY 〈2〉2, 〈4〉1 DEF RemoveAt DistinctBackward , LenQ , LenQ1, Q1
〈3〉2. qa 6= qb ∧Q [qa] = Q [qb] BY 〈3〉1, 〈2〉2
〈3〉 QED BY 〈3〉1, 〈3〉2
〈2〉4. ¬ExactSeq Once(Q) BY 〈2〉3 DEF ExactSeq Once, LenQ
〈2〉 QED BY 〈1〉3, 〈2〉4

〈1〉 QED BY 〈1〉13, 〈1〉14, 〈1〉15 DEF IsExactSeqFor , Q1, S1, s0

Every exact sequence for a given set has the same length.

THEOREM ExactSeqLength
∆
=

ASSUME

NEW S ,
NEW Q , IsExactSeqFor(Q , S ),
NEW R, IsExactSeqFor(R, S )

PROVE

Len(Q) = Len(R)
PROOF

A counterexample to this theorem is a set S1 with exact sequences Q1 and R1 that have different lengths.

〈1〉 DEFINE IsCounterexample(S1, Q1, R1)
∆
=

∧ IsExactSeqFor(Q1, S1)
∧ IsExactSeqFor(R1, S1)
∧ Len(Q1) 6= Len(R1)

〈1〉 HIDE DEF IsCounterexample

Let N be the set of all natural numbers n such that there is a counterexample and the length of one of the exact sequences is n .

〈1〉 DEFINE N
∆
= {n ∈ Nat : ∃S1, Q1, R1 : IsCounterexample(S1, Q1, R1) ∧ n = Len(Q1)}

〈1〉 HIDE DEF N
〈1〉1. SUFFICES N = {}
〈2〉1. SUFFICES ASSUME Len(Q) 6= Len(R) PROVE FALSE OBVIOUS

〈2〉2. IsCounterexample(S , Q , R) BY 〈2〉1 DEF IsCounterexample
〈2〉3. Q ∈ Seq(S ) BY DEF IsExactSeqFor
〈2〉4. Len(Q) ∈ Nat BY 〈2〉3, LenInNat
〈2〉5. Len(Q) ∈ N BY 〈2〉2, 〈2〉4 DEF N
〈2〉 QED BY 〈1〉1, 〈2〉5
〈1〉2. SUFFICES ASSUME N 6= {} PROVE FALSE OBVIOUS

If there is a counterexample, there must be a smallest one.

〈1〉3. PICK n ∈ N : ∀m ∈ N : n ≤ m BY 〈1〉2, NatWellFounded DEF N
〈1〉4. PICK S1, Q1, R1 : IsCounterexample(S1, Q1, R1) ∧ n = Len(Q1) BY 〈1〉3 DEF N
〈1〉 DEFINE LenQ1

∆
= Len(Q1)

〈1〉 DEFINE LenR1
∆
= Len(R1)
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〈1〉 HIDE DEF LenQ1, LenR1

Based on this “smallest” counterexample, we will construct a smaller one, thus establishing a contradiction.

First we establish various useful facts about S1, Q1, and R1.

〈1〉5. IsExactSeqFor(Q1, S1) BY 〈1〉4 DEF IsCounterexample
〈1〉6. Q1 ∈ Seq(S1) BY 〈1〉5 DEF IsExactSeqFor
〈1〉7. ExactSeq Each(Q1, S1) BY 〈1〉5 DEF IsExactSeqFor
〈1〉8. LenQ1 ∈ Nat BY 〈1〉6, LenInNat DEF LenQ1

〈1〉9. IsExactSeqFor(R1, S1) BY 〈1〉4 DEF IsCounterexample
〈1〉10. R1 ∈ Seq(S1) BY 〈1〉9 DEF IsExactSeqFor
〈1〉11. ExactSeq Each(R1, S1) BY 〈1〉9 DEF IsExactSeqFor
〈1〉12. LenR1 ∈ Nat BY 〈1〉10, LenInNat DEF LenR1

〈1〉13. LenQ1 6= LenR1 BY 〈1〉4 DEF LenQ1, LenR1, IsCounterexample
〈1〉14. n = LenQ1 BY 〈1〉4 DEF LenQ1

〈1〉15. S1 6= {}
〈2〉1. SUFFICES ASSUME S1 = {} PROVE FALSE OBVIOUS

〈2〉2. Q1 = 〈〉 BY 〈1〉5, 〈2〉1, ExactSeqEmpty
〈2〉3. R1 = 〈〉 BY 〈1〉9, 〈2〉1, ExactSeqEmpty
〈2〉4. Q1 = R1 BY 〈2〉2, 〈2〉3
〈2〉5. LenQ1 = LenR1 BY 〈2〉4 DEF LenQ1, LenR1
〈2〉 QED BY 〈1〉13, 〈2〉5

Since S1 6= {}, we pick some element s1 ∈ S1 and remove it from S1, Q1, and R1. This creates a smaller counterexample.

〈1〉16. PICK s1 : s1 ∈ S1 BY 〈1〉15
〈1〉17. PICK q1 : q1 ∈ 1 . . LenQ1 ∧Q1[q1] = s1 BY 〈1〉7, 〈1〉16 DEF ExactSeq Each, LenQ1
〈1〉18. PICK r1 : r1 ∈ 1 . . LenR1 ∧ R1[r1] = s1 BY 〈1〉11, 〈1〉16 DEF ExactSeq Each, LenR1

〈1〉 DEFINE S2
∆
= S1 \ {s1}

〈1〉 DEFINE Q2
∆
= RemoveAt(Q1, q1)

〈1〉 DEFINE R2
∆
= RemoveAt(R1, r1)

〈1〉 DEFINE LenQ2
∆
= Len(Q2)

〈1〉 DEFINE LenR2
∆
= Len(R2)

〈1〉 HIDE DEF S2, Q2, R2, LenQ2, LenR2

〈1〉19. LenQ2 = LenQ1− 1 BY 〈1〉6, 〈1〉17, RemoveAtProperties DEF Q2, LenQ2, LenQ1
〈1〉20. LenR2 = LenR1 − 1 BY 〈1〉10, 〈1〉18, RemoveAtProperties DEF R2, LenR2, LenR1

〈1〉21. IsExactSeqFor(Q2, S2) BY 〈1〉5, 〈1〉17, ExactSeqRemoveAt DEF Q2, S2, LenQ1
〈1〉22. IsExactSeqFor(R2, S2) BY 〈1〉9, 〈1〉18, ExactSeqRemoveAt DEF R2, S2, LenR1

〈1〉23. Q2 ∈ Seq(S2) BY 〈1〉21 DEF IsExactSeqFor
〈1〉24. LenQ2 ∈ Nat BY 〈1〉23, LenInNat DEF LenQ2
〈1〉25. LenQ2 6= LenR2 BY 〈1〉8, 〈1〉12, 〈1〉13, 〈1〉19, 〈1〉20, SMTT (10)

〈1〉26. IsCounterexample(S2, Q2, R2) BY 〈1〉21, 〈1〉22, 〈1〉25 DEF LenQ2, LenR2, IsCounterexample
〈1〉27. LenQ2 ∈ N BY 〈1〉24, 〈1〉26 DEF LenQ2, N



70 APPENDIX C. PROOF OF CORRECTNESS

〈1〉28. ¬(LenQ1 ≤ LenQ2) BY 〈1〉8, 〈1〉19, SMTT (10)
〈1〉 QED BY 〈1〉3, 〈1〉14, 〈1〉27, 〈1〉28
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C.7 Facts about partial orders
MODULE NaiadClockProofPartialOrders

EXTENDS NaiadClockProofExactSeqs

Facts about partial orders.

This really ought to be a library of theorems.

Although most of these theorems follow immediately from the definition, appealing to the theorem name in subsequent proofs rather than to the
definition makes the subsequent proofs easier to understand.

A partial order is reflexive. This follows immediately from the definition.

THEOREM PartialOrderReflexive
∆
=

ASSUME
NEW leq ∈ PointRelationType, IsPartialOrder(leq),
NEW s ∈ Point

PROVE
LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN
s � s

PROOF
〈1〉 QED BY DEF IsPartialOrder

A partial order is antisymmetric. This follows immediately from the definition.

THEOREM PartialOrderAntisymmetric
∆
=

ASSUME
NEW leq ∈ PointRelationType, IsPartialOrder(leq),
NEW s ∈ Point ,
NEW t ∈ Point

PROVE
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LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

s � t ∧ t � s ⇒ s = t
PROOF

〈1〉 QED BY DEF IsPartialOrder

A partial order is transitive. This follows immediately from the definition.

THEOREM PartialOrderTransitive
∆
=

ASSUME

NEW leq ∈ PointRelationType, IsPartialOrder(leq),
NEW s ∈ Point ,
NEW t ∈ Point ,
NEW u ∈ Point

PROVE

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

s � t ∧ t � u ⇒ s � u
PROOF

〈1〉 QED BY DEF IsPartialOrder

A partial order is strictly transitive.

THEOREM PartialOrderStrictlyTransitive
∆
=

ASSUME

NEW leq ∈ PointRelationType, IsPartialOrder(leq),
NEW s ∈ Point ,
NEW t ∈ Point ,
NEW u ∈ Point

PROVE

LET

a � b
∆
= leq [a][b]
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a ≺ b
∆
= a � b ∧ a 6= b

IN
∧ s � t ∧ t ≺ u ⇒ s ≺ u
∧ s ≺ t ∧ t � u ⇒ s ≺ u

PROOF
〈1〉 DEFINE a � b

∆
= leq [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b

〈1〉1. SUFFICES ASSUME s � t , t � u, s 6= t ∨ t 6= u PROVE s ≺ u OBVIOUS

〈1〉2. s � u BY 〈1〉1, PartialOrderTransitive
〈1〉3. SUFFICES ASSUME s = u PROVE FALSE BY 〈1〉2

〈1〉4. u � s BY 〈1〉3, PartialOrderReflexive
〈1〉5. u � t BY 〈1〉1, 〈1〉4, PartialOrderTransitive
〈1〉6. u = t BY 〈1〉1, 〈1〉5, PartialOrderAntisymmetric
〈1〉7. s = t BY 〈1〉3, 〈1〉6

〈1〉 QED BY 〈1〉1, 〈1〉6, 〈1〉7
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C.8 Facts about delta vectors
MODULE NaiadClockProofDeltaVecs

EXTENDS NaiadClockProofPartialOrders

Facts about delta vectors.

Addition of delta vectors is closed.

THEOREM DeltaVecAddType
∆
=

ASSUME

NEW a ∈ DeltaVecType,

NEW b ∈ DeltaVecType

PROVE

DeltaVecAdd(a, b) ∈ DeltaVecType

PROOF

〈1〉 QED BY Isa DEF DeltaVecType, DeltaVecAdd

Zero is a delta vec.

THEOREM DeltaVecZeroType
∆
=

DeltaVecZero ∈ DeltaVecType

PROOF

〈1〉 QED BY Isa DEF DeltaVecType, DeltaVecZero

Zero is the identity.

THEOREM DeltaVecAddZero
∆
=

ASSUME

NEW a ∈ DeltaVecType

PROVE

∧DeltaVecAdd(a, DeltaVecZero) = a

∧DeltaVecAdd(DeltaVecZero, a) = a
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PROOF

〈1〉 QED BY Isa DEF DeltaVecType, DeltaVecAdd , DeltaVecZero

Addition of delta vectors is commutative.

THEOREM DeltaVecAddCommutative
∆
=

ASSUME

NEW a ∈ DeltaVecType,
NEW b ∈ DeltaVecType

PROVE

DeltaVecAdd(a, b) = DeltaVecAdd(b, a)
PROOF

〈1〉 SUFFICES ASSUME NEW t ∈ Point
PROVE a[t ] + b[t ] = b[t ] + a[t ]
BY DEF DeltaVecAdd

〈1〉 QED BY SMTT (10) DEF DeltaVecType

Addition of delta vectors is associative.

THEOREM DeltaVecAddAssociative
∆
=

ASSUME

NEW a ∈ DeltaVecType,
NEW b ∈ DeltaVecType,
NEW c ∈ DeltaVecType

PROVE

DeltaVecAdd(DeltaVecAdd(a, b), c) = DeltaVecAdd(a, DeltaVecAdd(b, c))
PROOF

〈1〉 SUFFICES ASSUME NEW t ∈ Point
PROVE (a[t ] + b[t ]) + c[t ] = a[t ] + (b[t ] + c[t ])
BY DEF DeltaVecAdd

〈1〉 QED BY SMTT (10) DEF DeltaVecType

Negation of delta vectors is closed.

THEOREM DeltaVecNegType
∆
=
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ASSUME
NEW a ∈ DeltaVecType

PROVE
DeltaVecNeg(a) ∈ DeltaVecType

PROOF
〈1〉 QED BY Isa DEF DeltaVecType, DeltaVecNeg

Negation of a delta vector creates the additive inverse.

THEOREM DeltaVecAddNeg
∆
=

ASSUME
NEW a ∈ DeltaVecType

PROVE
∧DeltaVecAdd(a, DeltaVecNeg(a)) = DeltaVecZero
∧DeltaVecAdd(DeltaVecNeg(a), a) = DeltaVecZero

PROOF
〈1〉 SUFFICES ASSUME NEW t ∈ Point

PROVE a[t ] + (0− a[t ]) = 0 ∧ (0− a[t ]) + a[t ] = 0
BY DEF DeltaVecAdd , DeltaVecNeg , DeltaVecZero

〈1〉 QED BY SMTT (10) DEF DeltaVecType
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C.9 Facts about summing up sequences of delta vectors
MODULE NaiadClockProofDeltaVecSeqs

EXTENDS NaiadClockProofDeltaVecs

Facts about summing up sequences of delta vectors.

This really ought to be a library of theorems.

Let Prop be any predicate satisfied by Zero and preserved by Add . Let Q be a sequence of delta vectors in which each element after the first k
satisfies Prop. Then the skip k sum of Q is a delta vector that satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecSeqSkipSumProp Hypothesis(Prop( ), Q , k)
∆
=

∧ Prop(DeltaVecZero)
∧ ∀ a, b ∈ DeltaVecType : Prop(a) ∧ Prop(b)⇒ Prop(DeltaVecAdd(a, b))
∧Q ∈ Seq(DeltaVecType)
∧ k ∈ Nat
∧ ∀ i ∈ Nat : k < i ∧ i ≤ Len(Q)⇒ Prop(Q [i ])

DeltaVecSeqSkipSumProp Conclusion(Prop( ), Q , k)
∆
=

∧DeltaVecSeqSkipSum(k , Q) ∈ DeltaVecType
∧ Prop(DeltaVecSeqSkipSum(k , Q))

THEOREM DeltaVecSeqSkipSumProp
∆
=

ASSUME NEW Prop( ), NEW Q , NEW k , DeltaVecSeqSkipSumProp Hypothesis(Prop, Q , k)
PROVE DeltaVecSeqSkipSumProp Conclusion(Prop, Q , k)

PROOF

〈1〉 DEFINE Type
∆
= DeltaVecType

〈1〉 DEFINE Zero
∆
= DeltaVecZero

〈1〉 DEFINE Add(a, b)
∆
= DeltaVecAdd(a, b)

〈1〉 USE DEF DeltaVecSeqSkipSumProp Hypothesis
〈1〉1. Prop(Zero) OBVIOUS

〈1〉2. ∀ a, b ∈ Type : Prop(a) ∧ Prop(b)⇒ Prop(Add(a, b)) OBVIOUS

〈1〉3. Q ∈ Seq(Type) OBVIOUS

〈1〉4. k ∈ Nat OBVIOUS

〈1〉5. ∀ i ∈ Nat : k < i ∧ i ≤ Len(Q)⇒ Prop(Q [i ]) OBVIOUS

〈1〉 HIDE DEF DeltaVecSeqSkipSumProp Hypothesis
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〈1〉 DEFINE TypeProp(a)
∆
= a ∈ Type ∧ Prop(a)

Show the definition of the recursive function used to define the sum.

〈1〉 DEFINE Elem(i)
∆
= DeltaVecSeqSkipSum(k , Q) ! : !Elem(i)

〈1〉 DEFINE f 0
∆
= Zero

〈1〉 DEFINE Def (v , i)
∆
= Add(v , Elem(i))

〈1〉 DEFINE f
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0 ELSE Def (f [i − 1], i)]

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉6. LenQ ∈ Nat BY 〈1〉3, LenInNat
〈1〉7. DeltaVecSeqSkipSum(k , Q) = f [LenQ ] BY DEF DeltaVecSeqSkipSum

〈1〉8. ∀ i ∈ Nat : f [i ] = IF i = 0 THEN f 0 ELSE Def (f [i − 1], i)
〈2〉 HIDE DEF f 0, Def , f
〈2〉 SUFFICES NatInductiveDefConclusion(f , f 0, Def ) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(f , f 0, Def ) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, f

Each Elem has TypeProp.

〈1〉9. ∀ i ∈ Nat \ {0} : TypeProp(Elem(i))
〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE TypeProp(Elem(i)) OBVIOUS
〈2〉 HIDE DEF LenQ
〈2〉1. CASE k < i ∧ i ≤ LenQ
〈3〉 SUFFICES TypeProp(Q [i ]) BY 〈2〉1 DEF LenQ
〈3〉1. i ∈ 1 . . LenQ BY 〈2〉1, 〈1〉6, DotDotDef , SMTT (10)
〈3〉2. Q [i ] ∈ Type BY 〈3〉1, 〈1〉3, LenAxiom DEF LenQ
〈3〉3. Prop(Q [i ]) BY 〈2〉1, 〈1〉5 DEF LenQ
〈3〉 QED BY 〈3〉2, 〈3〉3
〈2〉2. CASE ¬(k < i ∧ i ≤ LenQ)
〈3〉 Elem(i) = Zero BY 〈2〉2 DEF LenQ
〈3〉 QED BY 〈1〉1, DeltaVecZeroType
〈2〉 QED BY 〈2〉1, 〈2〉2

The sum of the sequence evaluates its recursive function at the length of the sequence. Showing that this satisfies Prop requires induction.

〈1〉10. TypeProp(f [LenQ ])
〈2〉 DEFINE P(i)

∆
= TypeProp(f [i ])

〈2〉 HIDE DEF LenQ , f
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY 〈1〉6
〈2〉1. P(0) BY 〈1〉1, 〈1〉8, DeltaVecZeroType DEF f , f 0
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS
〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉3. f [i + 1] = Add(f [i ], Elem(i + 1)) BY 〈3〉2, 〈1〉8
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〈3〉4. TypeProp(Elem(i + 1)) BY 〈3〉2, 〈1〉9
〈3〉 QED BY 〈3〉3, 〈3〉4, 〈3〉1, 〈1〉2, DeltaVecAddType
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa
〈1〉 QED BY 〈1〉7, 〈1〉10 DEF DeltaVecSeqSkipSumProp Conclusion

The skip k sum of a sequence of delta vectors is a delta vector.

THEOREM DeltaVecSeqSkipSumType
∆
=

ASSUME
NEW Q ∈ Seq(DeltaVecType),
NEW k ∈ Nat

PROVE
DeltaVecSeqSkipSum(k , Q) ∈ DeltaVecType

PROOF
〈1〉 DEFINE Prop(a)

∆
= TRUE

〈1〉 DeltaVecSeqSkipSumProp Conclusion(Prop, Q , k)
〈2〉 DeltaVecSeqSkipSumProp Hypothesis(Prop, Q , k) BY DEF DeltaVecSeqSkipSumProp Hypothesis
〈2〉 QED BY DeltaVecSeqSkipSumProp
〈1〉 QED BY DEF DeltaVecSeqSkipSumProp Conclusion

The skip k sum of a sequence of zero delta vectors is zero.

THEOREM DeltaVecSeqSkipSumAllZero
∆
=

ASSUME
NEW Q ∈ Seq(DeltaVecType),
NEW k ∈ Nat ,
∀ i ∈ DOMAIN Q : Q [i ] = DeltaVecZero

PROVE
DeltaVecSeqSkipSum(k , Q) = DeltaVecZero

PROOF
〈1〉 DEFINE Prop(a)

∆
= a = DeltaVecZero

〈1〉 HIDE DEF Prop

〈1〉 SUFFICES Prop(DeltaVecSeqSkipSum(k , Q)) BY DEF Prop
〈1〉 DeltaVecSeqSkipSumProp Hypothesis(Prop, Q , k)
〈2〉 Prop(DeltaVecZero) BY DEF Prop
〈2〉 ∀ a, b ∈ DeltaVecType : Prop(a) ∧ Prop(b)⇒ Prop(DeltaVecAdd(a, b))
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BY DeltaVecZeroType, DeltaVecAddZero DEF Prop
〈2〉 DEFINE LenQ

∆
= Len(Q)

〈2〉 ∀ i ∈ Nat : k < i ∧ i ≤ LenQ ⇒ Prop(Q [i ])
〈3〉 TAKE i ∈ Nat
〈3〉 HAVE k < i ∧ i ≤ LenQ
〈3〉 SUFFICES i ∈ DOMAIN Q OBVIOUS

〈3〉 SUFFICES i ∈ 1 . . LenQ BY LenDef
〈3〉 LenQ ∈ Nat BY LenInNat
〈3〉 HIDE DEF LenQ
〈3〉 QED BY SMTT (10)
〈2〉 HIDE DEF Prop
〈2〉 QED BY DEF DeltaVecSeqSkipSumProp Hypothesis
〈1〉 DeltaVecSeqSkipSumProp Conclusion(Prop, Q , k) BY Isa, DeltaVecSeqSkipSumProp
〈1〉 QED BY DEF DeltaVecSeqSkipSumProp Conclusion

The skip k sum of a sequence of delta vectors is zero when you skip all of the elements of the sequence.

THEOREM DeltaVecSeqSkipSumSkipAll
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW k ∈ Nat , k ≥ Len(Q)

PROVE

DeltaVecSeqSkipSum(k , Q) = DeltaVecZero
PROOF

Show the definition of the recursive function used to define the sum.

〈1〉 DEFINE Elem(i)
∆
= DeltaVecSeqSkipSum(k , Q) ! : !Elem(i)

〈1〉 DEFINE f 0
∆
= DeltaVecZero

〈1〉 DEFINE Def (v , i)
∆
= DeltaVecAdd(v , Elem(i))

〈1〉 DEFINE f
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0 ELSE Def (f [i − 1], i)]

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉1. LenQ ∈ Nat BY LenInNat
〈1〉2. DeltaVecSeqSkipSum(k , Q) = f [LenQ ] BY DEF DeltaVecSeqSkipSum

〈1〉3. ∀ i ∈ Nat : f [i ] = IF i = 0 THEN f 0 ELSE Def (f [i − 1], i)
〈2〉 HIDE DEF f 0, Def , f
〈2〉 SUFFICES NatInductiveDefConclusion(f , f 0, Def ) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(f , f 0, Def ) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, f

The sum of the sequence evaluates its recursive function at the length of the sequence. Showing that this is zero requires induction.

〈1〉4. f [LenQ ] = DeltaVecZero
〈2〉 DEFINE P(i)

∆
= f [i ] = DeltaVecZero
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〈2〉 HIDE DEF LenQ , f
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY 〈1〉1, SMTT (10)
〈2〉1. P(0) BY 〈1〉3 DEF f , f 0
〈2〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)
〈3〉1. i + 1 ∈ Nat ∧ i + 1 6= 0 ∧ (i + 1)− 1 = i BY SMTT (10)
〈3〉2. f [i + 1] = DeltaVecAdd(f [i ], Elem(i + 1)) BY 〈1〉3, 〈3〉1
〈3〉3. Elem(i + 1) = DeltaVecZero
〈4〉 SUFFICES ¬(k < i + 1 ∧ i + 1 ≤ LenQ) BY DEF LenQ
〈4〉1. k ≥ LenQ BY DEF LenQ
〈4〉 QED BY 〈4〉1, 〈1〉1, SMTT (10)
〈3〉4. f [i ] ∈ DeltaVecType BY 〈2〉2, DeltaVecZeroType
〈3〉 QED BY 〈3〉2, 〈3〉3, 〈3〉4, 〈2〉2, DeltaVecAddZero
〈2〉 HIDE DEF P
〈2〉 QED BY 〈2〉1, 〈2〉2, NatInduction, Isa

〈1〉 QED BY 〈1〉2, 〈1〉4

The skip k sum of an empty sequence of delta vectors is zero. This is a simple corollary of the previous theorem.

THEOREM DeltaVecSeqSkipSumEmpty
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType), Q = 〈〉,
NEW k ∈ Nat

PROVE

DeltaVecSeqSkipSum(k , Q) = DeltaVecZero
PROOF

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉1. LenQ = 0 BY EmptySeq
〈1〉2. k ≥ LenQ
〈2〉 HIDE DEF LenQ
〈2〉 QED BY 〈1〉1, SMTT (10)
〈1〉 QED BY 〈1〉2, DeltaVecSeqSkipSumSkipAll

The skip k sum of a sequence Q is the same as adding delta to the skip k+1 sum, where delta is Q [k+1] if k+1 ≤ Len(Q) and DeltaVecZero
otherwise.

THEOREM DeltaVecSeqSkipSumNext
∆
=

ASSUME
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NEW Q ∈ Seq(DeltaVecType),
NEW k ∈ Nat

PROVE

LET

delta
∆
= IF k + 1 ≤ Len(Q) THEN Q [k + 1] ELSE DeltaVecZero

SSk
∆
= DeltaVecSeqSkipSum(k , Q)

SSk1
∆
= DeltaVecSeqSkipSum(k + 1, Q)

IN

SSk = DeltaVecAdd(SSk1, delta)
PROOF

〈1〉 DEFINE delta
∆
= IF k + 1 ≤ Len(Q) THEN Q [k + 1] ELSE DeltaVecZero

〈1〉 DEFINE SSk
∆
= DeltaVecSeqSkipSum(k , Q)

〈1〉 DEFINE SSk1
∆
= DeltaVecSeqSkipSum(k + 1, Q)

XXXa definitions are related to the skip k sum.

〈1〉 DEFINE Qa
∆
= Q

〈1〉 DEFINE Elema(i)
∆
= DeltaVecSeqSkipSum(k , Qa) ! : !Elem(i)

〈1〉 DEFINE f 0a
∆
= DeltaVecZero

〈1〉 DEFINE Defa(v , i)
∆
= DeltaVecAdd(v , Elema(i))

〈1〉 DEFINE fa
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0a ELSE Defa(f [i − 1], i)]

〈1〉 DEFINE LenQa
∆
= Len(Qa)

〈1〉1. Qa ∈ Seq(DeltaVecType) OBVIOUS

〈1〉2. Qa ∈ [1 . . LenQa → DeltaVecType] BY 〈1〉1, LenAxiom
〈1〉3. LenQa ∈ Nat BY LenInNat
〈1〉4. DeltaVecSeqSkipSum(k , Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum

〈1〉5. ∀ i ∈ Nat : fa[i ] = IF i = 0 THEN f 0a ELSE Defa(fa[i − 1], i)
〈2〉 HIDE DEF f 0a, Defa, fa
〈2〉 SUFFICES NatInductiveDefConclusion(fa, f 0a, Defa) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fa, f 0a, Defa) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the skip k + 1 sum.

〈1〉 DEFINE Qb
∆
= Q

〈1〉 DEFINE Elemb(i)
∆
= DeltaVecSeqSkipSum(k + 1, Qb) ! : !Elem(i)

〈1〉 DEFINE f 0b
∆
= DeltaVecZero

〈1〉 DEFINE Defb(v , i)
∆
= DeltaVecAdd(v , Elemb(i))

〈1〉 DEFINE fb
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0b ELSE Defb(f [i − 1], i)]

〈1〉 DEFINE LenQb
∆
= Len(Qb)

〈1〉6. Qb ∈ Seq(DeltaVecType) OBVIOUS

〈1〉7. Qb ∈ [1 . . LenQb → DeltaVecType] BY 〈1〉6, LenAxiom
〈1〉8. LenQb ∈ Nat BY 〈1〉6, LenInNat
〈1〉9. DeltaVecSeqSkipSum(k + 1, Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum

〈1〉10. ∀ i ∈ Nat : fb[i ] = IF i = 0 THEN f 0b ELSE Defb(fb[i − 1], i)
〈2〉 HIDE DEF f 0b, Defb, fb
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〈2〉 SUFFICES NatInductiveDefConclusion(fb, f 0b, Defb) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fb, f 0b, Defb) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fb

Lengths are equal.

〈1〉11. LenQa = LenQb OBVIOUS

Suffices to assume k < LenQa .

〈1〉12. SUFFICES ASSUME k < LenQa PROVE SSk = DeltaVecAdd(SSk1, delta)
〈2〉1. SUFFICES ASSUME ¬(k < LenQa) PROVE SSk = DeltaVecAdd(SSk1, delta) OBVIOUS

〈2〉2. DeltaVecSeqSkipSum(k , Q) = DeltaVecZero
〈3〉1. k ≥ LenQa
〈4〉 HIDE DEF LenQa
〈4〉 QED BY 〈2〉1, 〈1〉3, SMTT (10)
〈3〉 QED BY 〈3〉1, DeltaVecSeqSkipSumSkipAll
〈2〉3. DeltaVecSeqSkipSum(k + 1, Q) = DeltaVecZero
〈3〉1. k + 1 ≥ LenQa
〈4〉 HIDE DEF LenQa
〈4〉 QED BY 〈2〉1, 〈1〉3, SMTT (10)
〈3〉 QED BY 〈3〉1, DeltaVecSeqSkipSumSkipAll
〈2〉4. delta = DeltaVecZero
〈3〉1. ¬(k + 1 ≤ LenQa)
〈4〉 HIDE DEF LenQa
〈4〉 QED BY 〈2〉1, 〈1〉3, SMTT (10)
〈3〉 QED BY 〈3〉1
〈2〉5. DeltaVecAdd(DeltaVecSeqSkipSum(k + 1, Q), delta) = DeltaVecZero

BY 〈2〉3, 〈2〉4, DeltaVecAddZero, DeltaVecZeroType
〈2〉 QED BY 〈2〉2, 〈2〉5

delta a delta vec.

〈1〉13. delta ∈ DeltaVecType
〈2〉1. delta = Q [k + 1]
〈3〉1. k + 1 ≤ LenQa
〈4〉 HIDE DEF LenQa
〈4〉 QED BY 〈1〉3, 〈1〉12, SMTT (10)
〈3〉 QED BY 〈3〉1
〈2〉2. Q [k + 1] ∈ DeltaVecType
〈3〉1. k + 1 ∈ 1 . . LenQa
〈4〉 HIDE DEF LenQa
〈4〉 QED BY 〈1〉3, 〈1〉12, DotDotDef , SMTT (10)
〈3〉 QED BY 〈3〉1, LenAxiom
〈2〉 QED BY 〈2〉1, 〈2〉2

Each Elema is a delta vec.

〈1〉14. ASSUME NEW i ∈ Nat \ {0} PROVE Elema(i) ∈ DeltaVecType
〈2〉1. CASE k < i ∧ i ≤ LenQa
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〈3〉1. i ∈ 1 . . LenQa
〈4〉 HIDE DEF LenQa
〈4〉 QED BY 〈2〉1, 〈1〉3, DotDotDef , SMTT (10)
〈3〉2. Qa[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉6, LenAxiom
〈3〉 QED BY 〈3〉2, 〈2〉1
〈2〉2. CASE ¬(k < i ∧ i ≤ LenQa)
〈3〉1. Elema(i) = DeltaVecZero BY 〈2〉2
〈3〉 QED BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈2〉 QED BY 〈2〉1, 〈2〉2

Each Elemb is a delta vec.

〈1〉15. ASSUME NEW i ∈ Nat \ {0} PROVE Elemb(i) ∈ DeltaVecType
〈2〉1. CASE k + 1 < i ∧ i ≤ LenQb
〈3〉1. i ∈ 1 . . LenQb
〈4〉 HIDE DEF LenQb
〈4〉 QED BY 〈2〉1, 〈1〉8, DotDotDef , SMTT (10)
〈3〉2. Qb[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉6, LenAxiom
〈3〉 QED BY 〈3〉2, 〈2〉1
〈2〉2. CASE ¬(k + 1 < i ∧ i ≤ LenQb)
〈3〉1. Elemb(i) = DeltaVecZero BY 〈2〉2
〈3〉 QED BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈2〉 QED BY 〈2〉1, 〈2〉2

Each Elema(i) = Elemb(i) for all i > 0 except k + 1, where we have Elema(k + 1) = Elemb(k + 1) + delta .

〈1〉16. ASSUME NEW i ∈ Nat \ {0}
PROVE Elema(i) = IF i = k + 1 THEN DeltaVecAdd(Elemb(i), delta) ELSE Elemb(i)

〈2〉1. ASSUME i = k + 1 PROVE Elema(i) = DeltaVecAdd(Elemb(i), delta)
〈3〉1. Elema(k + 1) = delta
〈4〉1. k + 1 ≤ LenQa
〈5〉 HIDE DEF LenQa
〈5〉 QED BY 〈1〉3, 〈1〉12, SMTT (10)
〈4〉2. Elema(k + 1) = Q [k + 1]
〈5〉1. k < k + 1 BY SMTT (10)
〈5〉 QED BY 〈5〉1, 〈4〉1
〈4〉3. delta = Q [k + 1] BY 〈4〉1
〈4〉 QED BY 〈4〉2, 〈4〉3
〈3〉2. Elemb(k + 1) = DeltaVecZero
〈4〉1. ¬(k + 1 < k + 1) BY SMTT (10)
〈4〉 QED BY 〈4〉1
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1, 〈1〉13, DeltaVecAddZero
〈2〉2. ASSUME i 6= k + 1 PROVE Elema(i) = Elemb(i)
〈3〉 HIDE DEF Qa, Qb, LenQa, LenQb, Elema, Elemb
〈3〉1. CASE k < i ∧ i ≤ LenQa
〈4〉1. k < i ∧ i ≤ LenQa ∧ i ∈ 1 . . LenQa BY 〈3〉1, 〈1〉3, DotDotDef , SMTT (10)
〈4〉2. k + 1 < i ∧ i ≤ LenQb ∧ i ∈ 1 . . LenQb BY 〈4〉1, 〈1〉11, 〈2〉2, SMTT (10)
〈4〉3. Elema(i) = Q [i ] BY 〈4〉1 DEF LenQa, Elema, Qa



C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 85

〈4〉4. Elemb(i) = Q [i ] BY 〈4〉2 DEF LenQb, Elemb, Qb
〈4〉 QED BY 〈4〉3, 〈4〉4
〈3〉2. CASE ¬(k < i ∧ i ≤ LenQa)
〈4〉1. ¬(k < i ∧ i ≤ LenQa) BY 〈3〉2
〈4〉2. ¬(k + 1 < i ∧ i ≤ LenQb) BY 〈4〉1, 〈1〉11, 〈2〉2, SMTT (10)
〈4〉3. Elema(i) = DeltaVecZero BY 〈4〉1 DEF LenQa, Elema
〈4〉4. Elemb(i) = DeltaVecZero BY 〈4〉2 DEF LenQb, Elemb
〈4〉 QED BY 〈4〉3, 〈4〉4
〈3〉 QED BY 〈3〉1, 〈3〉2
〈2〉 QED BY 〈2〉1, 〈2〉2

fa[i ] is a delta vector

〈1〉17. ∀ i ∈ Nat : fa[i ] ∈ DeltaVecType
〈2〉 DEFINE P(i)

∆
= fa[i ] ∈ DeltaVecType

〈2〉 HIDE DEF LenQa, LenQb, fa, fb
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) OBVIOUS

〈2〉1. P(0)
〈3〉1. fa[0] = DeltaVecZero BY 〈1〉5 DEF fa, f 0a
〈3〉2. fa[0] ∈ DeltaVecType BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈3〉 QED BY 〈3〉2
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS

〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉3. fa[i + 1] = DeltaVecAdd(fa[i ], Elema(i + 1)) BY 〈3〉2, 〈1〉5
〈3〉4. fa[i ] ∈ DeltaVecType BY 〈3〉1
〈3〉5. Elema(i + 1) ∈ DeltaVecType BY 〈3〉2, 〈1〉14
〈3〉6. fa[i + 1] ∈ DeltaVecType BY 〈3〉3, 〈3〉4, 〈3〉5, DeltaVecAddType
〈3〉 QED BY 〈3〉6
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa

fb[i ] is a delta vector

〈1〉18. ∀ i ∈ Nat : fb[i ] ∈ DeltaVecType
〈2〉 DEFINE P(i)

∆
= fb[i ] ∈ DeltaVecType

〈2〉 HIDE DEF LenQa, LenQb, fa, fb
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) OBVIOUS

〈2〉1. P(0)
〈3〉1. fb[0] = DeltaVecZero BY 〈1〉10 DEF fb, f 0b
〈3〉2. fb[0] ∈ DeltaVecType BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈3〉 QED BY 〈3〉2



86 APPENDIX C. PROOF OF CORRECTNESS

〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS

〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉3. fb[i + 1] = DeltaVecAdd(fb[i ], Elemb(i + 1)) BY 〈3〉2, 〈1〉10
〈3〉4. fb[i ] ∈ DeltaVecType BY 〈3〉1
〈3〉5. Elemb(i + 1) ∈ DeltaVecType BY 〈3〉2, 〈1〉15
〈3〉6. fb[i + 1] ∈ DeltaVecType BY 〈3〉3, 〈3〉4, 〈3〉5, DeltaVecAddType
〈3〉 QED BY 〈3〉6
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa

Each sum evaluates its recursive function at the length of its sequence.

〈1〉 DEFINE AddD(v)
∆
= DeltaVecAdd(v , delta)

〈1〉19. fa[LenQa] = AddD(fb[LenQb])
〈2〉 DEFINE P(i)

∆
= fa[i ] = IF i < k + 1 THEN fb[i ] ELSE AddD(fb[i ])

〈2〉 HIDE DEF LenQa, LenQb, fa, fb, Elema, Elemb, AddD , delta
〈2〉 SUFFICES ∀ i ∈ Nat : P(i)
〈3〉 LenQa ∈ Nat BY 〈1〉3
〈3〉 LenQb ∈ Nat BY 〈1〉8
〈3〉 LenQa = LenQb BY 〈1〉11
〈3〉 k + 1 ≤ LenQa BY 〈1〉12, SMTT (10)
〈3〉 QED BY SMTT (10)
〈2〉1. P(0)
〈3〉1. 0 < k + 1 BY SMTT (10)
〈3〉2. fb[0] = DeltaVecZero BY 〈1〉10 DEF fb, f 0b
〈3〉3. fa[0] = DeltaVecZero BY 〈1〉5 DEF fa, f 0a
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS

〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉 DEFINE fai
∆
= fa[i ]

〈3〉 DEFINE fbi
∆
= fb[i ]

〈3〉 DEFINE fai1
∆
= fa[i + 1]

〈3〉 DEFINE fbi1
∆
= fb[i + 1]

〈3〉 DEFINE vai1
∆
= Elema(i + 1)
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〈3〉 DEFINE vbi1
∆
= Elemb(i + 1)

〈3〉3. fai1 = DeltaVecAdd(fai , vai1) BY 〈3〉2, 〈1〉5
〈3〉4. fbi1 = DeltaVecAdd(fbi , vbi1) BY 〈3〉2, 〈1〉10
〈3〉5. fbi ∈ DeltaVecType BY 〈3〉2, 〈1〉18
〈3〉6. vbi1 ∈ DeltaVecType BY 〈3〉2, 〈1〉15
〈3〉7. CASE i + 1 6= k + 1
〈4〉1. vai1 = vbi1 BY 〈3〉2, 〈3〉7, 〈1〉16
〈4〉2. CASE i < k + 1
〈5〉1. fbi = fai BY 〈4〉2, 〈3〉1
〈5〉2. i + 1 < k + 1 BY 〈4〉2, 〈3〉7, SMTT (10)
〈5〉 SUFFICES fai1 = fbi1 BY 〈5〉2
〈5〉 HIDE DEF fai , fbi , fai1, fbi1, vai1, vbi1
〈5〉3. fbi1 = DeltaVecAdd(fai , vai1) BY 〈3〉4, 〈5〉1, 〈4〉1
〈5〉4. fbi1 = fai1 BY 〈5〉3, 〈3〉3
〈5〉 QED BY 〈5〉4
〈4〉3. CASE ¬(i < k + 1)
〈5〉1. fai = AddD(fbi) BY 〈4〉3, 〈3〉1
〈5〉2. ¬(i + 1 < k + 1) BY 〈4〉3, 〈3〉7, SMTT (10)
〈5〉 SUFFICES fai1 = AddD(fbi1) BY 〈5〉2
〈5〉 HIDE DEF fai , fbi , fai1, fbi1, vai1, vbi1
〈5〉 fbi ∈ DeltaVecType BY 〈3〉5
〈5〉 vbi1 ∈ DeltaVecType BY 〈3〉6
〈5〉 delta ∈ DeltaVecType BY 〈1〉13
〈5〉3. fai1 = DeltaVecAdd(DeltaVecAdd(fbi , delta), vbi1) BY 〈3〉3, 〈5〉1, 〈4〉1 DEF AddD
〈5〉4. fai1 = DeltaVecAdd(fbi , DeltaVecAdd(delta, vbi1)) BY 〈5〉3, DeltaVecAddAssociative
〈5〉5. fai1 = DeltaVecAdd(fbi , DeltaVecAdd(vbi1, delta)) BY 〈5〉4, DeltaVecAddCommutative
〈5〉6. fai1 = DeltaVecAdd(DeltaVecAdd(fbi , vbi1), delta) BY 〈5〉5, DeltaVecAddAssociative
〈5〉7. fai1 = AddD(fbi1) BY 〈5〉6, 〈3〉4 DEF AddD
〈5〉 QED BY 〈5〉7
〈4〉 QED BY 〈4〉2, 〈4〉3
〈3〉8. CASE i + 1 = k + 1
〈4〉1. vai1 = AddD(vbi1) BY 〈3〉2, 〈3〉8, 〈1〉16 DEF AddD
〈4〉2. i < k + 1 BY 〈3〉8, SMTT (10)
〈4〉3. fai = fbi BY 〈4〉2, 〈3〉1
〈4〉4. ¬(i + 1 < k + 1) BY 〈3〉8, SMTT (10)
〈4〉 SUFFICES fai1 = AddD(fbi1) BY 〈4〉4
〈4〉 HIDE DEF fai , fbi , fai1, fbi1, vai1, vbi1
〈4〉 fbi ∈ DeltaVecType BY 〈3〉5
〈4〉 vbi1 ∈ DeltaVecType BY 〈3〉6
〈4〉 delta ∈ DeltaVecType BY 〈1〉13
〈4〉5. fai1 = DeltaVecAdd(fbi , DeltaVecAdd(vbi1, delta)) BY 〈3〉3, 〈4〉3, 〈4〉1 DEF AddD
〈4〉6. fai1 = DeltaVecAdd(DeltaVecAdd(fbi , vbi1), delta) BY 〈4〉5, DeltaVecAddAssociative
〈4〉7. fai1 = AddD(fbi1) BY 〈4〉6, 〈3〉4 DEF AddD
〈4〉 QED BY 〈4〉7
〈3〉 QED BY 〈3〉7, 〈3〉8
〈2〉 HIDE DEF P
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〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa
〈1〉 HIDE DEF fa, fb
〈1〉 QED BY 〈1〉4, 〈1〉9, 〈1〉19

When you append a value d to a sequence Q of delta vecs, the sums increase by d for all skip counts k ≤ Len(Q).

THEOREM DeltaVecSeqSkipSumAppend
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW d ∈ DeltaVecType,
NEW k ∈ Nat , k ≤ Len(Q)

PROVE

DeltaVecSeqSkipSum(k , Append(Q , d)) = DeltaVecAdd(DeltaVecSeqSkipSum(k , Q), d)
PROOF
XXXa definitions are related to the sum based on the original Q .

〈1〉 DEFINE Qa
∆
= Q

〈1〉 DEFINE Elema(i)
∆
= DeltaVecSeqSkipSum(k , Qa) ! : !Elem(i)

〈1〉 DEFINE f 0a
∆
= DeltaVecZero

〈1〉 DEFINE Defa(v , i)
∆
= DeltaVecAdd(v , Elema(i))

〈1〉 DEFINE fa
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0a ELSE Defa(f [i − 1], i)]

〈1〉 DEFINE LenQa
∆
= Len(Qa)

〈1〉1. LenQa ∈ Nat BY LenInNat
〈1〉2. DeltaVecSeqSkipSum(k , Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum

〈1〉3. ∀ i ∈ Nat : fa[i ] = IF i = 0 THEN f 0a ELSE Defa(fa[i − 1], i)
〈2〉 HIDE DEF f 0a, Defa, fa
〈2〉 SUFFICES NatInductiveDefConclusion(fa, f 0a, Defa) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fa, f 0a, Defa) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the sum after appending d to Q .

〈1〉 DEFINE Qb
∆
= Append(Q , d)

〈1〉 DEFINE Elemb(i)
∆
= DeltaVecSeqSkipSum(k , Qb) ! : !Elem(i)

〈1〉 DEFINE f 0b
∆
= DeltaVecZero

〈1〉 DEFINE Defb(v , i)
∆
= DeltaVecAdd(v , Elemb(i))

〈1〉 DEFINE fb
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0b ELSE Defb(f [i − 1], i)]

〈1〉 DEFINE LenQb
∆
= Len(Qb)

〈1〉4. LenQb ∈ Nat BY LenInNat , IsaT (120)
〈1〉5. DeltaVecSeqSkipSum(k , Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum
〈1〉6. ∀ i ∈ Nat : fb[i ] = IF i = 0 THEN f 0b ELSE Defb(fb[i − 1], i)
〈2〉 HIDE DEF f 0b, Defb, fb
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〈2〉 SUFFICES NatInductiveDefConclusion(fb, f 0b, Defb) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fb, f 0b, Defb) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fb

Now relate the two sums. We show that Qb is one element longer than Qa , that the extra element on the end of Qb is d , and that Elemb and
Elema are identical for the length of Qa .

〈1〉7. LenQb = LenQa + 1 BY AppendProperties
〈1〉8. ∀ i ∈ 1 . . LenQa : Qb[i ] = Qa[i ] BY AppendProperties, IsaT (120)
〈1〉9. Qb[LenQa + 1] = d BY AppendProperties, IsaT (120)
〈1〉10. ∀ i ∈ 1 . . LenQa : Elemb(i) = Elema(i)
〈2〉 HIDE DEF Qa, Qb
〈2〉 SUFFICES ASSUME NEW i ∈ 1 . . LenQa PROVE Elemb(i) = Elema(i) OBVIOUS
〈2〉1. Qb[i ] = Qa[i ] BY 〈1〉8
〈2〉2. i ≤ LenQa ∧ i ≤ LenQb
〈3〉 HIDE DEF LenQa, LenQb
〈3〉 QED BY 〈1〉1, 〈1〉4, 〈1〉7, SMTT (10)
〈2〉 QED BY 〈2〉1, 〈2〉2

The sum of the sequence evaluates its recursive function at the length of the sequence. Since Qb is one element longer than Qa , we use the
recursive definition of fb to express fb[LenQb] in terms of fb[LenQa] .

〈1〉11. fb[LenQa + 1] = DeltaVecAdd(fb[LenQa], Elemb(LenQa + 1))
〈2〉 HIDE DEF LenQa, fb, Defb
〈2〉1. LenQa + 1 ∈ Nat BY 〈1〉1, SMTT (10)
〈2〉2. LenQa + 1 6= 0 BY 〈1〉1, SMTT (10)
〈2〉3. (LenQa + 1)− 1 = LenQa BY 〈1〉1, SMTT (10)
〈2〉 QED BY 〈1〉6, 〈2〉1, 〈2〉2, 〈2〉3 DEF Defb

Now we show that evaluating fb at the length of Qa is the same as evaluating fa at the length of Qa . Proving this requires induction.

〈1〉12. fb[LenQa] = fa[LenQa]
〈2〉 DEFINE P(i)

∆
= i ≤ LenQa ⇒ fb[i ] = fa[i ]

〈2〉 HIDE DEF LenQa, fa, fb
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY 〈1〉1, SMTT (10)
〈2〉1. P(0) BY 〈1〉3, 〈1〉6 DEF fa, f 0a, fb, f 0b
〈2〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)
〈3〉1. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉2. SUFFICES ASSUME i + 1 ≤ LenQa PROVE fb[i + 1] = fa[i + 1] OBVIOUS
〈3〉3. fa[i + 1] = DeltaVecAdd(fa[i ], Elema(i + 1)) BY 〈3〉1, 〈1〉3
〈3〉4. fb[i + 1] = DeltaVecAdd(fb[i ], Elemb(i + 1)) BY 〈3〉1, 〈1〉6
〈3〉5. fb[i ] = fa[i ]
〈4〉1. i ≤ LenQa BY 〈3〉2, 〈1〉1, SMTT (10)
〈4〉 QED BY 〈4〉1, 〈2〉2
〈3〉6. Elemb(i + 1) = Elema(i + 1)
〈4〉1. i + 1 ∈ 1 . . LenQa BY 〈3〉2, 〈1〉1, DotDotDef , SMTT (10)
〈4〉 QED BY 〈4〉1, 〈1〉10
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〈3〉 QED BY 〈3〉3, 〈3〉4, 〈3〉5, 〈3〉6
〈2〉 HIDE DEF P
〈2〉 QED BY 〈2〉1, 〈2〉2, NatInduction, Isa

Now we show that Elemb(LenQb) is in fact d , the additional element that was appended to Qa . Proving this requires that k ≤ Len(Q) .

〈1〉13. Elemb(LenQa + 1) = d
〈2〉 SUFFICES k < LenQa + 1 ∧ LenQa + 1 ≤ LenQb BY 〈1〉9
〈2〉1. k ≤ LenQa OBVIOUS

〈2〉 HIDE DEF LenQa, LenQb
〈2〉2. k < LenQa + 1 BY 〈1〉1, 〈2〉1, SMTT (10)
〈2〉3. LenQa + 1 ≤ LenQb BY 〈1〉1, 〈1〉7, SMTT (10)
〈2〉 QED BY 〈2〉2, 〈2〉3
〈1〉 HIDE DEF fa, fb
〈1〉 QED BY 〈1〉2, 〈1〉5, 〈1〉11, 〈1〉12, 〈1〉13, IsaT (120)

For a non-empty sequence Q of delta vecs, the sums skipping k of Tail(Q) are the same as the sums skipping k + 1 of Q .

THEOREM DeltaVecSeqSkipSumTail
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType), Q 6= 〈〉,
NEW k ∈ Nat

PROVE

DeltaVecSeqSkipSum(k , Tail(Q)) = DeltaVecSeqSkipSum(k + 1, Q)
PROOF
XXXa definitions are related to the sum of Q skipping k + 1.

〈1〉 DEFINE Qa
∆
= Q

〈1〉 DEFINE Elema(i)
∆
= DeltaVecSeqSkipSum(k + 1, Qa) ! : !Elem(i)

〈1〉 DEFINE f 0a
∆
= DeltaVecZero

〈1〉 DEFINE Defa(v , i)
∆
= DeltaVecAdd(v , Elema(i))

〈1〉 DEFINE fa
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0a ELSE Defa(f [i − 1], i)]

〈1〉 DEFINE LenQa
∆
= Len(Qa)

〈1〉1. k + 1 ∈ Nat BY SMTT (10)
〈1〉2. LenQa ∈ Nat BY LenInNat
〈1〉3. DeltaVecSeqSkipSum(k + 1, Qa) = fa[LenQa] BY 〈1〉1 DEF DeltaVecSeqSkipSum

〈1〉4. ∀ i ∈ Nat : fa[i ] = IF i = 0 THEN f 0a ELSE Defa(fa[i − 1], i)
〈2〉 HIDE DEF f 0a, Defa, fa
〈2〉 SUFFICES NatInductiveDefConclusion(fa, f 0a, Defa) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fa, f 0a, Defa) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the sum of Tail(Q) skipping k .
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〈1〉 DEFINE Qb
∆
= Tail(Q)

〈1〉 DEFINE Elemb(i)
∆
= DeltaVecSeqSkipSum(k , Qb) ! : !Elem(i)

〈1〉 DEFINE f 0b
∆
= DeltaVecZero

〈1〉 DEFINE Defb(v , i)
∆
= DeltaVecAdd(v , Elemb(i))

〈1〉 DEFINE fb
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0b ELSE Defb(f [i − 1], i)]

〈1〉 DEFINE LenQb
∆
= Len(Qb)

〈1〉5. Qb ∈ Seq(DeltaVecType) BY TailProp
〈1〉6. LenQb ∈ Nat BY 〈1〉5, LenInNat
〈1〉7. DeltaVecSeqSkipSum(k , Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum

〈1〉8. ∀ i ∈ Nat : fb[i ] = IF i = 0 THEN f 0b ELSE Defb(fb[i − 1], i)
〈2〉 HIDE DEF f 0b, Defb, fb
〈2〉 SUFFICES NatInductiveDefConclusion(fb, f 0b, Defb) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fb, f 0b, Defb) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fb

Now relate the two sums. We show that Elemb(i) is the same as Elema(i + 1) and that Elema(1) is zero.

〈1〉9. LenQb = LenQa − 1 BY TailProp
〈1〉10. ∀ i ∈ Nat \ {0} : Elemb(i) = Elema(i + 1)
〈2〉1. ∀ i ∈ 1 . . LenQb : Qb[i ] = Qa[i + 1] BY TailProp
〈2〉 HIDE DEF Qa, Qb, LenQa, LenQb
〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE Elemb(i) = Elema(i + 1) OBVIOUS

〈2〉2. (i ∈ 1 . . LenQb) ∨ (i > LenQb) BY 〈1〉6, DotDotDef , SMTT (10)
〈2〉3. CASE i ∈ 1 . . LenQb
〈3〉1. Qb[i ] = Qa[i + 1] BY 〈2〉1, 〈2〉3
〈3〉2. i ≤ LenQb ∧ i + 1 ≤ LenQa BY 〈2〉3, 〈1〉2, 〈1〉6, 〈1〉9, DotDotDef , SMTT (10)
〈3〉3. k < i ≡ k + 1 < i + 1 BY SMTT (10)
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3 DEF LenQa, LenQb
〈2〉4. CASE i > LenQb
〈3〉1. ¬(i ≤ LenQb) ∧ ¬(i + 1 ≤ LenQa) BY 〈2〉4, 〈1〉2, 〈1〉6, 〈1〉9, SMTT (10)
〈3〉 QED BY 〈3〉1 DEF LenQa, LenQb
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4
〈1〉11. Elema(1) = DeltaVecZero
〈2〉1. ¬(k + 1 < 1) BY SMTT (10)
〈2〉 QED BY 〈2〉1

Each sum evaluates its recursive function at the length of its sequence. Now we show that the results are the same for each sum. Proving this
requires induction.

〈1〉12. fb[LenQb] = fa[LenQa]
〈2〉 DEFINE P(i)

∆
= fb[i ] = fa[i + 1]

〈2〉 HIDE DEF LenQa, LenQb, fa, fb
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY 〈1〉2, 〈1〉6, 〈1〉9, SMTT (10)
〈2〉1. P(0)
〈3〉1. Trivial facts to help the prover match known facts or proof obligations.

∧ 0 + 1 ∈ Nat
∧ 0 + 1 6= 0
∧ (0 + 1)− 1 = 0
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∧ 0 + 1 = 1
BY SMTT (10)

〈3〉2. fb[0] = DeltaVecZero BY 〈1〉8 DEF fb, f 0b
〈3〉3. fa[1] = DeltaVecZero
〈4〉2. fa[1] = DeltaVecAdd(fa[0], Elema(1)) BY 〈3〉1, 〈1〉4 DEF fa, Defa
〈4〉3. fa[0] = DeltaVecZero BY 〈1〉4 DEF fa, f 0a
〈4〉4. Elema(1) = DeltaVecZero BY 〈3〉1, 〈1〉11
〈4〉 QED BY 〈4〉2, 〈4〉3, 〈4〉4, DeltaVecZeroType, DeltaVecAddZero
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3
〈2〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)
〈3〉1. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
∧ (i + 1) + 1 = i + 2
∧ i + 2 ∈ Nat
∧ i + 2 ∈ Nat \ {0}
∧ i + 2 6= 0
∧ (i + 2)− 1 = i + 1
BY SMTT (10)

〈3〉2. fb[i + 1] = DeltaVecAdd(fb[i ], Elemb(i + 1)) BY 〈3〉1, 〈1〉8
〈3〉3. fa[i + 2] = DeltaVecAdd(fa[i + 1], Elema(i + 2)) BY 〈3〉1, 〈1〉4
〈3〉4. fb[i ] = fa[i + 1] BY 〈2〉2
〈3〉5. Elemb(i + 1) = Elema(i + 2) BY 〈1〉10, 〈3〉1
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4, 〈3〉5
〈2〉 HIDE DEF P
〈2〉 QED BY 〈2〉1, 〈2〉2, NatInduction, Isa
〈1〉 HIDE DEF fa, fb
〈1〉 QED BY 〈1〉3, 〈1〉7, 〈1〉12

For a non-empty sequence Q of delta vectors, Head(Q) plus the sum of all delta vectors on Tail(Q) is the same as the sum of all delta vecs on
Q .

THEOREM DeltaVecSeqSkipSumHeadTail
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType), Q 6= 〈〉
PROVE

DeltaVecAdd(Head(Q), DeltaVecSeqSkipSum(0, Tail(Q))) = DeltaVecSeqSkipSum(0, Q)
PROOF
XXXa definitions are related to the sum of Q skipping 0.
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〈1〉 DEFINE Qa
∆
= Q

〈1〉 DEFINE Elema(i)
∆
= DeltaVecSeqSkipSum(0, Qa) ! : !Elem(i)

〈1〉 DEFINE f 0a
∆
= DeltaVecZero

〈1〉 DEFINE Defa(v , i)
∆
= DeltaVecAdd(v , Elema(i))

〈1〉 DEFINE fa
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0a ELSE Defa(f [i − 1], i)]

〈1〉 DEFINE LenQa
∆
= Len(Qa)

〈1〉1. LenQa ∈ Nat BY LenInNat

〈1〉2. DeltaVecSeqSkipSum(0, Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum

〈1〉3. ∀ i ∈ Nat : fa[i ] = IF i = 0 THEN f 0a ELSE Defa(fa[i − 1], i)

〈2〉 HIDE DEF f 0a, Defa, fa

〈2〉 SUFFICES NatInductiveDefConclusion(fa, f 0a, Defa) BY DEF NatInductiveDefConclusion

〈2〉 SUFFICES NatInductiveDefHypothesis(fa, f 0a, Defa) BY NatInductiveDef

〈2〉 QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the sum of Tail(Q) skipping 0.

〈1〉 DEFINE Qb
∆
= Tail(Q)

〈1〉 DEFINE Elemb(i)
∆
= DeltaVecSeqSkipSum(0, Qb) ! : !Elem(i)

〈1〉 DEFINE f 0b
∆
= DeltaVecZero

〈1〉 DEFINE Defb(v , i)
∆
= DeltaVecAdd(v , Elemb(i))

〈1〉 DEFINE fb
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0b ELSE Defb(f [i − 1], i)]

〈1〉 DEFINE LenQb
∆
= Len(Qb)

〈1〉4. Qb ∈ Seq(DeltaVecType) BY TailProp

〈1〉5. LenQb ∈ Nat BY 〈1〉4, LenInNat

〈1〉6. DeltaVecSeqSkipSum(0, Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum

〈1〉7. ∀ i ∈ Nat : fb[i ] = IF i = 0 THEN f 0b ELSE Defb(fb[i − 1], i)

〈2〉 HIDE DEF f 0b, Defb, fb

〈2〉 SUFFICES NatInductiveDefConclusion(fb, f 0b, Defb) BY DEF NatInductiveDefConclusion

〈2〉 SUFFICES NatInductiveDefHypothesis(fb, f 0b, Defb) BY NatInductiveDef

〈2〉 QED BY DEF NatInductiveDefHypothesis, fb

Each Elemb is a delta vec.

〈1〉8. ∀ i ∈ Nat \ {0} : Elemb(i) ∈ DeltaVecType

〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE Elemb(i) ∈ DeltaVecType OBVIOUS

〈2〉 HIDE DEF LenQb

〈2〉1. CASE 0 < i ∧ i ≤ LenQb

〈3〉1. i ∈ 1 . . LenQb BY 〈2〉1, 〈1〉5, DotDotDef , SMTT (10)

〈3〉2. Qb[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉4, LenAxiom DEF LenQb

〈3〉 QED BY 〈3〉2, 〈2〉1 DEF LenQb

〈2〉2. CASE ¬(0 < i ∧ i ≤ LenQb)

〈3〉1. Elemb(i) = DeltaVecZero BY 〈2〉2 DEF LenQb

〈3〉 QED BY 〈3〉1, DeltaVecZeroType

〈2〉 QED BY 〈2〉1, 〈2〉2
Now relate the two sums. We show that Elemb(i) is the same as Elema(i + 1) .
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〈1〉9. LenQb = LenQa − 1 BY TailProp
〈1〉10. ∀ i ∈ Nat \ {0} : Elemb(i) = Elema(i + 1)
〈2〉1. ∀ i ∈ 1 . . LenQb : Qb[i ] = Qa[i + 1] BY TailProp
〈2〉2. ∀ i ∈ 1 . . LenQb : Qb[i ] ∈ DeltaVecType BY TailProp, ElementOfSeq
〈2〉 HIDE DEF Qa, Qb, LenQa, LenQb
〈2〉3. SUFFICES ASSUME NEW i ∈ Nat \ {0}

PROVE Elemb(i) = Elema(i + 1)
OBVIOUS

〈2〉4. (i ∈ 1 . . LenQb) ∨ (i > LenQb) BY 〈1〉5, DotDotDef , SMTT (10)
〈2〉5. CASE i ∈ 1 . . LenQb
〈3〉1. Qb[i ] = Qa[i + 1] BY 〈2〉1, 〈2〉5
〈3〉2. i ≤ LenQb ∧ i + 1 ≤ LenQa BY 〈2〉5, 〈1〉1, 〈1〉5, 〈1〉9, DotDotDef , SMTT (10)
〈3〉3. 0 < i ∧ 0 < i + 1 BY SMTT (10)
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3 DEF LenQa, LenQb
〈2〉6. CASE i > LenQb
〈3〉1. ¬(i ≤ LenQb) ∧ ¬(i + 1 ≤ LenQa) BY 〈2〉6, 〈1〉1, 〈1〉5, 〈1〉9, SMTT (10)
〈3〉 QED BY 〈3〉1 DEF LenQa, LenQb
〈2〉 QED BY 〈2〉4, 〈2〉5, 〈2〉6

We show that Elema(1) is Head(Q) .

〈1〉11. Head(Q) ∈ DeltaVecType BY HeadType
〈1〉12. LenQa > 0
〈2〉2. LenQa 6= 0 BY EmptySeq
〈2〉 HIDE DEF LenQa
〈2〉 QED BY 〈2〉2, 〈1〉1, SMTT (10)
〈1〉13. Elema(1) = Head(Q)
〈2〉 HIDE DEF LenQa
〈2〉1. Qa[1] = Head(Q) BY HeadDef
〈2〉3. 0 < 1 ∧ 1 ≤ LenQa BY 〈1〉12, 〈1〉1, SMTT (10)
〈2〉 QED BY 〈2〉1, 〈2〉3 DEF LenQa

Each sum evaluates its recursive function at the length of its sequence. Now we show that adding Head(Q) to the sum of Tail(Q) is the same
as the sum of Q . Proving this requires induction.

〈1〉 DEFINE AddHeadQ(v)
∆
= DeltaVecAdd(Head(Q), v)

〈1〉14. AddHeadQ(fb[LenQb]) = fa[LenQa]
〈2〉 DEFINE P(i)

∆
= AddHeadQ(fb[i ]) = fa[i + 1] ∧ fb[i ] ∈ DeltaVecType

〈2〉 HIDE DEF LenQa, LenQb, fa, fb, AddHeadQ
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY 〈1〉1, 〈1〉5, 〈1〉9, 〈1〉12, SMTT (10)
〈2〉1. P(0)
〈3〉1. Trivial facts to help the prover match known facts or proof obligations.

∧ 0 + 1 ∈ Nat
∧ 0 + 1 6= 0
∧ (0 + 1)− 1 = 0
∧ 0 + 1 = 1
BY SMTT (10)

〈3〉2. fb[0] = DeltaVecZero BY 〈1〉7 DEF fb, f 0b
〈3〉3. fb[0] ∈ DeltaVecType BY 〈3〉2, DeltaVecZeroType
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〈3〉4. DeltaVecAdd(Head(Q), fb[0]) = Head(Q) BY 〈3〉2, 〈1〉11, DeltaVecAddZero
〈3〉5. AddHeadQ(fb[0]) = Head(Q) BY 〈3〉4 DEF AddHeadQ
〈3〉6. fa[0] = DeltaVecZero BY 〈1〉3 DEF fa, f 0a
〈3〉7. fa[1] = DeltaVecAdd(fa[0], Elema(1)) BY 〈3〉1, 〈1〉3 DEF fa, Defa
〈3〉8. fa[1] = Head(Q) BY 〈3〉7, 〈3〉6, 〈1〉13, 〈1〉11, DeltaVecAddZero
〈3〉 QED BY 〈3〉1, 〈3〉3, 〈3〉5, 〈3〉8
〈2〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)
〈3〉1. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
∧ (i + 1) + 1 = i + 2
∧ i + 2 ∈ Nat
∧ i + 2 ∈ Nat \ {0}
∧ i + 2 6= 0
∧ (i + 2)− 1 = i + 1
BY SMTT (10)

Write in terms of definitions that can be hidden.

〈3〉 DEFINE hq
∆
= Head(Q)

〈3〉 DEFINE fbi
∆
= fb[i ]

〈3〉 DEFINE fbi1
∆
= fb[i + 1]

〈3〉 DEFINE vbi1
∆
= Elemb(i + 1)

〈3〉 DEFINE fai1
∆
= fa[i + 1]

〈3〉 DEFINE fai2
∆
= fa[i + 2]

〈3〉 DEFINE vai2
∆
= Elema(i + 2)

Expose one level of recursion and re-associate adding Head(Q).

〈3〉2. fai2 = DeltaVecAdd(fai1, vai2) BY 〈3〉1, 〈1〉3
〈3〉3. vbi1 = vai2 BY 〈3〉1, 〈1〉10
〈3〉4. fai2 = DeltaVecAdd(fai1, vbi1) BY 〈3〉2, 〈3〉3
〈3〉5. AddHeadQ(fbi) = fai1 BY 〈2〉2
〈3〉6. DeltaVecAdd(hq , fbi) = fai1 BY 〈3〉5 DEF AddHeadQ
〈3〉7. fai2 = DeltaVecAdd(DeltaVecAdd(hq , fbi), vbi1) BY 〈3〉4, 〈3〉6
〈3〉8. hq ∈ DeltaVecType BY 〈1〉11
〈3〉9. fbi ∈ DeltaVecType BY 〈2〉2
〈3〉10. vbi1 ∈ DeltaVecType BY 〈3〉1, 〈1〉8
〈3〉11. fai2 = DeltaVecAdd(hq , DeltaVecAdd(fbi , vbi1))
〈4〉 HIDE DEF fai2, hq , fbi , vbi1
〈4〉 QED BY 〈3〉7, 〈3〉8, 〈3〉9, 〈3〉10, DeltaVecAddAssociative
〈3〉12. fbi1 = DeltaVecAdd(fbi , vbi1) BY 〈3〉1, 〈1〉7
〈3〉13. fbi1 ∈ DeltaVecType
〈4〉 HIDE DEF fbi1, fbi , vbi1
〈4〉 QED BY 〈3〉9, 〈3〉10, 〈3〉12, DeltaVecAddType
〈3〉14. fai2 = DeltaVecAdd(hq , fbi1) BY 〈3〉11, 〈3〉12
〈3〉15. fai2 = AddHeadQ(fbi1) BY 〈3〉14 DEF AddHeadQ
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〈3〉 QED BY 〈3〉1, 〈3〉13, 〈3〉15
〈2〉 HIDE DEF P
〈2〉 QED BY 〈2〉1, 〈2〉2, NatInduction, Isa
〈1〉 HIDE DEF fa, fb
〈1〉 QED BY 〈1〉2, 〈1〉6, 〈1〉14

For a sequence Q of delta vectors and an index n ∈ 1 . . Len(Q), Q [n] plus the sum of all delta vectors on RemoveAt(Q , n) is the same as the
sum of all delta vectors on Q .

THEOREM DeltaVecSeqSkipSumRemoveAt
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW n ∈ 1 . . Len(Q)

PROVE

DeltaVecAdd(Q [n], DeltaVecSeqSkipSum(0, RemoveAt(Q , n))) = DeltaVecSeqSkipSum(0, Q)
PROOF
XXXa definitions are related to the sum of Q skipping 0.

〈1〉 DEFINE Qa
∆
= Q

〈1〉 DEFINE Elema(i)
∆
= DeltaVecSeqSkipSum(0, Qa) ! : !Elem(i)

〈1〉 DEFINE f 0a
∆
= DeltaVecZero

〈1〉 DEFINE Defa(v , i)
∆
= DeltaVecAdd(v , Elema(i))

〈1〉 DEFINE fa
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0a ELSE Defa(f [i − 1], i)]

〈1〉 DEFINE LenQa
∆
= Len(Qa)

〈1〉 HIDE DEF Qa, Elema, f 0a, Defa, fa, LenQa

〈1〉1. Qa ∈ Seq(DeltaVecType) BY DEF Qa
〈1〉2. Qa ∈ [1 . . LenQa → DeltaVecType] BY 〈1〉1, LenAxiom DEF LenQa
〈1〉3. LenQa ∈ Nat BY 〈1〉1, LenInNat DEF LenQa
〈1〉4. DeltaVecSeqSkipSum(0, Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum, fa, f 0a, Defa, Elema, LenQa

〈1〉5. ∀ i ∈ Nat : fa[i ] = IF i = 0 THEN f 0a ELSE Defa(fa[i − 1], i)
〈2〉 SUFFICES NatInductiveDefConclusion(fa, f 0a, Defa) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fa, f 0a, Defa) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fa

〈1〉6. ∀ i ∈ Nat \ {0} : Elema(i) ∈ DeltaVecType
〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE Elema(i) ∈ DeltaVecType OBVIOUS

〈2〉1. CASE 0 < i ∧ i ≤ LenQa
〈3〉1. i ∈ 1 . . LenQa BY 〈2〉1, 〈1〉3, DotDotDef , SMTT (10)
〈3〉2. Qa[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉2
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〈3〉 QED BY 〈3〉2, 〈2〉1 DEF LenQa, Elema
〈2〉2. CASE ¬(0 < i ∧ i ≤ LenQa)
〈3〉1. Elema(i) = DeltaVecZero BY 〈2〉2 DEF LenQa, Elema
〈3〉 QED BY 〈3〉1, DeltaVecZeroType
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉7. ∀ i ∈ Nat : fa[i ] ∈ DeltaVecType
〈2〉 DEFINE P(i)

∆
= fa[i ] ∈ DeltaVecType

〈2〉 HIDE DEF P
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY DEF P
〈2〉1. P(0)
〈3〉1. fa[0] = DeltaVecZero BY 〈1〉5 DEF f 0a
〈3〉 QED BY 〈3〉1, DeltaVecZeroType DEF P
〈2〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)

Rewrite (i ,i + 1) to (j − 1,j ) to match inductive def.

〈3〉1. PICK j : j = i + 1 OBVIOUS
〈3〉2. j ∈ Nat \ {0} BY 〈3〉1, SMTT (10)
〈3〉3. j − 1 = i BY 〈3〉1, SMTT (10)
〈3〉4. fa[j ] = DeltaVecAdd(fa[j − 1], Elema(j )) BY 〈1〉5, 〈3〉2 DEF Defa
〈3〉5. fa[j − 1] ∈ DeltaVecType BY 〈2〉2, 〈3〉3 DEF P
〈3〉6. Elema(j ) ∈ DeltaVecType BY 〈3〉1, 〈3〉2, 〈1〉6
〈3〉7. fa[j ] ∈ DeltaVecType BY 〈3〉4, 〈3〉5, 〈3〉6, DeltaVecAddType
〈3〉 QED BY 〈3〉1, 〈3〉7 DEF P
〈2〉 QED BY 〈2〉1, 〈2〉2, NatInduction, Isa

XXXb definitions are related to the sum of RemoveAt(Q , n) skipping 0.

〈1〉 DEFINE Qb
∆
= RemoveAt(Q , n)

〈1〉 DEFINE Elemb(i)
∆
= DeltaVecSeqSkipSum(0, Qb) ! : !Elem(i)

〈1〉 DEFINE f 0b
∆
= DeltaVecZero

〈1〉 DEFINE Defb(v , i)
∆
= DeltaVecAdd(v , Elemb(i))

〈1〉 DEFINE fb
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0b ELSE Defb(f [i − 1], i)]

〈1〉 DEFINE LenQb
∆
= Len(Qb)

〈1〉 HIDE DEF Qb, Elemb, f 0b, Defb, fb, LenQb

〈1〉8. Qb ∈ Seq(DeltaVecType) BY RemoveAtProperties DEF Qb
〈1〉9. Qb ∈ [1 . . LenQb → DeltaVecType] BY 〈1〉8, LenAxiom DEF LenQb
〈1〉10. LenQb ∈ Nat BY 〈1〉8, LenInNat DEF LenQb
〈1〉11. DeltaVecSeqSkipSum(0, Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum, fb, f 0b, Defb, Elemb, LenQb

〈1〉12. ∀ i ∈ Nat : fb[i ] = IF i = 0 THEN f 0b ELSE Defb(fb[i − 1], i)
〈2〉 SUFFICES NatInductiveDefConclusion(fb, f 0b, Defb) BY DEF NatInductiveDefConclusion
〈2〉 SUFFICES NatInductiveDefHypothesis(fb, f 0b, Defb) BY NatInductiveDef
〈2〉 QED BY DEF NatInductiveDefHypothesis, fb

〈1〉13. ∀ i ∈ Nat \ {0} : Elemb(i) ∈ DeltaVecType
〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE Elemb(i) ∈ DeltaVecType OBVIOUS
〈2〉1. CASE 0 < i ∧ i ≤ LenQb
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〈3〉1. i ∈ 1 . . LenQb BY 〈2〉1, 〈1〉10, DotDotDef , SMTT (10)
〈3〉2. Qb[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉9
〈3〉 QED BY 〈3〉2, 〈2〉1 DEF LenQb, Elemb
〈2〉2. CASE ¬(0 < i ∧ i ≤ LenQb)
〈3〉1. Elemb(i) = DeltaVecZero BY 〈2〉2 DEF LenQb, Elemb
〈3〉 QED BY 〈3〉1, DeltaVecZeroType
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉14. ∀ i ∈ Nat : fb[i ] ∈ DeltaVecType
〈2〉 DEFINE P(i)

∆
= fb[i ] ∈ DeltaVecType

〈2〉 HIDE DEF P
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) BY DEF P
〈2〉1. P(0)
〈3〉1. fb[0] = DeltaVecZero BY 〈1〉12 DEF f 0b
〈3〉 QED BY 〈3〉1, DeltaVecZeroType DEF P
〈2〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)

Rewrite (i ,i + 1) to (j − 1,j ) to match inductive def.

〈3〉1. PICK j : j = i + 1 OBVIOUS

〈3〉2. j ∈ Nat \ {0} BY 〈3〉1, SMTT (10)
〈3〉3. j − 1 = i BY 〈3〉1, SMTT (10)
〈3〉4. fb[j ] = DeltaVecAdd(fb[j − 1], Elemb(j )) BY 〈1〉12, 〈3〉2 DEF Defb
〈3〉5. fb[j − 1] ∈ DeltaVecType BY 〈2〉2, 〈3〉3 DEF P
〈3〉6. Elemb(j ) ∈ DeltaVecType BY 〈3〉1, 〈3〉2, 〈1〉13
〈3〉7. fb[j ] ∈ DeltaVecType BY 〈3〉4, 〈3〉5, 〈3〉6, DeltaVecAddType
〈3〉 QED BY 〈3〉1, 〈3〉7 DEF P
〈2〉 QED BY 〈2〉1, 〈2〉2, NatInduction, Isa

Now relate the two sums.

〈1〉15. LenQb = LenQa − 1 BY RemoveAtProperties DEF Qa, Qb, LenQa, LenQb
〈1〉16. n ∈ 1 . . LenQa BY DEF Qa, LenQa
〈1〉17. 0 < n ∧ n ≤ LenQa BY 〈1〉3, 〈1〉16, SMTT (10)

〈1〉18. ∀ i ∈ Nat \ {0} : i 6= n ⇒ Elema(i) = Elemb(IF i < n THEN i ELSE i − 1)
〈2〉1. SUFFICES ASSUME

NEW ia, ia ∈ Nat \ {0}, ia 6= n,
NEW ib, ib = IF ia < n THEN ia ELSE ia − 1

PROVE Elema(ia) = Elemb(ib)
OBVIOUS

〈2〉2. ∀ i ∈ 1 . . LenQa : i 6= n ⇒ Qa[i ] = Qb[IF i < n THEN i ELSE i − 1]
〈3〉1. ∀ i ∈ 1 . . LenQa : i 6= n ⇒ Qa[i ] = Qb[RemoveAt ForwardIndex (Qa, n, i)]
〈4〉1. RemoveAt MapForward(Qa, n) BY RemoveAtProperties DEF Qa
〈4〉 QED BY 〈4〉1 DEF RemoveAt MapForward , Qa, Qb, LenQa
〈3〉 QED BY 〈3〉1 DEF RemoveAt ForwardIndex
〈2〉3. CASE 0 < ia ∧ ia ≤ LenQa
〈3〉1. 0 < ib ∧ ib ≤ LenQb BY 〈1〉3, 〈1〉10, 〈1〉15, 〈1〉16, 〈2〉1, 〈2〉3, SMTT (10)
〈3〉2. Elema(ia) = Qa[ia] BY 〈2〉3 DEF Elema, LenQa
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〈3〉3. Elemb(ib) = Qb[ib] BY 〈3〉1 DEF Elemb, LenQb
〈3〉4. ia ∈ 1 . . LenQa BY 〈1〉3, 〈1〉10, 〈2〉1, 〈2〉3, DotDotDef , SMTT (10)
〈3〉5. Qa[ia] = Qb[ib] BY 〈2〉1, 〈2〉2, 〈3〉4
〈3〉 QED BY 〈3〉2, 〈3〉3, 〈3〉5
〈2〉4. CASE ¬(0 < ia ∧ ia ≤ LenQa)
〈3〉1. ¬(0 < ib ∧ ib ≤ LenQb) BY 〈1〉3, 〈1〉10, 〈1〉15, 〈1〉16, 〈2〉1, 〈2〉4, SMTT (10)
〈3〉2. Elema(ia) = DeltaVecZero BY 〈2〉4 DEF Elema, LenQa
〈3〉3. Elemb(ib) = DeltaVecZero BY 〈3〉1 DEF Elemb, LenQb
〈3〉 QED BY 〈3〉2, 〈3〉3
〈2〉 QED BY 〈2〉3, 〈2〉4

〈1〉19. Elema(n) = Qa[n]
〈2〉1. 0 < n ∧ n ≤ LenQa BY 〈1〉3, 〈1〉16, SMTT (10)
〈2〉 QED BY 〈2〉1 DEF Elema, LenQa

Each sum evaluates its recursive function at the length of its sequence.

〈1〉20. DeltaVecAdd(Qa[n], fb[LenQb]) = fa[LenQa]
〈2〉 DEFINE P(i)

∆
= fa[i ] = IF i < n THEN fb[i ] ELSE DeltaVecAdd(Qa[n], fb[i − 1])

〈2〉 HIDE DEF P
〈2〉1. ∀ i ∈ Nat : P(i)
〈3〉1. P(0)
〈4〉 SUFFICES fa[0] = fb[0] BY 〈1〉17 DEF P
〈4〉 QED BY 〈1〉5, 〈1〉12 DEF f 0a, f 0b
〈3〉2. ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1)
〈4〉1. PICK j : j = i + 1 OBVIOUS

〈4〉2. j ∈ Nat \ {0} BY 〈4〉1, SMTT (10)
〈4〉3. j − 1 = i BY 〈4〉1, SMTT (10)

〈4〉4. CASE j < n

Before the removal point.

〈5〉1. j 6= n BY 〈4〉1, 〈4〉4, SMTT (10)
〈5〉2. j − 1 < n BY 〈4〉1, 〈4〉4, SMTT (10)
〈5〉3. fa[j − 1] = fb[j − 1] BY 〈3〉2, 〈4〉3, 〈5〉2 DEF P
〈5〉4. Elema(j ) = Elemb(j ) BY 〈1〉18, 〈4〉2, 〈4〉4, 〈5〉1
〈5〉5. fa[j ] = DeltaVecAdd(fa[j − 1], Elema(j )) BY 〈1〉5, 〈4〉2 DEF Defa
〈5〉6. fb[j ] = DeltaVecAdd(fb[j − 1], Elemb(j )) BY 〈1〉12, 〈4〉2 DEF Defb
〈5〉7. fa[j ] = fb[j ] BY 〈5〉3, 〈5〉4, 〈5〉5, 〈5〉6
〈5〉 QED BY 〈4〉1, 〈4〉4, 〈5〉7 DEF P

〈4〉5. CASE j = n

At the removal point.

〈5〉1. ¬(j < n) BY 〈4〉1, 〈4〉5, SMTT (10)
〈5〉2. j − 1 < n BY 〈4〉1, 〈4〉5, SMTT (10)
〈5〉3. fa[j − 1] = fb[j − 1] BY 〈3〉2, 〈4〉3, 〈5〉2 DEF P
〈5〉4. Elema(j ) = Qa[n] BY 〈1〉19, 〈4〉5
〈5〉5. fa[j ] = DeltaVecAdd(fa[j − 1], Elema(j )) BY 〈1〉5, 〈4〉2 DEF Defa
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〈5〉6. fa[j ] = DeltaVecAdd(fb[j − 1], Qa[n]) BY 〈5〉3, 〈5〉4, 〈5〉5
〈5〉7. fa[j ] = DeltaVecAdd(Qa[n], fb[j − 1])
〈6〉1. Qa[n] ∈ DeltaVecType BY 〈1〉2, 〈1〉16
〈6〉2. fb[j − 1] ∈ DeltaVecType BY 〈1〉14, 〈4〉3
〈6〉 QED BY 〈5〉6, 〈6〉1, 〈6〉2, DeltaVecAddCommutative
〈5〉 QED BY 〈4〉1, 〈5〉1, 〈5〉7 DEF P

〈4〉6. CASE j > n

After the removal point.

〈5〉1. j 6= n BY 〈4〉1, 〈4〉6, SMTT (10)
〈5〉2. ¬(j < n) BY 〈4〉1, 〈4〉6, SMTT (10)
〈5〉3. ¬(j − 1 < n) BY 〈4〉1, 〈4〉6, SMTT (10)
〈5〉4. i ∈ Nat \ {0} BY 〈4〉3, 〈5〉3, SMTT (10)
〈5〉5. i − 1 ∈ Nat BY 〈4〉3, 〈5〉3, SMTT (10)
〈5〉6. fa[j − 1] = DeltaVecAdd(Qa[n], fb[i − 1]) BY 〈3〉2, 〈4〉3, 〈5〉3 DEF P
〈5〉7. Elema(j ) = Elemb(i) BY 〈1〉18, 〈4〉2, 〈4〉3, 〈5〉1, 〈5〉2
〈5〉8. fa[j ] = DeltaVecAdd(fa[j − 1], Elema(j )) BY 〈1〉5, 〈4〉2 DEF Defa
〈5〉9. fb[i ] = DeltaVecAdd(fb[i − 1], Elemb(i)) BY 〈1〉12, 〈5〉4 DEF Defb
〈5〉10. fa[j ] = DeltaVecAdd(fa[j − 1], Elemb(i)) BY 〈5〉8, 〈5〉7
〈5〉11. fa[j ] = DeltaVecAdd(DeltaVecAdd(Qa[n], fb[i − 1]), Elemb(i)) BY 〈5〉10, 〈5〉6
〈5〉12. fa[j ] = DeltaVecAdd(Qa[n], DeltaVecAdd(fb[i − 1], Elemb(i)))
〈6〉1. Qa[n] ∈ DeltaVecType BY 〈1〉2, 〈1〉16
〈6〉2. fb[i − 1] ∈ DeltaVecType BY 〈1〉14, 〈5〉5
〈6〉3. Elemb(i) ∈ DeltaVecType BY 〈1〉13, 〈5〉4
〈6〉 QED BY 〈5〉11, 〈6〉1, 〈6〉2, 〈6〉3, DeltaVecAddAssociative, Isa
〈5〉13. fa[j ] = DeltaVecAdd(Qa[n], fb[i ]) BY 〈5〉9, 〈5〉12
〈5〉 QED BY 〈4〉1, 〈5〉2, 〈5〉13, Isa DEF P

〈4〉 QED BY 〈4〉2, 〈4〉4, 〈4〉5, 〈4〉6, SMTT (10)
〈3〉 QED BY 〈3〉1, 〈3〉2, NatInduction, Isa

〈2〉2. ¬(LenQa < n) BY 〈1〉3, 〈1〉16, SMTT (10)
〈2〉 QED BY 〈1〉3, 〈1〉15, 〈2〉1, 〈2〉2 DEF P

〈1〉 QED BY 〈1〉4, 〈1〉11, 〈1〉20 DEF Qa, Qb

Adding a delta vector to one of a sequence of delta vectors.
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AddAt makes a sequence of delta vectors.

THEOREM DeltaVecSeqAddAtType
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW n ∈ 1 . . Len(Q),
NEW d ∈ DeltaVecType

PROVE

LET R
∆
= DeltaVecSeqAddAt(Q , n, d) IN

∧ R ∈ Seq(DeltaVecType)
∧ Len(Q) = Len(R)

PROOF

〈1〉 DEFINE R
∆
= DeltaVecSeqAddAt(Q , n, d)

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉 DEFINE LenR
∆
= Len(R)

〈1〉1. LenQ ∈ Nat BY LenInNat
〈1〉 SUFFICES R ∈ Seq(DeltaVecType) ∧ LenQ = LenR OBVIOUS

〈1〉 HIDE DEF R, LenQ , LenR
〈1〉2. R ∈ [1 . . LenQ → DeltaVecType]
〈2〉1. n ∈ 1 . . LenQ BY DEF LenQ
〈2〉2. Q ∈ [1 . . LenQ → DeltaVecType] BY LenAxiom DEF LenQ
〈2〉3. Q [n] ∈ DeltaVecType BY 〈2〉1, 〈2〉2
〈2〉4. DeltaVecAdd(Q [n], d) ∈ DeltaVecType BY 〈2〉3, DeltaVecAddType
〈2〉 QED BY 〈2〉1, 〈2〉2, 〈2〉4 DEF R, DeltaVecSeqAddAt
〈1〉3. R ∈ Seq(DeltaVecType) BY 〈1〉1, 〈1〉2, SeqDef
〈1〉4. LenQ = LenR
〈2〉1. DOMAIN R = 1 . . LenQ BY 〈1〉2
〈2〉 QED BY 〈1〉1, 〈1〉3, 〈2〉1, LenDomain DEF LenR
〈1〉 QED BY 〈1〉3, 〈1〉4

Adding a value d to the sum of a sequence of delta vectors gives the same result as adding d to one of the elements of the sequence and then taking
the sum.

THEOREM DeltaVecSeqSkipSumAddAt
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW n ∈ 1 . . Len(Q),
NEW d ∈ DeltaVecType

PROVE
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DeltaVecAdd(DeltaVecSeqSkipSum(0, Q), d) = DeltaVecSeqSkipSum(0, DeltaVecSeqAddAt(Q , n, d))

PROOF
XXXa definitions are related to the sum of Q .

〈1〉 DEFINE Qa
∆
= Q

〈1〉 DEFINE Elema(i)
∆
= DeltaVecSeqSkipSum(0, Qa) ! : !Elem(i)

〈1〉 DEFINE f 0a
∆
= DeltaVecZero

〈1〉 DEFINE Defa(v , i)
∆
= DeltaVecAdd(v , Elema(i))

〈1〉 DEFINE fa
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0a ELSE Defa(f [i − 1], i)]

〈1〉 DEFINE LenQa
∆
= Len(Qa)

〈1〉1. Qa ∈ Seq(DeltaVecType) OBVIOUS

〈1〉2. Qa ∈ [1 . . LenQa → DeltaVecType] BY 〈1〉1, LenAxiom

〈1〉3. LenQa ∈ Nat BY LenInNat

〈1〉4. DeltaVecSeqSkipSum(0, Qa) = fa[LenQa] BY DEF DeltaVecSeqSkipSum

〈1〉5. ∀ i ∈ Nat : fa[i ] = IF i = 0 THEN f 0a ELSE Defa(fa[i − 1], i)

〈2〉 HIDE DEF f 0a, Defa, fa

〈2〉 SUFFICES NatInductiveDefConclusion(fa, f 0a, Defa) BY DEF NatInductiveDefConclusion

〈2〉 SUFFICES NatInductiveDefHypothesis(fa, f 0a, Defa) BY NatInductiveDef

〈2〉 QED BY DEF NatInductiveDefHypothesis, fa

XXXb definitions are related to the sum of Q except d added to Q [n].

〈1〉 DEFINE Qb
∆
= DeltaVecSeqAddAt(Qa, n, d)

〈1〉 DEFINE Elemb(i)
∆
= DeltaVecSeqSkipSum(0, Qb) ! : !Elem(i)

〈1〉 DEFINE f 0b
∆
= DeltaVecZero

〈1〉 DEFINE Defb(v , i)
∆
= DeltaVecAdd(v , Elemb(i))

〈1〉 DEFINE fb
∆
= CHOOSE f : f = [i ∈ Nat 7→ IF i = 0 THEN f 0b ELSE Defb(f [i − 1], i)]

〈1〉 DEFINE LenQb
∆
= Len(Qb)

〈1〉6. Qb ∈ Seq(DeltaVecType) BY DeltaVecSeqAddAtType

〈1〉7. Qb ∈ [1 . . LenQb → DeltaVecType] BY 〈1〉6, LenAxiom

〈1〉8. LenQb ∈ Nat BY 〈1〉6, LenInNat

〈1〉9. DeltaVecSeqSkipSum(0, Qb) = fb[LenQb] BY DEF DeltaVecSeqSkipSum

〈1〉10. ∀ i ∈ Nat : fb[i ] = IF i = 0 THEN f 0b ELSE Defb(fb[i − 1], i)

〈2〉 HIDE DEF f 0b, Defb, fb

〈2〉 SUFFICES NatInductiveDefConclusion(fb, f 0b, Defb) BY DEF NatInductiveDefConclusion

〈2〉 SUFFICES NatInductiveDefHypothesis(fb, f 0b, Defb) BY NatInductiveDef

〈2〉 QED BY DEF NatInductiveDefHypothesis, fb

Miscellaneous facts about LenQa , LenQb, and n .

〈1〉11. LenQb = LenQa BY DeltaVecSeqAddAtType

〈1〉12. 0 < n ∧ n ≤ LenQa

〈2〉1. n ∈ 1 . . LenQa BY DEF LenQa, Qa

〈2〉 HIDE DEF LenQa

〈2〉 QED BY 〈2〉1, 〈1〉3, DotDotDef , SMTT (10)

Each Elema is a delta vec.
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〈1〉13. ∀ i ∈ Nat \ {0} : Elema(i) ∈ DeltaVecType
〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE Elema(i) ∈ DeltaVecType OBVIOUS

〈2〉 HIDE DEF LenQa
〈2〉1. CASE 0 < i ∧ i ≤ LenQa
〈3〉1. i ∈ 1 . . LenQa BY 〈2〉1, 〈1〉8, DotDotDef , SMTT (10)
〈3〉2. Qa[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉6, LenAxiom DEF LenQa
〈3〉 QED BY 〈3〉2, 〈2〉1 DEF LenQa
〈2〉2. CASE ¬(0 < i ∧ i ≤ LenQa)
〈3〉1. Elema(i) = DeltaVecZero BY 〈2〉2 DEF LenQa
〈3〉 QED BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈2〉 QED BY 〈2〉1, 〈2〉2

Each Elemb is a delta vec.

〈1〉14. ∀ i ∈ Nat \ {0} : Elemb(i) ∈ DeltaVecType
〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0} PROVE Elemb(i) ∈ DeltaVecType OBVIOUS

〈2〉 HIDE DEF LenQb
〈2〉1. CASE 0 < i ∧ i ≤ LenQb
〈3〉1. i ∈ 1 . . LenQb BY 〈2〉1, 〈1〉8, DotDotDef , SMTT (10)
〈3〉2. Qb[i ] ∈ DeltaVecType BY 〈3〉1, 〈1〉6, LenAxiom DEF LenQb
〈3〉 QED BY 〈3〉2, 〈2〉1 DEF LenQb
〈2〉2. CASE ¬(0 < i ∧ i ≤ LenQb)
〈3〉1. Elemb(i) = DeltaVecZero BY 〈2〉2 DEF LenQb
〈3〉 QED BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈2〉 QED BY 〈2〉1, 〈2〉2

Each Elemb is the same as Elema except at [n], where it is Elema(n) + d .

〈1〉15. ∀ i ∈ Nat \ {0} :
Elemb(i) = IF i = n THEN DeltaVecAdd(Elema(i), d) ELSE Elema(i)

〈2〉 SUFFICES ASSUME NEW i ∈ Nat \ {0}
PROVE Elemb(i) = IF i = n THEN DeltaVecAdd(Elema(i), d) ELSE Elema(i)
OBVIOUS

〈2〉 HIDE DEF Qa, Qb, LenQa, LenQb, Elema, Elemb
〈2〉1. CASE 0 < i ∧ i ≤ LenQa
〈3〉1. 0 < i ∧ i ≤ LenQa ∧ i ∈ 1 . . LenQa BY 〈2〉1, 〈1〉3, DotDotDef , SMTT (10)
〈3〉2. 0 < i ∧ i ≤ LenQb ∧ i ∈ 1 . . LenQb BY 〈3〉1, 〈1〉11
〈3〉3. Elema(i) = Qa[i ] BY 〈3〉1 DEF LenQa, Elema
〈3〉4. Elemb(i) = Qb[i ] BY 〈3〉2 DEF LenQb, Elemb
〈3〉5. CASE i = n
〈4〉1. Qb[i ] = DeltaVecAdd(Qa[i ], d)

BY 〈1〉2, 〈1〉3, 〈3〉1, 〈3〉5 DEF DeltaVecSeqAddAt , Qb
〈4〉 QED BY 〈4〉1, 〈3〉3, 〈3〉4, 〈3〉5
〈3〉6. CASE i 6= n
〈4〉1. Qb[i ] = Qa[i ]

BY 〈1〉2, 〈1〉3, 〈3〉1, 〈3〉6 DEF DeltaVecSeqAddAt , Qb
〈4〉 QED BY 〈4〉1, 〈3〉3, 〈3〉4, 〈3〉6
〈3〉 QED BY 〈3〉5, 〈3〉6
〈2〉2. CASE ¬(0 < i ∧ i ≤ LenQa)
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〈3〉1. ¬(0 < i ∧ i ≤ LenQa) BY 〈2〉2
〈3〉2. ¬(0 < i ∧ i ≤ LenQb) BY 〈3〉1, 〈1〉11
〈3〉3. Elema(i) = DeltaVecZero BY 〈3〉1 DEF LenQa, Elema
〈3〉4. Elemb(i) = DeltaVecZero BY 〈3〉2 DEF LenQb, Elemb
〈3〉5. i 6= n BY 〈3〉1, 〈1〉12, SMTT (10)
〈3〉 QED BY 〈3〉3, 〈3〉4, 〈3〉5
〈2〉 QED BY 〈2〉1, 〈2〉2

fa[i ] is a delta vector

〈1〉16. ∀ i ∈ Nat : fa[i ] ∈ DeltaVecType
〈2〉 DEFINE P(i)

∆
= fa[i ] ∈ DeltaVecType

〈2〉 HIDE DEF LenQa, LenQb, fa, fb
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) OBVIOUS
〈2〉1. P(0)
〈3〉1. fa[0] = DeltaVecZero BY 〈1〉5 DEF fa, f 0a
〈3〉2. fa[0] ∈ DeltaVecType BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈3〉 QED BY 〈3〉2
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS
〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉3. fa[i + 1] = DeltaVecAdd(fa[i ], Elema(i + 1)) BY 〈3〉2, 〈1〉5
〈3〉4. fa[i ] ∈ DeltaVecType BY 〈3〉1
〈3〉5. Elema(i + 1) ∈ DeltaVecType BY 〈3〉2, 〈1〉13
〈3〉6. fa[i + 1] ∈ DeltaVecType BY 〈3〉3, 〈3〉4, 〈3〉5, DeltaVecAddType
〈3〉 QED BY 〈3〉6
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa

fb[i ] is a delta vector

〈1〉17. ∀ i ∈ Nat : fb[i ] ∈ DeltaVecType
〈2〉 DEFINE P(i)

∆
= fb[i ] ∈ DeltaVecType

〈2〉 HIDE DEF LenQa, LenQb, fa, fb
〈2〉 SUFFICES ∀ i ∈ Nat : P(i) OBVIOUS
〈2〉1. P(0)
〈3〉1. fb[0] = DeltaVecZero BY 〈1〉10 DEF fb, f 0b
〈3〉2. fb[0] ∈ DeltaVecType BY 〈3〉1, DeltaVecZeroType, DeltaVecAddZero
〈3〉 QED BY 〈3〉2
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS
〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
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∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉3. fb[i + 1] = DeltaVecAdd(fb[i ], Elemb(i + 1)) BY 〈3〉2, 〈1〉10
〈3〉4. fb[i ] ∈ DeltaVecType BY 〈3〉1
〈3〉5. Elemb(i + 1) ∈ DeltaVecType BY 〈3〉2, 〈1〉14
〈3〉6. fb[i + 1] ∈ DeltaVecType BY 〈3〉3, 〈3〉4, 〈3〉5, DeltaVecAddType
〈3〉 QED BY 〈3〉6
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa

Each sum evaluates its recursive function at the length of its sequence.

〈1〉 DEFINE AddD(v)
∆
= DeltaVecAdd(v , d)

〈1〉18. fb[LenQb] = AddD(fa[LenQa])
〈2〉 DEFINE P(i)

∆
= fb[i ] = IF i < n THEN fa[i ] ELSE AddD(fa[i ])

〈2〉 HIDE DEF LenQa, LenQb, fa, fb, Elema, Elemb, AddD
〈2〉 SUFFICES ∀ i ∈ Nat : P(i)
〈3〉 LenQa ∈ Nat BY 〈1〉3
〈3〉 LenQb ∈ Nat BY 〈1〉8
〈3〉 LenQa = LenQb BY 〈1〉11
〈3〉 n ≤ LenQa BY 〈1〉12
〈3〉 QED BY SMTT (10)
〈2〉1. P(0)
〈3〉1. 0 < n BY 〈1〉12
〈3〉2. fb[0] = DeltaVecZero BY 〈1〉10 DEF fb, f 0b
〈3〉6. fa[0] = DeltaVecZero BY 〈1〉5 DEF fa, f 0a
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉6
〈2〉2. ∀ i ∈ Nat : P(i)⇒ P(i + 1)
〈3〉1. SUFFICES ASSUME NEW i ∈ Nat , P(i) PROVE P(i + 1) OBVIOUS

〈3〉2. Trivial facts to help the prover match known facts or proof obligations.

∧ i + 1 ∈ Nat
∧ i + 1 ∈ Nat \ {0}
∧ i + 1 6= 0
∧ (i + 1)− 1 = i
BY SMTT (10)

〈3〉 DEFINE fai
∆
= fa[i ]

〈3〉 DEFINE fbi
∆
= fb[i ]

〈3〉 DEFINE fai1
∆
= fa[i + 1]

〈3〉 DEFINE fbi1
∆
= fb[i + 1]

〈3〉 DEFINE vai1
∆
= Elema(i + 1)

〈3〉 DEFINE vbi1
∆
= Elemb(i + 1)

〈3〉3. fai1 = DeltaVecAdd(fai , vai1) BY 〈3〉2, 〈1〉5
〈3〉4. fbi1 = DeltaVecAdd(fbi , vbi1) BY 〈3〉2, 〈1〉10
〈3〉5. fai ∈ DeltaVecType BY 〈3〉2, 〈1〉16
〈3〉6. vai1 ∈ DeltaVecType BY 〈3〉2, 〈1〉13
〈3〉7. CASE i + 1 6= n
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〈4〉1. vai1 = vbi1 BY 〈3〉2, 〈3〉7, 〈1〉15
〈4〉2. CASE i < n
〈5〉1. fbi = fai BY 〈4〉2, 〈3〉1
〈5〉2. i + 1 < n BY 〈4〉2, 〈3〉7, SMTT (10)
〈5〉 SUFFICES fai1 = fbi1 BY 〈5〉2
〈5〉 HIDE DEF fai , fbi , fai1, fbi1, vai1, vbi1
〈5〉3. fbi1 = DeltaVecAdd(fai , vai1) BY 〈3〉4, 〈5〉1, 〈4〉1
〈5〉4. fbi1 = fai1 BY 〈5〉3, 〈3〉3
〈5〉 QED BY 〈5〉4
〈4〉3. CASE ¬(i < n)
〈5〉1. fbi = AddD(fai) BY 〈4〉3, 〈3〉1
〈5〉2. ¬(i + 1 < n) BY 〈4〉3, 〈3〉7, SMTT (10)
〈5〉 SUFFICES fbi1 = AddD(fai1) BY 〈5〉2
〈5〉 HIDE DEF fai , fbi , fai1, fbi1, vai1, vbi1
〈5〉3. fbi1 = DeltaVecAdd(DeltaVecAdd(fai , d), vai1) BY 〈3〉4, 〈5〉1, 〈4〉1 DEF AddD
〈5〉4. fbi1 = DeltaVecAdd(fai , DeltaVecAdd(d , vai1)) BY 〈5〉3, 〈3〉5, 〈3〉6, DeltaVecAddAssociative
〈5〉5. fbi1 = DeltaVecAdd(fai , DeltaVecAdd(vai1, d)) BY 〈5〉4, 〈3〉5, 〈3〉6, DeltaVecAddCommutative
〈5〉6. fbi1 = DeltaVecAdd(DeltaVecAdd(fai , vai1), d) BY 〈5〉5, 〈3〉5, 〈3〉6, DeltaVecAddAssociative
〈5〉7. fbi1 = AddD(fai1) BY 〈5〉6, 〈3〉3 DEF AddD
〈5〉 QED BY 〈5〉7
〈4〉 QED BY 〈4〉2, 〈4〉3
〈3〉8. CASE i + 1 = n
〈4〉1. vbi1 = AddD(vai1) BY 〈3〉2, 〈3〉8, 〈1〉15 DEF AddD
〈4〉2. i < n BY 〈3〉8, SMTT (10)
〈4〉3. fbi = fai BY 〈4〉2, 〈3〉1
〈4〉4. ¬(i + 1 < n) BY 〈3〉8, SMTT (10)
〈4〉 SUFFICES fbi1 = AddD(fai1) BY 〈4〉4
〈4〉 HIDE DEF fai , fbi , fai1, fbi1, vai1, vbi1
〈4〉5. fbi1 = DeltaVecAdd(fai , DeltaVecAdd(vai1, d)) BY 〈3〉4, 〈4〉3, 〈4〉1 DEF AddD
〈4〉6. fbi1 = DeltaVecAdd(DeltaVecAdd(fai , vai1), d) BY 〈4〉5, 〈3〉5, 〈3〉6, DeltaVecAddAssociative
〈4〉7. fbi1 = AddD(fai1) BY 〈4〉6, 〈3〉3 DEF AddD
〈4〉 QED BY 〈4〉7
〈3〉 QED BY 〈3〉7, 〈3〉8
〈2〉 HIDE DEF P
〈2〉 QED BY ONLY 〈2〉1, 〈2〉2, NatInduction, Isa
〈1〉 HIDE DEF fa, fb
〈1〉 QED BY 〈1〉4, 〈1〉9, 〈1〉18
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Facts about summing up sequences of delta vectors. Corollaries for the special case of k = 0.

Let Prop be any predicate satisfied by Zero and preserved by Add . Let Q be a sequence of delta vectors in which each element satisfies Prop.
Then the sum of Q is a delta vector that satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecSeqSumProp Hypothesis(Prop( ), Q)
∆
=

∧ Prop(DeltaVecZero)

∧ ∀ a, b ∈ DeltaVecType : Prop(a) ∧ Prop(b)⇒ Prop(DeltaVecAdd(a, b))

∧Q ∈ Seq(DeltaVecType)

∧ ∀ i ∈ 1 . . Len(Q) : Prop(Q [i ])

DeltaVecSeqSumProp Conclusion(Prop( ), Q)
∆
=

∧DeltaVecSeqSum(Q) ∈ DeltaVecType

∧ Prop(DeltaVecSeqSum(Q))

THEOREM DeltaVecSeqSumProp
∆
=

ASSUME NEW Prop( ), NEW Q , DeltaVecSeqSumProp Hypothesis(Prop, Q)

PROVE DeltaVecSeqSumProp Conclusion(Prop, Q)

PROOF

〈1〉 DeltaVecSeqSkipSum(0, Q) ∈ DeltaVecType ∧ Prop(DeltaVecSeqSkipSum(0, Q))

〈2〉 DeltaVecSeqSkipSumProp Conclusion(Prop, Q , 0)

〈3〉 DeltaVecSeqSkipSumProp Hypothesis(Prop, Q , 0)

〈4〉 USE DEF DeltaVecSeqSumProp Hypothesis

〈4〉 ∀ i ∈ Nat : 0 < i ∧ i ≤ Len(Q)⇒ Prop(Q [i ])

〈5〉 DEFINE LenQ
∆
= Len(Q)

〈5〉 HIDE DEF LenQ

〈5〉 ∀ i ∈ 1 . . LenQ : Prop(Q [i ]) BY DEF LenQ

〈5〉 LenQ ∈ Nat BY LenInNat DEF LenQ

〈5〉 ∀ i ∈ Nat : 0 < i ∧ i ≤ LenQ ⇒ i ∈ 1 . . LenQ BY SMTT (10)

〈5〉 QED BY DEF LenQ

〈4〉 QED BY DEF DeltaVecSeqSkipSumProp Hypothesis

〈3〉 QED BY DeltaVecSeqSkipSumProp

〈2〉 QED BY DEF DeltaVecSeqSkipSumProp Conclusion

〈1〉 QED BY DEF DeltaVecSeqSum, DeltaVecSeqSumProp Conclusion
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The sum of a sequence of delta vectors is a delta vector.

COROLLARY DeltaVecSeqSumType
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType)

PROVE

DeltaVecSeqSum(Q) ∈ DeltaVecType

PROOF

〈1〉 QED BY DeltaVecSeqSkipSumType DEF DeltaVecSeqSum

The sum of a sequence of zero delta vectors is zero.

COROLLARY DeltaVecSeqSumAllZero
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),

∀ i ∈ DOMAIN Q : Q [i ] = DeltaVecZero

PROVE

DeltaVecSeqSum(Q) = DeltaVecZero

PROOF

〈1〉 QED BY DeltaVecSeqSkipSumAllZero DEF DeltaVecSeqSum

The sum of an empty sequence of delta vectors is zero.

COROLLARY DeltaVecSeqSumEmpty
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType), Q = 〈〉
PROVE

DeltaVecSeqSum(Q) = DeltaVecZero

PROOF

〈1〉 QED BY DeltaVecSeqSkipSumEmpty DEF DeltaVecSeqSum

When you append a delta vector d to a sequence of delta vectors, the sum increases by d .



C.9. FACTS ABOUT SUMMING UP SEQUENCES OF DELTA VECTORS 109

COROLLARY DeltaVecSeqSumAppend
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW d ∈ DeltaVecType

PROVE

DeltaVecSeqSum(Append(Q , d)) = DeltaVecAdd(DeltaVecSeqSum(Q), d)
PROOF

〈1〉1. 0 ≤ Len(Q)
〈2〉 DEFINE LenQ

∆
= Len(Q)

〈2〉 LenQ ∈ Nat BY LenInNat
〈2〉 SUFFICES 0 ≤ LenQ OBVIOUS

〈2〉 HIDE DEF LenQ
〈2〉 QED BY SMTT (10)
〈1〉 QED BY 〈1〉1, DeltaVecSeqSkipSumAppend , Isa DEF DeltaVecSeqSum

For a sequence Q of values and an index n ∈ 1 . . Len(Q), Q [n] plus the sum of all values on RemoveAt(Q , n) is the same as the sum of all
values on Q .

COROLLARY DeltaVecSeqSumRemoveAt
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW n ∈ 1 . . Len(Q)

PROVE

DeltaVecAdd(Q [n], DeltaVecSeqSum(RemoveAt(Q , n))) = DeltaVecSeqSum(Q)
PROOF

〈1〉 QED BY DeltaVecSeqSkipSumRemoveAt DEF DeltaVecSeqSum

Adding a value d to the sum of a sequence of delta vectors gives the same result as adding d to one of the elements of the sequence and then taking
the sum.

COROLLARY DeltaVecSeqSumAddAt
∆
=

ASSUME

NEW Q ∈ Seq(DeltaVecType),
NEW n ∈ 1 . . Len(Q),
NEW d ∈ DeltaVecType

PROVE
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DeltaVecAdd(DeltaVecSeqSum(Q), d) = DeltaVecSeqSum(DeltaVecSeqAddAt(Q , n, d))
PROOF
〈1〉 QED BY DeltaVecSeqSkipSumAddAt DEF DeltaVecSeqSum
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C.10 Facts about summing up delta vectors in the range of a function
MODULE NaiadClockProofDeltaVecFuns

EXTENDS NaiadClockProofDeltaVecSeqs

Facts about summing up delta vectors in the range of a function.

This really ought to be a library of theorems.

Let Prop be any predicate satisfied by Zero and preserved by Add . Let F be a function to delta vectors in which F [d ] satisfies Prop for each
d ∈ DOMAIN F . Then any index sum of F satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunIndexSumProp Hypothesis(Prop( ), F , I )
∆
=

∧ Prop(DeltaVecZero)
∧ ∀ a, b ∈ DeltaVecType : Prop(a) ∧ Prop(b)⇒ Prop(DeltaVecAdd(a, b))
∧ F ∈ [DOMAIN F → DeltaVecType]
∧ ∀ s ∈ DOMAIN F : Prop(F [s])
∧ I ∈ Seq(DOMAIN F )

DeltaVecFunIndexSumProp Conclusion(Prop( ), F , I )
∆
=

∧DeltaVecFunIndexSum(F , I ) ∈ DeltaVecType
∧ Prop(DeltaVecFunIndexSum(F , I ))

THEOREM DeltaVecFunIndexSumProp
∆
=

ASSUME NEW Prop( ), NEW F , NEW I , DeltaVecFunIndexSumProp Hypothesis(Prop, F , I )
PROVE DeltaVecFunIndexSumProp Conclusion(Prop, F , I )

PROOF

〈1〉 I ∈ Seq(DOMAIN F ) BY DEF DeltaVecFunIndexSumProp Hypothesis
〈1〉 DEFINE LenI

∆
= Len(I )

〈1〉 DEFINE Q
∆
= [i ∈ 1 . . LenI 7→ F [I [i ]]]

〈1〉 HIDE DEF LenI , Q
〈1〉 DeltaVecSeqSum(Q) ∈ DeltaVecType ∧ Prop(DeltaVecSeqSum(Q))
〈2〉 DeltaVecSeqSumProp Conclusion(Prop, Q)
〈3〉 DeltaVecSeqSumProp Hypothesis(Prop, Q)
〈4〉 LenI ∈ Nat BY LenInNat DEF LenI
〈4〉 Q ∈ [1 . . LenI → DeltaVecType]
〈5〉 I ∈ [1 . . LenI → DOMAIN F ] BY LenAxiom DEF LenI
〈5〉 F ∈ [DOMAIN F → DeltaVecType] BY DEF DeltaVecFunIndexSumProp Hypothesis
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〈5〉 QED BY DEF Q
〈4〉 Q ∈ Seq(DeltaVecType) BY IsASeq
〈4〉 LenI = Len(Q)
〈5〉 Len(Q) ∈ Nat BY LenInNat
〈5〉 DOMAIN Q = 1 . . Len(Q) BY LenDef
〈5〉 DOMAIN Q = 1 . . LenI OBVIOUS
〈5〉 QED BY DotDotOneThruN
〈4〉 ∀ q ∈ 1 . . LenI : Prop(Q [q ])
〈5〉 ∀ q ∈ 1 . . LenI : Q [q ] = F [I [q ]] BY DEF Q
〈5〉 I ∈ Seq(DOMAIN F ) BY DEF DeltaVecFunIndexSumProp Hypothesis
〈5〉 ∀ q ∈ 1 . . LenI : I [q ] ∈ DOMAIN F BY ElementOfSeq DEF LenI
〈5〉 ∀ s ∈ DOMAIN F : Prop(F [s]) BY DEF DeltaVecFunIndexSumProp Hypothesis
〈5〉 QED OBVIOUS
〈4〉 QED BY DEF DeltaVecSeqSumProp Hypothesis, DeltaVecFunIndexSumProp Hypothesis
〈3〉 QED BY DeltaVecSeqSumProp
〈2〉 QED BY DEF DeltaVecSeqSumProp Conclusion
〈1〉 DeltaVecSeqSum(Q) ∈ DeltaVecType BY DeltaVecSeqSumType
〈1〉 DeltaVecFunIndexSum(F , I ) = DeltaVecSeqSum(Q) BY DEF DeltaVecFunIndexSum, LenI , Q
〈1〉 QED BY DEF DeltaVecFunIndexSumProp Conclusion

Let Prop be any predicate satisfied by Zero and preserved by Add . Let F be a function to delta vectors in which F [d ] satisfies Prop for each
d ∈ DOMAIN F . Then any finite subset sum of F satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSubsetSumProp Hypothesis(Prop( ), F , S )
∆
=

∧ Prop(DeltaVecZero)
∧ ∀ a, b ∈ DeltaVecType : Prop(a) ∧ Prop(b)⇒ Prop(DeltaVecAdd(a, b))
∧ F ∈ [DOMAIN F → DeltaVecType]
∧ ∀ s ∈ DOMAIN F : Prop(F [s])
∧ S ⊆ DOMAIN F
∧ IsFiniteSet(S )

DeltaVecFunSubsetSumProp Conclusion(Prop( ), F , S )
∆
=

∧DeltaVecFunSubsetSum(F , S ) ∈ DeltaVecType
∧ Prop(DeltaVecFunSubsetSum(F , S ))

THEOREM DeltaVecFunSubsetSumProp
∆
=

ASSUME NEW Prop( ), NEW F , NEW S , DeltaVecFunSubsetSumProp Hypothesis(Prop, F , S )
PROVE DeltaVecFunSubsetSumProp Conclusion(Prop, F , S )

PROOF
〈1〉 DEFINE I

∆
= ExactSeqFor(S )
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〈1〉 HIDE DEF I
〈1〉 DeltaVecFunIndexSumProp Conclusion(Prop, F , I )
〈2〉 DeltaVecFunIndexSumProp Hypothesis(Prop, F , I )
〈3〉 USE DEF DeltaVecFunSubsetSumProp Hypothesis
〈3〉 I ∈ Seq(DOMAIN F )
〈4〉 I ∈ Seq(S )
〈5〉 IsExactSeqFor(I , S ) BY ExactSeqForProperties DEF I
〈5〉 QED BY DEF IsExactSeqFor
〈4〉 QED BY SeqSupset
〈3〉 QED BY DEF DeltaVecFunIndexSumProp Hypothesis
〈2〉 QED BY DeltaVecFunIndexSumProp
〈1〉 QED

〈2〉 USE DEF DeltaVecFunSubsetSumProp Conclusion
〈2〉 USE DEF DeltaVecFunIndexSumProp Conclusion
〈2〉 USE DEF DeltaVecFunSubsetSum
〈2〉 USE DEF I
〈2〉 QED OBVIOUS

Let Prop be any predicate satisfied by Zero and preserved by Add . Let
F be a function to delta vectors with finite non-zero range in which
F [d ] satisfies Prop for each d ∈ DOMAIN F . Then the sum of F satisfies Prop.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSumProp Hypothesis(Prop( ), F )
∆
=

∧ Prop(DeltaVecZero)
∧ ∀ a, b ∈ DeltaVecType : Prop(a) ∧ Prop(b)⇒ Prop(DeltaVecAdd(a, b))
∧ F ∈ [DOMAIN F → DeltaVecType]
∧ ∀ s ∈ DOMAIN F : Prop(F [s])
∧DeltaVecFunHasFiniteNonZeroRange(F )

DeltaVecFunSumProp Conclusion(Prop( ), F )
∆
=

∧DeltaVecFunSum(F ) ∈ DeltaVecType
∧ Prop(DeltaVecFunSum(F ))

THEOREM DeltaVecFunSumProp
∆
=

ASSUME NEW Prop( ), NEW F , DeltaVecFunSumProp Hypothesis(Prop, F )
PROVE DeltaVecFunSumProp Conclusion(Prop, F )

PROOF

〈1〉 DEFINE S
∆
= {s ∈ DOMAIN F : F [s] 6= DeltaVecZero}

〈1〉 HIDE DEF S
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〈1〉 DeltaVecFunSubsetSumProp Conclusion(Prop, F , S )
〈2〉 DeltaVecFunSubsetSumProp Hypothesis(Prop, F , S )
〈3〉 USE DEF DeltaVecFunSumProp Hypothesis
〈3〉 S ⊆ DOMAIN F BY DEF S
〈3〉 IsFiniteSet(S ) BY DEF DeltaVecFunHasFiniteNonZeroRange, S
〈3〉 QED BY DEF DeltaVecFunSubsetSumProp Hypothesis
〈2〉 QED BY DeltaVecFunSubsetSumProp
〈1〉 QED

〈2〉 USE DEF DeltaVecFunSumProp Conclusion
〈2〉 USE DEF DeltaVecFunSubsetSumProp Conclusion
〈2〉 USE DEF DeltaVecFunSum
〈2〉 USE DEF S
〈2〉 QED OBVIOUS

The index sum is a delta vector.

THEOREM DeltaVecFunIndexSumType
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType],
NEW I ∈ Seq(D)

PROVE

DeltaVecFunIndexSum(F , I ) ∈ DeltaVecType
PROOF

〈1〉 DEFINE Prop(a)
∆
= TRUE

〈1〉 DeltaVecFunIndexSumProp Hypothesis(Prop, F , I ) BY DEF DeltaVecFunIndexSumProp Hypothesis
〈1〉 DeltaVecFunIndexSumProp Conclusion(Prop, F , I ) BY DeltaVecFunIndexSumProp
〈1〉 QED BY DEF DeltaVecFunIndexSumProp Conclusion

The subset sum is a delta vector.

THEOREM DeltaVecFunSubsetSumType
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType],
NEW S , IsFiniteSet(S ), S ⊆ D

PROVE
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DeltaVecFunSubsetSum(F , S ) ∈ DeltaVecType
PROOF

〈1〉 DEFINE Prop(a)
∆
= TRUE

〈1〉 DeltaVecFunSubsetSumProp Hypothesis(Prop, F , S ) BY DEF DeltaVecFunSubsetSumProp Hypothesis
〈1〉 DeltaVecFunSubsetSumProp Conclusion(Prop, F , S ) BY DeltaVecFunSubsetSumProp
〈1〉 QED BY DEF DeltaVecFunSubsetSumProp Conclusion

The sum is a delta vector.

THEOREM DeltaVecFunSumType
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType], DeltaVecFunHasFiniteNonZeroRange(F )

PROVE

DeltaVecFunSum(F ) ∈ DeltaVecType
PROOF

〈1〉 DEFINE Prop(a)
∆
= TRUE

〈1〉 DeltaVecFunSumProp Hypothesis(Prop, F ) BY DEF DeltaVecFunSumProp Hypothesis
〈1〉 DeltaVecFunSumProp Conclusion(Prop, F ) BY DeltaVecFunSumProp
〈1〉 QED BY DEF DeltaVecFunSumProp Conclusion

Removing an index from an index sum produces the expected partial sum.

THEOREM DeltaVecFunIndexSumRemoveAt
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType],
NEW I ∈ Seq(D),
NEW i ∈ 1 . . Len(I )

PROVE

DeltaVecFunIndexSum(F , I ) = DeltaVecAdd(F [I [i ]], DeltaVecFunIndexSum(F , RemoveAt(I , i)))
PROOF

〈1〉 DEFINE LenI
∆
= Len(I )

〈1〉 DEFINE Q
∆
= [k ∈ 1 . . LenI 7→ F [I [k ]]]

〈1〉 DEFINE LenQ
∆
= Len(Q)

〈1〉 HIDE DEF LenI , Q , LenQ
〈1〉1. I ∈ Seq(D) OBVIOUS
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〈1〉2. i ∈ 1 . . LenI BY DEF LenI
〈1〉3. LenI ∈ Nat BY LenInNat DEF LenI
〈1〉4. I ∈ [1 . . LenI → D ] BY LenAxiom DEF LenI
〈1〉5. Q ∈ [1 . . LenI → DeltaVecType] BY 〈1〉4 DEF Q
〈1〉6. Q ∈ Seq(DeltaVecType) BY 〈1〉3, 〈1〉5, IsASeq
〈1〉7. LenQ = LenI BY 〈1〉3, 〈1〉5, 〈1〉6, LenDomain DEF LenQ
〈1〉8. i ∈ 1 . . LenQ BY 〈1〉2, 〈1〉7
〈1〉9. DeltaVecSeqSum(Q) = DeltaVecAdd(Q [i ], DeltaVecSeqSum(RemoveAt(Q , i))) BY 〈1〉6, 〈1〉8, DeltaVecSeqSumRemoveAt DEF LenQ
〈1〉10. DeltaVecFunIndexSum(F , I ) = DeltaVecSeqSum(Q) BY DEF DeltaVecFunIndexSum, Q , LenI
〈1〉11. F [I [i ]] = Q [i ] BY 〈1〉2 DEF Q
〈1〉12. DeltaVecFunIndexSum(F , RemoveAt(I , i)) = DeltaVecSeqSum(RemoveAt(Q , i))
〈2〉 DEFINE I 1

∆
= RemoveAt(I , i)

〈2〉 DEFINE Q1
∆
= RemoveAt(Q , i)

〈2〉 DEFINE LenI 1
∆
= Len(I 1)

〈2〉 DEFINE LenQ1
∆
= Len(Q1)

〈2〉 HIDE DEF I 1, Q1, LenI 1, LenQ1
〈2〉1. I 1 ∈ Seq(D) BY 〈1〉1, 〈1〉2, RemoveAtProperties DEF I 1, LenI
〈2〉2. Q1 ∈ Seq(DeltaVecType) BY 〈1〉6, 〈1〉8, RemoveAtProperties DEF Q1, LenQ
〈2〉3. LenI 1 = LenQ1
〈3〉3. LenI 1 = LenI − 1 BY 〈1〉1, 〈1〉2, RemoveAtProperties DEF I 1, LenI , LenI 1
〈3〉4. LenQ1 = LenQ − 1 BY 〈1〉6, 〈1〉8, RemoveAtProperties DEF Q1, LenQ , LenQ1
〈3〉 QED BY 〈1〉7, 〈3〉3, 〈3〉4
〈2〉4. DeltaVecFunIndexSum(F , I 1) = DeltaVecSeqSum([k ∈ 1 . . LenI 1 7→ F [I 1[k ]]]) BY DEF DeltaVecFunIndexSum, LenI 1

〈2〉 SUFFICES Q1 = [k ∈ 1 . . LenQ1 7→ F [I 1[k ]]] BY 〈2〉3, 〈2〉4 DEF I 1, Q1
〈2〉5. Q1 ∈ [1 . . LenQ1→ DeltaVecType] BY 〈2〉2, LenAxiom DEF LenQ1

〈2〉6. SUFFICES ASSUME NEW k , k ∈ 1 . . LenQ1 PROVE Q1[k ] = F [I 1[k ]] BY 〈2〉5
〈2〉7. k ∈ 1 . . LenI 1 BY 〈2〉3, 〈2〉6
〈2〉8. k ∈ 1 . . LenQ1 OBVIOUS

〈2〉9. RemoveAt MapBackward(I , i) BY 〈1〉1, 〈1〉2, RemoveAtProperties DEF I 1, LenI
〈2〉10. RemoveAt MapBackward(Q , i) BY 〈1〉6, 〈1〉8, RemoveAtProperties DEF Q1, LenQ
〈2〉 DEFINE Iik

∆
= RemoveAt BackwardIndex (I , i , k)

〈2〉 DEFINE Qik
∆
= RemoveAt BackwardIndex (Q , i , k)

〈2〉11. Iik ∈ 1 . . LenI ∧ I 1[k ] = I [Iik ] BY 〈2〉7, 〈2〉9 DEF RemoveAt MapBackward , I 1, LenI , LenI 1
〈2〉12. Qik ∈ 1 . . LenQ ∧Q1[k ] = Q [Qik ] BY 〈2〉8, 〈2〉10 DEF RemoveAt MapBackward , Q1, LenQ , LenQ1
〈2〉13. Iik = Qik BY DEF RemoveAt BackwardIndex
〈2〉 QED BY 〈1〉7, 〈2〉11, 〈2〉12, 〈2〉13 DEF Q
〈1〉 QED BY 〈1〉9, 〈1〉10, 〈1〉11, 〈1〉12

All exact sequences for a given subset produce the same index sum.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.
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DeltaVecFunIndexSumAnyExactSeq Hypothesis(F , S , I , J )
∆
=

LET

D
∆
= DOMAIN F

IN

∧ F ∈ [D → DeltaVecType]
∧ S ⊆ D
∧ IsExactSeqFor(I , S )
∧ IsExactSeqFor(J , S )

DeltaVecFunIndexSumAnyExactSeq Conclusion(F , S , I , J )
∆
=

DeltaVecFunIndexSum(F , I ) = DeltaVecFunIndexSum(F , J )

THEOREM DeltaVecFunIndexSumAnyExactSeq
∆
=

ASSUME NEW F , NEW S , NEW I , NEW J , DeltaVecFunIndexSumAnyExactSeq Hypothesis(F , S , I , J )
PROVE DeltaVecFunIndexSumAnyExactSeq Conclusion(F , S , I , J )

PROOF

〈1〉 DEFINE D
∆
= DOMAIN F

〈1〉 F ∈ [D → DeltaVecType] BY DEF DeltaVecFunIndexSumAnyExactSeq Hypothesis
〈1〉 S ⊆ D BY DEF DeltaVecFunIndexSumAnyExactSeq Hypothesis
〈1〉 IsExactSeqFor(I , S ) BY DEF DeltaVecFunIndexSumAnyExactSeq Hypothesis
〈1〉 IsExactSeqFor(J , S ) BY DEF DeltaVecFunIndexSumAnyExactSeq Hypothesis
〈1〉 HIDE DEF D
〈1〉 USE DEF DeltaVecFunIndexSumAnyExactSeq Conclusion

A counterexample to this theorem is a subset S1 with exact sequences I1 and J1 that produce different index sums.

〈1〉 DEFINE IsCounterexample(S1, I 1, J1)
∆
=

∧ S1 ⊆ D
∧ IsExactSeqFor(I 1, S1)
∧ IsExactSeqFor(J1, S1)
∧DeltaVecFunIndexSum(F , I 1) 6= DeltaVecFunIndexSum(F , J1)

〈1〉 HIDE DEF IsCounterexample

Let N be the set of all natural numbers n such that there is a counterexample and the length of one of the exact sequences is n .

〈1〉 DEFINE N
∆
= {n ∈ Nat : ∃S1, I 1, J1 : IsCounterexample(S1, I 1, J1) ∧ n = Len(I 1)}

〈1〉 HIDE DEF N
〈1〉1. SUFFICES N = {}
〈2〉1. SUFFICES ASSUME DeltaVecFunIndexSum(F , I ) 6= DeltaVecFunIndexSum(F , J ) PROVE FALSE OBVIOUS

〈2〉2. IsCounterexample(S , I , J ) BY 〈2〉1 DEF IsCounterexample
〈2〉3. I ∈ Seq(S ) BY DEF IsExactSeqFor
〈2〉4. Len(I ) ∈ Nat BY 〈2〉3, LenInNat
〈2〉5. Len(I ) ∈ N BY 〈2〉2, 〈2〉4 DEF N
〈2〉 QED BY 〈1〉1, 〈2〉5
〈1〉2. SUFFICES ASSUME N 6= {} PROVE FALSE OBVIOUS

If there is a counterexample, there must be a smallest one.
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〈1〉3. PICK n ∈ N : ∀m ∈ N : n ≤ m BY 〈1〉2, NatWellFounded DEF N
〈1〉4. PICK S1, I 1, J1 : IsCounterexample(S1, I 1, J1) ∧ n = Len(I 1) BY 〈1〉3 DEF N
〈1〉 DEFINE LenI 1

∆
= Len(I 1)

〈1〉 DEFINE LenJ1
∆
= Len(J1)

〈1〉 HIDE DEF LenI 1, LenJ1

Based on this “smallest” counterexample, we will construct a smaller one, thus establishing a contradiction.

First we establish various useful facts about S1, I1, and J1.

〈1〉5. S1 ⊆ D BY 〈1〉4 DEF IsCounterexample
〈1〉6. IsExactSeqFor(I 1, S1) BY 〈1〉4 DEF IsCounterexample
〈1〉7. IsExactSeqFor(J1, S1) BY 〈1〉4 DEF IsCounterexample

〈1〉8. I 1 ∈ Seq(S1) BY 〈1〉6 DEF IsExactSeqFor
〈1〉9. J1 ∈ Seq(S1) BY 〈1〉7 DEF IsExactSeqFor

〈1〉10. ExactSeq Each(I 1, S1) BY 〈1〉6 DEF IsExactSeqFor
〈1〉11. ExactSeq Each(J1, S1) BY 〈1〉7 DEF IsExactSeqFor

〈1〉12. LenI 1 ∈ Nat BY 〈1〉8, LenInNat DEF LenI 1
〈1〉13. LenJ1 ∈ Nat BY 〈1〉9, LenInNat DEF LenJ1

〈1〉14. I 1 ∈ Seq(D) BY 〈1〉5, 〈1〉8, SeqSupset
〈1〉15. J1 ∈ Seq(D) BY 〈1〉5, 〈1〉9, SeqSupset

〈1〉16. DeltaVecFunIndexSum(F , I 1) 6= DeltaVecFunIndexSum(F , J1) BY 〈1〉4 DEF IsCounterexample
〈1〉17. n = LenI 1 BY 〈1〉4 DEF LenI 1

〈1〉18. S1 6= {}
〈2〉1. SUFFICES ASSUME S1 = {} PROVE FALSE OBVIOUS

〈2〉2. I 1 = 〈〉 BY 〈1〉6, 〈2〉1, ExactSeqEmpty
〈2〉3. J1 = 〈〉 BY 〈1〉7, 〈2〉1, ExactSeqEmpty
〈2〉4. I 1 = J1 BY 〈2〉2, 〈2〉3
〈2〉5. DeltaVecFunIndexSum(F , I 1) = DeltaVecFunIndexSum(F , J1) BY 〈2〉4
〈2〉 QED BY 〈1〉16, 〈2〉5

Since S1 6= {}, we pick some element s1 ∈ S1 and remove it from S1, I1, and J1. This creates a smaller counterexample.

〈1〉19. PICK s1 : s1 ∈ S1 BY 〈1〉18
〈1〉20. PICK i1 : i1 ∈ 1 . . LenI 1 ∧ I 1[i1] = s1 BY 〈1〉10, 〈1〉19 DEF ExactSeq Each, LenI 1
〈1〉21. PICK j1 : j1 ∈ 1 . . LenJ1 ∧ J1[j1] = s1 BY 〈1〉11, 〈1〉19 DEF ExactSeq Each, LenJ1

〈1〉 DEFINE S2
∆
= S1 \ {s1}

〈1〉 DEFINE I 2
∆
= RemoveAt(I 1, i1)

〈1〉 DEFINE J2
∆
= RemoveAt(J1, j1)

〈1〉 DEFINE LenI 2
∆
= Len(I 2)

〈1〉 DEFINE LenJ2
∆
= Len(J2)

〈1〉 HIDE DEF S2, I 2, J2, LenI 2, LenJ2

〈1〉22. LenI 2 = LenI 1 − 1 BY 〈1〉8, 〈1〉20, RemoveAtProperties DEF I 2, LenI 2, LenI 1
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〈1〉23. LenJ2 = LenJ1− 1 BY 〈1〉9, 〈1〉21, RemoveAtProperties DEF J2, LenJ2, LenJ1

〈1〉24. S2 ⊆ D BY 〈1〉5 DEF S2
〈1〉25. IsExactSeqFor(I 2, S2) BY 〈1〉6, 〈1〉20, ExactSeqRemoveAt DEF I 2, S2, LenI 1
〈1〉26. IsExactSeqFor(J2, S2) BY 〈1〉7, 〈1〉21, ExactSeqRemoveAt DEF J2, S2, LenJ1

〈1〉27. I 2 ∈ Seq(S2) BY 〈1〉25 DEF IsExactSeqFor
〈1〉28. J2 ∈ Seq(S2) BY 〈1〉26 DEF IsExactSeqFor

〈1〉29. LenI 2 ∈ Nat BY 〈1〉27, LenInNat DEF LenI 2

〈1〉30. DeltaVecFunIndexSum(F , I 1) = DeltaVecAdd(F [s1], DeltaVecFunIndexSum(F , I 2))
BY 〈1〉14, 〈1〉20, DeltaVecFunIndexSumRemoveAt DEF I 2, LenI 1

〈1〉31. DeltaVecFunIndexSum(F , J1) = DeltaVecAdd(F [s1], DeltaVecFunIndexSum(F , J2))
BY 〈1〉15, 〈1〉21, DeltaVecFunIndexSumRemoveAt DEF J2, LenJ1

〈1〉32. DeltaVecFunIndexSum(F , I 2) 6= DeltaVecFunIndexSum(F , J2)
〈2〉1. SUFFICES ASSUME DeltaVecFunIndexSum(F , I 2) = DeltaVecFunIndexSum(F , J2) PROVE FALSE OBVIOUS

〈2〉2. DeltaVecFunIndexSum(F , I 1) = DeltaVecFunIndexSum(F , J1) BY 〈1〉30, 〈1〉31, 〈2〉1
〈2〉 QED BY 〈1〉16, 〈2〉2

〈1〉33. IsCounterexample(S2, I 2, J2) BY 〈1〉24, 〈1〉25, 〈1〉26, 〈1〉32 DEF IsCounterexample

〈1〉34. LenI 2 ∈ N BY 〈1〉29, 〈1〉33 DEF LenI 2, N
〈1〉35. ¬(LenI 1 ≤ LenI 2) BY 〈1〉12, 〈1〉22, SMTT (10)
〈1〉 QED BY 〈1〉3, 〈1〉17, 〈1〉34, 〈1〉35

The index sum of an empty sequence is zero.

THEOREM DeltaVecFunIndexSumEmpty
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType]

PROVE

DeltaVecFunIndexSum(F , 〈〉) = DeltaVecZero
PROOF

〈1〉 DEFINE I
∆
= 〈〉

〈1〉 DEFINE LenI
∆
= Len(I )

〈1〉 DEFINE Q
∆
= [i ∈ 1 . . LenI 7→ F [I [i ]]]

〈1〉 HIDE DEF I , LenI , Q
〈1〉1. DeltaVecFunIndexSum(F , I ) = DeltaVecSeqSum(Q) BY DEF DeltaVecFunIndexSum, LenI , Q
〈1〉2. LenI = 0 BY EmptySeq DEF I , LenI
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〈1〉3. 1 . . LenI = {} BY 〈1〉2, SMTT (10)
〈1〉4. ∀ i ∈ 1 . . LenI : I [i ] ∈ D BY 〈1〉3
〈1〉5. Q ∈ [1 . . LenI → DeltaVecType] BY 〈1〉4 DEF Q
〈1〉6. DOMAIN Q = 1 . . LenI BY 〈1〉5
〈1〉7. Q ∈ Seq(DeltaVecType) BY 〈1〉2, 〈1〉5, IsASeq
〈1〉8. Len(Q) = 0 BY 〈1〉2, 〈1〉6, 〈1〉7, LenDomain
〈1〉9. Q = 〈〉 BY 〈1〉7, 〈1〉8, EmptySeq
〈1〉10. DeltaVecSeqSum(Q) = DeltaVecZero BY 〈1〉7, 〈1〉9, DeltaVecSeqSumEmpty
〈1〉 QED BY 〈1〉1, 〈1〉10 DEF I

The subset sum of an empty subset is zero.

THEOREM DeltaVecFunSubsetSumEmpty
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType]

PROVE

DeltaVecFunSubsetSum(F , {}) = DeltaVecZero
PROOF

〈1〉1. DeltaVecFunIndexSum(F , 〈〉) = DeltaVecZero BY DeltaVecFunIndexSumEmpty
〈1〉2. 〈〉 = ExactSeqFor({})

BY FiniteSetEmpty , ExactSeqForProperties, ExactSeqEmpty
〈1〉 QED BY 〈1〉1, 〈1〉2 DEF DeltaVecFunSubsetSum

The sum of an all-zero function is zero.

THEOREM DeltaVecFunSumAllZero
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType],
∀ d ∈ D : F [d ] = DeltaVecZero

PROVE

∧DeltaVecFunHasFiniteNonZeroRange(F )
∧DeltaVecFunSum(F ) = DeltaVecZero

PROOF

〈1〉 DEFINE S
∆
= {d ∈ DOMAIN F : F [d ] 6= DeltaVecZero}

〈1〉 HIDE DEF S
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〈1〉1. DeltaVecFunHasFiniteNonZeroRange(F )
〈2〉 S = {} BY DEF S
〈2〉 IsFiniteSet(S ) BY FiniteSetEmpty
〈2〉 QED BY DEF S , DeltaVecFunHasFiniteNonZeroRange

〈1〉2. DeltaVecFunSum(F ) = DeltaVecZero
〈2〉 S = {} BY DEF S
〈2〉 DeltaVecFunSum(F ) = DeltaVecFunSubsetSum(F , S ) BY DEF DeltaVecFunSum, S
〈2〉 QED BY DeltaVecFunSubsetSumEmpty

〈1〉 QED BY 〈1〉1, 〈1〉2

Adding a new element x /∈ S to subset S causes the subset sum to increase by F [x ].

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSubsetSumNewElem Hypothesis(F , S , x )
∆
=

LET

D
∆
= DOMAIN F

IN

∧ F ∈ [D → DeltaVecType]
∧ S ⊆ D
∧ IsFiniteSet(S )
∧ x ∈ D
∧ x /∈ S

DeltaVecFunSubsetSumNewElem Conclusion(F , S , x )
∆
=

LET

D
∆
= DOMAIN F

T
∆
= S ∪ {x}

IN

∧DeltaVecAdd(F [x ], DeltaVecFunSubsetSum(F , S )) = DeltaVecFunSubsetSum(F , T )
∧DeltaVecAdd(DeltaVecFunSubsetSum(F , S ), F [x ]) = DeltaVecFunSubsetSum(F , T )
∧ T ⊆ D
∧ IsFiniteSet(T )

THEOREM DeltaVecFunSubsetSumNewElem
∆
=

ASSUME NEW F , NEW S , NEW x , DeltaVecFunSubsetSumNewElem Hypothesis(F , S , x )
PROVE DeltaVecFunSubsetSumNewElem Conclusion(F , S , x )

PROOF

〈1〉 DEFINE D
∆
= DOMAIN F
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〈1〉 DEFINE T
∆
= S ∪ {x}

〈1〉 DEFINE I
∆
= ExactSeqFor(S )

〈1〉 DEFINE J
∆
= ExactSeqFor(T )

〈1〉 HIDE DEF D , T , I , J

〈1〉1. F ∈ [D → DeltaVecType] BY DEF DeltaVecFunSubsetSumNewElem Hypothesis, D

〈1〉2. IsFiniteSet({x}) BY FiniteSetSingleton

〈1〉3. IsFiniteSet(S ) BY DEF DeltaVecFunSubsetSumNewElem Hypothesis
〈1〉4. IsFiniteSet(T ) BY 〈1〉2, 〈1〉3, FiniteSetUnion DEF T

〈1〉5. x ∈ D BY DEF DeltaVecFunSubsetSumNewElem Hypothesis, D
〈1〉6. x /∈ S BY DEF DeltaVecFunSubsetSumNewElem Hypothesis
〈1〉7. x ∈ T BY DEF T
〈1〉8. T \ {x} = S BY 〈1〉6 DEF T

〈1〉9. S ⊆ D BY DEF DeltaVecFunSubsetSumNewElem Hypothesis, D
〈1〉10. T ⊆ D BY 〈1〉5, 〈1〉9 DEF T

〈1〉11. DeltaVecFunSubsetSum(F , S ) = DeltaVecFunIndexSum(F , I )
BY 〈1〉3 DEF DeltaVecFunSubsetSum, I

〈1〉12. DeltaVecFunSubsetSum(F , T ) = DeltaVecFunIndexSum(F , J )
BY 〈1〉4 DEF DeltaVecFunSubsetSum, J

〈1〉13. IsExactSeqFor(I , S ) BY 〈1〉3, ExactSeqForProperties DEF I
〈1〉14. IsExactSeqFor(J , T ) BY 〈1〉4, ExactSeqForProperties DEF J

〈1〉15. ExactSeq Each(J , T ) BY 〈1〉14 DEF IsExactSeqFor

〈1〉16. J ∈ Seq(T ) BY 〈1〉14 DEF IsExactSeqFor
〈1〉17. J ∈ Seq(D) BY 〈1〉10, 〈1〉16, SeqSupset

〈1〉18. PICK j : j ∈ 1 . . Len(J ) ∧ J [j ] = x BY 〈1〉7, 〈1〉15 DEF ExactSeq Each

〈1〉 DEFINE K
∆
= RemoveAt(J , j )

〈1〉 HIDE DEF K
〈1〉19. IsExactSeqFor(K , S ) BY 〈1〉8, 〈1〉14, 〈1〉18, ExactSeqRemoveAt DEF K
〈1〉20. K ∈ Seq(S ) BY 〈1〉19 DEF IsExactSeqFor
〈1〉21. K ∈ Seq(D) BY 〈1〉9, 〈1〉20, SeqSupset
〈1〉22. DeltaVecFunIndexSum(F , K ) ∈ DeltaVecType BY 〈1〉1, 〈1〉21, DeltaVecFunIndexSumType

〈1〉23. DeltaVecFunIndexSum(F , J ) = DeltaVecAdd(F [x ], DeltaVecFunIndexSum(F , K ))
〈2〉 USE 〈1〉1, 〈1〉17, 〈1〉18
〈2〉 USE DeltaVecFunIndexSumRemoveAt
〈2〉 USE DEF K
〈2〉 QED OBVIOUS

〈1〉24. DeltaVecFunIndexSum(F , I ) = DeltaVecFunIndexSum(F , K )
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〈2〉 DeltaVecFunIndexSumAnyExactSeq Conclusion(F , S , I , K )
〈3〉 DeltaVecFunIndexSumAnyExactSeq Hypothesis(F , S , I , K )
〈4〉 USE 〈1〉1, 〈1〉9, 〈1〉13, 〈1〉19
〈4〉 QED BY DEF DeltaVecFunIndexSumAnyExactSeq Hypothesis
〈3〉 QED BY DeltaVecFunIndexSumAnyExactSeq
〈2〉 QED BY DEF DeltaVecFunIndexSumAnyExactSeq Conclusion

〈1〉25. DeltaVecAdd(F [x ], DeltaVecFunIndexSum(F , I )) = DeltaVecFunIndexSum(F , J )
BY 〈1〉23, 〈1〉24

〈1〉26. DeltaVecAdd(F [x ], DeltaVecFunSubsetSum(F , S )) = DeltaVecFunSubsetSum(F , T )
BY 〈1〉25 DEF DeltaVecFunSubsetSum, I , J

〈1〉27. DeltaVecAdd(DeltaVecFunSubsetSum(F , S ), F [x ]) = DeltaVecFunSubsetSum(F , T )
〈2〉1. F [x ] ∈ DeltaVecType BY 〈1〉1, 〈1〉5
〈2〉2. DeltaVecFunSubsetSum(F , S ) ∈ DeltaVecType

BY 〈1〉1, 〈1〉3, 〈1〉9, DeltaVecFunSubsetSumType DEF D
〈2〉 QED BY 〈1〉26, 〈2〉1, 〈2〉2, DeltaVecAddCommutative

〈1〉 QED

〈2〉 USE 〈1〉4, 〈1〉10, 〈1〉26, 〈1〉27
〈2〉 QED BY DEF DeltaVecFunSubsetSumNewElem Conclusion, D , T

Adding element x to subset S does not change the subset sum when either already x ∈ S or F [x ] = Zero.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSubsetSumElemNoChange Hypothesis(F , S , x )
∆
=

LET

D
∆
= DOMAIN F

IN

∧ F ∈ [D → DeltaVecType]
∧ S ⊆ D
∧ IsFiniteSet(S )
∧ x ∈ D
∧ x ∈ S ∨ F [x ] = DeltaVecZero

DeltaVecFunSubsetSumElemNoChange Conclusion(F , S , x )
∆
=

LET

D
∆
= DOMAIN F

T
∆
= S ∪ {x}

IN
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∧DeltaVecFunSubsetSum(F , S ) = DeltaVecFunSubsetSum(F , T )

∧ T ⊆ D

∧ IsFiniteSet(T )

THEOREM DeltaVecFunSubsetSumElemNoChange
∆
=

ASSUME NEW F , NEW S , NEW x , DeltaVecFunSubsetSumElemNoChange Hypothesis(F , S , x )

PROVE DeltaVecFunSubsetSumElemNoChange Conclusion(F , S , x )

PROOF

〈1〉 DEFINE D
∆
= DOMAIN F

〈1〉 DEFINE T
∆
= S ∪ {x}

〈1〉 HIDE DEF D , T

〈1〉1. F ∈ [D → DeltaVecType] BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis, D

〈1〉2. x ∈ D BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis, D

〈1〉3. x ∈ S ∨ F [x ] = DeltaVecZero BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis

〈1〉4. S ⊆ D BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis, D

〈1〉5. T ⊆ D BY 〈1〉2, 〈1〉4 DEF T

〈1〉6. IsFiniteSet({x}) BY FiniteSetSingleton

〈1〉7. IsFiniteSet(S ) BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis

〈1〉8. IsFiniteSet(T ) BY 〈1〉6, 〈1〉7, FiniteSetUnion DEF T

〈1〉9. DeltaVecFunSubsetSum(F , S ) = DeltaVecFunSubsetSum(F , T )

〈2〉1. CASE x ∈ S BY 〈2〉1 DEF T

〈2〉2. CASE x /∈ S

〈3〉1. DeltaVecAdd(F [x ], DeltaVecFunSubsetSum(F , S )) = DeltaVecFunSubsetSum(F , T )

〈4〉 DeltaVecFunSubsetSumNewElem Conclusion(F , S , x )

〈5〉 DeltaVecFunSubsetSumNewElem Hypothesis(F , S , x )

〈6〉 USE 〈1〉1, 〈1〉2, 〈1〉4, 〈1〉7, 〈2〉2
〈6〉 QED BY DEF DeltaVecFunSubsetSumNewElem Hypothesis, D

〈5〉 QED BY DeltaVecFunSubsetSumNewElem

〈4〉 QED BY DEF DeltaVecFunSubsetSumNewElem Conclusion, T

〈3〉2. F [x ] = DeltaVecZero BY 〈1〉3, 〈2〉2
〈3〉3. DeltaVecFunSubsetSum(F , S ) ∈ DeltaVecType

〈4〉 USE 〈1〉1, 〈1〉4, 〈1〉7
〈4〉 QED BY DeltaVecFunSubsetSumType DEF D

〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3, DeltaVecZeroType, DeltaVecAddZero

〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉 QED

〈2〉 USE 〈1〉5, 〈1〉8, 〈1〉9
〈2〉 QED BY DEF DeltaVecFunSubsetSumElemNoChange Conclusion, D , T
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If two functions F and G have the same value on every s ∈ S , then their subset sums on S are the same.

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

DeltaVecFunSubsetSumSameSubset Hypothesis(F , G , S )
∆
=

LET

DF
∆
= DOMAIN F

DG
∆
= DOMAIN G

IN

∧ F ∈ [DF → DeltaVecType]
∧G ∈ [DG → DeltaVecType]
∧ S ⊆ DF
∧ S ⊆ DG
∧ IsFiniteSet(S )
∧ ∀ s ∈ S : F [s] = G [s]

DeltaVecFunSubsetSumSameSubset Conclusion(F , G , S )
∆
=

∧DeltaVecFunSubsetSum(F , S ) = DeltaVecFunSubsetSum(G , S )

THEOREM DeltaVecFunSubsetSumSameSubset
∆
=

ASSUME NEW F , NEW G , NEW S , DeltaVecFunSubsetSumSameSubset Hypothesis(F , G , S )
PROVE DeltaVecFunSubsetSumSameSubset Conclusion(F , G , S )

PROOF

〈1〉 DEFINE DF
∆
= DOMAIN F

〈1〉 DEFINE DG
∆
= DOMAIN G

〈1〉 DEFINE I
∆
= ExactSeqFor(S )

〈1〉 DEFINE QF
∆
= [i ∈ 1 . . Len(I ) 7→ F [I [i ]]]

〈1〉 DEFINE QG
∆
= [i ∈ 1 . . Len(I ) 7→ G [I [i ]]]

〈1〉 HIDE DEF DF , DG , I , QF , QG

〈1〉1. F ∈ [DF → DeltaVecType] BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis, DF
〈1〉2. G ∈ [DG → DeltaVecType] BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis, DG

〈1〉3. S ⊆ DF BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis, DF
〈1〉4. S ⊆ DG BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis, DG

〈1〉5. IsFiniteSet(S ) BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis
〈1〉6. ∀ s ∈ S : F [s] = G [s] BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis

〈1〉7. DeltaVecFunSubsetSum(F , S ) = DeltaVecSeqSum(QF )
〈2〉1. DeltaVecFunSubsetSum(F , S ) = DeltaVecFunIndexSum(F , I ) BY DEF DeltaVecFunSubsetSum, I
〈2〉2. DeltaVecFunIndexSum(F , I ) = DeltaVecSeqSum(QF ) BY DEF DeltaVecFunIndexSum, QF
〈2〉 QED BY 〈2〉1, 〈2〉2
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〈1〉8. DeltaVecFunSubsetSum(G , S ) = DeltaVecSeqSum(QG)
〈2〉1. DeltaVecFunSubsetSum(G , S ) = DeltaVecFunIndexSum(G , I ) BY DEF DeltaVecFunSubsetSum, I
〈2〉2. DeltaVecFunIndexSum(G , I ) = DeltaVecSeqSum(QG) BY DEF DeltaVecFunIndexSum, QG
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉9. QF = QG
〈2〉1. IsExactSeqFor(I , S ) BY 〈1〉5, ExactSeqForProperties DEF I
〈2〉2. I ∈ Seq(S ) BY 〈2〉1 DEF IsExactSeqFor
〈2〉3. ∀ i ∈ 1 . . Len(I ) : I [i ] ∈ S BY 〈2〉2, ElementOfSeq
〈2〉4. QF ∈ [1 . . Len(I )→ DeltaVecType] BY 〈1〉1, 〈1〉3, 〈2〉3 DEF QF
〈2〉5. QG ∈ [1 . . Len(I )→ DeltaVecType] BY 〈1〉2, 〈1〉4, 〈2〉3 DEF QG
〈2〉6. ∀ i ∈ 1 . . Len(I ) : QF [i ] = QG [i ] BY 〈1〉6, 〈2〉3 DEF QF , QG
〈2〉 QED BY 〈2〉4, 〈2〉5, 〈2〉6, Isa

〈1〉10. DeltaVecFunSubsetSum(F , S ) = DeltaVecFunSubsetSum(G , S ) BY 〈1〉7, 〈1〉8, 〈1〉9

〈1〉 QED BY 〈1〉10 DEF DeltaVecFunSubsetSumSameSubset Conclusion

Adding a delta vector at a point in a function preserves the condition that the function has a range of delta vectors.

THEOREM DeltaVecFunAddAtPreservesType
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType],
NEW d ∈ D ,
NEW v ∈ DeltaVecType

PROVE

DeltaVecFunAddAt(F , d , v) ∈ [D → DeltaVecType]
PROOF

〈1〉 DEFINE E
∆
= DeltaVecFunAddAt(F , d , v)

〈1〉 HIDE DEF E
〈1〉 SUFFICES E ∈ [D → DeltaVecType] BY DEF E
〈1〉1. E = [F EXCEPT ! [d ] = DeltaVecAdd(F [d ], v)] BY DEF DeltaVecFunAddAt , E
〈1〉 SUFFICES ASSUME NEW k ∈ D PROVE E [k ] ∈ DeltaVecType BY 〈1〉1
〈1〉2. CASE k 6= d
〈2〉1. E [k ] = F [k ] BY 〈1〉1, 〈1〉2
〈2〉2. F [k ] ∈ DeltaVecType OBVIOUS

〈2〉 QED BY 〈2〉1, 〈2〉2
〈1〉3. CASE k = d
〈2〉1. E [k ] = DeltaVecAdd(F [k ], v) BY 〈1〉1, 〈1〉3
〈2〉2. F [k ] ∈ DeltaVecType OBVIOUS

〈2〉 QED BY 〈2〉1, 〈2〉2, DeltaVecAddType
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〈1〉 QED BY 〈1〉2, 〈1〉3

Adding a delta vector at a point in a function preserves the condition that the function has a finite non-zero range.

THEOREM DeltaVecFunAddAtPreservesFiniteNonZeroRange
∆
=

ASSUME

NEW D ,
NEW F ∈ [D → DeltaVecType], DeltaVecFunHasFiniteNonZeroRange(F ),
NEW d ∈ D ,
NEW v ∈ DeltaVecType

PROVE

DeltaVecFunHasFiniteNonZeroRange(DeltaVecFunAddAt(F , d , v))
PROOF

〈1〉 DEFINE E
∆
= DeltaVecFunAddAt(F , d , v)

〈1〉 DEFINE SF
∆
= {k ∈ D : F [k ] 6= DeltaVecZero}

〈1〉 DEFINE SE
∆
= {k ∈ D : E [k ] 6= DeltaVecZero}

〈1〉 HIDE DEF E , SF , SE
〈1〉 SUFFICES DeltaVecFunHasFiniteNonZeroRange(E ) BY DEF E
〈1〉1. E ∈ [D → DeltaVecType] BY DeltaVecFunAddAtPreservesType DEF E
〈1〉 SUFFICES IsFiniteSet(SE ) BY 〈1〉1 DEF DeltaVecFunHasFiniteNonZeroRange, SE
〈1〉2. E = [F EXCEPT ! [d ] = DeltaVecAdd(F [d ], v)] BY DEF DeltaVecFunAddAt , E
〈1〉3. IsFiniteSet(SF ) BY DEF DeltaVecFunHasFiniteNonZeroRange, SF
〈1〉4. IsFiniteSet({d}) BY FiniteSetSingleton
〈1〉5. IsFiniteSet(SF ∪ {d}) BY 〈1〉3, 〈1〉4, FiniteSetUnion
〈1〉 SUFFICES SE ⊆ (SF ∪ {d}) BY 〈1〉5, FiniteSetSubset
〈1〉6. SUFFICES ASSUME NEW k ∈ SE , k /∈ SF , k 6= d PROVE FALSE OBVIOUS

〈1〉7. k ∈ D BY 〈1〉6 DEF SE
〈1〉8. E [k ] 6= DeltaVecZero BY 〈1〉6 DEF SE
〈1〉9. F [k ] = DeltaVecZero BY 〈1〉6, 〈1〉7 DEF SF
〈1〉10. E [k ] = F [k ] BY 〈1〉1, 〈1〉2, 〈1〉6, 〈1〉7
〈1〉 QED BY 〈1〉8, 〈1〉9, 〈1〉10

Adding delta vector v to F [x ] increases the sum of the function by v .

We define explicit operators to capture the hypothesis and conclusion. Otherwise the provers seem to have difficulty figuring out how to apply this
theorem.

The strategy of the proof is as follows. We define G as the function produced by adding v to component x in function F . Clearly, F and G have
the same domain and if F has a finite non-zero range of delta vectors, so will G .
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We define S as the subset of the domain of F that maps to non-zero values, and likewise T as the subset of the domain of G that maps to non-zero
values. Note that since F and G are identical everywhere except possibly at x , S and T will be the same except that possibly one or the other will
include x .

To get rid of this “possibly”, we expand S to S1 by adding the element x if it was not already included. Note that SubsetSum(F , S) =
SubsetSum(F , S1) because S already contained all domain elements that map to non-zero values under F .

We do the same thing with T , and now we have sets S1 and T1 that are identical and include x . From these sets we construct S2 and T2
respectively by taking x out. Since F and G are identical everywhere except possibly at x , we can conclude that S2 = T2 and consequently that
SubsetSum(F , S2) = SubsetSum(G, T2).

We use the DeltaVecFunSubsetSumNewElem lemma to relate the S1 and T1 subset sums to the respective S2 and T2 subset sums. Putting
everything together with a little commutativity and associativity gives us the conclusion of the theorem.

DeltaVecFunSumAddAt Hypothesis(F , x , v)
∆
=

LET

D
∆
= DOMAIN F

IN

∧ F ∈ [D → DeltaVecType]
∧DeltaVecFunHasFiniteNonZeroRange(F )
∧ x ∈ D
∧ v ∈ DeltaVecType

DeltaVecFunSumAddAt Conclusion(F , x , v)
∆
=

LET

D
∆
= DOMAIN F

G
∆
= DeltaVecFunAddAt(F , x , v)

IN

∧G ∈ [D → DeltaVecType]
∧DeltaVecFunHasFiniteNonZeroRange(G)
∧DeltaVecFunSum(G) ∈ DeltaVecType
∧DeltaVecFunSum(G) = DeltaVecAdd(v , DeltaVecFunSum(F ))
∧DeltaVecFunSum(G) = DeltaVecAdd(DeltaVecFunSum(F ), v)

THEOREM DeltaVecFunSumAddAt
∆
=

ASSUME NEW F , NEW x , NEW v , DeltaVecFunSumAddAt Hypothesis(F , x , v)
PROVE DeltaVecFunSumAddAt Conclusion(F , x , v)

PROOF
Define some convenient abbreviations for this proof.

〈1〉 DEFINE Type
∆
= DeltaVecType

〈1〉 DEFINE Zero
∆
= DeltaVecZero

〈1〉 DEFINE Add( a, b)
∆
= DeltaVecAdd( a, b)

〈1〉 DEFINE SubsetSum( F , S )
∆
= DeltaVecFunSubsetSum( F , S )

〈1〉 DEFINE Sum( F )
∆
= DeltaVecFunSum( F )

〈1〉 DEFINE AddAt( F , x , v)
∆
= DeltaVecFunAddAt( F , x , v)

〈1〉 DEFINE D
∆
= DOMAIN F
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〈1〉 DEFINE G
∆
= AddAt(F , x , v)

〈1〉 DEFINE S
∆
= {k ∈ D : F [k ] 6= Zero}

〈1〉 DEFINE T
∆
= {k ∈ D : G [k ] 6= Zero}

〈1〉 DEFINE S1
∆
= S ∪ {x}

〈1〉 DEFINE T1
∆
= T ∪ {x}

〈1〉 DEFINE S2
∆
= S1 \ {x}

〈1〉 DEFINE T2
∆
= T1 \ {x}

〈1〉 HIDE DEF D , G , S , T , S1, T1, S2, T2

Some easy initial facts.

〈1〉1. x ∈ D BY DEF DeltaVecFunSumAddAt Hypothesis, D
〈1〉2. v ∈ Type BY DEF DeltaVecFunSumAddAt Hypothesis

〈1〉3. F ∈ [D → Type] BY DEF DeltaVecFunSumAddAt Hypothesis, D
〈1〉4. G ∈ [D → Type]
〈2〉 USE 〈1〉1, 〈1〉2, 〈1〉3
〈2〉 QED BY DeltaVecFunAddAtPreservesType DEF G

〈1〉5. DeltaVecFunHasFiniteNonZeroRange(F ) BY DEF DeltaVecFunSumAddAt Hypothesis
〈1〉6. DeltaVecFunHasFiniteNonZeroRange(G)
〈2〉 USE 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉5
〈2〉 QED BY DeltaVecFunAddAtPreservesFiniteNonZeroRange DEF G

〈1〉7. Sum(G) ∈ Type BY 〈1〉4, 〈1〉6, DeltaVecFunSumType

〈1〉8. S ⊆ D BY DEF S
〈1〉9. T ⊆ D BY DEF T
〈1〉10. S1 ⊆ D BY 〈1〉1, 〈1〉8 DEF S1
〈1〉11. T1 ⊆ D BY 〈1〉1, 〈1〉9 DEF T1
〈1〉12. S2 ⊆ D BY 〈1〉10 DEF S2
〈1〉13. T2 ⊆ D BY 〈1〉11 DEF T2

〈1〉14. IsFiniteSet({x}) BY FiniteSetSingleton
〈1〉15. IsFiniteSet(S ) BY 〈1〉3, 〈1〉5 DEF DeltaVecFunHasFiniteNonZeroRange, S
〈1〉16. IsFiniteSet(T ) BY 〈1〉4, 〈1〉6 DEF DeltaVecFunHasFiniteNonZeroRange, T
〈1〉17. IsFiniteSet(S1) BY 〈1〉14, 〈1〉15, FiniteSetUnion DEF S1
〈1〉18. IsFiniteSet(T1) BY 〈1〉14, 〈1〉16, FiniteSetUnion DEF T1
〈1〉19. IsFiniteSet(S2) BY 〈1〉17, FiniteSetSubset DEF S2
〈1〉20. IsFiniteSet(T2) BY 〈1〉18, FiniteSetSubset DEF T2

Sum(F ) and Sum(G) are the same as the respective subset sums over S1 and T1.

〈1〉21. Sum(F ) = SubsetSum(F , S1)
〈2〉1. Sum(F ) = SubsetSum(F , S ) BY 〈1〉3 DEF DeltaVecFunSum, S
〈2〉2. SubsetSum(F , S ) = SubsetSum(F , S1)
〈3〉 DeltaVecFunSubsetSumElemNoChange Conclusion(F , S , x )
〈4〉 DeltaVecFunSubsetSumElemNoChange Hypothesis(F , S , x )
〈5〉 x ∈ S ∨ F [x ] = DeltaVecZero BY 〈1〉1 DEF S
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〈5〉 USE 〈1〉1, 〈1〉3, 〈1〉8, 〈1〉15
〈5〉 QED BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis
〈4〉 QED BY DeltaVecFunSubsetSumElemNoChange
〈3〉 QED BY DEF DeltaVecFunSubsetSumElemNoChange Conclusion, S1
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉22. Sum(G) = SubsetSum(G , T1)
〈2〉1. Sum(G) = SubsetSum(G , T ) BY 〈1〉4 DEF DeltaVecFunSum, T
〈2〉2. SubsetSum(G , T ) = SubsetSum(G , T1)
〈3〉 DeltaVecFunSubsetSumElemNoChange Conclusion(G , T , x )
〈4〉 DeltaVecFunSubsetSumElemNoChange Hypothesis(G , T , x )
〈5〉 x ∈ T ∨G [x ] = Zero BY 〈1〉1 DEF T
〈5〉 USE 〈1〉1, 〈1〉4, 〈1〉9, 〈1〉16
〈5〉 QED BY DEF DeltaVecFunSubsetSumElemNoChange Hypothesis
〈4〉 QED BY DeltaVecFunSubsetSumElemNoChange
〈3〉 QED BY DEF DeltaVecFunSubsetSumElemNoChange Conclusion, T1
〈2〉 QED BY 〈2〉1, 〈2〉2

Relate the S1 and T1 subset sums to the respective sums over the smaller subsets S2 and T2.

〈1〉23. SubsetSum(F , S1) = Add(F [x ], SubsetSum(F , S2))
〈2〉1. SubsetSum(F , S2 ∪ {x}) = Add(F [x ], SubsetSum(F , S2))
〈3〉 DeltaVecFunSubsetSumNewElem Conclusion(F , S2, x )
〈4〉 DeltaVecFunSubsetSumNewElem Hypothesis(F , S2, x )
〈5〉 x /∈ S2 BY DEF S2
〈5〉 USE 〈1〉1, 〈1〉3, 〈1〉12, 〈1〉19
〈5〉 QED BY DEF DeltaVecFunSubsetSumNewElem Hypothesis
〈4〉 QED BY DeltaVecFunSubsetSumNewElem
〈3〉 QED BY DEF DeltaVecFunSubsetSumNewElem Conclusion
〈2〉2. S1 = S2 ∪ {x}
〈3〉 x ∈ S1 BY DEF S1
〈3〉 QED BY DEF S2
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉24. SubsetSum(G , T1) = Add(G [x ], SubsetSum(G , T2))
〈2〉1. SubsetSum(G , T2 ∪ {x}) = Add(G [x ], SubsetSum(G , T2))
〈3〉 DeltaVecFunSubsetSumNewElem Conclusion(G , T2, x )
〈4〉 DeltaVecFunSubsetSumNewElem Hypothesis(G , T2, x )
〈5〉 x /∈ T2 BY DEF T2
〈5〉 USE 〈1〉1, 〈1〉4, 〈1〉13, 〈1〉20
〈5〉 QED BY DEF DeltaVecFunSubsetSumNewElem Hypothesis
〈4〉 QED BY DeltaVecFunSubsetSumNewElem
〈3〉 QED BY DEF DeltaVecFunSubsetSumNewElem Conclusion
〈2〉2. T1 = T2 ∪ {x}
〈3〉 x ∈ T1 BY DEF T1
〈3〉 QED BY DEF T2
〈2〉 QED BY 〈2〉1, 〈2〉2
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The consequences of G = AddAt(F , x , v)

〈1〉25. G = [F EXCEPT ! [x ] = Add(F [x ], v)] BY DEF DeltaVecFunAddAt , G

〈1〉26. G [x ] = Add(v , F [x ])

〈2〉 G [x ] = Add(F [x ], v) BY 〈1〉1, 〈1〉3, 〈1〉25
〈2〉 F [x ] ∈ Type BY 〈1〉1, 〈1〉3
〈2〉 v ∈ Type BY 〈1〉2
〈2〉 QED BY DeltaVecAddCommutative

〈1〉27. S2 = T2

〈2〉 S1 = T1

〈3〉 ∀ k ∈ D : k 6= x ⇒ F [k ] = G [k ] BY 〈1〉3, 〈1〉4, 〈1〉25
〈3〉 QED BY DEF S , T , S1, T1

〈2〉 QED BY DEF S2, T2

〈1〉28. SubsetSum(F , S2) = SubsetSum(G , T2)

〈2〉 SUFFICES SubsetSum(F , S2) = SubsetSum(G , S2) BY 〈1〉27
〈2〉 DeltaVecFunSubsetSumSameSubset Conclusion(F , G , S2)

〈3〉 DeltaVecFunSubsetSumSameSubset Hypothesis(F , G , S2)

〈4〉 USE 〈1〉3, 〈1〉4, 〈1〉12, 〈1〉19, 〈1〉25
〈4〉 x /∈ S2 BY DEF S2

〈4〉 ∀ s ∈ S2 : F [s] = G [s] OBVIOUS

〈4〉 QED BY DEF DeltaVecFunSubsetSumSameSubset Hypothesis

〈3〉 QED BY DeltaVecFunSubsetSumSameSubset

〈2〉 QED BY DEF DeltaVecFunSubsetSumSameSubset Conclusion

〈1〉29. SubsetSum(G , T1) = Add(v , SubsetSum(F , S1))

〈2〉 SubsetSum(G , T1) = Add(v , Add(F [x ], SubsetSum(F , S2)))

〈3〉 SubsetSum(G , T1) = Add(Add(v , F [x ]), SubsetSum(F , S2)) BY 〈1〉24, 〈1〉26, 〈1〉28
〈3〉 F [x ] ∈ Type BY 〈1〉1, 〈1〉3
〈3〉 v ∈ Type BY 〈1〉2
〈3〉 SubsetSum(F , S2) ∈ Type BY 〈1〉3, 〈1〉12, 〈1〉19, DeltaVecFunSubsetSumType

〈3〉 QED BY DeltaVecAddAssociative

〈2〉 QED BY 〈1〉23

〈1〉30. Sum(G) = Add(v , Sum(F )) BY 〈1〉21, 〈1〉22, 〈1〉29

〈1〉31. Sum(G) = Add(Sum(F ), v)

〈2〉1. v ∈ Type BY 〈1〉2
〈2〉2. Sum(F ) ∈ TypeBY 〈1〉3, 〈1〉5, DeltaVecFunSumType

〈2〉 QED BY 〈1〉30, 〈2〉1, 〈2〉2, DeltaVecAddCommutative

〈1〉 QED

〈2〉 USE 〈1〉4, 〈1〉6, 〈1〉7, 〈1〉30, 〈1〉31
〈2〉 QED BY DEF DeltaVecFunSumAddAt Conclusion, G , D
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C.11 Facts about upright delta vectors
MODULE NaiadClockProofDeltaVecUpright

EXTENDS NaiadClockProofDeltaVecFuns

Facts about upright delta vectors.

If v is an upright delta vector then for every positive point t there is some negative point s ≺ t such that v is nonpos up thru s . We call point s a
support in v for point t .

THEOREM DeltaVecUpright ExistsSupport
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW v ∈ DeltaVecType,
NEW t ∈ Point ,
IsPartialOrder(leq),
IsDeltaVecUpright(leq , v),
v [t ] > 0

PROVE

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∃ s ∈ Point :
∧ s ≺ t
∧ v [s] < 0
∧ IsDeltaVecNonposUpto(leq , v , s)

PROOF

〈1〉1. IsDeltaVecSupported(leq , v , t) BY DEF IsDeltaVecUpright
〈1〉 QED BY 〈1〉1 DEF IsDeltaVecSupported

DeltaVecZero is an upright delta vector.

THEOREM DeltaVecUpright Zero
∆
=
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ASSUME

NEW leq ∈ PointRelationType,

IsPartialOrder(leq)

PROVE

IsDeltaVecUpright(leq , DeltaVecZero)

PROOF

〈1〉 QED BY DEF DeltaVecZero, IsDeltaVecUpright , IsDeltaVecSupported , Isa

The sum of two upright delta vectors is an upright delta vector.

THEOREM DeltaVecUpright Add
∆
=

ASSUME

NEW leq ∈ PointRelationType,

NEW v1 ∈ DeltaVecType,

NEW v2 ∈ DeltaVecType,

IsPartialOrder(leq),

IsDeltaVecUpright(leq , v1),

IsDeltaVecUpright(leq , v2)

PROVE

IsDeltaVecUpright(leq , DeltaVecAdd(v1, v2))

PROOF

〈1〉1. PICK v0 ∈ DeltaVecType : v0 = DeltaVecAdd(v1, v2) BY DeltaVecAddType

〈1〉 DEFINE a � b
∆
= leq [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b

Assume that point t is positive in v0. It suffices to find a support for t . A support is a point lower than t that is negative in v0 and no yet lower
point is positive in v0.

〈1〉2. SUFFICES ASSUME

NEW t ∈ Point ,

v0[t ] > 0

PROVE

∃ s ∈ Point :

∧ s ≺ t

∧ v0[s] < 0

∧ ¬∃ u ∈ Point : u � s ∧ v0[u] > 0

BY 〈1〉1 DEF IsDeltaVecUpright , IsDeltaVecSupported , IsDeltaVecNonposUpto

〈1〉3. v1[t ] > 0 ∨ v2[t ] > 0 BY 〈1〉1, 〈1〉2, SMTT (10) DEF DeltaVecAdd , DeltaVecType

Without loss of generality, pick va as whichever of v1 or v2 is positive at point t , and pick vb as the other.
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〈1〉 DEFINE vaisv1
∆
= v1[t ] > 0

〈1〉 HIDE DEF vaisv1

〈1〉4. PICK va ∈ DeltaVecType : va = IF vaisv1 THEN v1 ELSE v2 OBVIOUS

〈1〉5. PICK vb ∈ DeltaVecType : vb = IF vaisv1 THEN v2 ELSE v1 OBVIOUS

〈1〉6. IsDeltaVecUpright(leq , va) BY 〈1〉4
〈1〉7. IsDeltaVecUpright(leq , vb) BY 〈1〉5
〈1〉8. v0 = DeltaVecAdd(va, vb) BY 〈1〉1, 〈1〉4, 〈1〉5, DeltaVecAddCommutative
〈1〉9. va[t ] > 0 BY 〈1〉3, 〈1〉4 DEF vaisv1

Since va is upright and va[t ] > 0, we can pick a lower point x that is negative in va and no yet lower point is positive in va .

〈1〉10. PICK x ∈ Point :
∧ x ≺ t
∧ va[x ] < 0
∧ IsDeltaVecNonposUpto(leq , va, x )

BY 〈1〉6, 〈1〉9, DeltaVecUpright ExistsSupport

State what we know about x as separate facts.

〈1〉11. x ≺ t BY 〈1〉10
〈1〉12. va[x ] < 0 BY 〈1〉10
〈1〉13. IsDeltaVecNonposUpto(leq , va, x ) BY 〈1〉10

〈1〉14. CASE ¬∃ s ∈ Point : s � x ∧ vb[s] > 0

No point up thru x is positive in vb. In this case, point x is a support in v0 for point t , since in v0 point x must be negative and no lower point
can be positive.

〈2〉1. ¬(vb[x ] > 0) BY 〈1〉14, PartialOrderReflexive
〈2〉2. v0[x ] < 0 BY 〈2〉1, 〈1〉8, 〈1〉12, SMTT (10) DEF DeltaVecAdd , DeltaVecType
〈2〉3. ASSUME NEW u ∈ Point , u � x , v0[u] > 0 PROVE FALSE

〈3〉1. ¬(va[u] > 0) BY 〈2〉3, 〈1〉13 DEF IsDeltaVecNonposUpto
〈3〉2. ¬(vb[u] > 0) BY 〈2〉3, 〈1〉14
〈3〉3. ¬(v0[u] > 0) BY 〈3〉1, 〈3〉2, 〈1〉8, SMTT (10) DEF DeltaVecAdd , DeltaVecType
〈3〉 QED BY 〈3〉3, 〈2〉3
〈2〉 QED BY 〈1〉11, 〈2〉2, 〈2〉3

〈1〉15. CASE ∃ s ∈ Point : s � x ∧ vb[s] > 0

Some point at or lower than x is positive in vb. We pick one.

〈2〉1. PICK s ∈ Point : s � x ∧ vb[s] > 0 BY 〈1〉15
State what we know about s as separate facts.

〈2〉2. s � x BY 〈2〉1
〈2〉3. vb[s] > 0 BY 〈2〉1

Since vb is upright and vb[s] > 0, we can pick a lower point y that is negative in vb and no yet lower point is positive in vb.

Since point y ≺ s � x , no point at or lower than y can be positive in va . Therefore, in v0 point y must be negative and no yet lower point
can be positive. Hence point y is a support in v0 for point t .

〈2〉4. PICK y ∈ Point :
∧ y ≺ s
∧ vb[y ] < 0
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∧ IsDeltaVecNonposUpto(leq , vb, y)
BY 〈1〉7, 〈2〉3, DeltaVecUpright ExistsSupport

State what we know about y as separate facts.

〈2〉5. y ≺ s BY 〈2〉4
〈2〉6. vb[y ] < 0 BY 〈2〉4
〈2〉7. IsDeltaVecNonposUpto(leq , vb, y) BY 〈2〉4

〈2〉8. y � x BY 〈2〉2, 〈2〉5, PartialOrderTransitive
〈2〉9. ¬(va[y ] > 0) BY 〈1〉13, 〈2〉8 DEF IsDeltaVecNonposUpto
〈2〉10. v0[y ] < 0 BY 〈2〉6, 〈2〉9, 〈1〉8, SMTT (10) DEF DeltaVecAdd , DeltaVecType
〈2〉11. ASSUME NEW u ∈ Point , u � y , v0[u] > 0 PROVE FALSE

〈3〉1. u � x BY 〈2〉8, 〈2〉11, PartialOrderTransitive
〈3〉2. ¬(va[u] > 0) BY 〈3〉1, 〈1〉13 DEF IsDeltaVecNonposUpto
〈3〉3. ¬(vb[u] > 0) BY 〈2〉7, 〈2〉11 DEF IsDeltaVecNonposUpto
〈3〉4. ¬(v0[u] > 0) BY 〈3〉2, 〈3〉3, 〈1〉8, SMTT (10) DEF DeltaVecAdd , DeltaVecType
〈3〉 QED BY 〈3〉4, 〈2〉11
〈2〉12. y ≺ t BY 〈2〉8, 〈1〉11, PartialOrderStrictlyTransitive
〈2〉 QED BY 〈2〉10, 〈2〉11, 〈2〉12

〈1〉 QED BY 〈1〉14, 〈1〉15

The skip k sum of a sequence of upright delta vectors is an upright delta vector.

COROLLARY DeltaVecUpright SeqSkipSum
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW Q ∈ Seq(DeltaVecType),
NEW k ∈ Nat ,
IsPartialOrder(leq),
∀ i ∈ Nat : k < i ∧ i ≤ Len(Q)⇒ IsDeltaVecUpright(leq , Q [i ])

PROVE

IsDeltaVecUpright(leq , DeltaVecSeqSkipSum(k , Q))
PROOF

〈1〉 DEFINE Prop(a)
∆
= IsDeltaVecUpright(leq , a)

〈1〉 USE DeltaVecUpright Zero
〈1〉 USE DeltaVecUpright Add

〈1〉 DeltaVecSeqSkipSumProp Conclusion(Prop, Q , k)
〈2〉 DeltaVecSeqSkipSumProp Hypothesis(Prop, Q , k)
〈3〉 QED BY DEF DeltaVecSeqSkipSumProp Hypothesis
〈2〉 QED BY DeltaVecSeqSkipSumProp
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〈1〉 QED BY DEF DeltaVecSeqSkipSumProp Conclusion, Prop

The sum of a sequence of upright delta vectors is an upright delta vector.

COROLLARY DeltaVecUpright SeqSum
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW Q ∈ Seq(DeltaVecType),
NEW k ∈ Nat ,
IsPartialOrder(leq),
∀ i ∈ 1 . . Len(Q) : IsDeltaVecUpright(leq , Q [i ])

PROVE

IsDeltaVecUpright(leq , DeltaVecSeqSum(Q))
PROOF

〈1〉 DEFINE Prop(a)
∆
= IsDeltaVecUpright(leq , a)

〈1〉 USE DeltaVecUpright Zero
〈1〉 USE DeltaVecUpright Add

〈1〉 DeltaVecSeqSumProp Conclusion(Prop, Q)
〈2〉 DeltaVecSeqSumProp Hypothesis(Prop, Q)
〈3〉 QED BY DEF DeltaVecSeqSumProp Hypothesis
〈2〉 QED BY DeltaVecSeqSumProp
〈1〉 QED BY DEF DeltaVecSeqSumProp Conclusion, Prop

The sum of the delta vectors in the range of a function, all of which are upright, is an upright delta vector.

COROLLARY DeltaVecUpright FunSum
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW D ,
NEW F ∈ [D → DeltaVecType],
IsPartialOrder(leq),
DeltaVecFunHasFiniteNonZeroRange(F ),
∀ d ∈ D : IsDeltaVecUpright(leq , F [d ])

PROVE

IsDeltaVecUpright(leq , DeltaVecFunSum(F ))
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PROOF
〈1〉 DEFINE Prop(a)

∆
= IsDeltaVecUpright(leq , a)

〈1〉 USE DeltaVecUpright Zero
〈1〉 USE DeltaVecUpright Add

〈1〉 DeltaVecFunSumProp Conclusion(Prop, F )
〈2〉 DeltaVecFunSumProp Hypothesis(Prop, F )
〈3〉 QED BY DEF DeltaVecFunSumProp Hypothesis
〈2〉 QED BY DeltaVecFunSumProp
〈1〉 QED BY DEF DeltaVecFunSumProp Conclusion, Prop
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C.12 Facts about beta-upright delta vectors
MODULE NaiadClockProofDeltaVecBetaUpright

EXTENDS NaiadClockProofDeltaVecUpright

Facts about beta-upright delta vectors.

Given a vb-upright delta vector va , then for every positive point t in va there is in va or vb some negative point s ≺ t such that va is nonpos up
thru s . We call point s a vb-foundation for point t in va .

THEOREM DeltaVecBetaUpright ExistsFoundation
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW va ∈ DeltaVecType,
NEW vb ∈ DeltaVecType,
IsPartialOrder(leq),
IsDeltaVecBetaUpright(leq , va, vb),
NEW t ∈ Point , va[t ] > 0

PROVE

LET

a � b
∆
= leq [a][b]

a ≺ b
∆
= a � b ∧ a 6= b

IN

∃ s ∈ Point :
∧ s ≺ t
∧ va[s] < 0 ∨ vb[s] < 0
∧ IsDeltaVecNonposUpto(leq , va, s)

PROOF

〈1〉 QED BY DEF IsDeltaVecBetaUpright

A zero delta vector is vb-upright for any vb.

THEOREM DeltaVecBetaUpright Zero
∆
=

ASSUME
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NEW leq ∈ PointRelationType,
NEW vb ∈ DeltaVecType,
IsPartialOrder(leq)

PROVE

IsDeltaVecBetaUpright(leq , DeltaVecZero, vb)
PROOF

〈1〉 QED BY DEF DeltaVecZero, IsDeltaVecBetaUpright , Isa

If delta vector va is vb-upright, and vb and vc are upright delta vectors, then va is (vb + vc)-upright.

THEOREM DeltaVecBetaUpright Add
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW va ∈ DeltaVecType,
NEW vb ∈ DeltaVecType,
NEW vc ∈ DeltaVecType,
IsPartialOrder(leq),
IsDeltaVecBetaUpright(leq , va, vb),
IsDeltaVecUpright(leq , vb),
IsDeltaVecUpright(leq , vc)

PROVE

IsDeltaVecBetaUpright(leq , va, DeltaVecAdd(vb, vc))
PROOF

〈1〉 DEFINE a � b
∆
= leq [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b

Assume that t is a positive point in va and that there is no (vb + vc)-foundation for t in va . It suffices to show a contradiction.

〈1〉1. SUFFICES ASSUME

NEW t ∈ Point ,
va[t ] > 0,
¬∃ s ∈ Point :
∧ s ≺ t
∧ va[s] < 0 ∨ (vb[s] + vc[s] < 0)
∧ ¬∃ u ∈ Point : u � s ∧ va[u] > 0

PROVE FALSE

〈2〉 USE DEF DeltaVecAdd
〈2〉 USE DEF DeltaVecType
〈2〉 USE DEF IsDeltaVecBetaUpright
〈2〉 USE DEF IsDeltaVecNonposUpto
〈2〉 QED BY SMTT (10)
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Since va is vb-upright, we can pick x as a vb-foundation for t .

〈1〉2. PICK x ∈ Point :
∧ x ≺ t
∧ va[x ] < 0 ∨ vb[x ] < 0
∧ IsDeltaVecNonposUpto(leq , va, x )

BY 〈1〉1, DeltaVecBetaUpright ExistsFoundation

State what we know about x as separate facts.

〈1〉3. x ≺ t BY 〈1〉2
〈1〉4. va[x ] < 0 ∨ vb[x ] < 0 BY 〈1〉2
〈1〉5. IsDeltaVecNonposUpto(leq , va, x ) BY 〈1〉2

If va[x ] < 0 then x is a (vb + vc)-foundation for t in va . So this must not be. We deduce that vb[x ] < 0.

〈1〉6. ¬(va[x ] < 0) BY 〈1〉1, 〈1〉3, 〈1〉5 DEF IsDeltaVecNonposUpto
〈1〉7. vb[x ] < 0 BY 〈1〉4, 〈1〉6

If vb[x ] + vc[x ] < 0 then x is a (vb + vc)-foundation for t in va . So this must not be. We deduce by arithmetic that vc[x ] > 0.

〈1〉8. ¬(vb[x ] + vc[x ] < 0) BY 〈1〉1, 〈1〉3, 〈1〉5 DEF IsDeltaVecNonposUpto
〈1〉9. vc[x ] > 0 BY 〈1〉7, 〈1〉8, SMTT (10) DEF DeltaVecAdd , DeltaVecType

Since vc is upright, we can pick y as a support in vc for x .

〈1〉10. PICK y ∈ Point :
∧ y ≺ x
∧ vc[y ] < 0
∧ IsDeltaVecNonposUpto(leq , vc, y)

BY 〈1〉9, DeltaVecUpright ExistsSupport

State what we know about y as separate facts.

〈1〉11. y ≺ x BY 〈1〉10
〈1〉12. vc[y ] < 0 BY 〈1〉10
〈1〉13. IsDeltaVecNonposUpto(leq , vc, y) BY 〈1〉10

By transitivity, we almost have y as (vb + vc)-support for t in va .

〈1〉14. y ≺ t BY 〈1〉3, 〈1〉11, PartialOrderStrictlyTransitive
〈1〉15. ASSUME NEW u ∈ Point , u � y , va[u] > 0 PROVE FALSE
〈2〉 u � x BY 〈1〉11, 〈1〉15, PartialOrderTransitive
〈2〉 QED BY 〈1〉5, 〈1〉15 DEF IsDeltaVecNonposUpto

If vb[y] + vc[y] < 0 then y is a (vb + vc)-support for t in va . So this must not be. We deduce by arithmetic that vb[y] > 0.

〈1〉16. ¬(vb[y ] + vc[y ] < 0) BY 〈1〉1, 〈1〉14, 〈1〉15
〈1〉17. vb[y ] > 0 BY 〈1〉12, 〈1〉16, SMTT (10) DEF DeltaVecAdd , DeltaVecType

Since vb is upright, we can pick z as a support in vb for y .

〈1〉18. PICK z ∈ Point :
∧ z ≺ y
∧ vb[z ] < 0
∧ IsDeltaVecNonposUpto(leq , vb, z )

BY 〈1〉17, DeltaVecUpright ExistsSupport
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State what we know about z as separate facts.

〈1〉19. z ≺ y BY 〈1〉18
〈1〉20. vb[z ] < 0 BY 〈1〉18
〈1〉21. IsDeltaVecNonposUpto(leq , vb, z ) BY 〈1〉18

By transitivity, we almost have z as (vb + vc)-support for t in va .

〈1〉22. z ≺ t BY 〈1〉14, 〈1〉19, PartialOrderStrictlyTransitive
〈1〉23. ASSUME NEW u ∈ Point , u � z , va[u] > 0 PROVE FALSE

〈2〉 u � y BY 〈1〉19, 〈1〉23, PartialOrderTransitive
〈2〉 QED BY 〈1〉15, 〈1〉23

If vb[z ] + vc[z ] < 0 then z is a (vb + vc)-support for t in va . So this must not be. We deduce by arithmetic that vc[z ] > 0.

〈1〉24. ¬(vb[z ] + vc[z ] < 0) BY 〈1〉1, 〈1〉22, 〈1〉23
〈1〉25. vc[z ] > 0 BY 〈1〉20, 〈1〉24, SMTT (10) DEF DeltaVecAdd , DeltaVecType

But z ≺ y and y is a support in vc, so we cannot have vc[z ] > 0. This completes the proof.

〈1〉 QED BY 〈1〉13, 〈1〉19, 〈1〉25 DEF IsDeltaVecNonposUpto

Given F mapping to upright delta vectors with a finite non-zero range, if delta vector va is F [d ]-upright for some d , then va is also Sum(F )-
upright.

DeltaVecBetaUpright FunSum Hypothesis(leq , F , va, d0)
∆
=

LET

D
∆
= DOMAIN F

IN

∧ leq ∈ PointRelationType
∧ IsPartialOrder(leq)
∧ F ∈ [D → DeltaVecType]
∧ va ∈ DeltaVecType
∧DeltaVecFunHasFiniteNonZeroRange(F )
∧ ∀ d ∈ D : IsDeltaVecUpright(leq , F [d ])
∧ d0 ∈ D
∧ IsDeltaVecBetaUpright(leq , va, F [d0])

THEOREM DeltaVecBetaUpright FunSum
∆
=

ASSUME

NEW leq ,
NEW F ,
NEW va,
NEW d0,
DeltaVecBetaUpright FunSum Hypothesis(leq , F , va, d0)
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PROVE

IsDeltaVecBetaUpright(leq , va, DeltaVecFunSum(F ))

PROOF

〈1〉 USE DEF DeltaVecBetaUpright FunSum Hypothesis

〈1〉 DEFINE D
∆
= DOMAIN F

〈1〉 leq ∈ PointRelationType OBVIOUS

〈1〉 IsPartialOrder(leq) OBVIOUS

〈1〉 F ∈ [D → DeltaVecType] OBVIOUS

〈1〉 va ∈ DeltaVecType OBVIOUS

〈1〉 DeltaVecFunHasFiniteNonZeroRange(F ) OBVIOUS

〈1〉 ∀ d ∈ D : IsDeltaVecUpright(leq , F [d ]) OBVIOUS

〈1〉 d0 ∈ D OBVIOUS

〈1〉1. IsDeltaVecBetaUpright(leq , va, F [d0]) OBVIOUS

〈1〉 HIDE DEF DeltaVecBetaUpright FunSum Hypothesis

〈1〉 DEFINE G
∆
= [F EXCEPT ! [d0] = DeltaVecZero]

〈1〉 DEFINE SumF
∆
= DeltaVecFunSum(F )

〈1〉 DEFINE SumG
∆
= DeltaVecFunSum(G)

〈1〉2. G ∈ [D → DeltaVecType] BY DeltaVecZeroType

〈1〉3. DeltaVecFunHasFiniteNonZeroRange(G)

〈2〉 DEFINE Fnz
∆
= {d ∈ D : F [d ] 6= DeltaVecZero}

〈2〉 DEFINE Gnz
∆
= {d ∈ D : G [d ] 6= DeltaVecZero}

〈2〉1. IsFiniteSet(Fnz ) BY DEF DeltaVecFunHasFiniteNonZeroRange

〈2〉2. Gnz ⊆ Fnz OBVIOUS

〈2〉3. IsFiniteSet(Gnz ) BY 〈2〉1, 〈2〉2, FiniteSetSubset

〈2〉 QED BY 〈2〉3 DEF DeltaVecFunHasFiniteNonZeroRange

〈1〉4. SumG ∈ DeltaVecType BY 〈1〉2, 〈1〉3, DeltaVecFunSumType

〈1〉5. ∀ d ∈ D : IsDeltaVecUpright(leq , G [d ]) BY DeltaVecUpright Zero

〈1〉6. IsDeltaVecUpright(leq , SumG)

BY 〈1〉2, 〈1〉3, 〈1〉5, DeltaVecUpright FunSum

〈1〉7. F = DeltaVecFunAddAt(G , d0, F [d0])

〈2〉1. F [d0] = DeltaVecAdd(DeltaVecZero, F [d0]) BY DeltaVecAddZero

〈2〉 QED BY 〈2〉1 DEF DeltaVecFunAddAt

〈1〉8. SumF = DeltaVecAdd(F [d0], SumG)

〈2〉 HIDE DEF G

〈2〉1. DeltaVecFunSumAddAt Hypothesis(G , d0, F [d0])

BY 〈1〉2, 〈1〉3 DEF DeltaVecFunSumAddAt Hypothesis

〈2〉2. DeltaVecFunSumAddAt Conclusion(G , d0, F [d0])

BY 〈2〉1, DeltaVecFunSumAddAt

〈2〉 QED BY 〈2〉2, 〈1〉7 DEF DeltaVecFunSumAddAt Conclusion

〈1〉 QED BY 〈1〉1, 〈1〉4, 〈1〉6, 〈1〉8, DeltaVecBetaUpright Add
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If we have delta vectors va and vb such that va + vb is upright and va positive implies va + vb, then va is vb-upright.

THEOREM DeltaVecBetaUpright PositiveImplies
∆
=

ASSUME

NEW leq ∈ PointRelationType,

NEW va ∈ DeltaVecType,

NEW vb ∈ DeltaVecType,

IsPartialOrder(leq),

IsDeltaVecUpright(leq , DeltaVecAdd(va, vb)),

IsDeltaVecPositiveImplies(va, DeltaVecAdd(va, vb))

PROVE

IsDeltaVecBetaUpright(leq , va, vb)

PROOF

〈1〉 DEFINE a � b
∆
= leq [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b

〈1〉1. PICK v0 ∈ DeltaVecType : v0 = DeltaVecAdd(va, vb) BY DeltaVecAddType

Assume that t is a positive point in va . It suffices to show that there is a vb-foundation for t in va .

〈1〉2. SUFFICES ASSUME

NEW t ∈ Point ,

va[t ] > 0

PROVE

∃ s ∈ Point :

∧ s ≺ t

∧ va[s] < 0 ∨ vb[s] < 0

∧ IsDeltaVecNonposUpto(leq , va, s)

BY DEF IsDeltaVecBetaUpright

〈1〉3. v0[t ] > 0 BY 〈1〉1, 〈1〉2 DEF IsDeltaVecPositiveImplies

Since v0 is upright, we can pick x as a support in v0 for t .

〈1〉4. PICK x ∈ Point :

∧ x ≺ t

∧ v0[x ] < 0

∧ IsDeltaVecNonposUpto(leq , v0, x )

BY 〈1〉1, 〈1〉3, DeltaVecUpright ExistsSupport

State what we know about x as separate facts.

〈1〉5. x ≺ t BY 〈1〉4
〈1〉6. v0[x ] < 0 BY 〈1〉4
〈1〉7. IsDeltaVecNonposUpto(leq , v0, x ) BY 〈1〉4

Deduce that x is a vb-foundation for t in va .
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〈1〉8. va[x ] < 0 ∨ vb[x ] < 0 BY 〈1〉1, 〈1〉6, SMTT (10) DEF DeltaVecAdd , DeltaVecType
〈1〉9. ASSUME NEW u ∈ Point , u � x , va[u] > 0 PROVE FALSE
〈2〉1. ¬(v0[u] > 0) BY 〈1〉7, 〈1〉9 DEF IsDeltaVecNonposUpto
〈2〉2. v0[u] > 0 BY 〈1〉1, 〈1〉9 DEF IsDeltaVecPositiveImplies
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉 QED BY 〈1〉5, 〈1〉8, 〈1〉9 DEF IsDeltaVecNonposUpto
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C.13 Facts about delta vectors vacant up to point t

MODULE NaiadClockProofDeltaVecVacantUpto

EXTENDS NaiadClockProofDeltaVecBetaUpright

Facts about delta vectors vacant up to point t.

Given delta vectors va , vb, and vc such that vc = va + vb, if any two of these delta vectors are vacant up to point t then the third one is also.

THEOREM DeltaVecVacantUpto Add
∆
=

ASSUME

NEW leq ∈ PointRelationType,

NEW va ∈ DeltaVecType,

NEW vb ∈ DeltaVecType,

NEW t ∈ Point

PROVE

LET

vc
∆
= DeltaVecAdd(va, vb)

VUT (v)
∆
= IsDeltaVecVacantUpto(leq , v , t)

IN

∧VUT (va) ∧VUT (vb) ⇒ VUT (vc)

∧VUT (vb) ∧VUT (vc) ⇒ VUT (va)

∧VUT (vc) ∧VUT (va)⇒ VUT (vb)

PROOF

〈1〉 DEFINE vc
∆
= DeltaVecAdd(va, vb)

〈1〉 DEFINE VUT (v)
∆
= IsDeltaVecVacantUpto(leq , v , t)

〈1〉 USE DEF DeltaVecAdd

〈1〉 USE DEF DeltaVecType

〈1〉 USE DEF IsDeltaVecVacantUpto

〈1〉1. ASSUME VUT (va), VUT (vb) PROVE VUT (vc) BY 〈1〉1, SMTT (10)

〈1〉2. ASSUME VUT (vb), VUT (vc) PROVE VUT (va) BY 〈1〉2, SMTT (10)

〈1〉3. ASSUME VUT (vc), VUT (va) PROVE VUT (vb) BY 〈1〉3, SMTT (10)

〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3
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If we have a delta vectors va and vb such that
(1) va is vb-upright,
(2) vb is upright, and
(3) the sum va + vb is vacant up to point t ,

then we can conclude that va is vacant up to point t .

THEOREM DeltaVecVacantUpto BetaUpright
∆
=

ASSUME

NEW leq ∈ PointRelationType,
NEW va ∈ DeltaVecType,
NEW vb ∈ DeltaVecType,
NEW t ∈ Point ,
IsPartialOrder(leq),
IsDeltaVecBetaUpright(leq , va, vb),
IsDeltaVecUpright(leq , vb),
IsDeltaVecVacantUpto(leq , DeltaVecAdd(va, vb), t)

PROVE

IsDeltaVecVacantUpto(leq , va, t)
PROOF

〈1〉 DEFINE a � b
∆
= leq [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b

〈1〉1. ∀ s ∈ Point :
∧ va[s] ∈ Int
∧ vb[s] ∈ Int
∧ s � t ⇒ va[s] + vb[s] = 0
BY DEF IsDeltaVecVacantUpto, DeltaVecAdd , DeltaVecType

LEMMA : If we can find a point s � t where va[s] > 0, we can produce a contradiction.

〈1〉2. ASSUME

NEW s ∈ Point ,
s � t ,
va[s] > 0

PROVE FALSE
State what we know about s as separate facts.

〈2〉1. s � t BY 〈1〉2
〈2〉2. va[s] > 0 BY 〈1〉2
Since va is vb-upright, let x be a vb-foundation for s in va .

〈2〉3. PICK x ∈ Point :
∧ x ≺ s
∧ va[x ] < 0 ∨ vb[x ] < 0
∧ IsDeltaVecNonposUpto(leq , va, x )

BY 〈2〉2, DeltaVecBetaUpright ExistsFoundation

State what we know about x as separate facts.
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〈2〉4. x ≺ s BY 〈2〉3
〈2〉5. va[x ] < 0 ∨ vb[x ] < 0 BY 〈2〉3
〈2〉6. IsDeltaVecNonposUpto(leq , va, x ) BY 〈2〉3

〈2〉7. CASE vb[x ] < 0

We have va[x ] > 0 since va + vb is vacant up to point t .

〈3〉1. x � t BY 〈2〉1, 〈2〉4, PartialOrderTransitive
〈3〉2. va[x ] > 0 BY 〈3〉1, 〈2〉7, 〈1〉1, SMTT (10)

But this contradicts the choice of x .

〈3〉3. x � x BY PartialOrderReflexive
〈3〉 QED BY 〈3〉2, 〈3〉3, 〈2〉6 DEF IsDeltaVecNonposUpto

〈2〉8. CASE va[x ] < 0

We have vb[x ] > 0 since va + vb is vacant up to point t .

〈3〉1. x � t BY 〈2〉1, 〈2〉4, PartialOrderTransitive
〈3〉2. vb[x ] > 0 BY 〈3〉1, 〈2〉8, 〈1〉1, SMTT (10)

Since vb is upright, let y be a support for x in vb.

〈3〉3. PICK y ∈ Point :
∧ y ≺ x
∧ vb[y ] < 0
∧ IsDeltaVecNonposUpto(leq , vb, y)

BY 〈3〉2, DeltaVecUpright ExistsSupport

State what we know about y as separate facts.

〈3〉4. y ≺ x BY 〈3〉3
〈3〉5. vb[y ] < 0 BY 〈3〉3
〈3〉6. IsDeltaVecNonposUpto(leq , vb, y) BY 〈3〉3
We have va[y] > 0 since va + vb is vacant up to point t .

〈3〉7. y � t BY 〈3〉1, 〈3〉4, PartialOrderTransitive
〈3〉8. va[y ] > 0 BY 〈3〉5, 〈3〉7, 〈1〉1, SMTT (10)

But this contradicts the choice of x .

〈3〉 QED BY 〈3〉4, 〈3〉8, 〈2〉6 DEF IsDeltaVecNonposUpto

〈2〉 QED BY 〈2〉3, 〈2〉7, 〈2〉8

So let us assume that the conclusion is false and then derive a contradiction. If the conclusion is false, then there must be some point s � t such
that va[s] 6= 0.

〈1〉3. SUFFICES ASSUME

NEW s ∈ Point ,
s � t ,
va[s] 6= 0

PROVE FALSE

BY DEF IsDeltaVecVacantUpto
State what we know about s as separate facts.

〈1〉4. s � t BY 〈1〉3
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〈1〉5. va[s] 6= 0 BY 〈1〉3
So we have two cases: either va[s] > 0 or va[s] < 0. In either case, we find a point � t where va is positive. This produces a contradiction
by our lemma.

〈1〉6. CASE va[s] > 0 BY 〈1〉2, 〈1〉4, 〈1〉6

〈1〉7. CASE va[s] < 0

We have vb[s] > 0 since va + vb is vacant up to point t .

〈2〉1. vb[s] > 0 BY 〈1〉1, 〈1〉4, 〈1〉7, SMTT (10)

Since vb is upright, let x be a support for s in vb.

〈2〉2. PICK x ∈ Point :
∧ x ≺ s
∧ vb[x ] < 0
∧ IsDeltaVecNonposUpto(leq , vb, x )

BY 〈2〉1, DeltaVecUpright ExistsSupport

State what we know about x as separate facts.

〈2〉3. x ≺ s BY 〈2〉2
〈2〉4. vb[x ] < 0 BY 〈2〉2
〈2〉5. IsDeltaVecNonposUpto(leq , vb, x ) BY 〈2〉2
We have va[x ] > 0 since va + vb is vacant up to point t .

〈2〉6. x � t BY 〈2〉3, 〈1〉4, PartialOrderTransitive
〈2〉7. va[x ] > 0 BY 〈2〉4, 〈2〉6, 〈1〉1, SMTT (10)
〈2〉 QED BY 〈1〉2, 〈2〉6, 〈2〉7

〈1〉 QED BY 〈1〉1, 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉7, SMTT (10)



150 APPENDIX C. PROOF OF CORRECTNESS

C.14 Additional invariants needed in the proof
MODULE NaiadClockProofInvariants

EXTENDS NaiadClockProofDeltaVecVacantUpto

Additional invariants needed in the proof.

For every skip count k , sending processor p, and receiving processor q , InfoAt(k , p, q) is a delta vector.

InvInfoAtType
∆
=

∀ k ∈ Nat :
∀ p ∈ Proc :
∀ q ∈ Proc :
LET

M
∆
= msg [p][q ]

LenM
∆
= Len(M )

InRange
∆
=

∨ k ∈ DOMAIN M
∨ k ∈ 1 . . LenM
∨ k 6= 0 ∧ k ≤ LenM
∨ 0 < k ∧ k ≤ LenM

IN

∧ InfoAt(k , p, q) ∈ DeltaVecType
∧ k = 0⇒ InfoAt(k , p, q) = DeltaVecZero
∧ LenM < k ⇒ InfoAt(k , p, q) = DeltaVecZero
∧ InRange ⇒ InfoAt(k , p, q) = M [k ]

For every skip count k , sending processor p, and receiving processor q , IncomingInfo(k , p, q) is a delta vector.

InvIncomingInfoType
∆
=

∀ k ∈ Nat :
∀ p ∈ Proc :
∀ q ∈ Proc :
LET

sum
∆
= IncomingInfo(k , p, q) ! : !sum

IN
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∧ sum ∈ DeltaVecType

∧ IncomingInfo(k , p, q) ∈ DeltaVecType

For every skip count k , sending processor p, and receiving processor q , GlobalIncomingInfo(k , p, q) is a delta vector.

InvGlobalIncomingInfoType
∆
=

∀ k ∈ Nat :

∀ p ∈ Proc :

∀ q ∈ Proc :

LET

F
∆
= GlobalIncomingInfo F (k , p, q)

IN

∧ F ∈ [Proc → DeltaVecType]

∧DeltaVecFunHasFiniteNonZeroRange(F )

∧GlobalIncomingInfo(k , p, q) ∈ DeltaVecType

GlobalIncomingInfo(0, p, q) is the same regardless of p.

InvGlobalIncomingInfoSkip0
∆
=

∀ p1 ∈ Proc :

∀ p2 ∈ Proc :

∀ q ∈ Proc :

GlobalIncomingInfo(0, p1, q) = GlobalIncomingInfo(0, p2, q)

For every skip count k , sending processor p, and receiving processor q , the InfoAt(k , p, q) is IncomingInfo(k , p, q)-upright.

Note that InfoAt(k , p, q) is an item of incoming information on the message queue from processor p to processor q . IncomingInfo(k , p, q)
is the sum of all subsequent incoming information on that message queue plus all information in temp[p] that has not yet been sent.

InvInfoAtBetaUpright
∆
=

∀ k ∈ Nat :

∀ p ∈ Proc :

∀ q ∈ Proc :

IsDeltaVecBetaUpright(lleq , InfoAt(k , p, q), IncomingInfo(k , p, q))
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For every skip count k , sending processor p, and receiving processor q , the InfoAt(k , p, q) is GlobalIncomingInfo(k , p, q)-upright.

Note that InfoAt(k , p, q) is an item of incoming information on the message queue from processor p to processor q .

GlobalIncomingInfo(k , p, q) is the sum of all incoming information to processor q except for skipping the first k messages coming from
processor p.

InvGlobalInfoAtBetaUpright
∆
=

∀ k ∈ Nat :
∀ p ∈ Proc :
∀ q ∈ Proc :
IsDeltaVecBetaUpright(lleq , InfoAt(k , p, q), GlobalIncomingInfo(k , p, q))
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C.15 Deduce various invariants from others
MODULE NaiadClockProofDeduceInv

EXTENDS NaiadClockProofInvariants

Deduce various invariants from others.

We prove these deductions in both the current state (unprimed) and the next state (primed). It is the exact same proof each way so we prove both
ways at once using goal# to represent both instances. There is no deduction rule that permits you to deduce the primed version from the unprimed
version since, in general, such a rule would be unsound.

The invariant InvInfoAtType follows from InvType.

THEOREM DeduceInvInfoAtType
∆
=

LET goal
∆
=

InvType

⇒
InvInfoAtType

IN

goal ∧ goal ′

PROOF

〈1〉 DEFINE goal
∆
= DeduceInvInfoAtType ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS

〈1〉 DEFINE x# ∆
= DoPr(primeit , x )

〈1〉1. SUFFICES ASSUME InvType# PROVE InvInfoAtType# OBVIOUS

〈1〉 DEFINE I (k , p, q)
∆
= InvInfoAtType !(k) !(p) !(q)

〈1〉 HIDE DEF I

〈1〉 SUFFICES ASSUME NEW k ∈ Nat , NEW p ∈ Proc, NEW q ∈ Proc PROVE I (k , p, q)#

The prover needs help to distribute DoPr through quantifiers.

〈2〉 ∀ k ∈ Nat : ∀ p ∈ Proc : ∀ q ∈ Proc : I (k , p, q)# BY DEF I

〈2〉 (∀ k ∈ Nat : ∀ p ∈ Proc : ∀ q ∈ Proc : I (k , p, q))# OBVIOUS

〈2〉 QED BY IsaDEF InvInfoAtType, I

〈1〉 DEFINE M
∆
= msg [p][q ]

〈1〉 DEFINE LenM
∆
= Len(M )

〈1〉 HIDE DEF M , LenM
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〈1〉2. M # ∈ Seq(DeltaVecType) BY 〈1〉1 DEF InvType, M
〈1〉4. LenM # ∈ Nat BY 〈1〉2, LenInNat DEF LenM
〈1〉7. DOMAIN M # = 1 . . LenM # BY 〈1〉2, LenDef DEF LenM

〈1〉 DEFINE InRange
∆
=

∨ k ∈ DOMAIN M #

∨ k ∈ 1 . . LenM #

∨ k 6= 0 ∧ k ≤ LenM #

∨ 0 < k ∧ k ≤ LenM #

〈1〉8. InRange ⇒ 0 < k ∧ k ≤ LenM # BY 〈1〉4, 〈1〉7, SMTT (10)

〈1〉9. CASE k = 0
〈2〉1. ¬(0 < k ∧ k ≤ LenM #) BY 〈1〉4, 〈1〉9, SMTT (10)
〈2〉2. InfoAt(k , p, q)# = DeltaVecZero BY 〈2〉1 DEF InfoAt , LenM , M
〈2〉3. InfoAt(k , p, q)# ∈ DeltaVecType BY 〈2〉2, DeltaVecZeroType
〈2〉4. ¬(LenM # < k) BY 〈1〉4, 〈1〉9, SMTT (10)
〈2〉5. ¬InRangeBY 〈2〉1, 〈1〉8
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, 〈1〉9 DEF M , LenM , I

〈1〉10. CASE 0 < k ∧ k ≤ LenM #

〈2〉1. InfoAt(k , p, q)# = M [k ]# BY 〈1〉10 DEF InfoAt , LenM , M
〈2〉2. k ∈ 1 . . LenM # BY 〈1〉4, 〈1〉10, SMTT (10)
〈2〉3. M [k ]# ∈ DeltaVecType BY 〈2〉2, 〈1〉2, ElementOfSeq DEF LenM
〈2〉4. k 6= 0BY 〈1〉4, 〈1〉10, SMTT (10)
〈2〉5. ¬(LenM # < k) BY 〈1〉4, 〈1〉10, SMTT (10)
〈2〉 QED BY 〈2〉1, 〈2〉3, 〈2〉4, 〈2〉5 DEF M , LenM , I

〈1〉11. CASE LenM # < k
〈2〉1. ¬(0 < k ∧ k ≤ LenM #) BY 〈1〉4, 〈1〉11, SMTT (10)
〈2〉2. InfoAt(k , p, q)# = DeltaVecZero BY 〈2〉1 DEF InfoAt , LenM , M
〈2〉3. InfoAt(k , p, q)# ∈ DeltaVecType BY 〈2〉2, DeltaVecZeroType
〈2〉4. k 6= 0 BY 〈1〉4, 〈1〉11, SMTT (10)
〈2〉5. LenM # < k BY 〈1〉11
〈2〉6. ¬InRangeBY 〈2〉1, 〈1〉8
〈2〉 QED BY 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6 DEF M , LenM , I

〈1〉 QED BY 〈1〉4, 〈1〉9, 〈1〉10, 〈1〉11, SMTT (10)

The invariant InvIncomingInfoType follows from InvType.

THEOREM DeduceInvIncomingInfoType
∆
=

LET goal
∆
=
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InvType
⇒

InvIncomingInfoType
IN

goal ∧ goal ′

PROOF

〈1〉 DEFINE goal
∆
= DeduceInvIncomingInfoType ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS

〈1〉 DEFINE x# ∆
= DoPr(primeit , x )

〈1〉1. SUFFICES ASSUME InvType# PROVE InvIncomingInfoType# OBVIOUS

〈1〉 SUFFICES ASSUME

NEW k ∈ Nat ,
NEW p ∈ Proc,
NEW q ∈ Proc

PROVE InvIncomingInfoType !(k) !(p) !(q)#

The prover needs help to distribute DoPr through quantifiers.

〈2〉 DEFINE I (k , p, q)
∆
= InvIncomingInfoType !(k) !(p) !(q)

〈2〉 HIDE DEF I
〈2〉 ∀ k ∈ Nat : ∀ p ∈ Proc : ∀ q ∈ Proc : I (k , p, q)# BY DEF I
〈2〉 (∀ k ∈ Nat : ∀ p ∈ Proc : ∀ q ∈ Proc : I (k , p, q))# OBVIOUS

〈2〉 QED BY Isa DEF InvIncomingInfoType, I

〈1〉 DEFINE tempp
∆
= temp[p]

〈1〉 DEFINE msgpq
∆
= msg [p][q ]

〈1〉 DEFINE sum
∆
= IncomingInfo(k , p, q) ! : !sum

〈1〉2. tempp# ∈ DeltaVecType BY 〈1〉1 DEF InvType
〈1〉3. msgpq# ∈ Seq(DeltaVecType) BY 〈1〉1 DEF InvType
〈1〉4. sum# ∈ DeltaVecType BY 〈1〉3, DeltaVecSeqSkipSumType
〈1〉5. IncomingInfo(k , p, q)# ∈ DeltaVecType

BY 〈1〉2, 〈1〉4, DeltaVecAddType DEF IncomingInfo
〈1〉 QED BY 〈1〉4, 〈1〉5

The invariant InvGlobalIncomingInfoType follows from InvType.

THEOREM DeduceInvGlobalIncomingInfoType
∆
=

LET goal
∆
=
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InvType
⇒

InvGlobalIncomingInfoType
IN
goal ∧ goal ′

PROOF
〈1〉 DEFINE goal

∆
= DeduceInvGlobalIncomingInfoType ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS
〈1〉 DEFINE x# ∆

= DoPr(primeit , x )

〈1〉1. SUFFICES ASSUME InvType# PROVE InvGlobalIncomingInfoType# OBVIOUS
〈1〉2. InvIncomingInfoType# BY 〈1〉1, DeduceInvIncomingInfoType

〈1〉 SUFFICES ASSUME
NEW k ∈ Nat ,
NEW p ∈ Proc,
NEW q ∈ Proc

PROVE InvGlobalIncomingInfoType !(k) !(p) !(q)#

The prover needs help to distribute DoPr through quantifiers.

〈2〉 DEFINE I (k , p, q)
∆
= InvGlobalIncomingInfoType !(k) !(p) !(q)

〈2〉 HIDE DEF I
〈2〉 ∀ k ∈ Nat : ∀ p ∈ Proc : ∀ q ∈ Proc : I (k , p, q)# BY DEF I
〈2〉 (∀ k ∈ Nat : ∀ p ∈ Proc : ∀ q ∈ Proc : I (k , p, q))# OBVIOUS
〈2〉 QED BY Isa DEF InvGlobalIncomingInfoType, I

〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(k , p, q)

〈1〉 DEFINE F
∆
= GlobalIncomingInfo(k , p, q) ! : !F

〈1〉3. F# ∈ [Proc → DeltaVecType] BY 〈1〉2 DEF InvIncomingInfoType

〈1〉4. DeltaVecFunHasFiniteNonZeroRange(F#)
〈2〉 DEFINE FFP

∆
= {fp ∈ Proc : F [fp] 6= DeltaVecZero}

〈2〉 DEFINE TFP
∆
= {fp ∈ Proc : temp[fp] 6= DeltaVecZero}

〈2〉 DEFINE MFP
∆
= {fp ∈ Proc : msg [fp][q ] 6= 〈〉}

〈2〉 SUFFICES IsFiniteSet(FFP#) BY 〈1〉3 DEF DeltaVecFunHasFiniteNonZeroRange

〈2〉1. IsFiniteSet(TFP#) BY 〈1〉1 DEF InvType, IsFiniteTempProcs
〈2〉2. IsFiniteSet(MFP#) BY 〈1〉1 DEF InvType, IsFiniteMsgSenders
〈2〉3. IsFiniteSet(TFP# ∪MFP#) BY 〈2〉2, 〈2〉1, FiniteSetUnion

〈2〉4. FFP# ⊆ (TFP# ∪MFP#)
〈3〉1. SUFFICES ASSUME

NEW fp ∈ Proc,
fp /∈ TFP#,
fp /∈ MFP#
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PROVE fp /∈ FFP#

OBVIOUS

〈3〉 SUFFICES F#[fp] = DeltaVecZero OBVIOUS

〈3〉2. temp#[fp] = DeltaVecZero BY 〈3〉1

〈3〉3. ASSUME NEW fk ∈ Nat PROVE IncomingInfo(fk , fp, q)# = DeltaVecZero
〈4〉 DEFINE sum

∆
= DeltaVecSeqSkipSum(fk , msg#[fp][q ])

〈4〉 DEFINE add
∆
= DeltaVecAdd(sum, temp#[fp])

〈4〉1. sum = DeltaVecZero
〈5〉1. msg#[fp][q ] = 〈〉 BY 〈3〉1
〈5〉2. msg#[fp][q ] ∈ Seq(DeltaVecType) BY 〈1〉1 DEF InvType
〈5〉 QED BY 〈5〉1, 〈5〉2, DeltaVecSeqSkipSumEmpty
〈4〉2. add = DeltaVecZero BY 〈3〉2, 〈4〉1, DeltaVecAddZero, DeltaVecZeroType
〈4〉 QED BY 〈4〉2 DEF IncomingInfo

〈3〉4. CASE fp = p
〈4〉1. F#[fp] = IncomingInfo(k , fp, q)# BY 〈3〉4
〈4〉2. k ∈ Nat OBVIOUS

〈4〉 QED BY 〈4〉1, 〈4〉2, 〈3〉3

〈3〉5. CASE fp 6= p
〈4〉1. F#[fp] = IncomingInfo(0, fp, q)# BY 〈3〉5
〈4〉2. 0 ∈ Nat OBVIOUS

〈4〉 QED BY 〈4〉1, 〈4〉2, 〈3〉3

〈3〉 QED BY 〈3〉4, 〈3〉5
〈2〉 QED BY 〈2〉3, 〈2〉4, FiniteSetSubset

〈1〉5. GII # ∈ DeltaVecType BY 〈1〉3, 〈1〉4, DeltaVecFunSumType DEF GlobalIncomingInfo

〈1〉 QED BY 〈1〉3, 〈1〉4, 〈1〉5 DEF GlobalIncomingInfo F

The invariant InvGlobalIncomingInfoSkip0 follows from InvType.

THEOREM DeduceInvGlobalIncomingInfoSkip0
∆
=

LET goal
∆
=

InvType
⇒

InvGlobalIncomingInfoSkip0
IN

goal ∧ goal ′
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PROOF

〈1〉 DEFINE goal
∆
= DeduceInvGlobalIncomingInfoSkip0 ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS

〈1〉 DEFINE x# ∆
= DoPr(primeit , x )

〈1〉 SUFFICES ASSUME InvType# PROVE InvGlobalIncomingInfoSkip0# OBVIOUS

〈1〉 SUFFICES ASSUME

NEW p1 ∈ Proc,
NEW p2 ∈ Proc,
NEW q ∈ Proc

PROVE (GlobalIncomingInfo(0, p1, q) = GlobalIncomingInfo(0, p2, q))#

BY DEF InvGlobalIncomingInfoSkip0

〈1〉 DEFINE GII (p)
∆
= GlobalIncomingInfo(0, p, q)

〈1〉 DEFINE F (p)
∆
= GlobalIncomingInfo F (0, p, q)

〈1〉1. (F (p1) = F (p2))# BY DEF GlobalIncomingInfo F

〈1〉2. ASSUME NEW p ∈ Proc
PROVE (GII (p) = DeltaVecFunSum(F (p)))#

BY DEF GlobalIncomingInfo, GlobalIncomingInfo F

〈1〉 QED BY 〈1〉1, 〈1〉2

The invariant InvGlobalIncomingInfoUpright follows from subsidiary invariants.

THEOREM DeduceInvGlobalIncomingInfoUpright
∆
=

LET goal
∆
=

∧ InvType
∧ InvIncomingInfoUpright
⇒

InvGlobalIncomingInfoUpright
IN

goal ∧ goal ′

PROOF

〈1〉 DEFINE goal
∆
= DeduceInvGlobalIncomingInfoUpright ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS

〈1〉 DEFINE x# ∆
= DoPr(primeit , x )
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〈1〉 SUFFICES ASSUME

InvType#,
InvIncomingInfoUpright#

PROVE InvGlobalIncomingInfoUpright#

OBVIOUS

〈1〉 SUFFICES ASSUME

NEW k ∈ Nat ,
NEW p ∈ Proc,
NEW q ∈ Proc

PROVE IsDeltaVecUpright(lleq , GlobalIncomingInfo(k , p, q))#

BY DEF InvGlobalIncomingInfoUpright

〈1〉 InvIncomingInfoType# BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType# BY DeduceInvGlobalIncomingInfoType

Pick a value corresponding to either the primed or the unprimed case. This makes things simpler for the prover in subsequent obligations by
removing the DoPr clutter.

〈1〉1. PICK lleqx : lleqx = lleq# OBVIOUS

〈1〉2. PICK Fx : Fx = GlobalIncomingInfo F (k , p, q)# OBVIOUS

〈1〉3. PICK GIIx : GIIx = GlobalIncomingInfo(k , p, q)# OBVIOUS

〈1〉4. lleqx ∈ PointRelationType BY 〈1〉1 DEF InvType
〈1〉5. IsPartialOrder(lleqx ) BY 〈1〉1 DEF InvType

〈1〉6. Fx ∈ [Proc → DeltaVecType] BY 〈1〉2 DEF InvGlobalIncomingInfoType
〈1〉7. DeltaVecFunHasFiniteNonZeroRange(Fx ) BY 〈1〉2 DEF InvGlobalIncomingInfoType
〈1〉8. GIIx = DeltaVecFunSum(Fx ) BY 〈1〉2, 〈1〉3 DEF GlobalIncomingInfo F , GlobalIncomingInfo

〈1〉9. ASSUME NEW p1 ∈ Proc PROVE IsDeltaVecUpright(lleqx , Fx [p1])
〈2〉1. ASSUME NEW k1 ∈ Nat PROVE IsDeltaVecUpright(lleqx , IncomingInfo(k1, p1, q)#)

BY 〈1〉1 DEF InvIncomingInfoUpright

〈2〉2. CASE p1 = p
〈3〉1. Fx [p1] = IncomingInfo(k , p1, q)# BY 〈2〉2, 〈1〉2 DEF GlobalIncomingInfo F
〈3〉2. k ∈ Nat OBVIOUS

〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1
〈2〉3. CASE p1 6= p
〈3〉1. Fx [p1] = IncomingInfo(0, p1, q)# BY 〈2〉3, 〈1〉2 DEF GlobalIncomingInfo F
〈3〉2. 0 ∈ Nat OBVIOUS

〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1
〈2〉 QED BY 〈2〉2, 〈2〉3

〈1〉10. IsDeltaVecUpright(lleqx , DeltaVecFunSum(Fx ))
〈2〉 USE 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉7, 〈1〉9
〈2〉 QED BY DeltaVecUpright FunSum

〈1〉11. IsDeltaVecUpright(lleqx , GIIx ) BY 〈1〉8, 〈1〉10
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〈1〉 QED BY 〈1〉1, 〈1〉3, 〈1〉11

The invariant InvGlobVacantUptoImpliesNrec follows from subsidiary invariants.

THEOREM DeduceInvGlobVacantUptoImpliesNrec
∆
=

LET goal
∆
=

∧ InvType
∧ InvGlobalIncomingInfoUpright
∧ InvGlobalRecordCount
⇒

InvGlobVacantUptoImpliesNrec
IN

goal ∧ goal ′

PROOF

〈1〉 DEFINE goal
∆
= DeduceInvGlobVacantUptoImpliesNrec ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS

〈1〉 DEFINE x# ∆
= DoPr(primeit , x )

〈1〉 SUFFICES ASSUME

InvType#,
InvGlobalIncomingInfoUpright#,
InvGlobalRecordCount#

PROVE InvGlobVacantUptoImpliesNrec#

OBVIOUS

〈1〉 InvGlobalIncomingInfoType# BY DeduceInvGlobalIncomingInfoType

〈1〉 SUFFICES ASSUME

NEW q ∈ Proc,
NEW t ∈ Point ,
GlobVacantUpto(q , t)#

PROVE NrecVacantUpto(t)#

BY DEF InvGlobVacantUptoImpliesNrec

Pick a value corresponding to either the primed or the unprimed case. This makes things simpler for the prover in subsequent obligations by
removing the DoPr clutter.

〈1〉1. PICK nrecx : nrecx = nrec# OBVIOUS

〈1〉2. PICK GIIx : GIIx = GlobalIncomingInfo(0, q , q)# OBVIOUS

〈1〉3. PICK globxq : globxq = glob[q ]# OBVIOUS

〈1〉4. PICK lleqx : lleqx = lleq# OBVIOUS
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〈1〉 DEFINE a � b
∆
= lleqx [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b

〈1〉5. lleqx ∈ PointRelationType BY 〈1〉4 DEF InvType
〈1〉6. IsPartialOrder(lleqx ) BY 〈1〉4 DEF InvType
〈1〉7. nrecx = DeltaVecAdd(GIIx , globxq) BY 〈1〉1, 〈1〉2, 〈1〉3 DEF InvGlobalRecordCount
〈1〉8. nrecx ∈ CountVecType BY 〈1〉1 DEF InvType
〈1〉9. globxq ∈ DeltaVecType BY 〈1〉3 DEF InvType
〈1〉10. IsDeltaVecUpright(lleqx , GIIx ) BY 〈1〉2, 〈1〉4 DEF InvGlobalIncomingInfoUpright
〈1〉11. GIIx ∈ DeltaVecType BY 〈1〉2 DEF InvGlobalIncomingInfoType

〈1〉12. SUFFICES ASSUME NEW s ∈ Point , s � t PROVE nrecx [s] = 0
BY 〈1〉1, 〈1〉4 DEF NrecVacantUpto, IsDeltaVecVacantUpto

〈1〉13. nrecx [s] ∈ Nat BY 〈1〉8 DEF CountVecType
〈1〉14. globxq [s] ∈ Int BY 〈1〉9 DEF DeltaVecType
〈1〉15. GIIx [s] ∈ Int BY 〈1〉11 DEF DeltaVecType

Since nrec is a count vector, all its points must be non-negative. Hence if there is a point s lleq t such that nrec[s] 6= 0, it must be the case that
nrec[s] > 0. Assume we have such an s and prove a contradiction.

〈1〉16. SUFFICES ASSUME nrecx [s] > 0 PROVE FALSE BY 〈1〉13, SMTT (10)

Since point s � t , we have globq[s] = 0. Since nrec = GII + globq , we have GII [s] > 0.

〈1〉17. nrecx [s] = GIIx [s] + globxq [s] BY 〈1〉7 DEF DeltaVecAdd
〈1〉18. globxq [s] = 0 BY 〈1〉3, 〈1〉4, 〈1〉12 DEF GlobVacantUpto, IsDeltaVecVacantUpto
〈1〉19. GIIx [s] > 0 BY 〈1〉13, 〈1〉15, 〈1〉16, 〈1〉17, 〈1〉18, SMTT (10)

Since GII is an upright delta vector and GII [s] > 0, there must be a point u � s such that GII [u] < 0.

〈1〉20. PICK u ∈ Point : u � s ∧GIIx [u] < 0
BY 〈1〉5, 〈1〉6, 〈1〉10, 〈1〉11, 〈1〉19, DeltaVecUpright ExistsSupport

But then point u � t , which means that globq[u] = 0. Since nrec = GII + globq , we can conclude that GII [u] < 0 cannot be true.

〈1〉21. u � t BY 〈1〉5, 〈1〉6, 〈1〉12, 〈1〉20, PartialOrderTransitive

〈1〉22. globxq [u] = 0 BY 〈1〉3, 〈1〉4, 〈1〉21 DEF GlobVacantUpto, IsDeltaVecVacantUpto
〈1〉23. nrecx [u] ∈ Nat BY 〈1〉8 DEF CountVecType
〈1〉24. GIIx [u] ∈ Int BY 〈1〉11 DEF DeltaVecType

〈1〉25. nrecx [u] = GIIx [u] + globxq [u] BY 〈1〉7 DEF DeltaVecAdd
〈1〉26. ¬(GIIx [u] < 0) BY 〈1〉22, 〈1〉23, 〈1〉24, 〈1〉25, SMTT (10)

〈1〉 QED BY 〈1〉20, 〈1〉26
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The invariant InvGlobalInfoAtBetaUpright follows from subsidiary invariants.

THEOREM DeduceInvGlobalInfoAtBetaUpright
∆
=

LET goal
∆
=

∧ InvType
∧ InvInfoAtBetaUpright
∧ InvIncomingInfoUpright
⇒

InvGlobalInfoAtBetaUpright
IN

goal ∧ goal ′

PROOF

〈1〉 DEFINE goal
∆
= DeduceInvGlobalInfoAtBetaUpright ! : !goal

〈1〉 DEFINE DoPr(primeit , x )
∆
= IF primeit THEN x ′ ELSE x

〈1〉 SUFFICES ASSUME NEW primeit ∈ BOOLEAN PROVE DoPr(primeit , goal) OBVIOUS

〈1〉 DEFINE x# ∆
= DoPr(primeit , x )

〈1〉 SUFFICES ASSUME

InvType#,
InvInfoAtBetaUpright#,
InvIncomingInfoUpright#

PROVE InvGlobalInfoAtBetaUpright#

OBVIOUS

〈1〉 InvInfoAtType# BY DeduceInvInfoAtType
〈1〉 InvIncomingInfoType# BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType# BY DeduceInvGlobalIncomingInfoType

The prover chews right through all the DoPr clutter with no problem. It looks like the prover has gotten better since I wrote some of the other
proofs in this module.

〈1〉 SUFFICES ASSUME

NEW k ∈ Nat ,
NEW p ∈ Proc,
NEW q ∈ Proc

PROVE

LET

IA
∆
= InfoAt(k , p, q)

GII
∆
= GlobalIncomingInfo(k , p, q)

IN

IsDeltaVecBetaUpright(lleq , IA, GII )#

BY DEF InvGlobalInfoAtBetaUpright

〈1〉 DEFINE IA
∆
= InfoAt(k , p, q)

〈1〉 DEFINE II
∆
= IncomingInfo(k , p, q)
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〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(k , p, q)

〈1〉 DEFINE F
∆
= GlobalIncomingInfo F (k , p, q)

〈1〉 SUFFICES IsDeltaVecBetaUpright(lleq , IA, GII )# OBVIOUS

〈1〉6. (lleq ∈ PointRelationType )# BY DEF InvType
〈1〉7. (IsPartialOrder(lleq) )# BY DEF InvType
〈1〉8. (IA ∈ DeltaVecType )# BY DEF InvInfoAtType
〈1〉9. (IsDeltaVecBetaUpright(lleq , IA, II ) )# BY DEF InvInfoAtBetaUpright
〈1〉10. (II = F [p] )# BY DEF GlobalIncomingInfo F
〈1〉11. (GII ∈ DeltaVecType )# BY DEF InvGlobalIncomingInfoType
〈1〉12. (F ∈ [Proc → DeltaVecType] )# BY DEF InvGlobalIncomingInfoType
〈1〉13. (DeltaVecFunHasFiniteNonZeroRange(F ))# BY DEF InvGlobalIncomingInfoType
〈1〉14. (GII = DeltaVecFunSum(F ) )# BY DEF GlobalIncomingInfo F , GlobalIncomingInfo

〈1〉15. ASSUME NEW p1 ∈ Proc PROVE IsDeltaVecUpright(lleq , F [p1])#

〈2〉1. ASSUME NEW k1 ∈ Nat PROVE IsDeltaVecUpright(lleq , IncomingInfo(k1, p1, q))#

BY DEF InvIncomingInfoUpright

〈2〉2. CASE p1 = p
〈3〉1. (F [p1] = IncomingInfo(k , p1, q))# BY 〈2〉2 DEF GlobalIncomingInfo F
〈3〉2. k ∈ Nat OBVIOUS
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1
〈2〉3. CASE p1 6= p
〈3〉1. (F [p1] = IncomingInfo(0, p1, q))# BY 〈2〉3 DEF GlobalIncomingInfo F
〈3〉2. 0 ∈ Nat OBVIOUS
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1
〈2〉 QED BY 〈2〉2, 〈2〉3

〈1〉16. DeltaVecBetaUpright FunSum Hypothesis(lleq , F , IA, p)#

BY 〈1〉6, 〈1〉7, 〈1〉8, 〈1〉9, 〈1〉10, 〈1〉12, 〈1〉13, 〈1〉15
DEF DeltaVecBetaUpright FunSum Hypothesis

〈1〉17. IsDeltaVecBetaUpright(lleq , IA, DeltaVecFunSum(F ))#

BY 〈1〉16, DeltaVecBetaUpright FunSum

〈1〉 QED BY 〈1〉14, 〈1〉17
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C.16 How the actions affect the state variables

MODULE NaiadClockProofAffectState

EXTENDS NaiadClockProofDeduceInv

How the actions affect the state variables

Here we establish a lot of facts about how each action affects the various state variables. Later, we repeatedly appeal to these facts when proving
facts about how each action affects a state operator or when proving that an action preserves an invariant.

How NextCommon updates the state variables.

NextCommon State Conclusion
∆
=

∧ UNCHANGED lleq

∧ nrecvut ′ = [xt ∈ Point 7→ NrecVacantUpto(xt)]

∧ globvut ′ = [xp ∈ Proc 7→ [xt ∈ Point 7→ GlobVacantUpto(xp, xt)]]

∧ nrecvut ′ ∈ [Point → BOOLEAN ]

∧ globvut ′ ∈ [Proc → [Point → BOOLEAN ]]

∧ IsPartialOrder(lleq ′)

THEOREM NextCommon State
∆
=

ASSUME

InvType,

NextCommon

PROVE

NextCommon State Conclusion

PROOF
Type and value of lleq ′

〈1〉1. UNCHANGED lleq BY DEF NextCommon

〈1〉2. IsPartialOrder(lleq ′) BY 〈1〉1 DEF InvType

Type of nrecvut ′

〈1〉3. nrecvut ′ = [xt ∈ Point 7→ NrecVacantUpto(xt)]

BY DEF NextCommon
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〈1〉4. nrecvut ′ ∈ [Point → BOOLEAN ]

〈2〉 USE DEF NrecVacantUpto

〈2〉 USE DEF IsDeltaVecVacantUpto

〈2〉 QED BY 〈1〉3

Type of globvut ′

〈1〉5. globvut ′ = [xp ∈ Proc 7→ [xt ∈ Point 7→ GlobVacantUpto(xp, xt)]]

BY DEF NextCommon

〈1〉6. globvut ′ ∈ [Proc → [Point → BOOLEAN ]]

〈2〉 USE DEF GlobVacantUpto

〈2〉 USE DEF IsDeltaVecVacantUpto

〈2〉 QED BY 〈1〉5

〈1〉 USE DEF NextCommon State Conclusion

〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6

How the NextPerformOperation(p, c, r) action updates the state variables.

NextPerformOperation State Conclusion(p, c, r)
∆
=

LET

delta
∆
= NextPerformOperation Delta(p, c, r)

IN

∧ c ∈ [Point → Nat ]

∧ r ∈ [Point → Nat ]

∧ delta ∈ DeltaVecType

∧ ∀ xt ∈ Point : c[xt ] ≤ nrec[xt ]

∧ IsDeltaVecUpright(lleq , delta)

∧ nrec::

∧ nrec′ = DeltaVecAdd(nrec, delta)

∧ nrec′ = DeltaVecAdd(delta, nrec)

∧ temp::

∀ fp ∈ Proc :

IF fp = p

THEN

∧ temp′[fp] = DeltaVecAdd(temp[fp], delta)

∧ temp′[fp] = DeltaVecAdd(delta, temp[fp])

ELSE UNCHANGED temp[fp]
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∧ UNCHANGED glob
∧ UNCHANGED msg
∧NextCommon State Conclusion ! :

∧ InvType ′

THEOREM NextPerformOperation State
∆
=

ASSUME

NEW p ∈ Proc,
NEW c ∈ PointToNat ,
NEW r ∈ PointToNat ,
InvType,
NextPerformOperation WithPCR(p, c, r)

PROVE

NextPerformOperation State Conclusion(p, c, r)
PROOF

〈1〉 USE DEF NextPerformOperation Delta

〈1〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈1〉 HIDE DEF delta

Type and value of c and r

〈1〉1. c ∈ [Point → Nat ] BY AssumePointToNat
〈1〉2. r ∈ [Point → Nat ] BY AssumePointToNat

〈1〉3. ∀ xt ∈ Point : c[xt ] ∈ Nat BY 〈1〉1
〈1〉4. ∀ xt ∈ Point : r [xt ] ∈ Nat BY 〈1〉2

Type and value of delta

〈1〉5. ∀ xt ∈ Point : delta[xt ] = r [xt ]− c[xt ] BY DEF NextPerformOperation WithPCR, delta
〈1〉6. ∀ xt ∈ Point : delta[xt ] ∈ Int BY 〈1〉3, 〈1〉4, 〈1〉5, SMTT (10)

〈1〉7. ∃S : delta ∈ [Point → S ] BY Isa DEF NextPerformOperation WithPCR, delta
〈1〉8. delta ∈ DeltaVecType BY 〈1〉6, 〈1〉7 DEF DeltaVecType

〈1〉9. IsDeltaVecUpright(lleq , delta) BY DEF NextPerformOperation WithPCR, delta

Type and value of nrec′

〈1〉10. nrec ∈ CountVecType BY DEF InvType
〈1〉11. nrec ∈ DeltaVecType BY 〈1〉10, SMTT (10) DEF CountVecType, DeltaVecType

〈1〉12. ∀ xt ∈ Point : nrec[xt ] ∈ Nat BY 〈1〉10 DEF CountVecType
〈1〉13. ∀ xt ∈ Point : c[xt ] ≤ nrec[xt ] BY DEF NextPerformOperation WithPCR
〈1〉14. ∀ xt ∈ Point : nrec[xt ] + (r [xt ]− c[xt ]) ∈ Nat BY 〈1〉3, 〈1〉4, 〈1〉12, 〈1〉13, SMTT (10)
〈1〉15. ∀ xt ∈ Point : nrec[xt ] + delta[xt ] ∈ Nat BY 〈1〉5, 〈1〉14

〈1〉16. nrec′ = DeltaVecAdd(nrec, delta) BY DEF NextPerformOperation WithPCR, delta
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〈1〉17. nrec′ = DeltaVecAdd(delta, nrec) BY 〈1〉8, 〈1〉11, 〈1〉16, DeltaVecAddCommutative

〈1〉18. ∀ xt ∈ Point : nrec′[xt ] = nrec[xt ] + delta[xt ] BY 〈1〉16 DEF DeltaVecAdd
〈1〉19. ∀ xt ∈ Point : nrec′[xt ] ∈ Nat BY 〈1〉18, 〈1〉15

〈1〉20. nrec′ ∈ DeltaVecType BY 〈1〉8, 〈1〉11, 〈1〉16, DeltaVecAddType
〈1〉21. nrec′ ∈ CountVecType BY 〈1〉19, 〈1〉20 DEF DeltaVecType, CountVecType

〈1〉22. NextPerformOperation State Conclusion(p, c, r) !nrec
BY 〈1〉16, 〈1〉17 DEF delta

Type and value of temp′

〈1〉23. temp ∈ [Proc → DeltaVecType] BY DEF InvType

〈1〉24. DeltaVecAdd(temp[p], delta) ∈ DeltaVecType BY 〈1〉8, 〈1〉23, DeltaVecAddType

〈1〉25. temp′ = [temp EXCEPT ! [p] = DeltaVecAdd(temp[p], delta)]
BY 〈1〉23 DEF NextPerformOperation WithPCR, delta

〈1〉26. temp′ ∈ [Proc → DeltaVecType] BY 〈1〉23, 〈1〉24, 〈1〉25

〈1〉27. temp′[p] = DeltaVecAdd(temp[p], delta) BY 〈1〉25, 〈1〉26

〈1〉28. temp′[p] = DeltaVecAdd(delta, temp[p]) BY 〈1〉8, 〈1〉23, 〈1〉27, DeltaVecAddCommutative

〈1〉29. ASSUME NEW fp ∈ Proc, fp 6= p
PROVE UNCHANGED temp[fp]
BY 〈1〉23, 〈1〉25, 〈1〉29

〈1〉30. NextPerformOperation State Conclusion(p, c, r) ! temp
BY 〈1〉27, 〈1〉28, 〈1〉29 DEF delta

Type and value of glob′

〈1〉31. UNCHANGED glob BY DEF NextPerformOperation WithPCR
〈1〉32. glob′ ∈ [Proc → DeltaVecType] BY 〈1〉31 DEF InvType

Type and value of msg ′

〈1〉33. UNCHANGED msg BY DEF NextPerformOperation WithPCR
〈1〉34. msg ′ ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY 〈1〉33 DEF InvType

〈1〉35. NextCommon State Conclusion ! :
〈2〉 USE DEF NextPerformOperation WithPCR
〈2〉 USE DEF NextCommon State Conclusion
〈2〉 QED BY NextCommon State

IsFiniteTempProcs′

〈1〉36. IsFiniteTempProcs ′

〈2〉 DEFINE FP
∆
= {fp ∈ Proc : temp[fp] 6= DeltaVecZero}

〈2〉1. IsFiniteSet(FP) BY DEF InvType, IsFiniteTempProcs
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〈2〉2. IsFiniteSet({p}) BY FiniteSetSingleton
〈2〉3. IsFiniteSet(FP ∪ {p}) BY 〈2〉1, 〈2〉2, FiniteSetUnion
〈2〉4. FP ′ ⊆ (FP ∪ {p}) BY 〈1〉29
〈2〉5. IsFiniteSet(FP ′) BY 〈2〉3, 〈2〉4, FiniteSetSubset
〈2〉 QED BY 〈2〉5 DEF IsFiniteTempProcs

IsFiniteMsgSenders′

〈1〉37. IsFiniteMsgSenders ′

〈2〉1. IsFiniteMsgSenders BY DEF InvType
〈2〉 QED BY 〈2〉1, 〈1〉33 DEF IsFiniteMsgSenders

〈1〉38. InvType ′ BY 〈1〉21, 〈1〉26, 〈1〉32, 〈1〉34, 〈1〉35, 〈1〉36, 〈1〉37 DEF InvType

〈1〉 USE DEF NextPerformOperation State Conclusion
〈1〉 USE DEF delta
〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉8, 〈1〉9, 〈1〉13, 〈1〉22, 〈1〉30, 〈1〉31, 〈1〉33, 〈1〉35, 〈1〉38

How the NextSendUpdate(p, t) action updates the state variables.

NextSendUpdate State Conclusion(p, tt)
∆
=

LET

gamma
∆
= NextSendUpdate Gamma(p, tt)

IN

∧ gamma ∈ DeltaVecType
∧ IsDeltaVecPositiveImplies(gamma, temp[p])
∧ IsDeltaVecUpright(lleq , temp[p])⇒ IsDeltaVecUpright(lleq , temp[p])′

∧ temp::
∀ fp ∈ Proc :

IF fp = p
THEN

∧ temp[fp] = DeltaVecAdd(temp′[fp], gamma)
∧ temp[fp] = DeltaVecAdd(gamma, temp′[fp])

ELSE UNCHANGED temp[fp]

∧msg ::
∀ fp ∈ Proc :
∀ fq ∈ Proc :

IF fp = p
THEN msg ′[fp][fq ] = Append(msg [fp][fq ], gamma)
ELSE UNCHANGED msg [fp][fq ]
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∧ UNCHANGED glob
∧ UNCHANGED nrec
∧NextCommon State Conclusion ! :

∧ InvType ′

THEOREM NextSendUpdate State
∆
=

ASSUME

NEW p ∈ Proc,
NEW tt ∈ SUBSET Point ,
InvType,
NextSendUpdate WithPTT (p, tt)

PROVE

NextSendUpdate State Conclusion(p, tt)
PROOF

〈1〉 USE DEF NextSendUpdate Gamma

〈1〉 DEFINE gamma
∆
= NextSendUpdate Gamma(p, tt)

〈1〉 DEFINE newtempp
∆
= NextSendUpdate !(p) !(tt) !newtempp

〈1〉 HIDE DEF gamma, newtempp

〈1〉1. temp ∈ [Proc → DeltaVecType] BY DEF InvType
〈1〉2. msg ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY DEF InvType

〈1〉3. gamma ∈ DeltaVecType
〈2〉 USE DEF DeltaVecType
〈2〉 QED BY 〈1〉1, SMTT (10) DEF gamma

〈1〉4. newtempp ∈ DeltaVecType
〈2〉1. 0 ∈ Int BY SMTT (10)
〈2〉 USE DEF DeltaVecType
〈2〉 QED BY 〈2〉1, 〈1〉1 DEF newtempp

〈1〉5. temp′ = [temp EXCEPT ! [p] = newtempp]
〈2〉 QED BY 〈1〉4 DEF NextSendUpdate WithPTT , newtempp

Type and value of temp′ in relation to gamma

〈1〉6. temp′ ∈ [Proc → DeltaVecType] BY 〈1〉1, 〈1〉4, 〈1〉5

〈1〉7. ASSUME NEW t ∈ Point
PROVE gamma[t ] = IF t ∈ tt THEN temp[p][t ] ELSE 0
BY DEF gamma, NextSendUpdate WithPTT

〈1〉8. ASSUME NEW t ∈ Point
PROVE temp′[p][t ] = IF t ∈ tt THEN 0 ELSE temp[p][t ]
BY 〈1〉1 DEF NextSendUpdate WithPTT
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〈1〉9. temp[p] = DeltaVecAdd(gamma, temp′[p])
〈2〉 SUFFICES ASSUME NEW t ∈ Point

PROVE temp[p][t ] = gamma[t ] + temp′[p][t ]
BY 〈1〉1 DEF DeltaVecAdd , DeltaVecType

〈2〉1. gamma[t ] ∈ Int BY 〈1〉3 DEF DeltaVecType
〈2〉2. temp[p][t ] ∈ Int BY 〈1〉1 DEF DeltaVecType
〈2〉3. temp′[p][t ] ∈ Int BY 〈1〉6 DEF DeltaVecType
〈2〉4. CASE t ∈ tt
〈3〉1. gamma[t ] = temp[p][t ] BY 〈2〉4, 〈1〉7
〈3〉2. temp′[p][t ] = 0 BY 〈2〉4, 〈1〉8
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1, 〈2〉2, 〈2〉3, SMTT (10)
〈2〉5. CASE t /∈ tt
〈3〉1. gamma[t ] = 0 BY 〈2〉5, 〈1〉7
〈3〉2. temp′[p][t ] = temp[p][t ] BY 〈2〉5, 〈1〉8
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1, 〈2〉2, 〈2〉3, SMTT (10)
〈2〉 QED BY 〈2〉4, 〈2〉5

〈1〉10. temp[p] = DeltaVecAdd(temp′[p], gamma)
BY 〈1〉3, 〈1〉6, 〈1〉9, DeltaVecAddCommutative

〈1〉11. ASSUME NEW fp ∈ Proc, fp 6= p PROVE UNCHANGED temp[fp]
〈2〉 temp′ = [temp EXCEPT ! [p] = temp′[p]] BY 〈1〉1, 〈1〉6 DEF NextSendUpdate WithPTT
〈2〉 QED BY 〈1〉1, 〈1〉11

〈1〉12. IsDeltaVecPositiveImplies(gamma, temp[p])
〈2〉1. SUFFICES ASSUME NEW t ∈ Point , gamma[t ] > 0

PROVE temp[p][t ] > 0
BY 〈1〉1, 〈1〉3 DEF IsDeltaVecPositiveImplies

〈2〉2. gamma[t ] ∈ Int BY 〈1〉3 DEF DeltaVecType
〈2〉3. temp[p][t ] ∈ Int BY 〈1〉1 DEF DeltaVecType
〈2〉4. temp′[p][t ] ∈ Int BY 〈1〉6 DEF DeltaVecType
〈2〉5. temp[p][t ] = gamma[t ] + temp′[p][t ] BY 〈1〉9 DEF DeltaVecAdd
〈2〉6. CASE t ∈ tt
〈3〉1. gamma[t ] = temp[p][t ] BY 〈2〉6, 〈1〉7
〈3〉2. temp′[p][t ] = 0 BY 〈2〉6, 〈1〉8
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, SMTT (10)
〈2〉7. CASE t /∈ tt
〈3〉1. gamma[t ] = 0 BY 〈2〉7, 〈1〉7
〈3〉2. temp′[p][t ] = temp[p][t ] BY 〈2〉7, 〈1〉8
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, SMTT (10)
〈2〉 QED BY 〈2〉6, 〈2〉7

〈1〉13. NextSendUpdate State Conclusion(p, tt) ! temp
BY 〈1〉9, 〈1〉10, 〈1〉11 DEF gamma

Type and value of msg ′ in relation to gamma
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〈1〉14. ASSUME NEW q ∈ Proc PROVE Append(msg [p][q ], gamma) ∈ Seq(DeltaVecType)
〈2〉 DEFINE msgpq

∆
= msg [p][q ]

〈2〉 HIDE DEF msgpq
〈2〉 SUFFICES Append(msgpq , gamma) ∈ Seq(DeltaVecType) BY DEF msgpq
〈2〉1. msgpq ∈ Seq(DeltaVecType) BY 〈1〉2 DEF msgpq
〈2〉 QED BY 〈2〉1, 〈1〉3, AppendProperties

〈1〉15. msg ′ = [msg EXCEPT ! [p] = [q ∈ Proc 7→ Append(msg [p][q ], gamma)]]
BY DEF NextSendUpdate WithPTT , gamma

〈1〉16. msg ′ ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY 〈1〉2, 〈1〉14, 〈1〉15

〈1〉17. ASSUME NEW fp ∈ Proc, NEW fq ∈ Proc, fp = p
PROVE msg ′[fp][fq ] = Append(msg [fp][fq ], gamma)
BY 〈1〉2, 〈1〉15, 〈1〉16, 〈1〉17

〈1〉18. ASSUME NEW fp ∈ Proc, NEW fq ∈ Proc, fp 6= p
PROVE UNCHANGED msg [fp][fq ]
BY 〈1〉2, 〈1〉15, 〈1〉16, 〈1〉18

〈1〉19. NextSendUpdate State Conclusion(p, tt) !msg
BY 〈1〉17, 〈1〉18 DEF gamma

Type and value of glob′

〈1〉20. UNCHANGED glob BY DEF NextSendUpdate WithPTT
〈1〉21. glob′ ∈ [Proc → DeltaVecType] BY 〈1〉20 DEF InvType

Type and value of nrec′

〈1〉22. UNCHANGED nrec BY DEF NextSendUpdate WithPTT
〈1〉23. nrec′ ∈ CountVecType BY 〈1〉22 DEF InvType

〈1〉24. NextCommon State Conclusion ! :
〈2〉 USE DEF NextSendUpdate WithPTT
〈2〉 USE DEF NextCommon State Conclusion
〈2〉 QED BY NextCommon State

IsFiniteTempProcs′

〈1〉25. IsFiniteTempProcs ′

〈2〉 DEFINE FP
∆
= {fp ∈ Proc : temp[fp] 6= DeltaVecZero}

〈2〉1. IsFiniteSet(FP) BY DEF InvType, IsFiniteTempProcs
〈2〉2. IsFiniteSet({p}) BY FiniteSetSingleton
〈2〉3. IsFiniteSet(FP ∪ {p}) BY 〈2〉1, 〈2〉2, FiniteSetUnion
〈2〉4. FP ′ ⊆ (FP ∪ {p}) BY 〈1〉11
〈2〉5. IsFiniteSet(FP ′) BY 〈2〉3, 〈2〉4, FiniteSetSubset
〈2〉 QED BY 〈2〉5 DEF IsFiniteTempProcs

IsFiniteMsgSenders′
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〈1〉26. IsFiniteMsgSenders ′

〈2〉 SUFFICES ASSUME NEW fq ∈ Proc
PROVE IsFiniteSet({fp ∈ Proc : msg ′[fp][fq ] 6= 〈〉})
BY DEF IsFiniteMsgSenders

〈2〉 DEFINE FP
∆
= {fp ∈ Proc : msg [fp][fq ] 6= 〈〉}

〈2〉1. IsFiniteMsgSenders BY DEF InvType
〈2〉2. IsFiniteSet(FP) BY 〈2〉1 DEF IsFiniteMsgSenders
〈2〉3. IsFiniteSet({p}) BY FiniteSetSingleton
〈2〉4. IsFiniteSet(FP ∪ {p}) BY 〈2〉2, 〈2〉3, FiniteSetUnion
〈2〉5. FP ′ ⊆ FP ∪ {p}
〈3〉1. SUFFICES ASSUME NEW fp ∈ FP ′ PROVE fp ∈ FP ∨ fp = p OBVIOUS
〈3〉2. CASE fp = p BY 〈3〉2
〈3〉3. CASE fp 6= p
〈4〉1. fp ∈ Proc BY 〈3〉1
〈4〉2. UNCHANGED msg [fp][fq ] BY 〈4〉1, 〈3〉3, 〈1〉18
〈4〉3. msg ′[fp][fq ] 6= 〈〉 BY 〈3〉1
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈4〉3
〈3〉 QED BY 〈3〉2, 〈3〉3
〈2〉6. IsFiniteSet(FP ′) BY 〈2〉4, 〈2〉5, FiniteSetSubset
〈2〉 QED BY 〈2〉6

〈1〉27. InvType ′ BY 〈1〉6, 〈1〉16, 〈1〉21, 〈1〉23, 〈1〉24, 〈1〉25, 〈1〉26 DEF InvType

Preservation of upright temp[p]

〈1〉28. ASSUME IsDeltaVecUpright(lleq , temp[p]) PROVE IsDeltaVecUpright(lleq , temp[p])′

〈2〉 DEFINE tempp
∆
= temp[p]

〈2〉 HIDE DEF tempp

〈2〉 SUFFICES IsDeltaVecUpright(lleq , tempp′) BY 〈1〉24 DEF tempp

〈2〉1. tempp′ = newtempp BY 〈1〉1, 〈1〉5 DEF tempp
〈2〉2. IsDeltaVecUpright(lleq , newtempp) BY DEF NextSendUpdate WithPTT , newtempp
〈2〉 QED BY 〈2〉1, 〈2〉2

〈1〉 USE DEF NextSendUpdate State Conclusion
〈1〉 USE DEF gamma
〈1〉 QED BY 〈1〉3, 〈1〉12, 〈1〉13, 〈1〉19, 〈1〉20, 〈1〉22, 〈1〉24, 〈1〉27, 〈1〉28

How the NextReceiveUpdate(p, q) action updates the state variables.
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NextReceiveUpdate State Conclusion(p, q)
∆
=

LET

kappa
∆
= NextReceiveUpdate Kappa(p, q)

M
∆
= msg [p][q ]

IN

∧M 6= 〈〉

∧ Len(M ) ∈ Nat
∧ Len(M ) 6= 0
∧ Len(M ) > 0

∧ kappa = Head(M )
∧ kappa = M [1]
∧ kappa ∈ DeltaVecType

∧ glob::
∀ fq ∈ Proc :

IF fq = q
THEN

∧ glob′[fq ] = DeltaVecAdd(glob[fq ], kappa)
∧ glob′[fq ] = DeltaVecAdd(kappa, glob[fq ])

ELSE UNCHANGED glob[fq ]

∧msg ::
∀ fp ∈ Proc :
∀ fq ∈ Proc :

IF fp = p ∧ fq = q
THEN msg ′[fp][fq ] = Tail(msg [fp][fq ])
ELSE UNCHANGED msg [fp][fq ]

∧ UNCHANGED temp
∧ UNCHANGED nrec
∧NextCommon State Conclusion ! :

∧ InvType ′

THEOREM NextReceiveUpdate State
∆
=

ASSUME

NEW p ∈ Proc,
NEW q ∈ Proc,
InvType,
NextReceiveUpdate WithPQ(p, q)

PROVE

NextReceiveUpdate State Conclusion(p, q)
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PROOF

〈1〉 USE DEF NextReceiveUpdate Kappa

〈1〉 DEFINE kappa
∆
= NextReceiveUpdate Kappa(p, q)

〈1〉 HIDE DEF kappa

〈1〉 DEFINE M
∆
= msg [p][q ]

〈1〉 HIDE DEF M

〈1〉 DEFINE LenM
∆
= Len(M )

〈1〉 HIDE DEF LenM

Type and value of msg ′ in relation to kappa

〈1〉1. msg ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY DEF InvType

〈1〉2. M ∈ Seq(DeltaVecType) BY 〈1〉1 DEF M
〈1〉3. M 6= 〈〉 BY DEF NextReceiveUpdate WithPQ , M

〈1〉4. LenM ∈ Nat BY 〈1〉2, LenInNat DEF LenM
〈1〉5. LenM 6= 0 BY 〈1〉2, 〈1〉3, EmptySeq DEF LenM
〈1〉6. LenM > 0 BY 〈1〉4, 〈1〉5, SMTT (10)
〈1〉7. 1 ∈ 1 . . LenM BY 〈1〉4, 〈1〉5, SMTT (10)
〈1〉8. M ∈ [1 . . LenM → DeltaVecType] BY 〈1〉2, LenAxiom DEF LenM
〈1〉9. M [1] ∈ DeltaVecType BY 〈1〉7, 〈1〉8
〈1〉10. Head(M ) = M [1] BY 〈1〉2, HeadDef
〈1〉11. Head(M ) ∈ DeltaVecType BY 〈1〉9, 〈1〉10

〈1〉12. kappa = Head(M ) BY DEF kappa, M
〈1〉13. kappa = M [1] BY 〈1〉10, 〈1〉12
〈1〉14. kappa ∈ DeltaVecType BY 〈1〉11, 〈1〉12

〈1〉15. Tail(M ) ∈ Seq(DeltaVecType) BY 〈1〉2, 〈1〉3, TailProp

〈1〉16. msg ′ = [msg EXCEPT ! [p][q ] = Tail(M )] BY DEF NextReceiveUpdate WithPQ , M

〈1〉17. msg ′ ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY 〈1〉1, 〈1〉15, 〈1〉16

〈1〉18. msg ′[p][q ] = Tail(M ) BY 〈1〉1, 〈1〉16

〈1〉19. NextReceiveUpdate State Conclusion(p, q) !msg
BY 〈1〉1, 〈1〉16 DEF M

Type and value of glob′ in relation to kappa

〈1〉20. glob ∈ [Proc → DeltaVecType] BY DEF InvType

〈1〉21. DeltaVecAdd(glob[q ], kappa) ∈ DeltaVecType
BY 〈1〉14, 〈1〉20, DeltaVecAddType

〈1〉22. glob′ = [glob EXCEPT ! [q ] = DeltaVecAdd(glob[q ], kappa)]
BY DEF NextReceiveUpdate WithPQ , kappa
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〈1〉23. glob′ ∈ [Proc → DeltaVecType] BY 〈1〉20, 〈1〉21, 〈1〉22

〈1〉24. glob′[q ] = DeltaVecAdd(glob[q ], kappa) BY 〈1〉20, 〈1〉22

〈1〉25. glob′[q ] = DeltaVecAdd(kappa, glob[q ])
BY 〈1〉14, 〈1〉20, 〈1〉24, DeltaVecAddCommutative

〈1〉26. NextReceiveUpdate State Conclusion(p, q) !glob
BY 〈1〉20, 〈1〉22, 〈1〉24, 〈1〉25 DEF kappa

Type and value of temp′

〈1〉27. UNCHANGED temp BY DEF NextReceiveUpdate WithPQ
〈1〉28. temp′ ∈ [Proc → DeltaVecType] BY 〈1〉27 DEF InvType

Type and value of nrec′

〈1〉29. UNCHANGED nrec BY DEF NextReceiveUpdate WithPQ
〈1〉30. nrec′ ∈ CountVecType BY 〈1〉29 DEF InvType

〈1〉31. NextCommon State Conclusion ! :
〈2〉 USE DEF NextReceiveUpdate WithPQ
〈2〉 USE DEF NextCommon State Conclusion
〈2〉 QED BY NextCommon State

IsFiniteTempProcs′

〈1〉32. IsFiniteTempProcs ′

〈2〉1. IsFiniteTempProcs BY DEF InvType
〈2〉 QED BY 〈2〉1, 〈1〉27 DEF IsFiniteTempProcs

IsFiniteMsgSenders′

〈1〉33. IsFiniteMsgSenders ′

〈2〉 SUFFICES ASSUME NEW fq ∈ Proc
PROVE IsFiniteSet({fp ∈ Proc : msg ′[fp][fq ] 6= 〈〉})
BY DEF IsFiniteMsgSenders

〈2〉 DEFINE FP
∆
= {fp ∈ Proc : msg [fp][fq ] 6= 〈〉}

〈2〉1. IsFiniteMsgSenders BY DEF InvType
〈2〉2. IsFiniteSet(FP) BY 〈2〉1 DEF IsFiniteMsgSenders
〈2〉3. IsFiniteSet({p}) BY FiniteSetSingleton
〈2〉4. IsFiniteSet(FP ∪ {p}) BY 〈2〉2, 〈2〉3, FiniteSetUnion
〈2〉5. FP ′ ⊆ FP ∪ {p}
〈3〉1. SUFFICES ASSUME NEW fp ∈ FP ′ PROVE fp ∈ FP ∨ fp = p OBVIOUS

〈3〉2. CASE fp = p BY 〈3〉2
〈3〉3. CASE fp 6= p
〈4〉1. fp ∈ Proc BY 〈3〉1
〈4〉2. UNCHANGED msg [fp][fq ] BY 〈4〉1, 〈3〉3, 〈1〉19
〈4〉3. msg ′[fp][fq ] 6= 〈〉 BY 〈3〉1
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〈4〉 QED BY 〈4〉1, 〈4〉2, 〈4〉3
〈3〉 QED BY 〈3〉2, 〈3〉3
〈2〉6. IsFiniteSet(FP ′) BY 〈2〉4, 〈2〉5, FiniteSetSubset
〈2〉 QED BY 〈2〉6

〈1〉34. InvType ′ BY 〈1〉17, 〈1〉23, 〈1〉28, 〈1〉30, 〈1〉31, 〈1〉32, 〈1〉33 DEF InvType

〈1〉 USE DEF NextReceiveUpdate State Conclusion
〈1〉 USE DEF kappa, M , LenM
〈1〉 QED BY 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉12, 〈1〉13, 〈1〉14, 〈1〉19, 〈1〉26, 〈1〉27, 〈1〉29, 〈1〉31, 〈1〉34
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C.17 How the actions affect InfoAt

MODULE NaiadClockProofAffectInfoAt

EXTENDS NaiadClockProofAffectState

How the actions affect InfoAt.

The initial state for InfoAt(fk , fp, fq).

Init InfoAt Conclusion(fk , fp, fq)
∆
=

InfoAt(fk , fp, fq) = DeltaVecZero

THEOREM Init InfoAt
∆
=

ASSUME

NEW fk ∈ Nat ,

NEW fp ∈ Proc,

NEW fq ∈ Proc,

InvType,

Init

PROVE

Init InfoAt Conclusion(fk , fp, fq)

PROOF

〈1〉1. msg [fp][fq ] ∈ Seq(DeltaVecType) BY DEF InvType

〈1〉2. msg [fp][fq ] = 〈〉 BY DEF Init

〈1〉3. Len(msg [fp][fq ]) = 0 BY 〈1〉2, EmptySeq

〈1〉 DEFINE LenM
∆
= Len(msg [fp][fq ])

〈1〉6. LenM = 0 BY 〈1〉3

〈1〉7. ¬(0 < fk ∧ fk ≤ LenM )

〈2〉 HIDE DEF LenM

〈2〉 QED BY 〈1〉6, SMTT (10)

〈1〉9. InfoAt(fk , fp, fq) = DeltaVecZero BY 〈1〉7 DEF InfoAt

〈1〉 QED BY 〈1〉9 DEF Init InfoAt Conclusion
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What the NextPerformOperation(p, c, r) action does to InfoAt(fk , fp, fq).

NextPerformOperation InfoAt Conclusion(fk , fp, fq , p, c, r)
∆
=

UNCHANGED InfoAt(fk , fp, fq)

THEOREM NextPerformOperation InfoAt
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW c ∈ PointToNat ,
NEW r ∈ PointToNat ,
InvType,
NextPerformOperation WithPCR(p, c, r)

PROVE

NextPerformOperation InfoAt Conclusion(fk , fp, fq , p, c, r)
PROOF

〈1〉1. NextPerformOperation State Conclusion(p, c, r) BY NextPerformOperation State
〈1〉 USE DEF NextPerformOperation State Conclusion

〈1〉 QED BY 〈1〉1, Isa DEF InfoAt , NextPerformOperation InfoAt Conclusion

What the NextSendUpdate(p, tt) action does to InfoAt(fk , fp, fq).

NextSendUpdate InfoAt Conclusion(fk , fp, fq , p, tt)
∆
=

LET

gamma
∆
= NextSendUpdate Gamma(p, tt)

len
∆
= Len(msg [fp][fq ])

IN

∧ fp 6= p ⇒ UNCHANGED InfoAt(fk , fp, fq)
∧ fp = p ⇒
∧ fk = len + 1⇒ InfoAt(fk , fp, fq)′ = gamma
∧ fk 6= len + 1⇒ UNCHANGED InfoAt(fk , fp, fq)

THEOREM NextSendUpdate InfoAt
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
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NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW tt ∈ SUBSET Point ,
InvType,
NextSendUpdate WithPTT (p, tt)

PROVE

NextSendUpdate InfoAt Conclusion(fk , fp, fq , p, tt)
PROOF

〈1〉 InvInfoAtType BY DeduceInvInfoAtType

〈1〉1. NextSendUpdate State Conclusion(p, tt) BY NextSendUpdate State
〈1〉 USE DEF NextSendUpdate State Conclusion

〈1〉2. CASE fp 6= p
〈2〉1. UNCHANGED msg [fp][fq ] BY 〈1〉1, 〈1〉2
〈2〉2. UNCHANGED InfoAt(fk , fp, fq) BY 〈2〉1 DEF InfoAt
〈2〉 QED BY 〈2〉2, 〈1〉2 DEF NextSendUpdate InfoAt Conclusion

〈1〉3. CASE fp = p
〈2〉 USE DEF NextSendUpdate Gamma
〈2〉 DEFINE gamma

∆
= NextSendUpdate Gamma(p, tt)

〈2〉 HIDE DEF gamma

〈2〉1. gamma ∈ DeltaVecType BY 〈1〉1 DEF gamma

〈2〉 DEFINE M
∆
= msg [fp][fq ]

〈2〉 DEFINE LenM
∆
= Len(M )

〈2〉 HIDE DEF M , LenM

〈2〉2. msg ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY DEF InvType
〈2〉3. M ∈ Seq(DeltaVecType) BY 〈2〉2 DEF M
〈2〉4. LenM ∈ Nat BY 〈2〉3, LenInNat DEF LenM
〈2〉5. M ′ = Append(M , gamma) BY 〈1〉1, 〈1〉3 DEF M , gamma
〈2〉6. M ′ ∈ Seq(DeltaVecType) BY 〈2〉1, 〈2〉3, 〈2〉5, AppendProperties
〈2〉7. LenM ′ ∈ Nat BY 〈2〉6, LenInNat DEF LenM
〈2〉8. LenM ′ = LenM + 1 BY 〈2〉1, 〈2〉3, 〈2〉5, AppendProperties DEF LenM

fk is outside the next state message queue.

〈2〉9. CASE fk = 0 ∨ LenM + 1 < fk
〈3〉1. fk 6= LenM + 1 BY 〈2〉4, 〈2〉9, SMTT (10)
〈3〉2. ¬(0 < fk ∧ fk ≤ LenM ) BY 〈2〉4, 〈2〉8, 〈2〉9, SMTT (10)
〈3〉3. ¬(0 < fk ∧ fk ≤ LenM ′) BY 〈2〉4, 〈2〉8, 〈2〉9, SMTT (10)
〈3〉4. InfoAt(fk , fp, fq) = DeltaVecZero BY 〈3〉2 DEF InfoAt , LenM , M
〈3〉5. InfoAt(fk , fp, fq)′ = DeltaVecZero BY 〈3〉3 DEF InfoAt , LenM , M
〈3〉6. UNCHANGED InfoAt(fk , fp, fq) BY 〈3〉4, 〈3〉5
〈3〉 QED BY 〈3〉1, 〈3〉6, 〈1〉3 DEF NextSendUpdate InfoAt Conclusion, LenM , M

fk is inside the previously existing elements on the next state message queue.
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〈2〉10. CASE 0 < fk ∧ fk < LenM + 1
〈3〉1. InfoAt(fk , fp, fq) = M [fk ]
〈4〉1. 0 < fk ∧ fk ≤ LenM BY 〈2〉4, 〈2〉10, SMTT (10)
〈4〉 QED BY 〈4〉1 DEF InvInfoAtType, M , LenM
〈3〉2. InfoAt(fk , fp, fq)′ = M [fk ]′

〈4〉1. 0 < fk ∧ fk ≤ LenM ′ BY 〈2〉4, 〈2〉8, 〈2〉10, SMTT (10)
〈4〉 QED BY 〈4〉1 DEF InfoAt , M , LenM
〈3〉3. M [fk ]′ = M [fk ]
〈4〉1. fk ∈ 1 . . LenM BY 〈2〉4, 〈2〉10, SMTT (10)
〈4〉 QED BY 〈4〉1, 〈2〉1, 〈2〉3, 〈2〉5, AppendPropertiesOldElems DEF LenM
〈3〉4. UNCHANGED InfoAt(fk , fp, fq) BY 〈3〉1, 〈3〉2, 〈3〉3
〈3〉5. fk 6= LenM + 1 BY 〈2〉4, 〈2〉10, SMTT (10)
〈3〉 QED BY 〈3〉4, 〈3〉5, 〈1〉3 DEF NextSendUpdate InfoAt Conclusion, LenM , M

fk is the appended element on the next state message queue.

〈2〉11. CASE fk = LenM + 1
〈3〉1. M [fk ]′ = gamma
〈4〉 QED BY 〈2〉1, 〈2〉3, 〈2〉5, 〈2〉11, AppendPropertiesNewElem DEF LenM
〈3〉2. InfoAt(fk , fp, fq)′ = M [fk ]′

〈4〉1. 0 < fk ∧ fk ≤ LenM ′ BY 〈2〉4, 〈2〉8, 〈2〉11, SMTT (10)
〈4〉2. InfoAt(fk , fp, fq)′ = M [fk ]′ BY 〈4〉1 DEF InfoAt , M , LenM
〈4〉 QED BY 〈4〉2
〈3〉3. InfoAt(fk , fp, fq)′ = gamma BY 〈3〉1, 〈3〉2
〈3〉 QED BY 〈3〉3, 〈2〉11, 〈1〉3 DEF NextSendUpdate InfoAt Conclusion, LenM , M , gamma

〈2〉 QED BY 〈2〉4, 〈2〉9, 〈2〉10, 〈2〉11, 〈1〉3, SMTT (10)

〈1〉 QED BY 〈1〉2, 〈1〉3

What the NextReceiveUpdate(p, q) action does to InfoAt(fk , fp, fq).

NextReceiveUpdate InfoAt Conclusion(fk , fp, fq , p, q)
∆
=

IF fp = p ∧ fq = q ∧ fk > 0
THEN

InfoAt(fk , fp, fq)′ = InfoAt(fk + 1, fp, fq)
ELSE

UNCHANGED InfoAt(fk , fp, fq)

THEOREM NextReceiveUpdate InfoAt
∆
=

ASSUME

NEW fk ∈ Nat ,
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NEW fp ∈ Proc,
NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW q ∈ Proc,
InvType,
NextReceiveUpdate WithPQ(p, q)

PROVE

NextReceiveUpdate InfoAt Conclusion(fk , fp, fq , p, q)
PROOF

〈1〉1. NextReceiveUpdate State Conclusion(p, q) BY NextReceiveUpdate State
〈1〉 USE DEF NextReceiveUpdate State Conclusion

〈1〉2. ASSUME fk = 0 PROVE UNCHANGED InfoAt(fk , fp, fq)
〈2〉 ¬(0 < fk) BY 〈1〉2, SMTT (10)
〈2〉 QED BY DEF InfoAt

〈1〉3. ASSUME fp 6= p ∨ fq 6= q PROVE UNCHANGED InfoAt(fk , fp, fq)
〈2〉1. UNCHANGED msg [fp][fq ]
〈3〉1. USE 〈1〉1, 〈1〉3
〈3〉 QED BY ZenonT (20) sometimes zenon needs more time

〈2〉 QED BY 〈2〉1 DEF InfoAt

〈1〉4. ASSUME fp = p, fq = q , fk > 0 PROVE InfoAt(fk , fp, fq)′ = InfoAt(fk + 1, fp, fq)
〈2〉 DEFINE M

∆
= msg [p][q ]

〈2〉 DEFINE LenM
∆
= Len(M )

〈2〉 HIDE DEF M , LenM

〈2〉1. msg ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY DEF InvType
〈2〉2. M 6= 〈〉 BY 〈1〉1 DEF M
〈2〉3. M ∈ Seq(DeltaVecType) BY 〈2〉1 DEF M
〈2〉4. LenM ∈ Nat BY 〈2〉3, LenInNat DEF LenM
〈2〉5. M ′ = Tail(M ) BY 〈1〉1 DEF M
〈2〉6. M ′ ∈ Seq(DeltaVecType) BY 〈2〉2, 〈2〉3, 〈2〉5, TailProp
〈2〉7. LenM ′ ∈ Nat BY 〈2〉6, LenInNat DEF LenM
〈2〉8. LenM ′ = LenM − 1 BY 〈2〉2, 〈2〉3, 〈2〉5, TailProp DEF LenM
〈2〉9. LenM = LenM ′ + 1 BY 〈2〉4, 〈2〉7, 〈2〉8, SMTT (10)

Within the sequence a simple consequence of TailProp.

〈2〉17. CASE fk ≤ LenM ′

〈3〉1. fk ∈ 1 . . LenM ′ BY 〈2〉7, 〈2〉17, 〈1〉4, SMTT (10)
〈3〉2. M [fk ]′ = M [fk + 1] BY 〈2〉2, 〈2〉3, 〈2〉5, 〈3〉1, TailProp DEF LenM
〈3〉3. fk + 1 ∈ 1 . . LenM BY 〈3〉1, 〈2〉7, 〈2〉9, SMTT (10)
〈3〉4. InfoAt(fk , fp, fq)′ = M [fk ]′

〈4〉1. 0 < fk ∧ fk ≤ LenM ′ BY 〈3〉1, 〈2〉7, SMTT (10)
〈4〉 QED BY 〈4〉1, 〈1〉4 DEF InfoAt , M , LenM
〈3〉5. InfoAt(fk + 1, fp, fq) = M [fk + 1]
〈4〉1. 0 < fk + 1 ∧ fk + 1 ≤ LenM BY 〈3〉3, 〈2〉4, SMTT (10)
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〈4〉 QED BY 〈4〉1, 〈1〉4 DEF InfoAt , M , LenM
〈3〉 QED BY 〈3〉2, 〈3〉4, 〈3〉5

Off the end of the sequence both InfoAt are 0.

〈2〉18. CASE fk > LenM ′

〈3〉1. InfoAt(fk , fp, fq)′ = DeltaVecZero
〈4〉1. ¬(0 < fk ∧ fk ≤ LenM ′) BY 〈2〉7, 〈2〉18, 〈1〉4, SMTT (10)
〈4〉 QED BY 〈4〉1, 〈1〉4 DEF InfoAt , M , LenM
〈3〉2. InfoAt(fk + 1, fp, fq) = DeltaVecZero
〈4〉1. fk + 1 ∈ Nat BY SMTT (10)
〈4〉2. ¬(0 < fk + 1 ∧ fk + 1 ≤ LenM ) BY 〈2〉7, 〈2〉9, 〈2〉18, SMTT (10)
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈1〉4 DEF InfoAt , M , LenM
〈3〉 QED BY 〈3〉1, 〈3〉2

〈2〉 QED BY 〈2〉7, 〈2〉17, 〈2〉18, 〈1〉4, SMTT (10)

〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4, SMTT (10) DEF NextReceiveUpdate InfoAt Conclusion

What the NextReceiveUpdate(p, q) action means about InfoAt(1, p, q).

THEOREM NextReceiveUpdate InfoAt1
∆
=

ASSUME

NEW p ∈ Proc,
NEW q ∈ Proc,
InvType,
NextReceiveUpdate WithPQ(p, q)

PROVE

InfoAt(1, p, q) = NextReceiveUpdate Kappa(p, q)
PROOF

〈1〉 DEFINE kappa
∆
= NextReceiveUpdate Kappa(p, q)

〈1〉1. NextReceiveUpdate State Conclusion(p, q) BY NextReceiveUpdate State
〈1〉 USE DEF NextReceiveUpdate State Conclusion

〈1〉 DEFINE M
∆
= msg [p][q ]

〈1〉 DEFINE LenM
∆
= Len(M )

〈1〉2. kappa = M [1] BY 〈1〉1
〈1〉3. LenM ∈ Nat BY 〈1〉1
〈1〉4. LenM > 0 BY 〈1〉1

〈1〉5. 0 < 1 ∧ 1 ≤ LenM
〈2〉 HIDE DEF LenM
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〈2〉 QED BY 〈1〉3, 〈1〉4, SMTT (10)

〈1〉 QED BY 〈1〉2, 〈1〉5 DEF InfoAt
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C.18 How the actions affect IncomingInfo

MODULE NaiadClockProofAffectIncomingInfo

EXTENDS NaiadClockProofAffectInfoAt

How the actions affect IncomingInfo.

The initial state for IncomingInfo(fk , fp, fq).

Init IncomingInfo Conclusion(fk , fp, fq)
∆
=

IncomingInfo(fk , fp, fq) = DeltaVecZero

THEOREM Init IncomingInfo
∆
=

ASSUME

NEW fk ∈ Nat ,

NEW fp ∈ Proc,

NEW fq ∈ Proc,

InvType,

Init

PROVE

Init IncomingInfo Conclusion(fk , fp, fq)

PROOF

〈1〉1. msg [fp][fq ] ∈ Seq(DeltaVecType) BY DEF InvType

〈1〉2. msg [fp][fq ] = 〈〉 BY DEF Init

〈1〉 DEFINE sum
∆
= IncomingInfo(fk , fp, fq) ! : !sum

〈1〉5. sum = DeltaVecZero BY 〈1〉1, 〈1〉2, DeltaVecSeqSkipSumEmpty

〈1〉6. temp[fp] = DeltaVecZero BY DEF Init , DeltaVecAddZero

〈1〉7. DeltaVecAdd(sum, temp[fp]) = DeltaVecZero

BY 〈1〉5, 〈1〉6, DeltaVecZeroType, DeltaVecAddZero

〈1〉8. IncomingInfo(fk , fp, fq) = DeltaVecZero BY 〈1〉7 DEF IncomingInfo

〈1〉 QED BY 〈1〉8 DEF Init IncomingInfo Conclusion

What the NextPerformOperation(p, c, r) action does to IncomingInfo(fk , fp, fq).
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NextPerformOperation IncomingInfo Conclusion(fk , fp, fq , p, c, r)
∆
=

LET

delta
∆
= NextPerformOperation Delta(p, c, r)

II
∆
= IncomingInfo(fk , fp, fq)

IN

IF fp = p THEN II ′ = DeltaVecAdd(II , delta) ELSE UNCHANGED II

THEOREM NextPerformOperation IncomingInfo
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW c ∈ PointToNat ,
NEW r ∈ PointToNat ,
InvType,
NextPerformOperation WithPCR(p, c, r)

PROVE

NextPerformOperation IncomingInfo Conclusion(fk , fp, fq , p, c, r)
PROOF

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
〈1〉1. NextPerformOperation State Conclusion(p, c, r) BY NextPerformOperation State
〈1〉 USE DEF NextPerformOperation State Conclusion

Not affected.

〈1〉3. CASE fp 6= p
〈2〉1. UNCHANGED temp[fp] BY 〈1〉1, 〈1〉3
〈2〉2. UNCHANGED msg BY 〈1〉1
〈2〉 USE DEF IncomingInfo
〈2〉 USE DEF NextPerformOperation IncomingInfo Conclusion
〈2〉 QED BY 〈2〉1, 〈2〉2, 〈1〉3

Affected.

〈1〉4. CASE fp = p
〈2〉1. msg ∈ [Proc → [Proc → Seq(DeltaVecType)]] BY DEF InvType
〈2〉2. msg ′ = msg BY 〈1〉1
The sum of delta vectors is associative. We have

incoming’ = summsg + tempp’
= summsg + (tempp + delta)
= (summsg + tempp) + delta
= incoming + delta

〈2〉 DEFINE tempp
∆
= temp[p]

〈2〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈2〉3. delta ∈ DeltaVecType BY 〈1〉1
〈2〉4. tempp ∈ DeltaVecType BY DEF InvType
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〈2〉5. tempp′ = DeltaVecAdd(tempp, delta) BY 〈1〉1, 〈1〉4
〈2〉 DEFINE summsg

∆
= IncomingInfo(fk , p, fq) ! : !sum

〈2〉6. summsg ∈ DeltaVecType BY DEF InvIncomingInfoType
〈2〉7. UNCHANGED summsg BY 〈2〉2
〈2〉 DEFINE incoming

∆
= DeltaVecAdd(summsg , tempp)

〈2〉8. incoming ∈ DeltaVecType BY 〈2〉6, 〈2〉4, DeltaVecAddType
〈2〉9. incoming ′ = DeltaVecAdd(summsg , tempp′) BY 〈2〉7
〈2〉10. incoming ′ = DeltaVecAdd(summsg , DeltaVecAdd(tempp, delta)) BY 〈2〉5, 〈2〉9
〈2〉11. incoming ′ = DeltaVecAdd(DeltaVecAdd(summsg , tempp), delta)
〈3〉 HIDE DEF incoming , summsg , tempp, delta
〈3〉 QED BY 〈2〉3, 〈2〉4, 〈2〉6, 〈2〉10, DeltaVecAddAssociative
〈2〉12. incoming ′ = DeltaVecAdd(incoming , delta) BY 〈2〉11
〈2〉 USE DEF IncomingInfo
〈2〉 USE DEF NextPerformOperation IncomingInfo Conclusion
〈2〉 QED BY 〈2〉12, 〈1〉4
〈1〉 QED BY 〈1〉3, 〈1〉4

What the NextSendUpdate(p, tt) action does to IncomingInfo(fk , fp, fq).

NextSendUpdate IncomingInfo Conclusion(fk , fp, fq , p, tt)
∆
=

LET

II
∆
= IncomingInfo(fk , fp, fq)

len
∆
= Len(msg [fp][fq ])

IN

IF fp = p ∧ fk > len THEN II ′ = temp[fp]′ ELSE UNCHANGED II

THEOREM NextSendUpdate IncomingInfo
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW tt ∈ SUBSET Point ,
InvType,
NextSendUpdate WithPTT (p, tt)

PROVE

NextSendUpdate IncomingInfo Conclusion(fk , fp, fq , p, tt)
PROOF

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
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〈1〉1. NextSendUpdate State Conclusion(p, tt) BY NextSendUpdate State
〈1〉 USE DEF NextSendUpdate State Conclusion

Not affected.

〈1〉2. CASE fp 6= p
〈2〉1. UNCHANGED temp[fp] BY 〈1〉1, 〈1〉2
〈2〉2. UNCHANGED msg [fp][fq ] BY 〈1〉1, 〈1〉2
〈2〉 USE DEF NextSendUpdate IncomingInfo Conclusion
〈2〉 QED BY 〈2〉1, 〈2〉2, 〈1〉2 DEF IncomingInfo

Affected.

〈1〉3. CASE fp = p

Definitions for the current state.

〈2〉 DEFINE CurrT
∆
= temp[p]

〈2〉 DEFINE CurrM
∆
= msg [p][fq ]

〈2〉 DEFINE CurrSum
∆
= IncomingInfo(fk , p, fq) ! : !sum

〈2〉 DEFINE CurrII
∆
= IncomingInfo(fk , p, fq)

〈2〉 DEFINE LenCurrM
∆
= Len(CurrM )

〈2〉1. CurrSum = DeltaVecSeqSkipSum(fk , CurrM ) OBVIOUS
〈2〉2. CurrII = DeltaVecAdd(CurrSum, CurrT ) BY DEF IncomingInfo

〈2〉3. CurrT ∈ DeltaVecType BY DEF InvType
〈2〉4. CurrM ∈ Seq(DeltaVecType) BY DEF InvType
〈2〉5. CurrSum ∈ DeltaVecType BY 〈2〉4, DeltaVecSeqSkipSumType
〈2〉6. CurrII ∈ DeltaVecType BY 〈2〉2, 〈2〉5, 〈2〉3, DeltaVecAddType
〈2〉7. LenCurrM ∈ Nat BY 〈2〉4, LenInNat

Definitions for the next state.

〈2〉 DEFINE NextT
∆
= temp[p]′

〈2〉 DEFINE NextM
∆
= msg [p][fq ]′

〈2〉 DEFINE NextSum
∆
= IncomingInfo(fk , p, fq) ! : !sum ′

〈2〉 DEFINE NextII
∆
= IncomingInfo(fk , p, fq)′

〈2〉 DEFINE LenNextM
∆
= Len(NextM )

〈2〉8. NextSum = DeltaVecSeqSkipSum(fk , NextM ) OBVIOUS
〈2〉9. NextII = DeltaVecAdd(NextSum, NextT ) BY DEF IncomingInfo

〈2〉10. NextT ∈ DeltaVecType BY 〈1〉1 DEF InvType
〈2〉11. NextM ∈ Seq(DeltaVecType) BY 〈1〉1 DEF InvType
〈2〉12. NextSum ∈ DeltaVecType BY 〈2〉11, DeltaVecSeqSkipSumType
〈2〉13. NextII ∈ DeltaVecType BY 〈2〉9, 〈2〉12, 〈2〉10, DeltaVecAddType
〈2〉14. LenNextM ∈ Nat BY 〈2〉11, LenInNat

Relation between current state and next state.

〈2〉 DEFINE gamma
∆
= NextSendUpdate Gamma(p, tt)

〈2〉15. gamma ∈ DeltaVecType BY 〈1〉1

〈2〉16. CurrT = DeltaVecAdd(gamma, NextT ) BY 〈1〉1
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〈2〉17. NextM = Append(CurrM , gamma) BY 〈1〉1, 〈1〉3
〈2〉18. LenNextM = LenCurrM + 1
〈3〉 HIDE DEF NextM , CurrM
〈3〉 QED BY 〈2〉4, 〈2〉15, 〈2〉17, AppendProperties

When fk > LenCurrM , we have NextSum = 0, which results in NextII = NextT .

〈2〉20. ASSUME fk > LenCurrM PROVE NextII = NextT
〈3〉1. fk ≥ LenNextM
〈4〉 HIDE DEF LenCurrM , LenNextM
〈4〉 QED BY 〈2〉7, 〈2〉14, 〈2〉18, 〈2〉20, SMTT (10)
〈3〉2. NextSum = DeltaVecZero BY 〈3〉1, 〈2〉8, 〈2〉11, DeltaVecSeqSkipSumSkipAll
〈3〉 QED BY 〈3〉2, 〈2〉9, 〈2〉10, DeltaVecAddZero

When fk ≤ LenCurrM , we have NextSum = CurrSum + gamma , which results in NextII = CurrII .

〈2〉21. ASSUME ¬(fk > LenCurrM ) PROVE NextII = CurrII

The action adds gamma to sum.

〈3〉1. NextSum = DeltaVecAdd(CurrSum, gamma)
〈4〉1. fk ≤ LenCurrM
〈5〉 HIDE DEF LenCurrM
〈5〉 QED BY 〈2〉7, 〈2〉21, SMTT (10)
〈4〉 HIDE DEF NextSum, NextM , CurrSum, CurrM , gamma
〈4〉 QED BY 〈4〉1, 〈2〉1, 〈2〉4, 〈2〉8, 〈2〉15, 〈2〉17, DeltaVecSeqSkipSumAppend

Re-associate the sum of gamma vectors. We have

NextII = NextSum + NextT
= (CurrSum + gamma) + NextT
= CurrSum + (gamma + NextT)
= CurrSum + CurrT
= CurrII

〈3〉 HIDE DEF CurrT , CurrSum, CurrII
〈3〉 HIDE DEF NextT , NextSum, NextII
〈3〉 HIDE DEF gamma
〈3〉2. NextII = DeltaVecAdd(DeltaVecAdd(CurrSum, gamma), NextT ) BY 〈3〉1, 〈2〉9
〈3〉3. NextII = DeltaVecAdd(CurrSum, DeltaVecAdd(gamma, NextT ))

BY 〈3〉2, 〈2〉5, 〈2〉10, 〈2〉15, DeltaVecAddAssociative
〈3〉4. NextII = DeltaVecAdd(CurrSum, CurrT ) BY 〈3〉3, 〈2〉16
〈3〉 QED BY 〈3〉4, 〈2〉2

〈2〉 QED BY 〈2〉20, 〈2〉21, 〈1〉3 DEF NextSendUpdate IncomingInfo Conclusion
〈1〉 QED BY 〈1〉2, 〈1〉3

What the NextReceiveUpdate(p, q) action does to IncomingInfo(fk , fp, fq).
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NextReceiveUpdate IncomingInfo Conclusion(fk , fp, fq , p, q)
∆
=

IF fp = p ∧ fq = q
THEN IncomingInfo(fk , fp, fq)′ = IncomingInfo(fk + 1, fp, fq)
ELSE UNCHANGED IncomingInfo(fk , fp, fq)

THEOREM NextReceiveUpdate IncomingInfo
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW q ∈ Proc,
InvType,
NextReceiveUpdate WithPQ(p, q)

PROVE

NextReceiveUpdate IncomingInfo Conclusion(fk , fp, fq , p, q)
PROOF

〈1〉1. NextReceiveUpdate State Conclusion(p, q) BY NextReceiveUpdate State
〈1〉 USE DEF NextReceiveUpdate State Conclusion

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType

〈1〉 InvType ′ BY 〈1〉1
〈1〉 InvIncomingInfoType ′ BY DeduceInvIncomingInfoType

Not affected.

〈1〉2. CASE ¬(fp = p ∧ fq = q)
〈2〉1. UNCHANGED temp BY 〈1〉1
〈2〉2. UNCHANGED msg [fp][fq ] BY 〈1〉1, 〈1〉2
〈2〉 USE DEF NextReceiveUpdate IncomingInfo Conclusion
〈2〉 QED BY 〈1〉2, 〈2〉1, 〈2〉2 DEF IncomingInfo

Affected.

〈1〉3. CASE fp = p ∧ fq = q

Definitions for the current state. Note that these reference fk + 1.

〈2〉 DEFINE CurrT
∆
= temp[p]

〈2〉 DEFINE CurrM
∆
= msg [p][q ]

〈2〉 DEFINE CurrSum
∆
= IncomingInfo(fk + 1, p, q) ! : !sum

〈2〉 DEFINE CurrII
∆
= IncomingInfo(fk + 1, p, q)

〈2〉1. CurrII = DeltaVecAdd(CurrSum, CurrT ) BY DEF IncomingInfo
〈2〉2. CurrSum = DeltaVecSeqSkipSum(fk + 1, CurrM ) OBVIOUS

〈2〉3. CurrT ∈ DeltaVecType BY DEF InvType
〈2〉4. CurrM ∈ Seq(DeltaVecType) BY DEF InvType
〈2〉5. CurrSum ∈ DeltaVecType BY DEF InvIncomingInfoType
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〈2〉6. CurrII ∈ DeltaVecType BY DEF InvIncomingInfoType

〈2〉7. CurrM 6= 〈〉 BY 〈1〉1

Definitions for the next state.

〈2〉 DEFINE NextT
∆
= temp[p]′

〈2〉 DEFINE NextM
∆
= msg [p][q ]′

〈2〉 DEFINE NextSum
∆
= IncomingInfo(fk , p, q) ! : !sum ′

〈2〉 DEFINE NextII
∆
= IncomingInfo(fk , p, q)′

〈2〉8. NextII = DeltaVecAdd(NextSum, NextT ) BY DEF IncomingInfo
〈2〉9. NextSum = DeltaVecSeqSkipSum(fk , NextM ) OBVIOUS

〈2〉10. NextT ∈ DeltaVecType BY DEF InvType
〈2〉11. NextM ∈ Seq(DeltaVecType) BY DEF InvType
〈2〉12. NextSum ∈ DeltaVecType BY DEF InvIncomingInfoType
〈2〉13. NextII ∈ DeltaVecType BY DEF InvIncomingInfoType

Relation between current state and next state.

〈2〉14. CurrT = NextT BY 〈1〉1
〈2〉15. NextM = Tail(CurrM ) BY 〈1〉1
〈2〉16. NextSum = DeltaVecSeqSkipSum(fk , Tail(CurrM )) BY 〈2〉9, 〈2〉15
〈2〉17. DeltaVecSeqSkipSum(fk , Tail(CurrM )) = DeltaVecSeqSkipSum(fk + 1, CurrM )
〈3〉 HIDE DEF CurrM
〈3〉 QED BY 〈2〉4, 〈2〉7, DeltaVecSeqSkipSumTail
〈2〉18. NextSum = CurrSum BY 〈2〉2, 〈2〉15, 〈2〉16, 〈2〉17
〈2〉19. NextII = CurrII BY 〈2〉1, 〈2〉8, 〈2〉14, 〈2〉18
〈2〉 USE DEF NextReceiveUpdate IncomingInfo Conclusion
〈2〉 QED BY 〈2〉19, 〈1〉3
〈1〉 QED BY 〈1〉2, 〈1〉3
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C.19 How the actions affect GlobalIncomingInfo
MODULE NaiadClockProofAffectGlobalIncomingInfo

EXTENDS NaiadClockProofAffectIncomingInfo

How the actions affect GlobalIncomingInfo.

The initial state for GlobalIncomingInfo(fk , fp, fq).

Init GlobalIncomingInfo Conclusion(fk , fp, fq)
∆
=

LET

GII
∆
= GlobalIncomingInfo(fk , fp, fq)

IN

GII = DeltaVecZero

THEOREM Init GlobalIncomingInfo
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc,
InvType,
Init

PROVE

Init GlobalIncomingInfo Conclusion(fk , fp, fq)
PROOF

〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(fk , fp, fq)

〈1〉 DEFINE F
∆
= GlobalIncomingInfo(fk , fp, fq) ! : !F

〈1〉 HIDE DEF GII , F

〈1〉 InvGlobalIncomingInfoType BY DeduceInvGlobalIncomingInfoType
〈1〉1. F = GlobalIncomingInfo F (fk , fp, fq) BY DEF GlobalIncomingInfo F , F
〈1〉2. F ∈ [Proc → DeltaVecType] BY 〈1〉1 DEF InvGlobalIncomingInfoType
〈1〉3. DeltaVecFunHasFiniteNonZeroRange(F ) BY 〈1〉1 DEF InvGlobalIncomingInfoType
〈1〉4. ASSUME NEW p ∈ Proc PROVE F [p] = DeltaVecZero
〈2〉1. ASSUME NEW k ∈ Nat PROVE IncomingInfo(k , p, fq) = DeltaVecZero
〈3〉1. Init IncomingInfo Conclusion(k , p, fq) BY Init IncomingInfo
〈3〉 QED BY 〈3〉1 DEF Init IncomingInfo Conclusion

〈2〉2. CASE fp = p
〈3〉1. fk ∈ Nat OBVIOUS

〈3〉 QED BY 〈3〉1, 〈2〉1, 〈2〉2 DEF F
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〈2〉3. CASE fp 6= p
〈3〉1. 0 ∈ Nat OBVIOUS

〈3〉 QED BY 〈3〉1, 〈2〉1, 〈2〉3 DEF F
〈2〉 QED BY 〈2〉2, 〈2〉3
〈1〉5. DeltaVecFunSum(F ) = DeltaVecZero BY 〈1〉2, 〈1〉3, 〈1〉4, DeltaVecFunSumAllZero
〈1〉6. GII = DeltaVecZero BY 〈1〉5 DEF GlobalIncomingInfo, GII , F
〈1〉 QED BY 〈1〉6 DEF Init GlobalIncomingInfo Conclusion, GII

What the NextPerformOperation(p, c, r) action does to GlobalIncomingInfo(0, fq, fq).

NextPerformOperation GlobalIncomingInfo Conclusion(fq , p, c, r)
∆
=

LET

delta
∆
= NextPerformOperation Delta(p, c, r)

GII
∆
= GlobalIncomingInfo(0, fq , fq)

IN

GII ′ = DeltaVecAdd(GII , delta)

THEOREM NextPerformOperation GlobalIncomingInfo
∆
=

ASSUME

NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW c ∈ PointToNat ,
NEW r ∈ PointToNat ,
InvType,
NextPerformOperation WithPCR(p, c, r)

PROVE

NextPerformOperation GlobalIncomingInfo Conclusion(fq , p, c, r)
PROOF

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType BY DeduceInvGlobalIncomingInfoType

〈1〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(0, fq , fq)

〈1〉 DEFINE F
∆
= GlobalIncomingInfo F (0, fq , fq)

〈1〉1. NextPerformOperation State Conclusion(p, c, r)
BY NextPerformOperation State

〈1〉2. ASSUME NEW k1 ∈ Nat , NEW p1 ∈ Proc
PROVE NextPerformOperation IncomingInfo Conclusion(k1, p1, fq , p, c, r)
BY NextPerformOperation IncomingInfo
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〈1〉 USE DEF NextPerformOperation State Conclusion
〈1〉 USE DEF NextPerformOperation IncomingInfo Conclusion

〈1〉 InvType ′ BY 〈1〉1
〈1〉 InvIncomingInfoType ′ BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType ′ BY DeduceInvGlobalIncomingInfoType

〈1〉3. delta ∈ DeltaVecType BY 〈1〉1 DEF delta

〈1〉4. F ∈ [Proc → DeltaVecType] BY DEF InvGlobalIncomingInfoType
〈1〉5. F ′ ∈ [Proc → DeltaVecType] BY DEF InvGlobalIncomingInfoType

〈1〉6. ASSUME NEW p1 ∈ Proc, p1 6= p PROVE F ′[p1] = F [p1]
〈2〉1. 0 ∈ Nat OBVIOUS

〈2〉2. UNCHANGED IncomingInfo(0, p1, fq) BY 〈2〉1, 〈1〉2, 〈1〉6
〈2〉 QED BY 〈2〉1, 〈2〉2 DEF GlobalIncomingInfo F

〈1〉7. F ′[p] = DeltaVecAdd(F [p], delta)
〈2〉1. 0 ∈ Nat OBVIOUS

〈2〉2. IncomingInfo(0, p, fq)′ = DeltaVecAdd(IncomingInfo(0, p, fq), delta) BY 〈2〉1, 〈1〉2
〈2〉 QED BY 〈2〉1, 〈2〉2 DEF GlobalIncomingInfo F

〈1〉8. F ′ = [F EXCEPT ! [p] = DeltaVecAdd(@, delta)] BY 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉7

〈1〉9. F ′ = DeltaVecFunAddAt(F , p, delta) BY 〈1〉8 DEF DeltaVecFunAddAt

〈1〉10. GII ′ = DeltaVecAdd(GII , delta)
〈2〉 DeltaVecFunSumAddAt Conclusion(F , p, delta)
〈3〉 DeltaVecFunSumAddAt Hypothesis(F , p, delta)
〈4〉 DeltaVecFunHasFiniteNonZeroRange(F ) BY DEF InvGlobalIncomingInfoType
〈4〉 QED BY 〈1〉3, 〈1〉4 DEF DeltaVecFunSumAddAt Hypothesis
〈3〉 QED BY DeltaVecFunSumAddAt
〈2〉 GII = DeltaVecFunSum(F ) BY DEF GlobalIncomingInfo, GlobalIncomingInfo F
〈2〉 GII ′ = DeltaVecFunSum(F ′) BY DEF GlobalIncomingInfo, GlobalIncomingInfo F
〈2〉 QED BY 〈1〉9 DEF DeltaVecFunSumAddAt Conclusion

〈1〉 USE DEF NextPerformOperation GlobalIncomingInfo Conclusion
〈1〉 QED BY 〈1〉10

What the NextSendUpdate(p, tt) action does to GlobalIncomingInfo(0, fq, fq).

NextSendUpdate GlobalIncomingInfo Conclusion(fq , p, tt)
∆
=

LET

GII
∆
= GlobalIncomingInfo(0, fq , fq)
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IN

UNCHANGED GII

THEOREM NextSendUpdate GlobalIncomingInfo
∆
=

ASSUME

NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW tt ∈ SUBSET Point ,
InvType,
NextSendUpdate WithPTT (p, tt)

PROVE

NextSendUpdate GlobalIncomingInfo Conclusion(fq , p, tt)
PROOF

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType BY DeduceInvGlobalIncomingInfoType

〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(0, fq , fq)

〈1〉 DEFINE F
∆
= GlobalIncomingInfo F (0, fq , fq)

〈1〉1. NextSendUpdate State Conclusion(p, tt)
BY NextSendUpdate State

〈1〉2. ASSUME NEW k1 ∈ Nat , NEW p1 ∈ Proc
PROVE NextSendUpdate IncomingInfo Conclusion(k1, p1, fq , p, tt)
BY NextSendUpdate IncomingInfo

〈1〉 USE DEF NextSendUpdate State Conclusion
〈1〉 USE DEF NextSendUpdate IncomingInfo Conclusion

〈1〉 InvType ′ BY 〈1〉1
〈1〉 InvIncomingInfoType ′ BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType ′ BY DeduceInvGlobalIncomingInfoType

〈1〉3. UNCHANGED F
〈2〉 ASSUME NEW p1 ∈ Proc PROVE UNCHANGED IncomingInfo(0, p1, fq)
〈3〉 DEFINE M

∆
= msg [p1][fq ]

〈3〉 DEFINE LenM
∆
= Len(M )

〈3〉1. M ∈ Seq(DeltaVecType) BY DEF InvType
〈3〉2. LenM ∈ Nat BY 〈3〉1, LenInNat
〈3〉3. ¬(0 > LenM )
〈4〉 HIDE DEF LenM
〈4〉 QED BY 〈3〉2, SMTT (10)
〈3〉 QED BY 〈3〉3, 〈1〉2
〈2〉 QED BY DEF GlobalIncomingInfo F

〈1〉4. UNCHANGED GII
〈2〉 GII = DeltaVecFunSum(F ) BY DEF GlobalIncomingInfo, GlobalIncomingInfo F
〈2〉 GII ′ = DeltaVecFunSum(F ′) BY DEF GlobalIncomingInfo, GlobalIncomingInfo F
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〈2〉 QED BY 〈1〉3

〈1〉 QED BY 〈1〉4 DEF NextSendUpdate GlobalIncomingInfo Conclusion

What the NextReceiveUpdate(p, q) action does to GlobalIncomingInfo(0, fq, fq).

NextReceiveUpdate GlobalIncomingInfo Conclusion(fq , p, q)
∆
=

LET

GII
∆
= GlobalIncomingInfo(0, fq , fq)

kappa
∆
= NextReceiveUpdate Kappa(p, q)

negkappa
∆
= DeltaVecNeg(kappa)

IN

IF fq = q
THEN

∧GII = DeltaVecAdd(GII ′, kappa) looking backward

∧GII ′ = DeltaVecAdd(GII , negkappa) looking forward

ELSE UNCHANGED GII

THEOREM NextReceiveUpdate GlobalIncomingInfo
∆
=

ASSUME

NEW fq ∈ Proc,
NEW p ∈ Proc,
NEW q ∈ Proc,
InvType,
NextReceiveUpdate WithPQ(p, q)

PROVE

NextReceiveUpdate GlobalIncomingInfo Conclusion(fq , p, q)
PROOF

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType BY DeduceInvGlobalIncomingInfoType

〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(0, fq , fq)

〈1〉 DEFINE kappa
∆
= NextReceiveUpdate Kappa(p, q)

〈1〉 DEFINE negkappa
∆
= DeltaVecNeg(kappa)

〈1〉 DEFINE F
∆
= GlobalIncomingInfo F (0, fq , fq)

〈1〉 DEFINE Add(a, b)
∆
= DeltaVecAdd(a, b) a local abbreviation

〈1〉 DEFINE Zero
∆
= DeltaVecZero a local abbreviation

〈1〉1. NextReceiveUpdate State Conclusion(p, q)
BY NextReceiveUpdate State



196 APPENDIX C. PROOF OF CORRECTNESS

〈1〉2. ASSUME NEW k1 ∈ Nat , NEW p1 ∈ Proc
PROVE NextReceiveUpdate IncomingInfo Conclusion(k1, p1, fq , p, q)
BY NextReceiveUpdate IncomingInfo

〈1〉 USE DEF NextReceiveUpdate State Conclusion
〈1〉 USE DEF NextReceiveUpdate IncomingInfo Conclusion

〈1〉 InvType ′ BY 〈1〉1
〈1〉 InvIncomingInfoType ′ BY DeduceInvIncomingInfoType
〈1〉 InvGlobalIncomingInfoType ′ BY DeduceInvGlobalIncomingInfoType

〈1〉3. GII ∈ DeltaVecType BY DEF InvGlobalIncomingInfoType
〈1〉4. kappa ∈ DeltaVecType BY 〈1〉1
〈1〉5. negkappa ∈ DeltaVecType BY 〈1〉4, DeltaVecNegType

〈1〉6. GII = DeltaVecFunSum(F ) BY DEF GlobalIncomingInfo, GlobalIncomingInfo F
〈1〉7. GII ′ = DeltaVecFunSum(F ′) BY DEF GlobalIncomingInfo, GlobalIncomingInfo F
〈1〉8. DeltaVecFunHasFiniteNonZeroRange(F ) BY DEF InvGlobalIncomingInfoType
〈1〉9. F ∈ [Proc → DeltaVecType] BY DEF InvGlobalIncomingInfoType

No change.

〈1〉10. ASSUME fq 6= q PROVE UNCHANGED GII

〈2〉1. UNCHANGED F
〈3〉1. ASSUME NEW p1 ∈ Proc PROVE UNCHANGED IncomingInfo(0, p1, fq)

BY 〈1〉2, 〈1〉10
〈3〉 QED BY 〈3〉1 DEF GlobalIncomingInfo F

〈2〉 QED BY 〈2〉1, 〈1〉6, 〈1〉7

Change.

〈1〉11. ASSUME fq = q PROVE GII ′ = DeltaVecAdd(GII , negkappa)

〈2〉1. F ′ = DeltaVecFunAddAt(F , p, negkappa)

〈3〉1. ASSUME NEW p1 ∈ Proc, p1 6= p PROVE UNCHANGED IncomingInfo(0, p1, fq)
〈4〉 QED BY 〈3〉1, 〈1〉2

〈3〉 DEFINE II 0
∆
= IncomingInfo(0, p, fq)

〈3〉 DEFINE II 1
∆
= IncomingInfo(1, p, fq)

〈3〉 SUFFICES II 0′ = Add(II 0, negkappa)
〈4〉 QED BY 〈3〉1 DEF DeltaVecFunAddAt , GlobalIncomingInfo F

〈3〉2. 0 ∈ Nat OBVIOUS

〈3〉3. 1 ∈ Nat OBVIOUS

〈3〉4. 0 + 1 = 1 BY SMTT (10)
〈3〉5. II 0 ∈ DeltaVecType BY 〈3〉2 DEF InvIncomingInfoType
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〈3〉6. II 1 ∈ DeltaVecType BY 〈3〉3 DEF InvIncomingInfoType
〈3〉7. II 0′ = II 1 BY 〈3〉4, 〈1〉2, 〈1〉11
〈3〉8. II 0 = Add(II 1, kappa)
〈4〉 DEFINE M

∆
= msg [p][fq ]

〈4〉 DEFINE LenM
∆
= Len(M )

〈4〉1. kappa = M [1] BY 〈1〉1, 〈1〉11
〈4〉2. 1 ≤ LenM
〈5〉1. LenM ∈ Nat BY 〈1〉1, 〈1〉11
〈5〉2. LenM 6= 0 BY 〈1〉1, 〈1〉11
〈5〉 HIDE DEF LenM
〈5〉 QED BY 〈5〉1, 〈5〉2, SMTT (10)
〈4〉 DEFINE SS0

∆
= DeltaVecSeqSkipSum(0, M )

〈4〉 DEFINE SS1
∆
= DeltaVecSeqSkipSum(1, M )

〈4〉3. M ∈ Seq(DeltaVecType)
〈5〉 USE DEF InvType
〈5〉 QED BY ZenonT (20) sometimes zenon needs more time

〈4〉4. SS0 ∈ DeltaVecType BY 〈4〉3, 〈3〉2, DeltaVecSeqSkipSumType
〈4〉5. SS1 ∈ DeltaVecType BY 〈4〉3, 〈3〉3, DeltaVecSeqSkipSumType
〈4〉6. SS0 = Add(SS1, kappa)
〈5〉 HIDE DEF kappa, M
〈5〉 QED BY 〈4〉1, 〈4〉2, 〈4〉3, 〈3〉4, DeltaVecSeqSkipSumNext
〈4〉 DEFINE tempp

∆
= temp[p]

〈4〉7. tempp ∈ DeltaVecType BY DEF InvType
〈4〉8. II 0 = Add(SS0, tempp) BY DEF IncomingInfo
〈4〉9. II 1 = Add(SS1, tempp) BY DEF IncomingInfo
〈4〉 QED

〈5〉 HIDE DEF SS0, SS1, II 0, II 1, tempp, kappa
〈5〉 USE 〈4〉4, 〈4〉5, 〈4〉7, 〈3〉5, 〈3〉6, 〈1〉4
〈5〉1. II 0 = Add(Add(SS1, kappa), tempp) BY 〈4〉6, 〈4〉8
〈5〉2. II 0 = Add(SS1, Add(kappa, tempp)) BY 〈5〉1, DeltaVecAddAssociative
〈5〉3. II 0 = Add(SS1, Add(tempp, kappa)) BY 〈5〉2, DeltaVecAddCommutative
〈5〉4. II 0 = Add(Add(SS1, tempp), kappa) BY 〈5〉3, DeltaVecAddAssociative
〈5〉5. II 0 = Add(II 1, kappa) BY 〈5〉4, 〈4〉9
〈5〉 QED BY 〈5〉5

〈3〉9. II 1 = Add(II 0, negkappa)
〈4〉 HIDE DEF kappa, negkappa, II 0, II 1
〈4〉 USE 〈3〉5, 〈3〉6, 〈1〉4, 〈1〉5
〈4〉2. Zero = Add(kappa, negkappa) BY DeltaVecAddNeg DEF negkappa
〈4〉3. II 1 = Add(II 1, Add(kappa, negkappa)) BY 〈4〉2, DeltaVecAddZero
〈4〉4. II 1 = Add(Add(II 1, kappa), negkappa) BY 〈4〉3, DeltaVecAddAssociative
〈4〉5. II 1 = Add(II 0, negkappa) BY 〈4〉4, 〈3〉8
〈4〉 QED BY 〈4〉5
〈3〉 QED BY 〈3〉7, 〈3〉9

〈2〉2. DeltaVecFunSumAddAt Conclusion(F , p, negkappa)
〈3〉 HIDE DEF F , negkappa
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〈3〉 USE 〈1〉5, 〈1〉8, 〈1〉9
〈3〉 DeltaVecFunSumAddAt Hypothesis(F , p, negkappa)
〈4〉 QED BY DEF DeltaVecFunSumAddAt Hypothesis
〈3〉 QED BY DeltaVecFunSumAddAt

〈2〉 QED BY 〈2〉1, 〈2〉2, 〈1〉6, 〈1〉7, 〈1〉9 DEF DeltaVecFunSumAddAt Conclusion

〈1〉12. ASSUME fq = q PROVE GII = Add(GII ′, kappa)
〈2〉 HIDE DEF kappa
〈2〉 HIDE DEF negkappa
〈2〉 HIDE DEF GII
〈2〉 USE 〈1〉3, 〈1〉4, 〈1〉5
〈2〉1. Zero = Add(negkappa, kappa) BY 〈1〉4, DeltaVecAddNeg DEF negkappa
〈2〉2. GII = Add(GII , Add(negkappa, kappa)) BY 〈2〉1, DeltaVecAddZero
〈2〉3. GII = Add(Add(GII , negkappa), kappa) BY 〈2〉2, DeltaVecAddAssociative
〈2〉 QED BY 〈2〉3, 〈1〉11, 〈1〉12

〈1〉 USE DEF NextReceiveUpdate GlobalIncomingInfo Conclusion
〈1〉 USE DEF GlobalIncomingInfo, GlobalIncomingInfo F
〈1〉 QED BY 〈1〉10, 〈1〉11, 〈1〉12

What the NextReceiveUpdate(p, q) action does to GlobalIncomingInfo(fk , p, q).

THEOREM NextReceiveUpdate GlobalIncomingInfo1
∆
=

ASSUME

NEW fk ∈ Nat ,
NEW p ∈ Proc,
NEW q ∈ Proc,
InvType,
NextReceiveUpdate WithPQ(p, q)

PROVE

GlobalIncomingInfo(fk , p, q)′ = GlobalIncomingInfo(fk + 1, p, q)
PROOF

〈1〉1. IncomingInfo(fk , p, q)′ = IncomingInfo(fk + 1, p, q)
〈2〉1. NextReceiveUpdate IncomingInfo Conclusion(fk , p, q , p, q)

BY NextReceiveUpdate IncomingInfo
〈2〉 QED BY 〈2〉1 DEF NextReceiveUpdate IncomingInfo Conclusion

〈1〉2. ASSUME NEW p1 ∈ Proc, p1 6= p PROVE UNCHANGED IncomingInfo(0, p1, q)
〈2〉1. NextReceiveUpdate IncomingInfo Conclusion(0, p1, q , p, q)

BY NextReceiveUpdate IncomingInfo



C.19. HOW THE ACTIONS AFFECT GLOBALINCOMINGINFO 199

〈2〉 QED BY 〈2〉1, 〈1〉2 DEF NextReceiveUpdate IncomingInfo Conclusion

〈1〉3. GlobalIncomingInfo F (fk , p, q)′ = GlobalIncomingInfo F (fk + 1, p, q)
BY 〈1〉1, 〈1〉2 DEF GlobalIncomingInfo F

〈1〉 QED BY 〈1〉3 DEF GlobalIncomingInfo, GlobalIncomingInfo F
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C.20 Proof of invariant InvType
MODULE NaiadClockProofInvType

EXTENDS NaiadClockProofAffectGlobalIncomingInfo

Proof of invariant InvType.

InvType holds in the initial state.

THEOREM ThmInitInvType
∆
=

Init ⇒ InvType
PROOF

〈1〉 SUFFICES ASSUME Init PROVE InvType OBVIOUS

〈1〉1. lleq ∈ PointRelationType BY DEF Init
〈1〉2. IsPartialOrder(lleq) BY DEF Init

〈1〉3. nrec ∈ CountVecType BY AssumePointToNat DEF Init , CountVecType

〈1〉4. glob ∈ [Proc → DeltaVecType]
〈2〉1. glob = [p ∈ Proc 7→ nrec] BY DEF Init
〈2〉2. CountVecType ⊆ DeltaVecType
〈3〉1. Nat ⊆ Int BY SMTT (10)
〈3〉 QED BY DEF CountVecType, DeltaVecType
〈2〉 QED BY 〈1〉3, 〈2〉1, 〈2〉2

〈1〉5. temp ∈ [Proc → DeltaVecType]
BY DeltaVecZeroType, DeltaVecAddZero DEF Init

〈1〉6. msg ∈ [Proc → [Proc → Seq(DeltaVecType)]]
〈2〉1. 〈〉 ∈ Seq(DeltaVecType) BY EmptySeq
〈2〉 QED BY 〈2〉1 DEF Init

〈1〉7. nrecvut ∈ [Point → BOOLEAN ]
BY DEF Init , NrecVacantUpto, IsDeltaVecVacantUpto

〈1〉8. globvut ∈ [Proc → [Point → BOOLEAN ]]
BY DEF Init , GlobVacantUpto, IsDeltaVecVacantUpto

〈1〉9. IsFiniteTempProcs
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〈2〉 DEFINE FP
∆
= {p ∈ Proc : temp[p] 6= DeltaVecZero}

〈2〉1. ∀ p ∈ Proc : temp[p] = DeltaVecZero BY DEF Init
〈2〉2. FP = {} BY 〈2〉1
〈2〉3. IsFiniteSet(FP) BY 〈2〉2, FiniteSetEmpty
〈2〉 QED BY 〈2〉3 DEF IsFiniteTempProcs

〈1〉10. IsFiniteMsgSenders
〈2〉 SUFFICES ASSUME NEW q ∈ Proc

PROVE IsFiniteSet({p ∈ Proc : msg [p][q ] 6= 〈〉})
BY DEF IsFiniteMsgSenders

〈2〉1. ∀ p ∈ Proc : msg [p][q ] = 〈〉 BY DEF Init
〈2〉2. {p ∈ Proc : msg [p][q ] 6= 〈〉} = {} BY 〈2〉1
〈2〉 QED BY 〈2〉2, FiniteSetEmpty

〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉7, 〈1〉8, 〈1〉9, 〈1〉10 DEF InvType

InvType carries through a Next step.

THEOREM ThmNextInvType
∆
=

∧ InvType
∧ [Next ]vars
⇒

InvType ′

PROOF

〈1〉 SUFFICES ASSUME InvType, Next PROVE InvType ′

Dispose of the stutter step.

〈2〉 CASE UNCHANGED vars BY DEF vars, InvType, IsFiniteTempProcs, IsFiniteMsgSenders
〈2〉 QED OBVIOUS

If the action is NextPerformOperation .

〈1〉1. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉1 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉 USE DEF NextPerformOperation State Conclusion

〈2〉 QED BY 〈2〉2
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If the action is NextSendUpdate .

〈1〉2. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)
BY 〈1〉2 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉 USE DEF NextSendUpdate State Conclusion

〈2〉 QED BY 〈2〉2

If the action is NextReceiveUpdate .

〈1〉3. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉3 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉 USE DEF NextReceiveUpdate State Conclusion

〈2〉 QED BY 〈2〉2

〈1〉 QED BY 〈1〉1, 〈1〉2, 〈1〉3 DEF Next

InvType holds in all reachable states.

THEOREM ThmInvType
∆
=

Spec ⇒ 2InvType
PROOF
〈1〉 Init ⇒ InvType BY ThmInitInvType
〈1〉 InvType ∧ [Next ]vars ⇒ InvType ′ BY ThmNextInvType
〈1〉 Init ∧2[Next ]vars ⇒ 2InvType OMITTED TLAPS cannot check it
〈1〉 QED OMITTED BY DEF Spec
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C.21 Proof of invariant InvTempUpright
MODULE NaiadClockProofInvTempUpright

EXTENDS NaiadClockProofInvType

Proof of invariant InvTempUpright.

InvTempUpright holds in the initial state.

THEOREM ThmInitInvTempUpright
∆
=

Init ⇒ InvTempUpright
PROOF

〈1〉 SUFFICES ASSUME Init PROVE InvTempUpright OBVIOUS

〈1〉 QED BY DeltaVecUpright Zero DEF Init , InvTempUpright

InvTempUpright carries through a Next step.

THEOREM ThmNextInvTempUpright
∆
=

∧ InvType
∧ InvTempUpright
∧ [Next ]vars
⇒

InvTempUpright ′

PROOF

〈1〉 SUFFICES ASSUME

InvType,
InvTempUpright ,
[Next ]vars

PROVE InvTempUpright ′

OBVIOUS

〈1〉 SUFFICES ASSUME Next PROVE InvTempUpright ′

〈2〉 CASE UNCHANGED vars BY DEF vars, InvTempUpright
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〈2〉 QED OBVIOUS

〈1〉 SUFFICES ASSUME NEW fp ∈ Proc
PROVE IsDeltaVecUpright(lleq , temp[fp])′

BY DEF InvTempUpright

〈1〉2. lleq ∈ PointRelationType BY DEF InvType
〈1〉3. IsPartialOrder(lleq) BY DEF InvType

If the action is NextPerformOperation .

〈1〉4. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉4 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉 USE DEF NextPerformOperation State Conclusion

〈2〉3. UNCHANGED lleq BY 〈2〉2

temp[fp] unchanged.

〈2〉4. CASE fp 6= p
〈3〉1. UNCHANGED temp[fp] BY 〈2〉2, 〈2〉4
〈3〉 QED BY 〈3〉1, 〈2〉3 DEF InvTempUpright

temp[fp] changed.

〈2〉5. CASE fp = p

〈3〉 DEFINE tempp
∆
= temp[p]

〈3〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈3〉 SUFFICES IsDeltaVecUpright(lleq , tempp′) BY 〈2〉3, 〈2〉5
〈3〉1. tempp ∈ DeltaVecType BY DEF InvType
〈3〉2. IsDeltaVecUpright(lleq , tempp) BY DEF InvTempUpright
〈3〉3. delta ∈ DeltaVecType BY 〈2〉2
〈3〉4. IsDeltaVecUpright(lleq , delta) BY 〈2〉2
〈3〉5. tempp′ = DeltaVecAdd(tempp, delta) BY 〈2〉2, 〈2〉5

〈3〉 HIDE DEF delta, tempp
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4, 〈3〉5, 〈1〉2, 〈1〉3, DeltaVecUpright Add
〈2〉 QED BY 〈2〉4, 〈2〉5

If the action is NextSendUpdate .

〈1〉5. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :
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NextSendUpdate WithPTT (p, tt)
BY 〈1〉5 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉 USE DEF NextSendUpdate State Conclusion

temp[fp] unchanged.

〈2〉6. CASE fp 6= p
〈3〉1. UNCHANGED temp[fp] BY 〈2〉6, 〈2〉2
〈3〉2. UNCHANGED lleq BY 〈2〉2
〈3〉 QED BY 〈3〉1, 〈3〉2 DEF InvTempUpright

temp[fp] changed.

〈2〉7. CASE fp = p
〈3〉1. IsDeltaVecUpright(lleq , temp[p]) BY DEF InvTempUpright
〈3〉2. IsDeltaVecUpright(lleq , temp[p])′ BY 〈3〉1, 〈2〉2
〈3〉 QED BY 〈3〉2, 〈2〉7 DEF InvTempUpright
〈2〉 QED BY 〈2〉6, 〈2〉7

If the action is NextReceiveUpdate .

〈1〉6. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉6 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉 USE DEF NextReceiveUpdate State Conclusion

〈2〉3. UNCHANGED lleq BY 〈2〉2
〈2〉4. UNCHANGED temp BY 〈2〉2
〈2〉 QED BY 〈2〉3, 〈2〉4 DEF InvTempUpright

〈1〉 QED BY 〈1〉4, 〈1〉5, 〈1〉6 DEF Next

InvTempUpright holds in all reachable states.

THEOREM ThmInvTempUpright
∆
=

Spec ⇒ 2InvTempUpright
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PROOF
〈1〉 DEFINE I

∆
=

∧ InvType
∧ InvTempUpright

〈1〉 Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvTempUpright
〈2〉 QED OBVIOUS

〈1〉 I ∧ [Next ]vars ⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvTempUpright
〈2〉 QED OBVIOUS

〈1〉 Init ∧ 2[Next ]vars ⇒ 2I OMITTED TLAPS cannot check it
〈1〉 Spec ⇒ 2I OMITTED BY DEF Spec

〈1〉 QED OMITTED TLAPS cannot check it
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C.22 Proof of invariant InvIncomingInfoUpright

MODULE NaiadClockProofInvIncomingInfoUpright

EXTENDS NaiadClockProofInvTempUpright

Proof of invariant InvIncomingInfoUpright.

InvIncomingInfoUpright holds in the initial state.

THEOREM ThmInitInvIncomingInfoUpright
∆
=

Init ⇒ InvIncomingInfoUpright

PROOF

〈1〉 SUFFICES ASSUME Init PROVE InvIncomingInfoUpright OBVIOUS

〈1〉 InvTypeBY ThmInitInvType

〈1〉 InvTempUpright BY ThmInitInvTempUpright

〈1〉 ∀ k ∈ Nat :

∀ p ∈ Proc :

∀ q ∈ Proc :

IsDeltaVecUpright(lleq , IncomingInfo(k , p, q))

〈2〉 SUFFICES ASSUME

NEW k ∈ Nat ,

NEW p ∈ Proc,

NEW q ∈ Proc

PROVE IsDeltaVecUpright(lleq , IncomingInfo(k , p, q))

OBVIOUS

〈2〉 IncomingInfo(k , p, q) = DeltaVecZero

〈3〉 Init IncomingInfo Conclusion(k , p, q)BY Init IncomingInfo

〈3〉 QED BY DEF Init IncomingInfo Conclusion

〈2〉 lleq ∈ PointRelationType BY DEF InvType

〈2〉 IsPartialOrder(lleq) BY DEF InvType

〈2〉 QED BY DeltaVecUpright Zero

〈1〉 QED BY DEF InvIncomingInfoUpright
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InvIncomingInfoUpright carries through a Next step.

THEOREM ThmNextInvIncomingInfoUpright
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ [Next ]vars
⇒

InvIncomingInfoUpright ′

PROOF

〈1〉 SUFFICES ASSUME

InvType,
InvTempUpright ,
InvIncomingInfoUpright ,
[Next ]vars

PROVE InvIncomingInfoUpright ′

OBVIOUS

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
〈1〉 InvType ′ BY ThmNextInvType
〈1〉 InvTempUpright ′ BY ThmNextInvTempUpright
〈1〉 InvIncomingInfoType ′ BY DeduceInvIncomingInfoType

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars
〈2〉 USE DEF vars
〈2〉 USE DEF InvIncomingInfoUpright
〈2〉 USE DEF IncomingInfo
〈2〉 QED BY 〈1〉1

Set up to prove InvIncomingInfoUpright ′.

〈1〉 SUFFICES ASSUME Next PROVE InvIncomingInfoUpright ′ BY 〈1〉1
〈1〉 SUFFICES ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc

PROVE IsDeltaVecUpright(lleq , IncomingInfo(fk , fp, fq))′

BY DEF InvIncomingInfoUpright

If the action is NextPerformOperation .

〈1〉2. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉2 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State



C.22. PROOF OF INVARIANT INVINCOMINGINFOUPRIGHT 209

〈2〉3. NextPerformOperation IncomingInfo Conclusion(fk , fp, fq , p, c, r)
BY 〈2〉1, NextPerformOperation IncomingInfo

〈2〉 USE DEF NextPerformOperation State Conclusion
〈2〉 USE DEF NextPerformOperation IncomingInfo Conclusion

〈2〉 DEFINE II
∆
= IncomingInfo(fk , fp, fq)

〈2〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈2〉4. UNCHANGED lleq BY 〈2〉2
〈2〉5. lleq ′ ∈ PointRelationType BY DEF InvType
〈2〉6. IsPartialOrder(lleq ′) BY DEF InvType
〈2〉7. II ∈ DeltaVecType BY DEF InvIncomingInfoType
〈2〉8. delta ∈ DeltaVecType BY 〈2〉2
〈2〉9. IsDeltaVecUpright(lleq ′, delta) BY 〈2〉2
〈2〉10. IsDeltaVecUpright(lleq ′, II ) BY 〈2〉4 DEF InvIncomingInfoUpright
〈2〉11. IsDeltaVecUpright(lleq ′, DeltaVecAdd(II , delta))
〈3〉 HIDE DEF delta, II
〈3〉 QED BY 〈2〉5, 〈2〉6, 〈2〉7, 〈2〉8, 〈2〉9, 〈2〉10, DeltaVecUpright Add
〈2〉12. II ′ = IF fp = p THEN DeltaVecAdd(II , delta) ELSE II BY 〈2〉3
〈2〉 QED BY 〈2〉10, 〈2〉11, 〈2〉12

If the action is NextSendUpdate.

〈1〉3. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)
BY 〈1〉3 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉3. NextSendUpdate IncomingInfo Conclusion(fk , fp, fq , p, tt)
BY 〈2〉1, NextSendUpdate IncomingInfo

〈2〉 USE DEF NextSendUpdate State Conclusion
〈2〉 USE DEF NextSendUpdate IncomingInfo Conclusion

〈2〉 DEFINE II
∆
= IncomingInfo(fk , fp, fq)

〈2〉 DEFINE msgpq
∆
= msg [fp][fq ]

〈2〉 DEFINE tempp
∆
= temp[fp]

〈2〉4. UNCHANGED lleq BY 〈2〉2
〈2〉5. II ′ = IF fp = p ∧ fk > Len(msgpq) THEN tempp′ ELSE II BY 〈2〉3
〈2〉6. IsDeltaVecUpright(lleq ′, tempp′) BY DEF InvTempUpright
〈2〉7. IsDeltaVecUpright(lleq ′, II ) BY 〈2〉4 DEF InvIncomingInfoUpright
〈2〉 QED BY 〈2〉5, 〈2〉6, 〈2〉7

If the action is NextReceiveUpdate .

〈1〉4. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
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BY 〈1〉4 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ
〈2〉2. NextReceiveUpdate State Conclusion(p, q)

BY 〈2〉1, NextReceiveUpdate State
〈2〉3. NextReceiveUpdate IncomingInfo Conclusion(fk , fp, fq , p, q)

BY 〈2〉1, NextReceiveUpdate IncomingInfo
〈2〉 USE DEF NextReceiveUpdate State Conclusion
〈2〉 USE DEF NextReceiveUpdate IncomingInfo Conclusion

〈2〉 DEFINE II
∆
= IncomingInfo(fk , fp, fq)

〈2〉 DEFINE IIk1
∆
= IncomingInfo(fk + 1, fp, fq)

〈2〉4. UNCHANGED lleq BY 〈2〉2
〈2〉5. fk + 1 ∈ Nat BY SMTT (10)
〈2〉6. IsDeltaVecUpright(lleq ′, II ) BY 〈2〉4 DEF InvIncomingInfoUpright
〈2〉7. IsDeltaVecUpright(lleq ′, IIk1) BY 〈2〉4, 〈2〉5 DEF InvIncomingInfoUpright
〈2〉8. II ′ = IF fp = p ∧ fq = q THEN IIk1 ELSE II BY 〈2〉3
〈2〉 QED BY 〈2〉6, 〈2〉7, 〈2〉8

〈1〉 QED BY 〈1〉2, 〈1〉3, 〈1〉4 DEF Next

InvIncomingInfoUpright holds in all reachable states.

THEOREM ThmInvIncomingInfoUpright
∆
=

Spec ⇒ 2InvIncomingInfoUpright
PROOF

〈1〉 DEFINE I
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright

〈1〉 Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvTempUpright
〈2〉 USE ThmInitInvIncomingInfoUpright
〈2〉 QED OBVIOUS

〈1〉 I ∧ [Next ]vars ⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvTempUpright
〈2〉 USE ThmNextInvIncomingInfoUpright
〈2〉 QED OBVIOUS

〈1〉 Init ∧ 2[Next ]vars ⇒ 2I OMITTED TLAPS cannot check it
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〈1〉 Spec ⇒ 2I OMITTED BY DEF Spec

〈1〉 QED OMITTED TLAPS cannot check it
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C.23 Proof of invariant InvInfoAtBetaUpright

MODULE NaiadClockProofInvInfoAtBetaUpright

EXTENDS NaiadClockProofInvIncomingInfoUpright

Proof of invariant InvInfoAtBetaUpright.

InvInfoAtBetaUpright says that for all skip counts k , sending processors p, and receiving processors q , InfoAt(k , p, q) is
IncomingInfo(k , p, q)-upright. InfoAt(k , p, q) is the information at position k on the message queue from p to q . IncomingInfo(k , p, q)
is the sum of all subsequent information from p to q .

To be IncomingInfo(k , p, q)-upright means that for each positive point in InfoAt(k , p, q) there is a strictly lower point that either is negative
in InfoAt(k , p, q) or is negative in IncomingInfo(k , p, q) and neither that point nor any yet lower point is positive in InfoAt(k , p, q).

The invariant holds in the initial state because initially the message queues are empty, and hence no matter what position k is chosen we have
InfoAt(k , p, q) = 0, and hence there are no positive points.

The invariant carries through each next step because:

(1) A NextPerformOperation action adds delta to temp[p]. This has the effect of adding delta to the subsequent information
IncomingInfo(k , p, q) of each item InfoAt(k , p, q) on any given message queue sent from p. However, since both IncomingInfo(k , p, q)
and delta must be upright, this preserves the beta-upright property of InfoAt(k , p, q).

(2) A NextSendUpdate action takes gamma from temp[p] and appends it onto the message queue from p to q for all q . For all previously
existing items InfoAt(k , p, q) on the message queue, IncomingInfo(k , p, q) is unchanged and so the beta-upright properties are unchanged.
The only question is the new item just appended onto the message queue. In other words, we require that gamma is temp[p]’-upright. But this
follows from the fact that gamma must positive imply temp[p].

(3) A NextReceiveUpdate action removes the head item from a message queue incoming at q . The positions of all items on the queue shift up,
but all of their existing beta-upright properties are unchanged.

InvInfoAtBetaUptight holds in the initial state.

THEOREM ThmInitInvInfoAtBetaUpright
∆
=

Init ⇒ InvInfoAtBetaUpright

PROOF

〈1〉 SUFFICES ASSUME Init PROVE InvInfoAtBetaUpright OBVIOUS

〈1〉 InvType BY ThmInitInvType

〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType

〈1〉 ASSUME

NEW k ∈ Nat ,

NEW p ∈ Proc,

NEW q ∈ Proc

PROVE IsDeltaVecBetaUpright(lleq , InfoAt(k , p, q), IncomingInfo(k , p, q))
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〈2〉 InfoAt(k , p, q) = DeltaVecZero
〈3〉 Init InfoAt Conclusion(k , p, q)BY Init InfoAt
〈3〉 QED BY DEF Init InfoAt Conclusion

〈2〉 IncomingInfo(k , p, q) ∈ DeltaVecType BY DEF InvIncomingInfoType

〈2〉 lleq ∈ PointRelationType BY DEF InvType
〈2〉 IsPartialOrder(lleq) BY DEF InvType
〈2〉 QED BY DeltaVecBetaUpright Zero
〈1〉 QED BY DEF InvInfoAtBetaUpright

InvInfoAtBetaUpright carries through a Next step.

THEOREM ThmNextInvInfoAtBetaUpright
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvInfoAtBetaUpright
∧ [Next ]vars
⇒

InvInfoAtBetaUpright ′

PROOF

〈1〉 SUFFICES ASSUME

InvType,
InvTempUpright ,
InvIncomingInfoUpright ,
InvInfoAtBetaUpright ,
[Next ]vars

PROVE InvInfoAtBetaUpright ′

OBVIOUS

〈1〉 InvInfoAtType BY DeduceInvInfoAtType
〈1〉 InvIncomingInfoType BY DeduceInvIncomingInfoType
〈1〉 InvType ′ BY ThmNextInvType
〈1〉 InvTempUpright ′ BY ThmNextInvTempUpright
〈1〉 InvIncomingInfoUpright ′ BY ThmNextInvIncomingInfoUpright
〈1〉 InvInfoAtType ′ BY DeduceInvInfoAtType
〈1〉 InvIncomingInfoType ′ BY DeduceInvIncomingInfoType

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars
〈2〉 USE DEF vars



214 APPENDIX C. PROOF OF CORRECTNESS

〈2〉 USE DEF InvInfoAtBetaUpright
〈2〉 USE DEF InfoAt
〈2〉 USE DEF IncomingInfo
〈2〉 QED BY 〈1〉1

Set up to prove InvInfoAtBetaUpright ′.

〈1〉 SUFFICES ASSUME Next PROVE InvInfoAtBetaUpright ′ BY 〈1〉1
〈1〉 SUFFICES ASSUME

NEW fk ∈ Nat ,
NEW fp ∈ Proc,
NEW fq ∈ Proc

PROVE IsDeltaVecBetaUpright(lleq , InfoAt(fk , fp, fq), IncomingInfo(fk , fp, fq))′

BY DEF InvInfoAtBetaUpright

〈1〉 DEFINE IA
∆
= InfoAt(fk , fp, fq)

〈1〉 DEFINE II
∆
= IncomingInfo(fk , fp, fq)

〈1〉2. II ∈ DeltaVecType BY DEF InvIncomingInfoType
〈1〉3. IA ∈ DeltaVecType BY DEF InvInfoAtType
〈1〉4. lleq ∈ PointRelationType BY DEF InvType
〈1〉5. IsPartialOrder(lleq) BY DEF InvType

If the action is NextPerformOperation .

〈1〉6. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉6 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉3. NextPerformOperation InfoAt Conclusion(fk , fp, fq , p, c, r)
BY 〈2〉1, NextPerformOperation InfoAt

〈2〉4. NextPerformOperation IncomingInfo Conclusion(fk , fp, fq , p, c, r)
BY 〈2〉1, NextPerformOperation IncomingInfo

〈2〉 USE DEF NextPerformOperation State Conclusion
〈2〉 USE DEF NextPerformOperation InfoAt Conclusion
〈2〉 USE DEF NextPerformOperation IncomingInfo Conclusion

〈2〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈2〉5. delta ∈ DeltaVecType BY 〈2〉2
〈2〉6. UNCHANGED lleq BY 〈2〉2
〈2〉7. UNCHANGED IA BY 〈2〉3

〈2〉8. CASE fp = p
〈3〉1. II ′ = DeltaVecAdd(II , delta) BY 〈2〉4, 〈2〉8
〈3〉2. IsDeltaVecUpright(lleq , II ) BY DEF InvIncomingInfoUpright



C.23. PROOF OF INVARIANT INVINFOATBETAUPRIGHT 215

〈3〉3. IsDeltaVecBetaUpright(lleq , IA, II ) BY DEF InvInfoAtBetaUpright
〈3〉4. IsDeltaVecUpright(lleq , delta) BY 〈2〉2
〈3〉 USE 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4
〈3〉 USE 〈2〉5, 〈2〉6, 〈2〉7, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5
〈3〉 QED BY DeltaVecBetaUpright Add

〈2〉9. CASE fp 6= p
〈3〉1. UNCHANGED II BY 〈2〉4, 〈2〉9
〈3〉 USE DEF InvInfoAtBetaUpright
〈3〉 USE DEF InfoAt
〈3〉 USE DEF IncomingInfo
〈3〉 QED BY 〈3〉1, 〈2〉6, 〈2〉7

〈2〉 QED BY 〈2〉8, 〈2〉9

If the action is NextSendUpdate.

〈1〉7. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)
BY 〈1〉7 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉3. NextSendUpdate InfoAt Conclusion(fk , fp, fq , p, tt)
BY 〈2〉1, NextSendUpdate InfoAt

〈2〉4. NextSendUpdate IncomingInfo Conclusion(fk , fp, fq , p, tt)
BY 〈2〉1, NextSendUpdate IncomingInfo

〈2〉 USE DEF NextSendUpdate State Conclusion
〈2〉 USE DEF NextSendUpdate InfoAt Conclusion
〈2〉 USE DEF NextSendUpdate IncomingInfo Conclusion

〈2〉5. UNCHANGED lleq BY 〈2〉2

〈2〉8. CASE fp = p
〈3〉 DEFINE M

∆
= msg [fp][fq ]

〈3〉 DEFINE LenM
∆
= Len(M )

〈3〉 HIDE DEF M , LenM
〈3〉1. M ∈ Seq(DeltaVecType) BY ZenonT (20) DEF InvType, M
〈3〉2. LenM ∈ Nat BY 〈3〉1, LenInNat DEF LenM

〈3〉3. CASE fk = LenM + 1
〈4〉1. IsDeltaVecBetaUpright(lleq , IA′, temp′[p])
〈5〉1. IA′ ∈ DeltaVecType BY DEF InvInfoAtType
〈5〉2. IA′ = NextSendUpdate Gamma(p, tt) BY 〈3〉3, 〈2〉3, 〈2〉8 DEF LenM , M
〈5〉3. IsDeltaVecPositiveImplies(IA′, temp[p]) BY 〈5〉2, 〈2〉2
〈5〉4. temp[p] = DeltaVecAdd(IA′, temp′[p]) BY 〈5〉2, 〈2〉2
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〈5〉5. IsDeltaVecUpright(lleq , temp[p]) BY DEF InvTempUpright
〈5〉6. temp′[p] ∈ DeltaVecType BY DEF InvType
〈5〉 USE 〈5〉1, 〈5〉3, 〈5〉4, 〈5〉5, 〈5〉6, 〈1〉4, 〈1〉5
〈5〉 QED BY DeltaVecBetaUpright PositiveImplies
〈4〉2. II ′ = temp′[p]
〈5〉1. fk > LenM BY 〈3〉3, 〈3〉2, SMTT (10)
〈5〉 QED BY 〈5〉1, 〈2〉4, 〈2〉8 DEF LenM , M
〈4〉3. IsDeltaVecBetaUpright(lleq ′, IA′, II ′) BY 〈4〉1, 〈4〉2, 〈2〉5
〈4〉 QED BY 〈4〉3

〈3〉4. CASE fk < LenM + 1
〈4〉1. UNCHANGED IA
〈5〉 fk 6= LenM + 1 BY 〈3〉2, 〈3〉4, SMTT (10)
〈5〉 QED BY 〈2〉3, 〈2〉8 DEF LenM , M
〈4〉2. UNCHANGED II
〈5〉 ¬(fk > LenM ) BY 〈3〉2, 〈3〉4, SMTT (10)
〈5〉 QED BY 〈2〉4, 〈2〉8 DEF LenM , M
〈4〉3. IsDeltaVecBetaUpright(lleq ′, IA′, II ′)
〈5〉 USE DEF InvInfoAtBetaUpright
〈5〉 USE DEF InfoAt
〈5〉 USE DEF IncomingInfo
〈5〉 QED BY 〈4〉1, 〈4〉2, 〈2〉5
〈4〉 QED BY 〈4〉3

〈3〉5. CASE fk > LenM + 1
〈4〉1. IA = DeltaVecZero
〈5〉 fk > LenM BY 〈3〉2, 〈3〉5, SMTT (10)
〈5〉 USE DEF InvInfoAtType, LenM , M
〈5〉 QED BY DeduceInvInfoAtType
〈4〉2. UNCHANGED IA
〈5〉 fk 6= LenM + 1 BY 〈3〉2, 〈3〉5, SMTT (10)
〈5〉 QED BY 〈2〉3, 〈2〉8 DEF LenM , M
〈4〉3. IA′ = DeltaVecZero BY 〈4〉1, 〈4〉2
〈4〉4. II ′ ∈ DeltaVecType BY DEF InvIncomingInfoType
〈4〉5. IsDeltaVecBetaUpright(lleq ′, IA′, II ′)
〈5〉 USE 〈4〉3, 〈4〉4, 〈2〉5, 〈1〉4, 〈1〉5
〈5〉 QED BY DeltaVecBetaUpright Zero
〈4〉 QED BY 〈4〉5

〈3〉 QED BY 〈3〉2, 〈3〉3, 〈3〉4, 〈3〉5, SMTT (10)

〈2〉9. CASE fp 6= p
〈3〉1. UNCHANGED II BY 〈2〉4, 〈2〉9
〈3〉2. UNCHANGED IA BY 〈2〉3, 〈2〉9
〈3〉 USE DEF InvInfoAtBetaUpright
〈3〉 USE DEF InfoAt
〈3〉 USE DEF IncomingInfo
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〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉5

〈2〉 QED BY 〈2〉8, 〈2〉9

If the action is NextReceiveUpdate .

〈1〉8. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉8 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉3. NextReceiveUpdate InfoAt Conclusion(fk , fp, fq , p, q)
BY 〈2〉1, NextReceiveUpdate InfoAt

〈2〉4. NextReceiveUpdate IncomingInfo Conclusion(fk , fp, fq , p, q)
BY 〈2〉1, NextReceiveUpdate IncomingInfo

〈2〉 USE DEF NextReceiveUpdate State Conclusion
〈2〉 USE DEF NextReceiveUpdate InfoAt Conclusion
〈2〉 USE DEF NextReceiveUpdate IncomingInfo Conclusion

〈2〉5. UNCHANGED lleq BY 〈2〉2

〈2〉8. CASE fp = p ∧ fq = q
〈3〉1. CASE fk = 0
〈4〉1. IA′ = DeltaVecZero
〈5〉 DEFINE M

∆
= msg [fp][fq ]

〈5〉 DEFINE LenM
∆
= Len(M )

〈5〉 HIDE DEF M , LenM
〈5〉1. M ′ ∈ Seq(DeltaVecType) BY DEF InvType, M
〈5〉2. LenM ′ ∈ Nat BY 〈5〉1, LenInNat DEF LenM
〈5〉3. ¬(0 < fk ∧ fk ≤ LenM ′) BY 〈3〉1, 〈5〉2, SMTT (10)
〈5〉 QED BY 〈5〉3 DEF InfoAt , LenM , M
〈4〉2. II ′ ∈ DeltaVecType BY DEF InvIncomingInfoType
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈2〉5, 〈1〉4, 〈1〉5, DeltaVecBetaUpright Zero

〈3〉2. CASE fk > 0
〈4〉 DEFINE IIk1

∆
= IncomingInfo(fk + 1, fp, fq)

〈4〉 DEFINE IAk1
∆
= InfoAt(fk + 1, fp, fq)

〈4〉1. II ′ = IIk1 BY 〈2〉4, 〈2〉8
〈4〉2. IA′ = IAk1 BY 〈3〉2, 〈2〉3, 〈2〉8
〈4〉3. IsDeltaVecBetaUpright(lleq , IAk1, IIk1)
〈5〉 fk + 1 ∈ Nat BY SMTT (10)
〈5〉 QED BY DEF InvInfoAtBetaUpright
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈4〉3, 〈2〉5
〈3〉 QED BY 〈3〉1, 〈3〉2, SMTT (10)
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〈2〉9. CASE ¬(fp = p ∧ fq = q)

〈3〉1. UNCHANGED II BY 〈2〉4, 〈2〉9
〈3〉2. UNCHANGED IA BY 〈2〉3, 〈2〉9
〈3〉 USE DEF InvInfoAtBetaUpright

〈3〉 USE DEF InfoAt

〈3〉 USE DEF IncomingInfo

〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉5

〈2〉 QED BY 〈2〉8, 〈2〉9

〈1〉 QED BY 〈1〉6, 〈1〉7, 〈1〉8 DEF Next

InvInfoAtBetaUpright holds in all reachable states.

THEOREM ThmInvInvInfoAtBetaUpright
∆
=

Spec ⇒ 2InvInfoAtBetaUpright

PROOF

〈1〉 DEFINE I
∆
=

∧ InvType

∧ InvTempUpright

∧ InvIncomingInfoUpright

∧ InvInfoAtBetaUpright

〈1〉 Init ⇒ I

〈2〉 USE ThmInitInvType

〈2〉 USE ThmInitInvTempUpright

〈2〉 USE ThmInitInvIncomingInfoUpright

〈2〉 USE ThmInitInvInfoAtBetaUpright

〈2〉 QED OBVIOUS

〈1〉 I ∧ [Next ]vars ⇒ I ′

〈2〉 USE ThmNextInvType

〈2〉 USE ThmNextInvTempUpright

〈2〉 USE ThmNextInvIncomingInfoUpright

〈2〉 USE ThmNextInvInfoAtBetaUpright

〈2〉 QED OBVIOUS

〈1〉 Init ∧ 2[Next ]vars ⇒ 2I OMITTED TLAPS cannot check it

〈1〉 Spec ⇒ 2I OMITTED BY DEF Spec

〈1〉 QED OMITTED TLAPS cannot check it
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C.24 Proof of invariant InvGlobalRecordCount
MODULE NaiadClockProofInvGlobalRecordCount

EXTENDS NaiadClockProofInvInfoAtBetaUpright

Proof of invariant InvGlobalRecordCount.

InvGlobalRecordCount says that for all processors q , the sum of all information incoming at q , plus glob[q], equals nrec. This invariant holds
in the initial state and carries through each next step.

The invariant holds in the initial state because initially glob[q] = nrec, temp[p] = 0 for all processors p, and all message queues are empty,
meaning that there is no information incoming at q .

The invariant carries through each next step because:

(1) A NextPerformOperation action adds delta to both nrec and temp[p]. Since temp[p] is included in the sum of all information incoming
at q this preserves the invariant.

(2) A NextSendUpdate action removes gamma from temp[p] and appends it onto all of the message queues from p. Since this has no net effect
on the sum of information incoming at q , the invariant is preserved.

(3) A NextReceiveUpdate action removes kappa from a message queue incoming at q and adds it to glob[q]. Since there is no change to nrec,
this also preserves the invariant.

InvGlobalRecordCount holds in the initial state.

THEOREM ThmInitInvGlobalRecordCount
∆
=

Init ⇒ InvGlobalRecordCount
PROOF

〈1〉 SUFFICES ASSUME Init PROVE InvGlobalRecordCount OBVIOUS

〈1〉 InvType BY ThmInitInvType
〈1〉 InvGlobalRecordCount
〈2〉 SUFFICES ASSUME NEW q ∈ Proc

PROVE nrec = DeltaVecAdd(GlobalIncomingInfo(0, q , q), glob[q ])
BY DEF InvGlobalRecordCount

〈2〉 DEFINE GII
∆
= GlobalIncomingInfo(0, q , q)

〈2〉1. nrec = glob[q ] BY DEF Init
〈2〉2. glob[q ] ∈ DeltaVecType BY DEF InvType
〈2〉3. GII = DeltaVecZero
〈3〉 Init GlobalIncomingInfo Conclusion(0, q , q) BY Init GlobalIncomingInfo
〈3〉 QED BY DEF Init GlobalIncomingInfo Conclusion
〈2〉4. glob[q ] = DeltaVecAdd(GII , glob[q ]) BY 〈2〉2, 〈2〉3, DeltaVecAddZero
〈2〉 QED BY 〈2〉1, 〈2〉4
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〈1〉 QED OBVIOUS

InvGlobalRecordCount carries through a Next step.

THEOREM ThmNextInvGlobalRecordCount
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvGlobalRecordCount
∧ [Next ]vars
⇒

InvGlobalRecordCount ′

PROOF
〈1〉 SUFFICES ASSUME

InvType,
InvTempUpright ,
InvIncomingInfoUpright ,
InvGlobalRecordCount ,
[Next ]vars

PROVE InvGlobalRecordCount ′

OBVIOUS

〈1〉 InvGlobalIncomingInfoType BY DeduceInvGlobalIncomingInfoType
〈1〉 InvGlobalIncomingInfoUpright BY DeduceInvGlobalIncomingInfoUpright
〈1〉 InvType ′ BY ThmNextInvType
〈1〉 InvTempUpright ′ BY ThmNextInvTempUpright
〈1〉 InvIncomingInfoUpright ′ BY ThmNextInvIncomingInfoUpright
〈1〉 InvGlobalIncomingInfoType ′ BY DeduceInvGlobalIncomingInfoType
〈1〉 InvGlobalIncomingInfoUpright ′ BY DeduceInvGlobalIncomingInfoUpright

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars
〈2〉 USE DEF vars
〈2〉 USE DEF InvGlobalRecordCount
〈2〉 USE DEF GlobalIncomingInfo
〈2〉 USE DEF IncomingInfo
〈2〉 QED BY 〈1〉1

Set up to prove InvGlobalRecordCount ′.

〈1〉 SUFFICES ASSUME Next PROVE InvGlobalRecordCount ′ BY 〈1〉1
〈1〉 SUFFICES ASSUME NEW fq ∈ Proc

PROVE nrec′ = DeltaVecAdd(GlobalIncomingInfo(0, fq , fq)′, glob[fq ]′)
BY DEF InvGlobalRecordCount
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〈1〉 DEFINE GII
∆
= GlobalIncomingInfo(0, fq , fq)

〈1〉 DEFINE globfq
∆
= glob[fq ]

〈1〉 SUFFICES nrec′ = DeltaVecAdd(GII ′, globfq ′) OBVIOUS

〈1〉2. GII ∈ DeltaVecType BY DEF InvGlobalIncomingInfoType
〈1〉3. GII ′ ∈ DeltaVecType BY DEF InvGlobalIncomingInfoType
〈1〉4. globfq ∈ DeltaVecType BY DEF InvType
〈1〉5. globfq ′ ∈ DeltaVecType BY DEF InvType
〈1〉6. nrec = DeltaVecAdd(GII , globfq) BY DEF InvGlobalRecordCount

If the action is NextPerformOperation .

Adds delta to both nrec and GII , and so preserves the invariant.

〈1〉7. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉7 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉3. NextPerformOperation GlobalIncomingInfo Conclusion(fq , p, c, r)
BY 〈2〉1, NextPerformOperation GlobalIncomingInfo

〈2〉 USE DEF NextPerformOperation State Conclusion
〈2〉 USE DEF NextPerformOperation GlobalIncomingInfo Conclusion

〈2〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈2〉4. delta ∈ DeltaVecType BY 〈2〉2
〈2〉5. nrec′ = DeltaVecAdd(nrec, delta) BY 〈2〉2
〈2〉6. UNCHANGED globfq BY 〈2〉2
〈2〉7. GII ′ = DeltaVecAdd(GII , delta) BY 〈2〉3

〈2〉 QED by commutative and associative properties of DeltaVecAdd

〈3〉 HIDE DEF GII , globfq , delta hide the complicated definitions
〈3〉 USE 〈2〉4, 〈1〉2, 〈1〉4 know that they are delta vectors
〈3〉 USE DeltaVecAddCommutative know that add is commutative
〈3〉 USE DeltaVecAddAssociative know that add is associative

〈3〉1. nrec′ = DeltaVecAdd(DeltaVecAdd(GII , globfq), delta) BY 〈2〉5, 〈1〉6
〈3〉2. nrec′ = DeltaVecAdd(GII , DeltaVecAdd(globfq , delta)) BY 〈3〉1
〈3〉3. nrec′ = DeltaVecAdd(GII , DeltaVecAdd(delta, globfq)) BY 〈3〉2
〈3〉4. nrec′ = DeltaVecAdd(DeltaVecAdd(GII , delta), globfq) BY 〈3〉3
〈3〉5. nrec′ = DeltaVecAdd(GII ′, globfq) BY 〈3〉4, 〈2〉7
〈3〉6. nrec′ = DeltaVecAdd(GII ′, globfq ′) BY 〈3〉5, 〈2〉6
〈3〉 QED BY 〈3〉6
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If the action is NextSendUpdate.

No change to nrec, globfq , or GII and so preserves the invariant.

〈1〉8. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)
BY 〈1〉8 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉3. NextSendUpdate GlobalIncomingInfo Conclusion(fq , p, tt)
BY 〈2〉1, NextSendUpdate GlobalIncomingInfo

〈2〉 USE DEF NextSendUpdate State Conclusion
〈2〉 USE DEF NextSendUpdate GlobalIncomingInfo Conclusion

〈2〉4. UNCHANGED nrec BY 〈2〉2
〈2〉5. UNCHANGED globfq BY 〈2〉2
〈2〉6. UNCHANGED GII BY 〈2〉3
〈2〉 QED BY 〈2〉4, 〈2〉5, 〈2〉6, 〈1〉6

If the action is NextReceiveUpdate .

No change to nrec. When fq 6= q , no change to GII or globfq . When fq = q , removes delta from GII and adds it to globfq . In either case
preserves the invariant.

〈1〉9. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉9 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉3. NextReceiveUpdate GlobalIncomingInfo Conclusion(fq , p, q)
BY 〈2〉1, NextReceiveUpdate GlobalIncomingInfo

〈2〉 USE DEF NextReceiveUpdate State Conclusion
〈2〉 USE DEF NextReceiveUpdate GlobalIncomingInfo Conclusion

〈2〉4. UNCHANGED nrec BY 〈2〉2

GII and globfq are unchanged if fq 6= q .

〈2〉5. ASSUME fq 6= q PROVE nrec′ = DeltaVecAdd(GII ′, globfq ′)
〈3〉1. UNCHANGED GII BY 〈2〉3, 〈2〉5
〈3〉2. UNCHANGED globfq BY 〈2〉2, 〈2〉5
〈3〉 QED BY 〈3〉1, 〈3〉2, 〈2〉4, 〈1〉6

Transfer delta from GII to globfq if fq = q .

〈2〉6. ASSUME fq = q PROVE nrec′ = DeltaVecAdd(GII ′, globfq ′)
〈3〉 DEFINE delta

∆
= NextReceiveUpdate Kappa(p, q)
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〈3〉1. delta ∈ DeltaVecType BY 〈2〉2
〈3〉2. GII = DeltaVecAdd(GII ′, delta) BY 〈2〉3, 〈2〉6
〈3〉3. globfq ′ = DeltaVecAdd(globfq , delta) BY 〈2〉2, 〈2〉6

〈3〉 QED by commutative and associative properties of DeltaVecAdd

〈4〉 HIDE DEF delta, GII , globfq hide the complicated definitions

〈4〉 USE 〈3〉1, 〈1〉3, 〈1〉4 know that they are delta vectors

〈4〉 USE DeltaVecAddCommutative know that add is commutative

〈4〉 USE DeltaVecAddAssociative know that add is associative

〈4〉1. nrec = DeltaVecAdd(DeltaVecAdd(GII ′, delta), globfq) BY 〈3〉2, 〈1〉6
〈4〉2. nrec = DeltaVecAdd(GII ′, DeltaVecAdd(delta, globfq)) BY 〈4〉1
〈4〉3. nrec = DeltaVecAdd(GII ′, DeltaVecAdd(globfq , delta)) BY 〈4〉2
〈4〉4. nrec = DeltaVecAdd(GII ′, globfq ′) BY 〈4〉3, 〈3〉3
〈4〉5. nrec′ = DeltaVecAdd(GII ′, globfq ′) BY 〈4〉4, 〈2〉4
〈4〉 QED BY 〈4〉5

〈2〉 QED BY 〈2〉5, 〈2〉6

〈1〉 QED BY 〈1〉7, 〈1〉8, 〈1〉9 DEF Next

InvGlobalRecordCount holds in all reachable states.

THEOREM ThmInvGlobalRecordCount
∆
=

Spec ⇒ 2InvGlobalRecordCount
PROOF

〈1〉 DEFINE I
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvGlobalRecordCount

〈1〉 Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvTempUpright
〈2〉 USE ThmInitInvIncomingInfoUpright
〈2〉 USE ThmInitInvGlobalRecordCount
〈2〉 QED OBVIOUS

〈1〉 I ∧ [Next ]vars ⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvTempUpright
〈2〉 USE ThmNextInvIncomingInfoUpright
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〈2〉 USE ThmNextInvGlobalRecordCount
〈2〉 QED OBVIOUS

〈1〉 Init ∧ 2[Next ]vars ⇒ 2I OMITTED TLAPS cannot check it
〈1〉 Spec ⇒ 2I OMITTED BY DEF Spec

〈1〉 QED OMITTED TLAPS cannot check it
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C.25 Proof of invariant InvStickyNrecVacantUpto
MODULE NaiadClockProofInvStickyNrecVacantUpto

EXTENDS NaiadClockProofInvGlobalRecordCount

Proof of invariant InvStickyNrecVacantUpto.

InvStickyNrecVacantUpto says that for each point t, if all points up to t have no records in the current state, then all points up to t will have no
records in the next state.

This invariant is proved by the following argument:

(1) the number of records at each point is non-negative and

(2) the only action that changes the number of records is NextPerformOperation , which makes a change expressed as a regular delta vector.

NrecVacantUpto is sticky.

THEOREM ThmStickyNrecVacantUpto
∆
=

ASSUME

InvType,
[Next ]vars ,
NEW ft ∈ Point ,
NrecVacantUpto(ft)

PROVE

NrecVacantUpto(ft)′

PROOF

〈1〉 InvType ′ BY ThmNextInvType

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars
〈2〉 USE DEF vars
〈2〉 USE DEF NrecVacantUpto
〈2〉 QED BY 〈1〉1

Set up to prove that NrecVacantUpto(ft) is sticky.

〈1〉 SUFFICES ASSUME Next PROVE NrecVacantUpto(ft)′ BY 〈1〉1 DEF Next

〈1〉2. lleq ∈ PointRelationType BY DEF InvType
〈1〉3. IsPartialOrder(lleq) BY DEF InvType

〈1〉 DEFINE a � b
∆
= lleq [a][b]

〈1〉 DEFINE a ≺ b
∆
= a � b ∧ a 6= b
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If the action is NextPerformOperation .

〈1〉4. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉4 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉 USE DEF NextPerformOperation State Conclusion

〈2〉 DEFINE delta
∆
= NextPerformOperation Delta(p, c, r)

〈2〉3. UNCHANGED lleq BY 〈2〉2
〈2〉4. delta ∈ DeltaVecType BY 〈2〉2
〈2〉5. IsDeltaVecUpright(lleq , delta) BY 〈2〉2
〈2〉6. nrec′ = DeltaVecAdd(nrec, delta) BY 〈2〉2

〈2〉 HIDE DEF delta

It suffices to show that ∀ s � ft : nrec′[s] = 0. So assume we have a counterexample and prove a contradiction.

〈2〉7. SUFFICES ASSUME NEW s ∈ Point , s � ft , nrec′[s] 6= 0
PROVE FALSE

BY 〈2〉3 DEF NrecVacantUpto, IsDeltaVecVacantUpto

〈2〉8. nrec′[s] = nrec[s] + delta[s] BY 〈2〉6 DEF DeltaVecAdd
〈2〉9. nrec′[s] ∈ Nat BY DEF InvType, CountVecType
〈2〉10. delta[s] ∈ Int BY 〈2〉4 DEF DeltaVecType
〈2〉11. nrec[s] = 0 BY 〈2〉3, 〈2〉7 DEF NrecVacantUpto, IsDeltaVecVacantUpto
〈2〉12. delta[s] > 0 BY 〈2〉7, 〈2〉8, 〈2〉9, 〈2〉10, 〈2〉11, SMTT (10)

〈2〉13. PICK u ∈ Point : u � s ∧ delta[u] < 0
BY 〈2〉4, 〈2〉5, 〈2〉12, 〈1〉2, 〈1〉3, DeltaVecUpright ExistsSupport

〈2〉14. u � ft BY 〈2〉3, 〈2〉7, 〈2〉13, 〈1〉2, 〈1〉3, PartialOrderTransitive
〈2〉15. nrec′[u] = nrec[u] + delta[u] BY 〈2〉6 DEF DeltaVecAdd
〈2〉16. nrec′[u] ∈ Nat BY DEF InvType, CountVecType
〈2〉17. nrec[u] = 0 BY 〈2〉3, 〈2〉14 DEF NrecVacantUpto, IsDeltaVecVacantUpto
〈2〉18. delta[u] ∈ Int BY 〈2〉4 DEF DeltaVecType

〈2〉19. nrec′[u] < 0 BY 〈2〉13, 〈2〉15, 〈2〉17, 〈2〉18, SMTT (10)
〈2〉 QED BY 〈2〉16, 〈2〉19, SMTT (10)

If the action is NextSendUpdate.

〈1〉5. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)
BY 〈1〉5 DEF NextSendUpdate, NextSendUpdate WithPTT
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〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉 USE DEF NextSendUpdate State Conclusion

〈2〉4. UNCHANGED nrec BY 〈2〉2
〈2〉5. UNCHANGED lleq BY 〈2〉2
〈2〉6. UNCHANGED NrecVacantUpto(ft) BY 〈2〉4, 〈2〉5 DEF NrecVacantUpto
〈2〉 QED BY 〈2〉6

If the action is NextReceiveUpdate .

〈1〉6. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉6 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉 USE DEF NextReceiveUpdate State Conclusion

〈2〉4. UNCHANGED nrec BY 〈2〉2
〈2〉5. UNCHANGED lleq BY 〈2〉2
〈2〉6. UNCHANGED NrecVacantUpto(ft) BY 〈2〉4, 〈2〉5 DEF NrecVacantUpto
〈2〉 QED BY 〈2〉6

〈1〉 QED BY 〈1〉4, 〈1〉5, 〈1〉6 DEF Next

InvStickyNrecVacantUpto holds in the initial state.

THEOREM ThmInitInvStickyNrecVacantUpto
∆
=

Init ⇒ InvStickyNrecVacantUpto
PROOF

〈1〉 QED BY DEF Init , InvStickyNrecVacantUpto

InvStickyNrecVacantUpto carries through a Next step.
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THEOREM ThmNextInvStickyNrecVacantUpto
∆
=

∧ InvType
∧ InvStickyNrecVacantUpto
∧ [Next ]vars
⇒

InvStickyNrecVacantUpto′

PROOF
〈1〉 SUFFICES ASSUME

InvType,
InvStickyNrecVacantUpto,
[Next ]vars

PROVE InvStickyNrecVacantUpto′

OBVIOUS

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars
〈2〉 USE DEF vars
〈2〉 USE DEF InvStickyNrecVacantUpto
〈2〉 USE DEF NrecVacantUpto
〈2〉 QED BY 〈1〉1

Set up to prove InvStickyNrecVacantUpto′.

〈1〉 SUFFICES ASSUME Next PROVE InvStickyNrecVacantUpto′ BY 〈1〉1

〈1〉 SUFFICES ASSUME NEW ft ∈ Point
PROVE nrecvut [ft ]′ ⇒ NrecVacantUpto(ft)′

BY DEF InvStickyNrecVacantUpto

〈1〉 SUFFICES nrecvut [ft ]′ = NrecVacantUpto(ft) BY ThmStickyNrecVacantUpto

If the action is NextPerformOperation .

〈1〉7. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉7 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉 USE DEF NextPerformOperation State Conclusion

〈2〉 QED BY 〈2〉2

If the action is NextSendUpdate.

〈1〉8. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :
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NextSendUpdate WithPTT (p, tt)
BY 〈1〉8 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉 USE DEF NextSendUpdate State Conclusion

〈2〉 QED BY 〈2〉2

If the action is NextReceiveUpdate .

〈1〉9. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉9 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉 USE DEF NextReceiveUpdate State Conclusion

〈2〉 QED BY 〈2〉2
〈1〉 QED BY 〈1〉7, 〈1〉8, 〈1〉9 DEF Next

InvStickyNrecVacantUpto holds in all reachable states.

THEOREM ThmInvStickyNrecVacantUpto
∆
=

Spec ⇒ 2InvStickyNrecVacantUpto
PROOF

〈1〉 DEFINE I
∆
=

∧ InvType
∧ InvStickyNrecVacantUpto

〈1〉 Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvStickyNrecVacantUpto
〈2〉 QED OBVIOUS

〈1〉 I ∧ [Next ]vars ⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvStickyNrecVacantUpto
〈2〉 QED OBVIOUS

〈1〉 Init ∧ 2[Next ]vars ⇒ 2I OMITTED TLAPS cannot check it
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〈1〉 Spec ⇒ 2I OMITTED BY DEF Spec

〈1〉 QED OMITTED TLAPS cannot check it
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C.26 Proof of invariant InvStickyGlobVacantUpto

MODULE NaiadClockProofInvStickyGlobVacantUpto

EXTENDS NaiadClockProofInvStickyNrecVacantUpto

Proof of invariant InvStickyGlobVacantUpto.

InvStickyGlobVacantUpto says that for each processor fq and point t , if GlobVacantUpto(fq, t) is TRUE in the current state, then it will be
TRUE in the next state. GlobVacantUpto(fq, t) says that all points s � t have glob[fq][s] = 0.

This fact is proved as follows.

NextPerformOperation makes no change to glob[fq].

NextSendUpdate makes no change to glob[fq].

NextReceiveUpdate takes the oldest update from msg[p][q] and adds it to glob[q]. When fq = q this is a change to glob[fq]. Let

GII0
∆
= GlobalIncomingInfo(0, q, q)

GII1
∆
= GLobalIncomingInfo(1, q, q)

kappa
∆
= msg[p][q][1]

We know that

glob[q] is vacant up to t
nrec is vacant up to t
nrec = glob[q] + GII0

Hence we have

GII0 is vacant up to t

We know that

GII0 = kappa + GII1 kappa is GII1-upright GII1 is upright

Hence by the DeltaVecVacantUpto BetaUpright theorem we know that

kappa is vacant up to t

Since

glob[q]′ = glob[q] + kappa

We know that

glob[q]′ is vacant up to t

This completes the proof.

GlobVacantUpto is sticky.

THEOREM ThmStickyGlobVacantUpto
∆
=
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ASSUME

InvType,

InvTempUpright ,

InvIncomingInfoUpright ,

InvGlobalRecordCount ,

InvInfoAtBetaUpright ,

[Next ]vars ,

NEW fq ∈ Proc,

NEW ft ∈ Point ,

GlobVacantUpto(fq , ft)

PROVE

GlobVacantUpto(fq , ft)′

PROOF

〈1〉 InvGlobalIncomingInfoType BY DeduceInvGlobalIncomingInfoType

〈1〉 InvGlobalIncomingInfoSkip0 BY DeduceInvGlobalIncomingInfoSkip0

〈1〉 InvGlobalIncomingInfoUpright BY DeduceInvGlobalIncomingInfoUpright

〈1〉 InvGlobalInfoAtBetaUpright BY DeduceInvGlobalInfoAtBetaUpright

〈1〉 InvGlobVacantUptoImpliesNrec BY DeduceInvGlobVacantUptoImpliesNrec

〈1〉 InvType ′ BY ThmNextInvType

〈1〉 InvTempUpright ′ BY ThmNextInvTempUpright

〈1〉 InvIncomingInfoUpright ′ BY ThmNextInvIncomingInfoUpright

〈1〉 InvGlobalRecordCount ′ BY ThmNextInvGlobalRecordCount

〈1〉 InvInfoAtBetaUpright ′ BY ThmNextInvInfoAtBetaUpright

〈1〉 InvGlobalIncomingInfoType ′ BY DeduceInvGlobalIncomingInfoType

〈1〉 InvGlobalIncomingInfoSkip0′ BY DeduceInvGlobalIncomingInfoSkip0

〈1〉 InvGlobalIncomingInfoUpright ′ BY DeduceInvGlobalIncomingInfoUpright

〈1〉 InvGlobalInfoAtBetaUpright ′ BY DeduceInvGlobalInfoAtBetaUpright

〈1〉 InvGlobVacantUptoImpliesNrec′ BY DeduceInvGlobVacantUptoImpliesNrec

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars

〈2〉 USE DEF vars

〈2〉 USE DEF InvStickyGlobVacantUpto

〈2〉 USE DEF GlobVacantUpto

〈2〉 QED BY 〈1〉1
Set up to prove that GlobVacantUpto(fq, ft) is sticky.

〈1〉 SUFFICES ASSUME Next PROVE GlobVacantUpto(fq , ft)′ BY 〈1〉1, Isa DEF Next

〈1〉2. lleq ∈ PointRelationType BY DEF InvType

〈1〉3. IsPartialOrder(lleq) BY DEF InvType

〈1〉4. NrecVacantUpto(ft) BY DEF InvGlobVacantUptoImpliesNrec

If the action is NextPerformOperation .
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〈1〉6. CASE NextPerformOperation
〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)
BY 〈1〉6 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)
BY 〈2〉1, NextPerformOperation State

〈2〉 USE DEF NextPerformOperation State Conclusion

〈2〉3. UNCHANGED lleq BY 〈2〉2
〈2〉4. UNCHANGED glob BY 〈2〉2
〈2〉5. UNCHANGED GlobVacantUpto(fq , ft)

BY 〈2〉3, 〈2〉4 DEF GlobVacantUpto, IsDeltaVecVacantUpto
〈2〉 QED BY 〈2〉5

If the action is NextSendUpdate .

〈1〉7. CASE NextSendUpdate
〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)
BY 〈1〉7 DEF NextSendUpdate, NextSendUpdate WithPTT

〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉 USE DEF NextSendUpdate State Conclusion

〈2〉3. UNCHANGED lleq BY 〈2〉2
〈2〉4. UNCHANGED glob BY 〈2〉2
〈2〉5. UNCHANGED GlobVacantUpto(fq , ft)

BY 〈2〉3, 〈2〉4 DEF GlobVacantUpto, IsDeltaVecVacantUpto
〈2〉 QED BY 〈2〉5

If the action is NextReceiveUpdate .

〈1〉8. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉8 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉3. NextReceiveUpdate IncomingInfo Conclusion(0, p, fq , p, q)
BY 〈2〉1, NextReceiveUpdate IncomingInfo

〈2〉4. NextReceiveUpdate GlobalIncomingInfo Conclusion(fq , p, q)
BY 〈2〉1, NextReceiveUpdate GlobalIncomingInfo

〈2〉 USE DEF NextReceiveUpdate State Conclusion
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〈2〉 USE DEF NextReceiveUpdate IncomingInfo Conclusion
〈2〉 USE DEF NextReceiveUpdate GlobalIncomingInfo Conclusion

〈2〉6. UNCHANGED lleq BY 〈2〉2

glob[fq] is unchanged if fq 6= q .

〈2〉7. ASSUME fq 6= q PROVE GlobVacantUpto(fq , ft)′

〈3〉1. UNCHANGED glob[fq ] BY 〈2〉2, 〈2〉7
〈3〉 QED BY 〈3〉1, 〈2〉6 DEF GlobVacantUpto, IsDeltaVecVacantUpto

Transfer kappa from GII to glob[fq] if fq = q .

〈2〉8. ASSUME fq = q PROVE GlobVacantUpto(fq , ft)′

〈3〉 DEFINE kappa
∆
= NextReceiveUpdate Kappa(p, q)

〈3〉 DEFINE GII
∆
= GlobalIncomingInfo(0, fq , fq)

〈3〉 DEFINE globfq
∆
= glob[fq ]

〈3〉1. kappa ∈ DeltaVecType BY 〈2〉2
〈3〉2. GII ∈ DeltaVecType BY DEF InvGlobalIncomingInfoType
〈3〉3. GII ′ ∈ DeltaVecType BY DEF InvGlobalIncomingInfoType
〈3〉4. globfq ∈ DeltaVecType BY DEF InvType
〈3〉5. nrec ∈ DeltaVecType BY DEF InvType, DeltaVecType, CountVecType
〈3〉6. lleq ′ ∈ PointRelationType BY 〈2〉6, 〈1〉2
〈3〉7. IsPartialOrder(lleq ′) BY 〈2〉6, 〈1〉3

〈3〉8. IsDeltaVecBetaUpright(lleq ′, kappa, GII ′)
〈4〉 DEFINE GII 0

∆
= GlobalIncomingInfo(0, p, fq)

〈4〉 DEFINE GII 1
∆
= GlobalIncomingInfo(1, p, fq)

〈4〉 DEFINE IA1
∆
= InfoAt(1, p, fq)

〈4〉1. IsDeltaVecBetaUpright(lleq , IA1, GII 1) BY DEF InvGlobalInfoAtBetaUpright
〈4〉2. kappa = IA1 BY 〈2〉1, 〈2〉8, NextReceiveUpdate InfoAt1
〈4〉3. GII ′ = GII 0′ BY DEF InvGlobalIncomingInfoSkip0
〈4〉4. GII 0′ = GII 1 BY 〈2〉1, 〈2〉8, NextReceiveUpdate GlobalIncomingInfo1
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈4〉3, 〈4〉4, 〈2〉6

〈3〉9. GII = DeltaVecAdd(kappa, GII ′)
〈4〉1. GII = DeltaVecAdd(GII ′, kappa) BY 〈2〉4, 〈2〉8
〈4〉 HIDE DEF GII , kappa
〈4〉 USE 〈3〉1, 〈3〉3
〈4〉 QED BY 〈4〉1, DeltaVecAddCommutative

〈3〉10. IsDeltaVecVacantUpto(lleq ′, globfq , ft) BY 〈2〉6 DEF GlobVacantUpto

〈3〉11. IsDeltaVecVacantUpto(lleq ′, GII , ft)
〈4〉1. nrec = DeltaVecAdd(GII , globfq) BY DEF InvGlobalRecordCount
〈4〉2. IsDeltaVecVacantUpto(lleq ′, nrec, ft) BY 〈2〉6, 〈1〉4 DEF NrecVacantUpto
〈4〉 HIDE DEF GII , globfq
〈4〉 USE 〈3〉2, 〈3〉4, 〈3〉5, 〈3〉6
〈4〉 QED BY 〈4〉1, 〈4〉2, 〈3〉10, DeltaVecVacantUpto Add
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〈3〉12. IsDeltaVecVacantUpto(lleq ′, DeltaVecAdd(kappa, GII ′), ft) BY 〈3〉9, 〈3〉11

〈3〉13. IsDeltaVecVacantUpto(lleq ′, kappa, ft)
〈4〉1. IsDeltaVecUpright(lleq ′, GII ′) BY DEF InvGlobalIncomingInfoUpright
〈4〉 HIDE DEF GII , kappa
〈4〉 USE 〈3〉1, 〈3〉3, 〈3〉6, 〈3〉7
〈4〉 QED BY 〈4〉1, 〈3〉8, 〈3〉12, DeltaVecVacantUpto BetaUpright

〈3〉14. IsDeltaVecVacantUpto(lleq ′, globfq ′, ft)
〈4〉1. globfq ′ = DeltaVecAdd(globfq , kappa) BY 〈2〉2, 〈2〉8
〈4〉 HIDE DEF kappa, globfq
〈4〉 USE 〈3〉1, 〈3〉4, 〈3〉6
〈4〉 QED BY 〈4〉1, 〈3〉10, 〈3〉13, DeltaVecVacantUpto Add

〈3〉 QED BY 〈3〉14 DEF GlobVacantUpto
〈2〉 QED BY 〈2〉7, 〈2〉8
〈1〉 QED BY 〈1〉6, 〈1〉7, 〈1〉8 DEF Next

InvStickyGlobVacantUpto holds in the initial state.

THEOREM ThmInitInvStickyGlobVacantUpto
∆
=

Init ⇒ InvStickyGlobVacantUpto
PROOF

〈1〉 QED BY Isa DEF Init , InvStickyGlobVacantUpto

InvStickyGlobVacantUpto carries through a Next step.

THEOREM ThmNextInvStickyGlobVacantUpto
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvGlobalRecordCount
∧ InvInfoAtBetaUpright
∧ InvStickyGlobVacantUpto
∧ [Next ]vars
⇒

InvStickyGlobVacantUpto′
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PROOF

〈1〉 SUFFICES ASSUME

InvType,

InvTempUpright ,

InvIncomingInfoUpright ,

InvGlobalRecordCount ,

InvInfoAtBetaUpright ,

InvStickyGlobVacantUpto,

[Next ]vars
PROVE InvStickyGlobVacantUpto′

OBVIOUS

Dispose of the stutter step.

〈1〉1. CASE UNCHANGED vars

〈2〉 USE DEF vars

〈2〉 USE DEF InvStickyGlobVacantUpto

〈2〉 USE DEF GlobVacantUpto

〈2〉 QED BY 〈1〉1
Set up to prove InvStickyGlobVacantUpto′.

〈1〉 SUFFICES ASSUME Next PROVE InvStickyGlobVacantUpto′ BY 〈1〉1

〈1〉 SUFFICES ASSUME NEW fq ∈ Proc, NEW ft ∈ Point

PROVE globvut [fq ][ft ]′ ⇒ GlobVacantUpto(fq , ft)′

BY DEF InvStickyGlobVacantUpto

〈1〉 SUFFICES globvut [fq ][ft ]′ = GlobVacantUpto(fq , ft) BY ThmStickyGlobVacantUpto

If the action is NextPerformOperation .

〈1〉7. CASE NextPerformOperation

〈2〉1. PICK p ∈ Proc, c ∈ PointToNat , r ∈ PointToNat :

NextPerformOperation WithPCR(p, c, r)

BY 〈1〉7 DEF NextPerformOperation, NextPerformOperation WithPCR

〈2〉2. NextPerformOperation State Conclusion(p, c, r)

BY 〈2〉1, NextPerformOperation State

〈2〉 USE DEF NextPerformOperation State Conclusion

〈2〉 QED BY 〈2〉2

If the action is NextSendUpdate.

〈1〉8. CASE NextSendUpdate

〈2〉1. PICK p ∈ Proc, tt ∈ SUBSET Point :

NextSendUpdate WithPTT (p, tt)

BY 〈1〉8 DEF NextSendUpdate, NextSendUpdate WithPTT
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〈2〉2. NextSendUpdate State Conclusion(p, tt)
BY 〈2〉1, NextSendUpdate State

〈2〉 USE DEF NextSendUpdate State Conclusion

〈2〉 QED BY 〈2〉2

If the action is NextReceiveUpdate .

〈1〉9. CASE NextReceiveUpdate
〈2〉1. PICK p ∈ Proc, q ∈ Proc :

NextReceiveUpdate WithPQ(p, q)
BY 〈1〉9 DEF NextReceiveUpdate, NextReceiveUpdate WithPQ

〈2〉2. NextReceiveUpdate State Conclusion(p, q)
BY 〈2〉1, NextReceiveUpdate State

〈2〉 USE DEF NextReceiveUpdate State Conclusion

〈2〉 QED BY 〈2〉2
〈1〉 QED BY 〈1〉7, 〈1〉8, 〈1〉9 DEF Next

InvStickyGlobVacantUpto holds in all reachable states.

THEOREM ThmInvStickyGlobVacantUpto
∆
=

Spec ⇒ 2InvStickyGlobVacantUpto
PROOF

〈1〉 DEFINE I
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvGlobalRecordCount
∧ InvInfoAtBetaUpright
∧ InvStickyGlobVacantUpto

〈1〉 Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvTempUpright
〈2〉 USE ThmInitInvIncomingInfoUpright
〈2〉 USE ThmInitInvGlobalRecordCount
〈2〉 USE ThmInitInvInfoAtBetaUpright
〈2〉 USE ThmInitInvStickyGlobVacantUpto
〈2〉 QED OBVIOUS
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〈1〉 I ∧ [Next ]vars ⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvTempUpright
〈2〉 USE ThmNextInvIncomingInfoUpright
〈2〉 USE ThmNextInvGlobalRecordCount
〈2〉 USE ThmNextInvInfoAtBetaUpright
〈2〉 USE ThmNextInvStickyGlobVacantUpto
〈2〉 QED OBVIOUS

〈1〉 Init ∧ 2[Next ]vars ⇒ 2I OMITTED TLAPS cannot check it
〈1〉 Spec ⇒ 2I OMITTED BY DEF Spec

〈1〉 QED OMITTED TLAPS cannot check it
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C.27 The top-level proof module

MODULE NaiadClockProof

EXTENDS NaiadClockProofInvStickyGlobVacantUpto

The top-level proof module.

This module presents the top-level theorems, which are proved by appealing to earlier theorems and temporal deductions. Unfortunately, TLAPS
is unable to check the temporal deductions.

In any execution that obeys Spec, the safety property SafeStickyNrecVacantUpto always holds.

TLAPS is unable to check the temporal steps in this proof.

THEOREM ThmSafeStickyNrecVacantUpto
∆
=

Spec ⇒ 2SafeStickyNrecVacantUpto

PROOF

〈1〉 SUFFICES ASSUME NEW t ∈ Point

PROVE

(Init ∧2[Next ]vars)

⇒
2(NrecVacantUpto(t)⇒ 2NrecVacantUpto(t))

OMITTED BY DEF Spec, SafeStickyNrecVacantUpto

〈1〉 DEFINE I
∆
=

∧ InvType

〈1〉1. Init ⇒ I

〈2〉 USE ThmInitInvType

〈2〉 QED OBVIOUS

〈1〉2. (I ∧ [Next ]vars)⇒ I ′

〈2〉 USE ThmNextInvType

〈2〉 QED OBVIOUS

〈1〉3. (I ∧NrecVacantUpto(t) ∧ [Next ]vars)⇒ NrecVacantUpto(t)′

BY ThmStickyNrecVacantUpto

〈1〉 QED OMITTED TLAPS cannot check it
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In any execution that obeys Spec, the safety property SafeStickyGlobVacantUpto always holds.

TLAPS is unable to check the temporal steps in this proof.

THEOREM ThmSafeStickyGlobVacantUpto
∆
=

Spec ⇒ 2SafeStickyGlobVacantUpto
PROOF

〈1〉 SUFFICES ASSUME NEW q ∈ Proc, NEW t ∈ Point
PROVE

(Init ∧2[Next ]vars)
⇒
2(GlobVacantUpto(q , t)⇒ 2GlobVacantUpto(q , t))

OMITTED BY DEF Spec, SafeStickyGlobVacantUpto

〈1〉 DEFINE I
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvGlobalRecordCount
∧ InvInfoAtBetaUpright

〈1〉1. Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvTempUpright
〈2〉 USE ThmInitInvIncomingInfoUpright
〈2〉 USE ThmInitInvGlobalRecordCount
〈2〉 USE ThmInitInvInfoAtBetaUpright
〈2〉 QED OBVIOUS

〈1〉2. (I ∧ [Next ]vars)⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvTempUpright
〈2〉 USE ThmNextInvIncomingInfoUpright
〈2〉 USE ThmNextInvGlobalRecordCount
〈2〉 USE ThmNextInvInfoAtBetaUpright
〈2〉 QED OBVIOUS

〈1〉3. (I ∧GlobVacantUpto(q , t) ∧ [Next ]vars)⇒ GlobVacantUpto(q , t)′

BY ThmStickyGlobVacantUpto

〈1〉 QED OMITTED TLAPS cannot check it
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In any execution that obeys Spec, the safety property SafeGlobVacantUptoImpliesStickyNrec always holds.

TLAPS is unable to check the temporal steps in this proof.

THEOREM ThmSafeGlobVacantUptoImpliesStickyNrec
∆
=

Spec ⇒ 2SafeGlobVacantUptoImpliesStickyNrec
PROOF
〈1〉 SUFFICES ASSUME NEW q ∈ Proc, NEW t ∈ Point

PROVE
(Init ∧2[Next ]vars)
⇒
2(GlobVacantUpto(q , t)⇒ 2NrecVacantUpto(t))

OMITTED BY DEF Spec, SafeGlobVacantUptoImpliesStickyNrec

〈1〉 DEFINE I
∆
=

∧ InvType
∧ InvTempUpright
∧ InvIncomingInfoUpright
∧ InvGlobalIncomingInfoUpright
∧ InvGlobalRecordCount
∧ InvGlobVacantUptoImpliesNrec

〈1〉1. Init ⇒ I
〈2〉 USE ThmInitInvType
〈2〉 USE ThmInitInvTempUpright
〈2〉 USE ThmInitInvIncomingInfoUpright
〈2〉 USE ThmInitInvGlobalRecordCount
〈2〉 USE DeduceInvGlobalIncomingInfoUpright
〈2〉 USE DeduceInvGlobVacantUptoImpliesNrec
〈2〉 QED OBVIOUS

〈1〉2. (I ∧ [Next ]vars)⇒ I ′

〈2〉 USE ThmNextInvType
〈2〉 USE ThmNextInvTempUpright
〈2〉 USE ThmNextInvIncomingInfoUpright
〈2〉 USE ThmNextInvGlobalRecordCount
〈2〉 USE DeduceInvGlobalIncomingInfoUpright
〈2〉 USE DeduceInvGlobVacantUptoImpliesNrec
〈2〉 QED OBVIOUS

〈1〉3. (I ∧GlobVacantUpto(q , t))⇒ NrecVacantUpto(t)
BY DEF InvGlobVacantUptoImpliesNrec

〈1〉4. (I ∧NrecVacantUpto(t) ∧ [Next ]vars)⇒ NrecVacantUpto(t)′

BY ThmStickyNrecVacantUpto

〈1〉 QED OMITTED TLAPS cannot check it



C.27. THE TOP-LEVEL PROOF MODULE 243



Index of Theorems

AppendDef, 40
AppendProperties, 46
AppendPropertiesNewElem, 47
AppendPropertiesOldElems, 47

CorrectIsFiniteSet, 57

DeduceInvGlobalIncomingInfoSkip0, 157
DeduceInvGlobalIncomingInfoType, 155
DeduceInvGlobalIncomingInfoUpright, 158
DeduceInvGlobalInfoAtBetaUpright, 162
DeduceInvGlobVacantUptoImpliesNrec, 160
DeduceInvIncomingInfoType, 154
DeduceInvInfoAtType, 153
DeltaVecAddAssociative, 75
DeltaVecAddCommutative, 75
DeltaVecAddNeg, 76
DeltaVecAddType, 74
DeltaVecAddZero, 74
DeltaVecBetaUpright Add, 140
DeltaVecBetaUpright ExistsFoundation, 139
DeltaVecBetaUpright FunSum, 142
DeltaVecBetaUpright PositiveImplies, 144
DeltaVecBetaUpright Zero, 139
DeltaVecFunAddAtPreservesFiniteNonZeroRange, 127
DeltaVecFunAddAtPreservesType, 126
DeltaVecFunIndexSumAnyExactSeq, 117
DeltaVecFunIndexSumEmpty, 119
DeltaVecFunIndexSumProp, 111
DeltaVecFunIndexSumRemoveAt, 115
DeltaVecFunIndexSumType, 114
DeltaVecFunSubsetSumElemNoChange, 124
DeltaVecFunSubsetSumEmpty, 120
DeltaVecFunSubsetSumNewElem, 121
DeltaVecFunSubsetSumProp, 112
DeltaVecFunSubsetSumSameSubset, 125
DeltaVecFunSubsetSumType, 114

DeltaVecFunSumAddAt, 128
DeltaVecFunSumAllZero, 120
DeltaVecFunSumProp, 113
DeltaVecFunSumType, 115
DeltaVecNegType, 75
DeltaVecSeqAddAtType, 101
DeltaVecSeqSkipSumAddAt, 101
DeltaVecSeqSkipSumAllZero, 79
DeltaVecSeqSkipSumAppend, 88
DeltaVecSeqSkipSumEmpty, 81
DeltaVecSeqSkipSumHeadTail, 92
DeltaVecSeqSkipSumNext, 81
DeltaVecSeqSkipSumProp, 77
DeltaVecSeqSkipSumRemoveAt, 96
DeltaVecSeqSkipSumSkipAll, 80
DeltaVecSeqSkipSumTail, 90
DeltaVecSeqSkipSumType, 79
DeltaVecSeqSumAddAt, 109
DeltaVecSeqSumAllZero, 108
DeltaVecSeqSumAppend, 109
DeltaVecSeqSumEmpty, 108
DeltaVecSeqSumProp, 107
DeltaVecSeqSumRemoveAt, 109
DeltaVecSeqSumType, 108
DeltaVecUpright Add, 134
DeltaVecUpright ExistsSupport, 133
DeltaVecUpright FunSum, 137
DeltaVecUpright SeqSkipSum, 136
DeltaVecUpright SeqSum, 137
DeltaVecUpright Zero, 133
DeltaVecVacantUpto Add, 146
DeltaVecVacantUpto BetaUpright, 147
DeltaVecZeroType, 74
DotDotDef, 38
DotDotOneThruN, 38
DotDotType, 38
DotDotType2, 38

244



INDEX OF THEOREMS 245

ElementOfSeq, 42
EmptySeq, 42
EmptySeqIsASeq, 43
ExactSeqEmpty, 65
ExactSeqExists, 61
ExactSeqForProperties, 65
ExactSeqIsFiniteSet, 65
ExactSeqLength, 68
ExactSeqRemoveAt, 66

FiniteSetEmpty, 57
FiniteSetSingleton, 57
FiniteSetSubset, 58
FiniteSetUnion, 59

HeadDef, 40
HeadType, 43

Init GlobalIncomingInfo, 191
Init IncomingInfo, 184
Init InfoAt, 177
IsASeq, 40

LenAxiom, 41
LenDef, 40
LenDomain, 41
LenEmptyIsZero, 43
LenInNat, 41

NatWellFounded, 39
NextCommon State, 164
NextPerformOperation GlobalIncomingInfo, 192
NextPerformOperation IncomingInfo, 185
NextPerformOperation InfoAt, 178
NextPerformOperation State, 166
NextReceiveUpdate GlobalIncomingInfo, 195
NextReceiveUpdate GlobalIncomingInfo1, 198
NextReceiveUpdate IncomingInfo, 189
NextReceiveUpdate InfoAt, 180
NextReceiveUpdate InfoAt1, 182
NextReceiveUpdate State, 173
NextSendUpdate GlobalIncomingInfo, 194
NextSendUpdate IncomingInfo, 186
NextSendUpdate InfoAt, 178
NextSendUpdate State, 169

PartialOrderAntisymmetric, 71

PartialOrderReflexive, 71
PartialOrderStrictlyTransitive, 72
PartialOrderTransitive, 72

RemoveAtProperties, 51

SeqSupset, 48

TailProp, 44
TailType, 45
ThmInitInvGlobalRecordCount, 220
ThmInitInvIncomingInfoUpright, 207
ThmInitInvInfoAtBetaUpright, 212
ThmInitInvStickyGlobVacantUpto, 236
ThmInitInvStickyNrecVacantUpto, 228
ThmInitInvTempUpright, 203
ThmInitInvType, 200
ThmInvGlobalRecordCount, 224
ThmInvIncomingInfoUpright, 210
ThmInvInvInfoAtBetaUpright, 218
ThmInvStickyGlobVacantUpto, 238
ThmInvStickyNrecVacantUpto, 230
ThmInvTempUpright, 205
ThmInvType, 202
ThmNextInvGlobalRecordCount, 221
ThmNextInvIncomingInfoUpright, 208
ThmNextInvInfoAtBetaUpright, 213
ThmNextInvStickyGlobVacantUpto, 236
ThmNextInvStickyNrecVacantUpto, 229
ThmNextInvTempUpright, 203
ThmNextInvType, 201
ThmSafeGlobVacantUptoImpliesStickyNrec, 242
ThmSafeStickyGlobVacantUpto, 241
ThmSafeStickyNrecVacantUpto, 240
ThmStickyGlobVacantUpto, 232
ThmStickyNrecVacantUpto, 226


	The Naiad Clock Protocol
	Informal description
	Basic specification

	Discussion of the specification
	Discussion of model checking
	Discussion of the proof
	A walk through the proof
	Basic definitions
	Basic library theorems
	Properties of delta vectors
	Additional invariants
	Deduction of some invariants
	The effects of actions
	Proving invariants
	Proving the main safety properties

	Proof system overview
	Proof statistics
	What we learned
	Linear module structure
	Refactoring action effects
	Symbolic conclusions
	Parallel deduction
	Checking the entire proof


	Acknowledgements
	Specification
	Model
	Proof of Correctness
	Basic additional definitions
	Facts about naturals
	Facts about sequences
	Properties of RemoveAt
	Facts about finite sets
	Facts about exact sequences
	Facts about partial orders
	Facts about delta vectors
	Facts about summing up sequences of delta vectors
	Facts about summing up delta vectors in the range of a function
	Facts about upright delta vectors
	Facts about beta-upright delta vectors
	Facts about delta vectors vacant up to point t
	Additional invariants needed in the proof
	Deduce various invariants from others
	How the actions affect the state variables
	How the actions affect InfoAt
	How the actions affect IncomingInfo
	How the actions affect GlobalIncomingInfo
	Proof of invariant InvType
	Proof of invariant InvTempUpright
	Proof of invariant InvIncomingInfoUpright
	Proof of invariant InvInfoAtBetaUpright
	Proof of invariant InvGlobalRecordCount
	Proof of invariant InvStickyNrecVacantUpto
	Proof of invariant InvStickyGlobVacantUpto
	The top-level proof module


