
Document Selection for Tiered Indexing
in Commerce Search

Debmalya Panigrahi
∗

Microsoft Research
Redmond, WA 98052

depan@microsoft.com

Sreenivas Gollapudi
Search Labs, Microsoft Research

Mountain View, CA 94043
sreenig@microsoft.com

ABSTRACT
A search engine aims to return a set of relevant documents in re-
sponse to a query, while minimizing the response time. This has
led to the use of a tiered index, where the search engine maintains a
small cache of documents that can serve a large fraction of queries.
We give a novel algorithm for the selection of documents in a tiered
index for commerce search (i.e. users searching for products on
the web) that effectively exploits the superior structuralcharac-
teristics of commerce search queries. This is in sharp contrast to
previous approaches to tiered indexing that were aimed at general
web search where queries are typically unstructured. We theoreti-
cally analyze our algorithms and give performance guarantees even
in worst-case scenarios. We then complement and strengthenour
theoretical claims by performing exhaustive experiments on real-
world commerce search data, and show that our algorithm outper-
forms state-of-the-art tiered indexing techniques that were devel-
oped for general web search.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]

General Terms
Algorithm, Performance

Keywords
Tiered Indexing, Structured Search

1. INTRODUCTION
With the astronomical growth of the internet over the last decade,

search engineshave been playing a pivotal role in guiding users to
internet resources that they desire. Over the last few years, com-
merce search, i.e. users searching for products with the intention
of purchasing them online, has come to occupy a prominent place

∗Part of this work was done as a graduate student supported, in
part, by NSF contract CCF-1117381 at the Massachusetts Institute
of Technology, Cambridge, MA 02139.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13,February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

in this domain. On being presented a user query, the goal of a com-
merce search engine is to output a set of relevant products from its
online catalog. Since query response time is a key parameterin
user experience, a natural approach is to use atiered indexwhere
the search engine maintains a smaller index over a subset of docu-
ments (product descriptions) that can serve a large fraction of pop-
ular queries. The selection of these documents is a challenging task
in general web search because of thediversityandlack of structure
in user queries. However, in commerce search, queries typically
comprise a list of desirable product features. Therefore, the query
space, while being extremely large, is much more structuredthan
in general web search. In this correspondence, we show that we
can exploit this additional structure to design efficient algorithms
for selecting the set of documents in a tiered index for commerce
search with significantly better performance than the state-of-the-
art in general web search. While we present our results in thecon-
text of commerce search, our techniques automatically extend to
other structured search domains (e.g. travel, music, movies, etc.)
as well.

As mentioned above, commerce search queries are characterized
by a set of product features (we call theseattribute valuesor key-
words) that the user desires in the product she is searching for. This
makes it feasible to categorize commerce search queries based on
these features, and to decompose them into their constituent at-
tribute values. For instance, it is relatively easy to identify that a
queryCanon EOS black 12MP was issued by a user search-
ing for cameras, and that her desired attribute values areCanon,
EOS, black, and12MP for attributesmanufacturer, model line,
color, andresolutionrespectively. Given that such categorizers ex-
ist (see e.g. [23]), the central question that we seek to address in
this paper is the following:can we use the structure in commerce
search queries to select documents for a tiered search indexaimed
at faster query response?

In response to a user query, a commerce search engine displays
a set of relevant products from its online catalog. So, we need to
understand how a search engine evaluates the relevance of a user
query to a product. Since commerce search queries are a collec-
tion of attribute values, this boils down to finding the relevance of
a document to an attribute value. For example, aNikon D7000
camera is likely to be more relevant to the keywordNikon than to
Canon. This is a rather straightforward assertion, but in general
we might have more ambiguous scenarios: e.g. is ablue or ared
camera more relevant to a user who is searching forpurple cam-
eras? Recently, we suggested a completely automated technique for
inferring theserelevances(or similarities) based on previous user
behavior represented by browse trail data collected from toolbars
of web browsers [19]. In this paper, we use the algorithm in [19] to
obtain, for every keyworda, a list of relevance scores ofa with ev-

ery other keyword for the same attribute (e.g. betweenCanon and
every other manufacturer). (We may note that most of these scores
are 0 allowing for succinct representation.) For a product in the
catalog (say aNikon D7000 camera), its relevance score for a
user-specified attribute value (sayCanon) is the relevance score of
its corresponding attribute value (i.e. the similarity score ofNikon
with Canon). We note that such a model of similarity between at-
tribute values allows us to extend our techniques presentedin this
paper to indexes where the data is probabilistic in nature and the
matching score of a record to the user query is some function of
these probabilities.

The next step is to infer the relevance score of a product for a
queryq from its relevance scores for the constituent attribute values
of q. A natural strategy is to say that a product is relevant to a query
if it has a high relevance score for most attribute values in the query.
There are multiple functions implementing this strategy, and we
discuss some of them later in the paper. Once we have decided
on such a function, the problem of constructing a tiered index of
sizeb boils down to finding the set ofb products that maximizes
the weighted (by query frequency) fraction of queries that have at
leastk relevant products in the index,k being the number of search
results returned to the user. Note that these are precisely the set of
queries that can be exclusively served from the cache, and therefore
representcache hits. We formalize this problem later, and call it the
INDEX SELECTIONproblem.

Caching posting lists v/s query results. As mentioned earlier,
algorithms for selecting documents in a tiered index have been
proposed in the literature for general web search. Two prominent
strategies are: (1) include posting lists, i.e., list of documents, for
relevant popular search terms (e.g. [3]), or (2) include search re-
sults for popular queries (e.g. [1]). Both strategies suffer from
serious deficiencies. While the former strategy generalizes better
since it does not restrict itself to only optimizing over thetrain-
ing set of queries, it is unable to differentiate between documents
in the same posting list. For example, the posting list forCanon
would typically contain documents that are relevant to manyman-
ufacturers as well as those that are specific toCanon, and the algo-
rithm fails to preferentially select documents of the first type over
those of the second type. In addition, the strategy of copying entire
posting lists leads to wastage of valuable cache space sincepost-
ing lists for related but distinct keywords tend to have substantial
overlap. On the other hand, selecting the contents of the tiered
index based solely on a training set of queries leads to poor gen-
eralization characteristics since the query space is enormous and
typical query distributions have large support. Further, the algo-
rithm in [1] uses an exhaustive search over the entire set of training
queries, which hampers efficiency and scalability of the technique.
In this paper, we present a novel solution that exploits the structure
of commerce search queries to overcome the deficiencies of both
these techniques.

Our solution. Before describing our solution, let us first under-
stand the structure of the query space for commerce search. As
we stated earlier, a query comprises a set of attribute values. For
example, a user searching for digital cameras can opt for oneof sev-
eral manufacturers/model lines, various different resolutions, mul-
tiple colors, price ranges, lens types, and so on, and these choices
are largely independent of each other. Note that typical search
queries also contain “free text”, i.e. textual descriptionthat does
not correspond to any particular attribute. We strip queries of such
free text at the very outset, and consider queries to be composed
only of the identifiable attribute values in them. Even though the
number of attribute values for each such attribute is not very large

(say around 20), and there are a manageable number of different
attributes (there are at most 10 important attributes for most cat-
egories of products), the total number of possible queries gener-
ated by combining these attribute values is enormous. Our solu-
tion bypasses the obvious computational challenges of thislarge
query space by using its structural characteristics to avoid exhaus-
tive searches.

At a high level, our solution borrows (from [1]) the idea of greed-
ily selecting documents one at a time based on the incremental
query coverage they offer. However, we want to ensure that the
solution generalizes well to an arbitrary query test set. Tothis end,
we derive marginal frequencies on individual attribute values from
the training data and use the structure of the query space to estimate
the overall query distribution from these marginal frequencies. This
would naturally suggest a greedy algorithm on the entire query dis-
tribution (rather than the one observed in the training data). How-
ever, a naïve implementation of this idea would lead to an exhaus-
tive search over the support of the query distribution. Our main
technical contribution is an efficient implementation of this greedy
strategy using algorithmic sampling techniques to reduce the sam-
ple space to a sequence of marginal distributions (rather than the
overall query distribution) in order to obtain estimates onthe incre-
mental query coverage of individual documents.

It is worth mentioning that our algorithms apply not only to
commerce search but to any other structured search domain where
queries predominantly consist of a set of attribute values for which
relevance scores as described above can be computed. However,
our techniques do not naturally extend to general web search. In
particular, our sampling technique is based on the query space be-
ing a Cartesian product of sets of attribute values for individual
attributes. Unfortunately, the query space for general websearch is
substantially less structured and cannot be interpreted asthe Carte-
sian product of a small number of small sets. We leave the ex-
tension of our ideas to general web search as an interesting and
independent open question.

An additional algorithmic complication arises from thedynamic
nature of the set of documents. To ensure that the tiered index re-
flects changes in the catalog, one option is to discard the contents of
the index periodically and re-run the algorithm to generatea new set
of documents. However, this is a rather expensive solution since it
involves repeated re-runs of the algorithm on the entire setof docu-
ments. We propose simple algorithmic solutions that overcome this
inefficiency.

To evaluate the performance of our algorithm in practice, weper-
form extensive experiments on the product catalog used by a com-
mercial online shopping portal. A query is said to have acache
hit if at leastk of the products returned by the commercial search
engine on being issued the query are indeed in the index. We vary
the parameters of the algorithm such as the size of the index,the
relevance threshold, the value ofk, etc. and observe the result-
ing changes in the cache hit ratio. For these parameter ranges, we
compare our performance with those of standard algorithms in the
literature for tiered indexing in general web search [1, 3].

Our Contributions. The following is a brief sketch of our main
contributions in this paper:

• We formalize the problem of selecting products in a tiered
index for commerce search (or any other structured search
domain). We call this the INDEX SELECTIONproblem.

• We propose a randomized algorithm for the INDEX SELEC-
TIONproblem, and show that it achieves a near-optimal ap-
proximation ratio (subject to standard assumptions in com-
plexity theory).

• To address the practical consideration of changing catalogs,
we give a natural extension of our algorithm that adjusts the
contents of the index in response to the arrival of new prod-
ucts, without having to compute the entire contents of the
index from scratch.

• We complement our theoretical results by performing exten-
sive experiments on real-world data. Our experiments con-
firm that our algorithm is scalable, accurate, and efficient,
and outperforms the state-of-the-art techniques in tieredin-
dexing for general web search.

2. PROBLEM DEFINITION
Recall that commerce search queries can be classified into cate-

gories (such asdigital cameras, cellphones, etc.), where each cat-
egory is characterized by a set of attributes (e.g.resolutionis an
attribute fordigital cameras). Each attribute, in turn, has a set of
attribute values (e.g.Canon, Nikon, etc. for attributemanu-
facturer in the categorydigital cameras). Formally, suppose there
areL categories, where categoryj haskj attributes. LetA(j)

1 ,A(j)
2 ,

. . . ,A(j)
kj

denote the sets of attribute values for these attributes. Fur-
ther, for every attribute valuea, we estimate its relative frequency
in the set of queries, and denote it byfa. On the other hand, letD
be the set of documents,1 and letwad denote the relevance score of
attribute valuea for documentd ∈ D.

Each query comprises attribute values for a subset of attributes
in its category (recall that we assume that we have stripped the
query of its free text). For example, a queryCanon EOS 12MP
has attribute valuesCanon, EOS, and12MP for attributesman-
ufacturer, model line, and resolution respectively but is missing
attributes such ascolor. For ease of notation, we introduce the spe-
cial elementφ in the set of attribute valuesA(j)

i for every attribute
i in every categoryj, and denote the augmented set of attribute val-
ues byA(j,φ)

i = A
(j)
i ∪ {φ}. A query missing attributei is now

assumed to have the special attribute valueφ for attributei, and the
relative frequency ofφ for attributei is the fraction of queries that
are in categoryj and are missing attributei. The set of all queries
in categoryj is then given by

Qj = A
(j,φ)
1 × A

(j,φ)
2 × . . .× A

(j,φ)
kj

.

In any such queryq ∈ Qj , the attribute value for attributei is
denoted byq(i) (note thatq(i) could beφ). The relative frequency

of a queryq in categoryj is defined asfq =
∏kj

i=1 fq(i).
We are implicitly assuming independence over the set of attributes

for any category. While this is accurate for attributes suchas color,
manufacturer, product specifications, etc. that have smallcorrela-
tion, it does not hold for highly correlated attribute combinations
such as manufacturer and model line. To overcome this problem,
following [19], we treat correlated subsets of attributes as single
attributes, and leave the problem of obtaining a more refinedtreat-
ment of attribute correlation as future work.

Relevant documents for a Query.As mentioned in the introduc-
tion, there are multiple options for defining the set of relevant doc-
uments for a query, based on the relevance scores of the documents
for individual keywords in the query. Perhaps the simplest option
is to define relevance of a document for individual keywords by
setting a threshold on the relevance score. The document is now
defined to be relevant for a query as a whole if it is relevant for
everykeyword in the query. However, this suffers from the short-
coming that even if a document is relevant for all but one keyword
1For commerce search, a document is a product.

in a query, it is deemed to be irrelevant for the query as a whole.
A natural relaxation is to call a document relevant if it is relevant
to most (e.g. at least some fixed fraction) of the keywords in the
query. Noting that this strategy does not differentiate between two
documents that meet the relevance threshold for an attribute value
but have very different relevance scores, we finally converge on the
following definition of relevance:A document is said to berelevant
to a query if the average of the relevance scores of the document
over all the keywords in the query is at least some fixed threshold
θ. Both the previous definitions of relevance can be simulatedus-
ing the new definition, and therefore our algorithm can also handle
either of the previous definitions.

If a documentd is relevant for a queryq, then we say thatq
is coveredby d. Similarly, if at least one document in a set of
documentsX covers a queryq, then we say thatq is covered byX.
Let Q(d) denote the set of queries that are covered by document
d, and letQ(X) be the set of queries that are covered by a set of
documentsX. Corresponding, letfd =

∑
q∈Q(d) fq andfX =∑

q∈Q(X) fq.

Choice of index size.2 A key input is the size of the index denoted
by b. The choice of the relevance thresholdθ is dictated by the
size of the index (e.g. a large value ofθ and a small index size
might lead to most of the index remaining unused). In turn, the
size of the index is a function of external parameters such asthe
desired cache hit ratio and the amount of memory and indexing
infrastructure available to the search engine.

Objective Function. For simplicity, we set the number of results
returned by the algorithmk to 1. (We will consider general val-
ues ofk later.) Then, the objective of the algorithm is to output a
setX of at mostb documents that maximizes the sum of relative
frequencies of queries covered byX, i.e. maximizesfX .

We call this the INDEX SELECTION problem.

3. THE GREEDY SELECTION ALGORITHM
We propose a natural, greedy algorithm for the INDEX SELEC-

TION problem, which we call the GREEDY SELECTION algorithm
(see Figure 1). The algorithm hasb iterations, where in each iter-
ation, we add the documentd ∈ D \ X to X that maximizes the
value of the objective functionfX . The primary challenge lies in
the polynomial-time implementation of this algorithm. Forevery
documentd ∈ D \ X, the algorithm requires to compute the in-
crease in the objective function ifdwere added to the indexX. This
entails computation of the sum of relative frequencies of queries in
Q(d) \ Q(X) for any documentd ∈ D \ X. In a naïve imple-
mentation, this would take time proportional to the total number
of queries, which is exponential in the size of the input. Ourmain
technical contribution is a polynomial time implementation of the
GREEDY SELECTION algorithm that proves the following theo-
rem.

THEOREM 1. For anyǫ > 0, there is a randomized polynomial-
time3 algorithm (which we call theGREEDY SELECTION algo-
rithm) for the INDEX SELECTION problem that achieves an ap-
proximation ratio of1− 1/e− ǫ with high probability.4

2By index/cache size, we mean the number of unique documents
in the index.
3The running time is polynomial in the input parameters as well as
in 1/ǫ.
4A statement is said to holdwith high probability(or whp) if the
statement holds with probability1− o(1).

X ← ∅
for i from 1 tob do

d∗ ← argmaxd∈D\X COUNT QUERY(X ∪ {d})
X ← X ∪ {d∗}

end for
return X

Figure 1: The GREEDY SELECTION algorithm

SinceQ(d) \ Q(X) = Q(X ∪ {d}) \ Q(X), our problem boils
down to estimating the sum of relative frequencies of queries cov-
ered by a given subset of documentsY (hereY = X ∪ {d}), i.e.
estimatingfY . We call this the COUNT QUERY problem.

Algorithm for the COUNT QUERY problem. We now describe
an algorithm for estimating the sum of frequencies of queries that
are covered byY in a single category; the overall estimate is the
sum of these estimates over all categories. Our algorithm will have
an error parameterǫ > 0; as a preprocessing step, we round the
relevance scoreswad to multiples of a small enough valueη such
that the error due to the rounding can be absorbed inǫ.

A simple idea would be to sample of a set of queries uniformly
at random and use the fraction of sampled queries that are covered
by Y as an estimator for the fraction of queries inQ(Y). Unfortu-
nately, the size of the sample required to control the sampling error
is inversely proportional to the fraction that we are tryingto esti-
mate, which in our case implies that we might need exponentially
many samples. To overcome this difficulty, we use a technique
calledimportance samplingthat was originally proposed by Karp,
Luby, and Madras [12] for counting the number of truth assign-
ments of a DNF5 formula. The main idea is to sample queries from
a multisetwhere each query appears as many times as the num-
ber of documents inY that cover it, and then use a pre-determined
order on the documents to estimate the ratio of the number ofdis-
tinct queries in the multiset to the size of the multiset. It is easyto
show that this ratio is always at least inverse polynomial, and can
therefore we estimated using a polynomial number of samples.

We order the documents inY in an arbitrary fixed orderd1, d2,
. . . , d|Y |. LetNr = fdr andN =

∑|Y |
r=1Nr, which is the size of

multiset formed by combiningQ(dr) for all documentsdr ∈ Y .
Our algorithm has two phases. In the first phase, we estimate the
values ofNr (and therefore ofN), and in the second phase, we
perform the sampling procedure described above.
Phase 1.The first phase of our algorithm employs a dynamic pro-
gram (DP) to estimate the values ofNr. Let Iq denote the set
of attributes in queryq (i.e. q(i) 6= φ iff i ∈ Iq). Further, let
S(j, ℓ, γ) denote the sum of relative frequencies of queriesq which
have exactlyℓ attribute values, all of which are among the firstj
attributes, and have a sum of relevance scores over these attribute
values of at leastγ. Let Q(dr, j, ℓ, γ) (for ℓ ≤ j) be the set of
queries that have exactlyℓ attributes, all of which are among the
first j attributes, and would have been covered by documentdr
if the threshold on the average relevance score were some value
γ/ℓ. Let [n] = {1, 2, . . . , n}. Formally,Q(dr, j, ℓ, γ) = {q :
|Iq | = ℓ, Iq ⊆ [j],

∑
i∈Iq

wq(i),dr ≥ γ}, andS(dr, j, ℓ, γ) =
∑

q:q∈Q(dr,j,ℓ,γ)
fq. Note thatQ(dr) = ∪

k
ℓ=1Q(dr, k, ℓ, θℓ). There-

fore,Nr =
∑k

ℓ=1 S(dr, k, ℓ, θℓ). (Recall thatk is the number of
attributes in the current category.) We will compute the values of
S(dr, k, ℓ, θℓ) using a DP that we describe below, which yields the
values ofNr.

We make the following observations:
5Disjunctive Normal Form

• If j = ℓ = 1, then the queries inQ(dr, j, ℓ, θℓ) are precisely
the singleton queries containing attribute valuesa ∈ A1 that
satisfywadr ≥ γ.

• If j > ℓ = 1, then the queries inS(dr, j, ℓ, θℓ) are also
singleton queries, and contain attribute valuesa ∈ At for all
t ≤ j that satisfywadr ≥ γ.

• If j = ℓ > 1, then the queries inS(dr, j, ℓ, θℓ) must contain
an attribute value for every attribute in[j].

• if j > ℓ > 1, then the queries inS(dr, j, ℓ, θℓ) either contain
an attribute value for attributej andℓ− 1 attribute values for
attributes in[j−1], or containℓ attribute values for attributes
in [j − 1] andφ for attributej.

These observations lead to the following DP:

S(dr, 1, 1, γ) =
∑

a∈A1:wadr
≥γ

fa

S(dr, j, 1, γ) = fφ · S(dr, j − 1, 1, γ) +
∑

a∈Aj :wadr
≥γ

fa

for j ∈ [k], j > 1

S(dr, j, j, γ) =
∑

a∈Aj

fa · S(dr, j − 1, j − 1,max(γ − wadr , 0))

for j ∈ [k], j > 1

S(dr, j, ℓ, γ) = fφ · S(dr, j − 1, ℓ, γ) +
∑

a∈Aj

fa · S(j − 1, ℓ− 1,max(γ − wadr , 0))

for j ∈ [k], j > 1, ℓ ∈ [j − 1]

Since the relevance scores are in multiples ofη, which is polyno-
mial in the error parameterǫ, the running time of the this DP is
polynomial.
Phase 2. In the second phase of the COUNT QUERY algorithm,
we draw a set ofn sample queriesq1, q2, . . . , qn (the value ofn
will be determined later). Each queryqj ∈ cup

|Y |
r=1Q(dr) is drawn

i.i.d. using the following procedure: First, we sample a document
dr with probability Nr

N
. Next, we sample the number of attributes

ℓ in qj with probability S(k,ℓ,θℓ)
Nr

. This restricts the set of queries to
Q(k, ℓ, θℓ). Finally, we sample a query inQ(k, ℓ, θℓ) using a DP
like the one in phase 1, the details of which are given in Figure 2.
(In Figure 2,q(−j) denotes(q(1), q(2), . . . , q(j − 1)) andfΦ is
the product offφ over all attributesk < j.)

Next, we need to define the estimator forfY that we generate
using these sampled queries. Let

Q′(ds) = {q ∈ Q(ds) : ∀t < s, q /∈ Q(dt)}.

For eachj ∈ [n], we setxj = 1 if qj ∈ Q′(dr); otherwise,xj = 0.
The estimate forfY returned by the algorithm is

X =

(∑n

j=1 xj

n

)
N.

Analysis. Our main technical lemma establishes the accuracy of
the above algorithm for the COUNT QUERY problem.

LEMMA 1. There is a randomized polynomial-time6 approxi-
mation scheme for theCOUNT QUERY problem that has a multi-
plicative error of1− ǫ for any fixedǫ > 0 with high probability.
6The algorithm runs in time polynomial in the input parameters and
in 1/ǫ.

B ← {a ∈ Aj : wad ≥ γ}
For eacha ∈ Aj , ra ←

fa∑
x∈B fx

if ℓ > 1 then
For eacha ∈ Aj , pa ←

f(a)·S(d,j−1,ℓ−1,max(γ−wad,0))
S(d,j,ℓ,γ)

end if
if j > ℓ then

pφ ←
fφ·S(d,j−1,ℓ,γ)

S(d,j,ℓ,γ)

end if
Case 1(j = ℓ = 1):

For eacha ∈ B with probabilityra, q(j)← a
Case 2(j > ℓ = 1):

For eacha ∈ B with probability fa·fΦ
S(d,j,ℓ,γ)

,
q(j)← a andq(−j)← (φ, φ, . . . , φ);
with the remaining probability,
q(j)← φ andq(−j)← Sample(d, j − 1, ℓ, γ)

Case 3(j = ℓ > 1):
For eacha ∈ Aj with probabilitypa, q(j)← a and
q(−j)← Sample(d, j − 1, ℓ− 1,max(γ − wad, 0))

Case 4(j > ℓ > 1):
For eacha ∈ Aj ∪ {φ} with probabilitypa, q(j)← a.
if q(j) = φ then

q(−j)← Sample(d, j − 1, ℓ, γ);
else

q(−j)← Sample(d, j−1, ℓ−1,max(γ−wa,d, 0)).
return q

Figure 2: The subroutineSample(d, j, ℓ, γ) used in phase 2 of
the algorithm for the COUNT QUERY problem

Before proving this lemma, let us show that it is sufficient toprove
Theorem 1. Let us denote the COUNT QUERY algorithm byO (we
call it an oracle), and the GREEDY SELECTION algorithm byA.
Recall that in each iteration ofA, the document to be added to the
indexX is selected as follows: for every documentd ∈ D \X, we
use oracleO to estimatefX∪{d} and add the document for which
this estimate is the maximum toX.

The next lemma maps the approximation ratio ofA to that ofO.

LEMMA 2. For any δ > 0, there is a setting ofǫ for oracleO
such that algorithmA has an approximation ratio of1 − δ whp,
and has running time polynomial in1/δ.

To prove this lemma, we introduce some terminology. In any call
to oracleO, we say that the oracle issuccessfulif the estimate pro-
duced is(1± ǫ)-accurate; otherwise, we say that the oracle failed.
The next lemma quantifies the impact of a successful call toO on
algorithmA.

LEMMA 3. Suppose in an iteration of algorithmA, document
d is selected, and letd∗ = argmaxd∈D\X fX∪{d}. Further, let
Z = fX∪{d} andW = fX∪{d∗}. If all the calls to oracleO in this

iteration (with parameterǫ) are successful, thenZ ≥
(

1−ǫ
1+ǫ

)
W .

PROOFSKETCH. Let Y = fX ; let Ỹ , Z̃, andW̃ denote the
values ofY , Z, andW as estimated by oracleO. Let ρ = Ỹ

Y
− 1.

Thus,ρ ∈ [−ǫ, ǫ]. Then,

Z − Y ≥
Z̃

1 + ǫ
−

Ỹ

1 + ρ
≥

(
1− ǫ

1 + ǫ

)
W − Y.

(Calculation details deferred to full version.)

We use this lemma to prove Lemma 2.7

PROOF OFLEMMA 2. The probability that the oracleO fails in
at least one call iso(1), and is therefore absorbed in the failure
probability of algorithmA. Hence, we only need to show that if the
oracleO is successful in every call ofA, then the approximation
ratio ofA is at most1− 1/e − δ.

LetXi denote the selected documents in the firsti iterations. Let
the sum of relative frequencies of queries covered by an optimal
solution beOPT. By averaging, there is at least one documentd ∈
D \Xi such that

fXi∪{d} − fXi
≥

OPT− Yi

b
.

By Lemma 3, the success of oracleO with parameterǫ (we will set
the value ofǫ later) in iterationi+ 1 implies that

fXi+1
≥ ρ

(
OPT− fXi

b
+ fXi

)
,

whereρ = 1−ǫ
1+ǫ

. SinceX0 = ∅, the above recurrence yields

fXb
=

(ρ
b

)
OPT

(
b−1∑

i=0

ρi
(
1−

1

b

)i
)

=

(
ρ

1 + (1− ρ)b

)
OPT

(
1− ρb

(
1−

1

b

)b
)
.

We setρ = 1− c
b

for some constantc that we will determine later.
Then,

fXb
>

(
1− c/b

1 + c

)
OPT

(
1− e−(c+1)

)
> 1−

1

e
− δ,

where we setǫ = δ
b

to ensure that

c =

(
1−

1− ǫ

1 + ǫ

)
b > ǫb = δ >

δ

2(1− 1/e)
.

We used
(
1− x

b

)b
< e−x (first step),b ≥ 1 (second step), and

1−c
1+c

< 1− 2c andc > 0 (third step) in the calculation.

We now analyze the COUNT QUERY algorithm, and prove Lemma 1.
The analysis comprises two claims: that the estimatorX is unbi-
ased, and that for a large enough value ofn, X has small variance.
The next lemma combines these claims.

LEMMA 4. In the algorithm for theCOUNT QUERY problem,

P [X /∈ (1± ǫ)fY] = o(1).

PROOF. For any sample queryqj in the above algorithm,

E[xj] =

|Y |∑

r=1

(
Nr

N

)
·

(∑
q∈Q′(dr)

fq

Nr

)
=

∑|Y |
r=1

∑
q∈Q′(dr)

fq

N
.

Clearly, each query inQ(Y) is present inQ′(dr) for exactly one
documentdr ∈ Y . Therefore,E[xj] =

fY
N

, and hence, the estima-
tor is unbiased.

Now, we employ Chernoff bounds (see e.g. [17]) to bound the
probability of deviation of the estimator. Letζ = fY

N
. Then

P[X /∈ (1± ǫ)fY] = P

[
n∑

i=1

xi /∈ (1± ǫ)ζn

]
≤ e−

ǫ2ζn
3 ,

7The proof implicitly uses the fact that the objective function for
the INDEX SELECTION problem issubmodular.

which iso(1) for n = ω
(

3
ǫ2ζ

)
.

We now note that1
ζ
= N

fY
, which in turn equals

∑
q∈Q(Y) fq |{r : q ∈ Q(dr)}|∑

q∈Q(Y) fq
≤ max

q∈Q(Y)
|{r : q ∈ Q(dr)}| ≤ |Y |.

Hence,n is polynomial in the input parameters.

Running Time. The overall running time of the algorithm is

O


b · |D| · n ·max

j




kj∑

i=1

|Ai|


+

∑

j

kj ·

kj∑

i=1

|Ai|

η


 ,

which is markedly better than the running time of a naïve imple-
mentation of the greedy algorithm,O(b · |D| ·

∑
j

∏kj

i=1 |Ai|).
Further, we will now describe algorithmic and data structural op-
timization that makes our implementation of the algorithm much
more efficient than that suggested by the worst-case runningtime
above. Our first observation is that the sets of sample queries gen-
erated in various calls to the COUNT QUERY sub-routine need not
be independent since we are using an union bound over the error
probabilities. This leads to the first optimization: For every doc-
umentd ∈ D, we use theSamplesub-routine to generate apriori
a set of (mutually independent) sample queries fromQ(d) with
probabilities proportional to their relative frequencies(we call the
setSQ(d)). Whenever the COUNT QUERY algorithm requires a
sample query fromQ(d), it is provided the first query inSQ(d)
that has not been used previously in the current run of the COUNT

QUERY algorithm.
To improve the performance and scalability of the GREEDY SE-

LECTION algorithm further, we design the following data structure.
LetP be a max priority queue of all the documentsd ∈ D ordered
according tofd · (1 − gd), wherefd is the sum of frequencies of
all queries covered byd, andgd is the fraction of queries inSQ(d)
that are already covered by the current indexX. Clearly, the doc-
ument at the front of this priority queue is the next documentthat
should be inserted inX. However, this data structure presents two
challenges:

• Every time a document is inserted inX, we incur the huge
overhead of having to update the values ofgd for every doc-
umentd in P .

• Since the set of documentsD is enormous, it would take a
large amount of memory space to store the query samples
corresponding to all the documents inP .

We overcome these challenges by adopting alazy policy: For every
documentd in P , we maintain a countercd indicating the last index
in X for which the value ofgd has been updated for documentd.
Initially, cd = 0 andgd = 1 for every documentd ∈ D. Further,
no sample query is generated for any document at the outset. Every
step of the algorithm now comprises the following operations: We
dequeue the document at the front of the priority queueP ; let this
document bed. If cd = 0, then we generate the set of sample
queriesSQ(d). Now, we check ifcd < |X|; if so, then we update
the value ofgd for the current contents ofX, setcd to |X|, and
re-insert documentd in P . (Note thatd may no longer be at the
front of the queue since the value ofgd might have increased). On
the other hand, ifcd = |X|, then we addd to X. Clearly, in
this case, even though some of the documents inP have stale (i.e.
smaller than actual) values ofg, documentd is indeed the one that
maximizesf · (1− g). Note that this solves both problems: we are

now updating the values ofc andg only when required, and also
generating sample queries only for documents that show up atthe
front of P . In fact, we observe that most documents have small
values off and therefore never appear at the front ofP .

If we are required to handle multiple coverages (see the first
extension in the next section), we keep a countern(q, d) for ev-
ery sample queryq ∈ SQ(d) (rather thangd for documentd)
that indicates the number of documents inXc(d) that cover doc-
umentd. (Recall thatXi is the prefix ofX containing the first
i inserted documents.) The priority queueP is now ordered on∑

q∈SQ(d) ρ
n(q,d)+1fq . When documentd appears at the front of

P , we increase the countersn(q, d) by the number of documents
in X \Xc(d) that cover queryq.

4. EXTENSIONS
In this section, we describe various extensions to the GREEDY

SELECTION algorithm.

Multiple Coverage. As mentioned in the introduction,k > 1 in
most applications, e.g. a search engine returns multiple results
in response to a user query. We generalize the INDEX SELEC-
TION problem to this scenario by introducing an utility function
u that maps the number of documents relevant to a query to their
aggregate benefit. The objective function now becomes∑L

j=1

∑
q∈Qj

fq · u(N(X, q)), whereN(X, q) is the number of
documents inX that are relevant to queryq.

Note that the GREEDY SELECTION algorithm should logically
prefer a document that covers queries that already have a significant
coverage in the index to a document that covers queries having low
coverage. This follows from the fact that the index is usefulfor a
query only if has at leastk relevant documents. To reflect this bias,
we define the utility function asu(i) = min(2i, 2k) in our exper-
iments. We may note that this choice violates the submodularity
of the overall utility function, but as we show in the experiments,
this leads to better results than choosingu(i) = min(i, k) (which
is submodular) as in [1].

Dynamic Set of Documents.Recall that in most practical situa-
tions, the set of documents typically change over time. First, we
consider the modifications to the index on the removal of a docu-
ment. If the document was not present in the index, then we do not
need to do anything. On the other hand, if the document was in the
index, then we replace it by a new document which is chosen by
running a single iteration of the GREEDY SELECTION algorithm.

Now, let us consider the modifications to the index on the addi-
tion of a document. Note that we have two decisions in this case:
first, do we add the document to the index; and second, if we do,
which document do we evict from the index? Further investiga-
tion of the problem reveals that the new document may cause more
drastic changes of the following kind: if the new document covers
all queries covered by the documents currently in the index,then
inserting the new document in the index would make the current
documents redundant (fork = 1). In this case, we have to re-
compute the index from scratch.

However, note that the situation described above is rather patho-
logical. In practice, we do not expect the index to change drastically
on the addition of a single document. To quantify this intuition,
we impose the additional constraint that the index cannot change
by more than one document for every document arrival. This has
the added benefit that auxiliary data structures such as the index-
ing mechanisms do not need frequent drastic changes. The fol-
lowing simple algorithm now solves this problem efficiently: For
every documentx ∈ X, we estimatefX,x,d = f(X\{x})∪{d}

using COUNT QUERY calls, whered is the new document. If
fX ≥ fX,x,d for all x ∈ X, then we do not include the new docu-
mentd in the index; otherwise, we evictx∗ = argmaxx∈X fX,x,d

from the index and replace it byd. Note that the number of calls
to the COUNT QUERY sub-routine is now proportional tob rather
than|D|.

Streaming Set of Documents.Finally, consider the scenario where
the set of documents appear sequentially, and the algorithmneeds
to immediately decide whether to include a document or discard it
on its arrival. We propose the following algorithm in this scenario:
The algorithm has multipleepochs, where each epoch is charac-
terized by a guessed valueopt of the objective in an offline opti-
mal solution. An epoch ends when the objective of the algorith-
mic solution exceedsopt, at which point we double our guess and
start the next epoch. In any epoch, the algorithm includes every
document that increases the objective value by at leastopt

br
, where

br = b − |X|. Note that the increase in the objective can be com-
puted by making a single call to the COUNT QUERY sub-routine.
If the set of documents have some desirable properties (e.g.are
drawn i.i.d. from a distribution), then this simple algorithm can be
shown to have a constant approximation factor.

5. EXPERIMENTS
In this section, we evaluate the GREEDY SELECTION algorithm

on real-world data. Recall that this algorithm can be used togener-
ate a tiered index for the set of products in the index of a commerce
search engine. We will begin by describing the datasets usedin our
experiments.

5.1 Datasets
For our experiments, we built a prototype search engine and pop-

ulated it with real data from the shopping vertical of a commercial
search engine. To this end, we downloaded detailed descriptions for
about30 million products from a commercial online shopping cat-
alog. These products were categorized into around600 leaf-level
categories under32 top-level categories such aselectronics,
camera and optics, clothing and shoes, and so on.
The GREEDYSELECTION algorithm does not interact between cat-
egories, and therefore can be scaled to large indexes by processing
combinations of categories in parallel. For clarity and without loss
of generality, we restrict our analysis to two top-level categories in
the catalog:electronics andcameras and optics with
around150, 000 and40, 000 products respectively. We note that
there are74 sub-categories under electronics (such astelevisions,
equalizers, andGPS Receivers) and49 sub-categories un-
der cameras (such asdigital cameras, telescopes, and
lenses).

Next, we describe how we set the relevant scoreswad for the
products in the dataset. Consider, for example, asony bravia
xbr tv (with product idd). Since its product description con-
tains attributebrand:sony, we setwsony,d = 1.0. Further, as
mentioned in the introduction, we enrich the product with related
attribute value information. For example, ifsamsung is a rel-
evant brand forsony (i.e. users searching forsamsung prod-
ucts previously have ended up buyingsony products), then we set
wsamsung,d to some value between 0 to 1. For a detailed descrip-
tion of how such similarity scores are chosen, the reader is referred
to [19].

The Query Set.For our experiments, we sampled around100, 000
queries (Q) from the query log of the same online shopping portal.
We used uniform sampling over the queries in the query log (note
that popular queries automatically get a bias because they appear

more frequently in the query log). In order to analyze the effect of
structure in the query on the performance of GREEDY SELECTION,
we categorized these queries into five buckets depending on the de-
gree of structure extracted from the query ranging from bucket 1
containing highly unstructured queries (mostly with one annotated
keyword) to bucket5 composed of many annotated tokens (some-
times as many as six). The number of queries in bucket 1 consti-
tuted around20% of the queries inQ. The number of queries in
bucket 5 had a higher fraction of around32%. In fact, the fraction
of queries with at least3 annotated keywords was close70% ofQ.
We note that annotation of queries is not the focus of this study.
Toward this end, we used the query annotator described in [23].

In our experiments, we only considered the important attributes
associated with each category. These are attributes that have a high
selectivity, i.e. occur in a large fraction of product descriptions or
user queries. We set the selectivity threshold to a conservative value
of 0.5 and this yielded around six important attributes in each cate-
gory, and for each selected attribute, we computed the relative fre-
quencies of individual attribute values in a query log that spanned
a six-month period.

5.2 Baseline Algorithms
We compare the performance of GREEDY SELECTION with the

cache selection algorithms in Baeza-Yateset al [3] and Anagnos-
topouloset al [1].

In the first algorithm, the goal is to populate the cache with a
set of posting lists for important query terms. Each postinglist is
characterized by the frequencyf of the associated term, and the
size of the posting lists. The algorithm greedily selects the posting
list with the minimum ratios/f repeatedly until the entire cache
is filled up. We refer to this algorithm as POSTING L ISTS in our
experiments.

The algorithm in [1] is also an iterative greedy algorithm, but
selects, in each iteration, only the document that is relevant for
the maximum number of queries not already covered byk cached
documents. We refer to this algorithm as STOCHASTIC QUERY

COVER in our experiments.

5.3 Experimental Results
Our experimental results can be categorized into two parts that

we call index generationandindex serving.

Index Generation Experiments. In the index generation exper-
iments, we use around10% of our query setQ (we call this the
training setT) for generating the index using all three algorithms
separately. The performance of the algorithms in this step is mea-
sured by the fraction of queries inT covered by the index. This
gives us a measure of the quality of the selection process used by
the three algorithms in terms of coverage achieved on the train-
ing data itself. Note that this measure of effectiveness is extremely
well-suited to STOCHASTIC QUERY COVER since it does not test
the generalizability of the algorithm. Nevertheless, we show that
GREEDYSELECTION has almost the same performance as STOCHAS-
TIC QUERY COVER at small values ofk and outperforms STOCHAS-
TIC QUERY COVER for larger values ofk. In addition, we show
that we consistently outperform POSTING L ISTS in this set of ex-
periments.

We ran our experiments for cache sizes (or budgets)b ranging
from 1% to 5% of the total index size, number of resultsk ranging
from 6 to 148, and the relevance thresholdθ ranging from0.1 to
0.5. We also varied the number of samples in GREEDY SELEC-

8We selected this range so that the typical value ofk = 10 falls in
the middle of the range.

TION from 10 to 50, but observed that the sample size has negligi-
ble effect on the performance of the algorithm. We thereforeonly
report the results for a sample size of10 in all the experiments.

Fig. 3 illustrates the relative performance of GREEDY SELEC-
TION compared to POSTING L ISTS and STOCHASTIC QUERY

COVER for all the aforementioned parameter values. In Fig. 3(a),
all algorithms exhibit a drop in performance ask is increased since
it becomes more difficult to cover a query. (Recall that a query is
covered only if at leastk relevant documents are present in the in-
dex.) Also, as expected, STOCHASTIC QUERY COVER performs
better than GREEDY SELECTION at small values ofk because
(1) STOCHASTIC QUERY COVER optimizes over only the train-
ing query set whereas GREEDY SELECTION optimizes over the
entire query space, and (2) STOCHASTIC QUERY COVER uses
an expensive but accurate exhaustive search to make its greedy
choices wheareas GREEDY SELECTION uses a much more ef-
ficient but slightly less accurate sampling technique to make its
greedy choices. Interestingly, ask increases, the performance of
STOCHASTIC QUERY COVER degrades rapidly. This can be at-
tributed to the fact that STOCHASTICQUERY COVER treats docu-
ments that cover queries already having significant cache coverage
identically to documents that cover queries having no cachecover-
age. Clearly, the former set of documents should get precedence,
and as mentioned in Section 4, GREEDY SELECTION ensures this
by using an increasing utility function on coverage for making our
greedy choices. Comparing with POSTING L ISTS, we note that
GREEDY SELECTION performs better than POSTING L ISTS in
the entire range ofk since it is able to use cache space more judi-
ciously by distinguishing between individual documents ina post-
ing list based on whether they are relevant for other queriesor not.
In fact, GREEDY SELECTION does better than POSTINGL ISTS by
almost20% at the typical value ofk = 10.

In Fig. 3(b), where we vary the relevance thresholdθ, GREEDY

SELECTION consistently outperforms POSTING L ISTS by at least
20% and the gap in performance increases with the relevance thresh-
old. Again, the greater selectivity of GREEDY SELECTION in
terms of choosing documents gives it this advantage over POSTING

L ISTS. Furthermore, the performance of GREEDY SELECTION is
either better than or comparable to that of STOCHASTIC QUERY

COVER at all values ofθ, even though the evaluation is only on the
training query set.

Finally, in Fig. 3(c), we observe that POSTING L ISTS has a less
smooth uptick in performance than GREEDY SELECTION with in-
creasing index size. This is because it is always forced to include
entire posting lists, and therefore often cannot use residual space in
the cache. Such behavior causes pockets of relatively less progress
with increase in budget, which is illustrated in Fig. 3(c). On the
other hand, GREEDY SELECTION, with its ability to select one
document at a time, exhibits a smoother increase in query cover-
age as the budget is increased. Further, GREEDY SELECTION gets
closer to STOCHASTIC QUERY COVER asb increases and again,
does not show a significant drop in performance when comparedto
STOCHASTICQUERY COVER across the whole range of budgets.

To summarize, this experiment shows us that even when we re-
strict ourselves to evaluation on training data, GREEDY SELEC-
TION exhibits performance that is comparable to (and sometimes
better than) STOCHASTIC QUERY COVER. Further, for various
ranges of parameters, we have exhibited that GREEDY SELEC-
TION comfortably outperforms POSTING L ISTS in this set of ex-
periments.

Index Serving Experiments. In the next set of experiments, we
measured the generalization capabilities of the algorithms by defin-
ing our test query set asS = Q\T and measuring the hit ratios for

different parameter values. We further analyzed the effectof the
extent of structure in a query on the hit ratios. As describedear-
lier, we classified the queries into five buckets ranging fromhighly
unstructured (= 1) to highly structured (= 5). Again, we variedk
from 6 to 14 andθ from 0.1 to 0.5, whereas the budget was fixed to
3% of the total index size. In Fig. 4, we illustrate the performance
of the three algorithms as a function of these parameters.

As Fig. 4(a) shows, GREEDY SELECTION results in a much
better hit ratio compared to POSTING L ISTS and STOCHASTIC

QUERY COVER when the queries are highly structured. However,
when the queries become less structured, even though GREEDYSE-
LECTION continues to dominate POSTING L ISTS in performance,
STOCHASTIC QUERY COVER starts performing marginally bet-
ter than GREEDY SELECTION. Unstructured queries are less spe-
cific than structured queries and therefore, are often covered by
more documents in the index. STOCHASTIC QUERY COVER per-
forms well in this regime since the lack of specificity in unstruc-
tured queries implies that they are covered by many documents
that also cover queries in the training set. On the other hand, struc-
tured queries tend to be more specific and are often covered by
fewer documents in the index. Such queries are often missed by
a typical LRU cache and therefore, almost always, rely on a tier-
one index to be served efficiently. For such queries, GREEDY SE-
LECTION outperforms POSTINGL ISTS and STOCHASTICQUERY

COVER by around30% for typical values ofk = 10. In fact, the
relative performance of GREEDYSELECTIONincreases as the value
of k increases. This reflects the powerful generalizing capability of
GREEDY SELECTION to queries with unseen or rare combination
of attribute values.

Fig. 4(b) shows the performance of the algorithms for different
values ofθ. Here, we observe that while the performance of all the
algorithms drops asθ increases, GREEDY SELECTIONconsistently
exhibits a better hit ratio than POSTING L ISTS and STOCHASTIC

QUERY COVER , especially for the highly structured queries. For
example, forθ = 0.3, GREEDY SELECTIONalmost outperforms
the other algorithms 2 to 1. This again highlights the difference in
the generalizing capabilities of the algorithms. In order to explic-
itly measure the effectiveness of the algorithms on less frequent
queries, we repeated the experiment using unique queries inS (by
ignoring the query frequencies) and we observed a similar gap in
performance between GREEDY SELECTION and the other algo-
rithms.

Since one of the primary applications of the selected documents
is for tiered indexing, we measured the quality of the resulting in-
dex built using these documents. The quality of a document is
measured as its average relevance score over all attribute values.
In Fig. 5, we note that GREEDY SELECTION includes more rele-
vant documents in the index compared to POSTING L ISTS. In fact,
the document quality is almost40% better when using GREEDY

SELECTION (see Fig. 5(a)). This can be attributed to the fact that
while POSTING L ISTS does not distinguish between documents in
the same posting list, GREEDY SELECTION selects one document
at a time and therefore, selects only high quality documentsin the
cache.

6. RELATED WORK
Previous work on understanding user query distributions interms

of their relative frequencies and repetition (see e.g. [26,6]) has
observed on numerous occasions that users share many popular
queries. This immediately motivates a caching infrastructure such
as the one that we propose in this paper in order to improve the
performance of search engines. In the context database applica-
tions, there has been extensive work on building efficient middle-

0

0.1

0.2

0.3

0.4

0.5

0.6

6 8 10 12 14

F
ra

ct
io

n
a

l
Q

u
e

ry
 C

o
v

e
r

k

PostingsListCache

GreedySelection

StochasticQueryCover

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
a

l
Q

u
e

ry
 C

o
v

e
r

q

PostingsListCache

GreedySelection

StochasticQueryCover

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

F
ra

ct
io

n
a

l
Q

u
e

ry
 C

o
v

e
r

Budget (%)

PostingsListCache

GreedySelection

StochasticQueryCover

(c)

Figure 3: Performance ofGREEDY SELECTION compared toPOSTING L ISTS and STOCHASTICQUERY COVER using cache hit ratio
on the training set of queries for various parameter ranges:(a) Effect of number of resultsk needed to cover a query, withb = 3%
and θ = 0.3, (b) Effect of relevance thresholdθ, with b = 3% and k = 10, and (c) Effect of index sizeb with θ = 0.3 and k = 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 8 10 12 14

C
a

c
h

e
 H

it
 R

a
t
io

k

PostingsListCache-HU StochasticQueryCover-HU

GreedySelection-HU GreedySelection-HS

PostingsListCache-HS StochasticQueryCover-HS

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5

C
a

c
h

e
 H

it
 R

a
t
io

q

PostingsListCache-HS

StochasticQueryCover-HS

GreedySelection-HS

GreedySelection-HU

StochasticQueryCover-HU

PostingsListCache-HU

(b)

Figure 4: Performance ofGREEDY SELECTION compared toPOSTING L ISTS and STOCHASTICQUERY COVER at index serve time:
(a) Effect of the number of documentsk needed to cover a query, withb = 3% and θ = 0.3, (b) Effect of the relevance thresholdθ,
with b = 3% and k = 10. (HU = “Highly Unstructured”, HS = “Highly Structured”)

tier caches [2, 5, 15]. Early work on caching and tiering techniques
for search queries can be largely categorized into two broadareas
— result caching [20, 3, 25, 10, 9] and tiered indexing [21, 16, 18,
25, 4, 14, 11, 1]. The basic problem behind caching is to understand
the cost of serving a given query workload. For example, Ragha-
van and Sever [20] focused on popular queries in query logs. More
recently, Gan and Suel [9] proposed a weighted caching scheme
that includes the cost of processing the more frequent queries to a
search engine. Risviket al [21] introduced the concept of tiering
in order to improve the performance of search engines. Ntoulas
and Cho [18] studied term and document pruning strategies with
the aim of reducing resources needed to handle a given query.Sko-
beltsynet al [25] combined result caching with index pruning for
better efficiency. Baeza-Yateset al [3] compared the impact of re-
sults caching and static caching of posting lists on the performance
of web search engines. They concluded that static caching ofpost-
ing lists outperforms all other variations of caching they considered
in their study. Long and Suel [16] introduced a three-level caching
architecture that includes on-disk caching of the posting lists for
popular term combinations. Leunget al [14] studied the problem
of tier selection for storing documents with the goal of minimizing
the number of tier traversals for a given workload of queries. The
work of Anagnostopouloset al [1] is the closest to ours. They gave
a greedy algorithm for document selection based on a training set to
queries. In fact, we will compare the performance of our algorithm
to those of [3] and [1].

Another line of work that incorporates relevance and similarity
functions is on top-k queries (also referred to ask nearest neighbors
(kNN))in databases [22]. More recent work focused on applying
the kNN problem to searching over a database [27, 24]. Our work

differs from this line of work in that we focus our work on generat-
ing a tiered index that addresses the low latency requirements often
imposed in online search settings.

From a theoretical perspective, our algorithms fall in a class
of well-studied combinatorial optimization problems calledcover-
ing problems. Of particular relevance is the maximumk-coverage
problem, where the goal is to select a collection of at mostk sets
in a universe of weighted elements such that the sum of weights
of elements covered by these sets is maximized. This is a classi-
cal NP-complete problem, and it has been shown that the natural
greedy algorithm for this problem is indeed optimal under standard
assumptions in complexity theory [8]. Many variants and gener-
alizations of this problem have also been studied in the literature
(see e.g. [13, 7]), including ones where we have oracle access to
the sets. Our problem falls in this category, and the main techni-
cal contribution of this paper is to design a suitable oraclefor our
setting by exploiting the structural properties of commerce search
queries.

7. CONCLUSION AND FUTURE WORK
In summary, we proposed a technique for caching search re-

sults for structured search domains such as commerce search, and
demonstrated the effectiveness of our proposed algorithm both the-
oretically and via experiments on real-world data. There are multi-
ple important questions that this work raises. For what other search
domains can such result caches be generated using our techniques?
In particular, can our techniques be extended to unstructured do-
mains such as general web search? How to handle arbitrarily cor-
related attributes and arbitrary relevance functions?

0

0.05

0.1

0.15

0.2

0.25

6 8 10 12 14
A

v
e

ra
g

e
 D

o
cu

m
e

n
t

Q
u

a
li

ty

k

PostingsListCache

GreedySelection

(a)

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5

A
v

e
ra

g
e

 D
o

cu
m

e
n

t
Q

u
a

li
ty

q

PostingsListCache

GreedySelection

(b)

Figure 5: The quality of the index computed usingGREEDY SELECTION compared to POSTING L ISTS: (a) Effect of the number of
documentsk needed to cover a query, withb = 3% and θ = 0.3, and (b) Effect of relevance thresholdθ, with b = 3% and k = 10.

8. REFERENCES
[1] Aris Anagnostopoulos, Luca Becchetti, Stefano Leonardi,

Ida Mele, and Piotr Sankowski. Stochastic query covering. In
WSDM, pages 725–734, 2011.

[2] Jesse Anton, Lawrence Jacobs, Xiang Liu, Jordan Parker,
Zheng Zeng, and Tie Zhong. Web caching for database
applications with oracle web cache. InSIGMOD Conference,
pages 594–599, 2002.

[3] Ricardo A. Baeza-Yates, Aristides Gionis, Flavio Junqueira,
Vanessa Murdock, Vassilis Plachouras, and Fabrizio
Silvestri. The impact of caching on search engines. InSIGIR,
pages 183–190, 2007.

[4] Ricardo A. Baeza-Yates, Vanessa Murdock, and Claudia
Hauff. Efficiency trade-offs in two-tier web search systems.
In SIGIR, pages 163–170, 2009.

[5] Christof Bornhövd, Mehmet Altinel, Sailesh Krishnamurthy,
C. Mohan, Hamid Pirahesh, and Berthold Reinwald.
Dbcache: Middle-tier database caching for highly scalable
e-business architectures. InSIGMOD Conference, page 662,
2003.

[6] Andrei Z. Broder, Marcus Fontoura, Vanja Josifovski, Ravi
Kumar, Rajeev Motwani, Shubha U. Nabar, Rina Panigrahy,
Andrew Tomkins, and Ying Xu. Estimating corpus size via
queries. InCIKM, pages 594–603, 2006.

[7] Chandra Chekuri and Amit Kumar. Maximum coverage
problem with group budget constraints and applications. In
APPROX-RANDOM, pages 72–83, 2004.

[8] Uriel Feige. A threshold ofln n for approximating set cover.
J. ACM, 45(4):634–652, 1998.

[9] Qingqing Gan and Torsten Suel. Improved techniques for
result caching in web search engines. InWWW, pages
431–440, 2009.

[10] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce M.
Maggs, Todd C. Mowry, Christopher Olston, and Anthony
Tomasic. Scalable query result caching for web applications.
PVLDB, 1(1):550–561, 2008.

[11] Jun-Seok Heo, Junghoo Cho, and Kyu-Young Whang. The
hybrid-layer index: A synergic approach to answering top-k
queries in arbitrary subspaces. InICDE, pages 445–448,
2010.

[12] Richard M. Karp, Michael Luby, and Neal Madras.
Monte-carlo approximation algorithms for enumeration
problems.J. Algorithms, 10(3):429–448, 1989.

[13] Samir Khuller, Anna Moss, and Joseph Naor. The budgeted
maximum coverage problem.Inf. Process. Lett.,
70(1):39–45, 1999.

[14] Gilbert Leung, Novi Quadrianto, Alexander J. Smola, and
Kostas Tsioutsiouliklis. Optimal web-scale tiering as a flow
problem. InNIPS, pages 1333–1341, 2010.

[15] Wen-Syan Li, Daniel C. Zilio, Vishal S. Batra, Calisto
Zuzarte, and Inderpal Narang. Load balancing and data
placement for multi-tiered database systems.Data Knowl.
Eng., 62(3):523–546, 2007.

[16] Xiaohui Long and Torsten Suel. Three-level caching for
efficient query processing in large web search engines. In
WWW, pages 257–266, 2005.

[17] R. Motwani and P. Raghavan.Randomized Algorithms.
Cambridge University Press, 1997.

[18] Alexandros Ntoulas and Junghoo Cho. Pruning policies for
two-tiered inverted index with correctness guarantee. In
SIGIR, pages 191–198, 2007.

[19] Debmalya Panigrahi and Sreenivas Gollapudi. Result
enrichment in commerce search using browse trails. In
WSDM, pages 267–276, 2011.

[20] Vijay V. Raghavan and Hayri Sever. On the reuse of past
optimal queries. InSIGIR, pages 344–350, 1995.

[21] Knut Magne Risvik, Yngve Aasheim, and Mathias Lidal.
Multi-tier architecture for web search engines. InLA-WEB,
pages 132–143, 2003.

[22] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent.
Nearest neighbor queries. InSIGMOD Conference, pages
71–79, 1995.

[23] Nikos Sarkas, Stelios Paparizos, and Panayiotis Tsaparas.
Structured annotations of web queries. InSIGMOD
Conference, pages 771–782, 2010.

[24] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step
k-nearest neighbor search. InSIGMOD Conference, pages
154–165, 1998.

[25] Gleb Skobeltsyn, Flavio Junqueira, Vassilis Plachouras, and
Ricardo A. Baeza-Yates. Resin: a combination of results
caching and index pruning for high-performance web search
engines. InSIGIR, pages 131–138, 2008.

[26] Yinglian Xie and David R. O’Hallaron. Locality in search
engine queries and its implications for caching. In
INFOCOM, 2002.

[27] Wenjie Zhang, Xuemin Lin, Muhammad Aamir Cheema,
Ying Zhang, and Wei Wang. Quantile-based KNN over
multi-valued objects. InICDE, pages 16–27, 2010.

