Document Selection for Tiered Indexing
in Commerce Search

- -* - -
Debmalya Panigrahi Sreenivas Gollapudi
Microsoft Research Search Labs, Microsoft Research
Redmond, WA 98052 Mountain View, CA 94043
depan@microsoft.com sreenig@microsoft.com
ABSTRACT in this domain. On being presented a user query, the goalaia ¢

merce search engine is to output a set of relevant produstsits
online catalog. Since query response time is a key paranreter
user experience, a natural approach is to userad indexwhere
the search engine maintains a smaller index over a subsecaf d
ments (product descriptions) that can serve a large fracfipop-
ular queries. The selection of these documents is a chaigbask

in general web search because of dineersityandlack of structure

in user queries. However, in commerce search, queriesatjpic
comprise a list of desirable product features. Therefdre query
space, while being extremely large, is much more structtirad

in general web search. In this correspondence, we show that w
can exploit this additional structure to design efficiergoaithms
for selecting the set of documents in a tiered index for consme
search with significantly better performance than the stéthe-
art in general web search. While we present our results indhe
text of commerce search, our techniques automaticallynexte
other structured search domains (e.g. travel, music, repeie.)

A search engine aims to return a set of relevant documents-in r
sponse to a query, while minimizing the response time. Ths h
led to the use of a tiered index, where the search engine aiasra
small cache of documents that can serve a large fractionesfegu
We give a novel algorithm for the selection of documents ier@tl
index for commerce search (i.e. users searching for predurct
the web) that effectively exploits the superior structurhbrac-
teristics of commerce search queries. This is in sharp asnto
previous approaches to tiered indexing that were aimedrarge
web search where queries are typically unstructured. Wardiie
cally analyze our algorithms and give performance guaesgen
in worst-case scenarios. We then complement and strengtiren
theoretical claims by performing exhaustive experimemgeal-
world commerce search data, and show that our algorithmeoutp
forms state-of-the-art tiered indexing techniques thatewdevel-
oped for general web search.

. . . as well.
Categones and SUbJeCt Descrlptors As mentioned above, commerce search queries are chazadteri
H.3 [Information Storage and Retrieval] by a set of product features (we call theg@ribute valuesor key-
wordg that the user desires in the product she is searching f@. Th
General Terms makes it feasible to categorize commerce search queriesl lnas

these features, and to decompose them into their constitiien
tribute values. For instance, it is relatively easy to idfgrthat a
queryCanon EGS bl ack 12MP was issued by a user search-

Algorithm, Performance

Keywords ing for cameras, and that her desired attribute valuearmon,

Tiered Indexing, Structured Search ECS, bl ack, anc_zllZlvP for_attrlbut_esmanufacture,r model_ ling
color, andresolutionrespectively. Given that such categorizers ex-
ist (see e.g. [23]), the central question that we seek toesddn

L _ INTRODUC_:TION _ this paper is the followingcan we use the structure in commerce

With the astronomical growth of the internet over the lasiedte, search queries to select documents for a tiered search iatiesd
search enginebave been playing a pivotal role in guiding users to at faster query response?
internet resources that they desire. Over the last few years- In response to a user query, a commerce search engine ®5p|ay

merce searchi.e. users searching for products with the intention 3 set of relevant products from its online catalog. So, welriee
of purchasing them online, has come to occupy a prominesepla ynderstand how a search engine evaluates the relevancesef a u

- . query to a product. Since commerce search queries are @&-colle
*Part of this work was done as a graduate student supported, induery P d

part, by NSF contract CCF-1117381 at the Massachusetitubest tion of attribute values, this boils down to finding the releee of
of Téchnology, Cambridge, MA 02139. a document to an attribute value. For exampléj &on D7000

camera is likely to be more relevant to the keywbickon than to
Canon. This is a rather straightforward assertion, but in general
we might have more ambiguous scenarios: e.gbisw@e or ar ed

Permission to make digital or hard copies of all or part o$ twork for camera more relevant to a user who is searchingtorp| e cam-
personal or classroom use is granted without fee providatidbpies are eras? Recently, we suggested a completely automated deehior
not made or distributed for profit or commercial advantage that copies inferring theserelevances(or similarities) based on previous user
bear this notice and the full citation on the first page. Toyooiherwise, to behavior represented by browse trail data collected fravtbews

republish, to post on servers or to redistribute to listguies prior specific . .
permission and/or a fee. of web browsers [19]. In this paper, we use the algorithm 8 {&

WSDM'13,February 4-8, 2013, Rome, Italy. obtain, for every keyword, a list of relevance scores afwith ev-
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

ery other keyword for the same attribute (e.g. betw&anon and
every other manufacturer). (We may note that most of themesc
are 0 allowing for succinct representation.) For a prodocthie
catalog (say &i kon D7000 camera), its relevance score for a
user-specified attribute value (s@gnon) is the relevance score of
its corresponding attribute value (i.e. the similarityrgcofNi kon
with Canon). We note that such a model of similarity between at-
tribute values allows us to extend our techniques presenttds
paper to indexes where the data is probabilistic in natucethe
matching score of a record to the user query is some function o
these probabilities.

(say around 20), and there are a manageable number of differe
attributes (there are at most 10 important attributes fostneat-
egories of products), the total number of possible quereseg
ated by combining these attribute values is enormous. Qur so
tion bypasses the obvious computational challenges oflahie
query space by using its structural characteristics toda@rhaus-
tive searches.

At a high level, our solution borrows (from [1]) the idea obgd-
ily selecting documents one at a time based on the increienta
query coverage they offer. However, we want to ensure that th
solution generalizes well to an arbitrary query test setthimend,

The next step is to infer the relevance score of a product for a we derive marginal frequencies on individual attributeuesl from

queryq from its relevance scores for the constituent attributaesl
of ¢. A natural strategy is to say that a product is relevant toemyqu
if it has a high relevance score for most attribute valuebérjuery.
There are multiple functions implementing this strategyl ave

the training data and use the structure of the query spatitoze
the overall query distribution from these marginal frecgies. This
would naturally suggest a greedy algorithm on the entireyqdis-
tribution (rather than the one observed in the training)Jddtw-

discuss some of them later in the paper. Once we have decidedever, a naive implementation of this idea would lead to amesh

on such a function, the problem of constructing a tiered»nofe
size b boils down to finding the set df products that maximizes
the weighted (by query frequency) fraction of queries thatehat
leastk relevant products in the indek,being the number of search
results returned to the user. Note that these are preclselset of
queries that can be exclusively served from the cache, anéftire
representache hits We formalize this problem later, and call it the
INDEX SELECTIONproblem.

Caching posting lists v/s query results. As mentioned earlier,
algorithms for selecting documents in a tiered index havenbe
proposed in the literature for general web search. Two prenti
strategies are: (1) include posting lists, i.e., list of wloents, for
relevant popular search terms (e.g. [3]), or (2) includecese-
sults for popular queries (e.g. [1]). Both strategies suffem
serious deficiencies. While the former strategy genersliedter
since it does not restrict itself to only optimizing over tinain-
ing set of queries, it is unable to differentiate betweenudoents
in the same posting list. For example, the posting listGanon
would typically contain documents that are relevant to mauay-
ufacturers as well as those that are specificanon, and the algo-
rithm fails to preferentially select documents of the fisgie over
those of the second type. In addition, the strategy of capgittire
posting lists leads to wastage of valuable cache space poste
ing lists for related but distinct keywords tend to have saihigal
overlap. On the other hand, selecting the contents of thedtie
index based solely on a training set of queries leads to penr g
eralization characteristics since the query space is emesnand
typical query distributions have large support. Furthiee algo-
rithm in [1] uses an exhaustive search over the entire seainiing
queries, which hampers efficiency and scalability of thanégue.
In this paper, we present a novel solution that exploits thegire
of commerce search queries to overcome the deficienciestbf bo
these techniques.

Our solution. Before describing our solution, let us first under-
stand the structure of the query space for commerce searsh. A
we stated earlier, a query comprises a set of attribute salker
example, a user searching for digital cameras can opt foofse/-
eral manufacturers/model lines, various different retsohs, mul-
tiple colors, price ranges, lens types, and so on, and thesees
are largely independent of each other. Note that typicalcbea
queries also contain “free text”, i.e. textual descriptibat does
not correspond to any particular attribute. We strip queoiesuch
free text at the very outset, and consider queries to be csatpo
only of the identifiable attribute values in them. Even thotlge
number of attribute values for each such attribute is not l@ge

tive search over the support of the query distribution. Oairm
technical contribution is an efficient implementation dstgreedy

strategy using algorithmic sampling techniques to redbheesam-

ple space to a sequence of marginal distributions (ratteer the

overall query distribution) in order to obtain estimatedtomincre-

mental query coverage of individual documents.

It is worth mentioning that our algorithms apply not only to
commerce search but to any other structured search domaémevh
queries predominantly consist of a set of attribute valeesvhich
relevance scores as described above can be compitedever,
our techniques do not naturally extend to general web sedrch
particular, our sampling technique is based on the quergespe-
ing a Cartesian product of sets of attribute values for iicldial
attributes. Unfortunately, the query space for general seztich is
substantially less structured and cannot be interpretéueaSarte-
sian product of a small number of small sets. We leave the ex-
tension of our ideas to general web search as an interegtithg a
independent open question.

An additional algorithmic complication arises from ttignamic
nature of the set of documents. To ensure that the tiered iree
flects changes in the catalog, one option is to discard thentsof
the index periodically and re-run the algorithm to genesatew set
of documents. However, this is a rather expensive soluiincest
involves repeated re-runs of the algorithm on the entirefsgbcu-
ments. We propose simple algorithmic solutions that oveecthis
inefficiency.

To evaluate the performance of our algorithm in practicepere
form extensive experiments on the product catalog used loyra c
mercial online shopping portal. A query is said to haveaahe
hit if at leastk of the products returned by the commercial search
engine on being issued the query are indeed in the index. We va
the parameters of the algorithm such as the size of the irtlex,
relevance threshold, the value bf etc. and observe the result-
ing changes in the cache hit ratio. For these parameter sange
compare our performance with those of standard algoritimtise
literature for tiered indexing in general web search [1, 3].

Our Contributions. The following is a brief sketch of our main
contributions in this paper:

e We formalize the problem of selecting products in a tiered
index for commerce search (or any other structured search
domain). We call this theNDEX SELECTIONproblem.

e \We propose a randomized algorithm for thebEX SELEC-
TIONproblem, and show that it achieves a near-optimal ap-
proximation ratio (subject to standard assumptions in com-
plexity theory).

e To address the practical consideration of changing cagalog
we give a natural extension of our algorithm that adjusts the
contents of the index in response to the arrival of new prod-
ucts, without having to compute the entire contents of the
index from scratch.

e We complement our theoretical results by performing exten-
sive experiments on real-world data. Our experiments con-
firm that our algorithm is scalable, accurate, and efficient,
and outperforms the state-of-the-art techniques in tiared
dexing for general web search.

2. PROBLEM DEFINITION

Recall that commerce search queries can be classified itéo ca
gories (such adigital cameras cellphonesetc.), where each cat-
egory is characterized by a set of attributes (eagolutionis an
attribute fordigital camera$. Each attribute, in turn, has a set of
attribute values (e.gCanon, Ni kon, etc. for attributemanu-
facturerin the categonyigital camera3. Formally, suppose there

areL categories, where categojyiask; attributes. Letd?), A{|
. ,ASj,) denote the sets of attribute values for these attributes. Fu

ther, for every attribute value, we estimate its relative frequency
in the set of queries, and denote it fiy. On the other hand, |dD
be the set of documentsand letw, denote the relevance score of
attribute valuex for documentd € D.

Each query comprises attribute values for a subset of atérh
in its category (recall that we assume that we have stripped t
query of its free text). For example, a quéZgnon ECS 12MP
has attribute value€anon, ECS, and 12MP for attributesman-
ufacturer model ling and resolutionrespectively but is missing
attributes such asolor. For ease of notation, we introduce the spe-
cial element in the set of attribute valuesz(.j) for every attribute
1 in every category, and denote the augmented set of attribute val-
ues byA?? = AY) U {¢}. A query missing attributé is now
assumed to have the special attribute valder attribute:, and the
relative frequency o for attribute: is the fraction of queries that
are in category and are missing attribute The set of all queries
in categoryj is then given by

QR = Agj"b) X A;j"”) X ..o X Agf‘”).

In any such query; € Qj, the attribute value for attributéis
denoted byy(7) (note thatg(i) could beg). The relative frequency
of a queryg in categoryj is defined ag, = Hfil faty-

We are implicitly assuming independence over the set dbatts
for any category. While this is accurate for attributes saglgolor,
manufacturer, product specifications, etc. that have scoatEla-
tion, it does not hold for highly correlated attribute comdttions
such as manufacturer and model line. To overcome this prgble
following [19], we treat correlated subsets of attributessangle
attributes, and leave the problem of obtaining a more refiresd-
ment of attribute correlation as future work.

Relevant documents for a Query.As mentioned in the introduc-
tion, there are multiple options for defining the set of ratl@vdoc-
uments for a query, based on the relevance scores of the éotsim
for individual keywords in the query. Perhaps the simplgsionm

is to define relevance of a document for individual keyworgls b
setting a threshold on the relevance score. The documeiminis n
defined to be relevant for a query as a whole if it is relevant fo
everykeyword in the query. However, this suffers from the short-
coming that even if a document is relevant for all but one kagv

1For commerce search, a document is a product.

in a query, it is deemed to be irrelevant for the query as a hol
A natural relaxation is to call a document relevant if it ifexant
to most (e.g. at least some fixed fraction) of the keyword$én t
query. Noting that this strategy does not differentiatevieen two
documents that meet the relevance threshold for an atriaitie
but have very different relevance scores, we finally corzvergthe
following definition of relevanceA document is said to lrelevant
to a query if the average of the relevance scores of the docume
over all the keywords in the query is at least some fixed tltdsh
0. Both the previous definitions of relevance can be simulated
ing the new definition, and therefore our algorithm can aksadfe
either of the previous definitions.

If a documentd is relevant for a query;, then we say thag
is coveredby d. Similarly, if at least one document in a set of
documentsX covers a query, then we say that is covered byX.
Let Q(d) denote the set of queries that are covered by document
d, and letQ(X) be the set of queries that are covered by a set of
documentsX. Corresponding, lefs = quQ(d) fqandfx =

Zq€Q(X) fa-

Choice of index size? A key input is the size of the index denoted
by b. The choice of the relevance threshalds dictated by the
size of the index (e.g. a large value &fand a small index size
might lead to most of the index remaining unused). In ture, th
size of the index is a function of external parameters sucthes
desired cache hit ratio and the amount of memory and indexing
infrastructure available to the search engine.

Objective Function. For simplicity, we set the number of results
returned by the algorithmt to 1. (We will consider general val-
ues ofk later.) Then, the objective of the algorithm is to output a
set X of at mostb documents that maximizes the sum of relative
frequencies of queries covered Ay i.e. maximizesfx.

We call this the NDEX SELECTION problem.

3. THE GreebpySeLection ALGORITHM

We propose a natural, greedy algorithm for tlhEx SELEC-
TION problem, which we call the &EEDY SELECTION algorithm
(see Figure 1). The algorithm hasterations, where in each iter-
ation, we add the documedte D \ X to X that maximizes the
value of the objective functiorfx. The primary challenge lies in
the polynomial-time implementation of this algorithm. Fewery
documentd € D \ X, the algorithm requires to compute the in-
crease in the objective functiondfwere added to the indeX. This
entails computation of the sum of relative frequencies @&frgs in
Q(d) \ Q(X) for any documentl € D \ X. In a naive imple-
mentation, this would take time proportional to the totainer
of queries, which is exponential in the size of the input. @ain
technical contribution is a polynomial time implementatiaf the
GREEDY SELECTION algorithm that proves the following theo-
rem.

THEOREM 1. Foranye > 0, there is arandomized polynomial-
time® algorithm (which we call theGREEDY SELECTION algo-
rithm) for the INDEX SELECTION problem that achieves an ap-
proximation ratio ofl — 1/e — ¢ with high probability?

2By index/cache size, we mean the number of unique documents
in the index.

3The running time is polynomial in the input parameters ag asl
in1/e.

A statement is said to holdith high probability (or whp) if the
statement holds with probability — o(1).

X0

for ¢ from 1 tob do
d* + argmaxgec p\x COUNT QUERY(X U {d})
X+ Xu{d}

end for

return X

Figure 1: The GREEDY SELECTION algorithm

SinceQ(d) \ Q(X) = Q(X U{d}) \ Q(X), our problem boils
down to estimating the sum of relative frequencies of q@erm/-

ered by a given subset of documebtghereY = X U {d}), i.e.

estimatingfy . We call this the ©UNT QUERY problem.

Algorithm for the CoUNT QUERY problem. We now describe
an algorithm for estimating the sum of frequencies of quettat
are covered by in a single category; the overall estimate is the
sum of these estimates over all categories. Our algoritHhhawe
an error parameter > 0; as a preprocessing step, we round the
relevance scores,q to multiples of a small enough valugsuch
that the error due to the rounding can be absorbed in

A simple idea would be to sample of a set of queries uniformly
at random and use the fraction of sampled queries that asFav
by Y as an estimator for the fraction of queriesiY"). Unfortu-
nately, the size of the sample required to control the saigiror
is inversely proportional to the fraction that we are tryhogesti-
mate, which in our case implies that we might need expongntia

many samples. To overcome this difficulty, we use a technique

calledimportance samplinghat was originally proposed by Karp,
Luby, and Madras [12] for counting the number of truth assign
ments of a DNE formula. The main idea is to sample queries from

a multisetwhere each query appears as many times as the num-

ber of documents iy that cover it, and then use a pre-determined
order on the documents to estimate the ratio of the numbdisef
tinct queries in the multiset to the size of the multiset. It is emsy
show that this ratio is always at least inverse polynomiat| ean
therefore we estimated using a polynomial number of samples

We order the documents i in an arbitrary fixed ordedl;, d2,
.. djy|. LetN, = fq, andN = Y!IYI N, which is the size of
multiset formed by combining)(d..) for all documentsi, € Y.
Our algorithm has two phases. In the first phase, we estirhate t
values of N,. (and therefore ofV), and in the second phase, we
perform the sampling procedure described above.
Phase 1.The first phase of our algorithm employs a dynamic pro-
gram (DP) to estimate the values df.. Let I, denote the set
of attributes in query (i.e. q(i) # ¢ iff i € I;). Further, let
S(j,¢,~) denote the sum of relative frequencies of quegiagich
have exactly attribute values, all of which are among the fifst
attributes, and have a sum of relevance scores over theseitt
values of at least. Let Q(d-,j,¢,~) (for £ < j7) be the set of
queries that have exactlyattributes, all of which are among the
first j attributes, and would have been covered by docurdent
if the threshold on the average relevance score were some val
~v/C. Let[n] = {1,2,...,n}. Formally,Q(d.,j,¢,v) = {q :
g = €1 C [j]vzz‘elq Wa(i),dy = v}, andS(dy, 5, 4,v) =
> vacQdy gt fa- NotethaQ(d,) = U_,Q(d, k, £, 0¢). There-
fore, N, = Z’gzl S(dr, k, £,00). (Recall thatk is the number of
attributes in the current category.) We will compute theugal of
S(dr, k, £,0¢) using a DP that we describe below, which yields the
values ofN,..

We make the following observations:

SDisjunctive Normal Form

e If j = ¢ =1, then the queries iQ(d,, , ¢, 6¢) are precisely
the singleton queries containing attribute values A; that
satisfywgq, > 7.

e If j > ¢ = 1, then the queries i (d,, j, ¢, 0¢) are also
singleton queries, and contain attribute values A, for all
t < j that satisfywgq, > 7.

e If 5 = ¢ > 1, then the queries i§(d,, , ¢, 0¢) must contain
an attribute value for every attribute [iji.

e if 7 > ¢ > 1, then the queries if(d., j, £, 0¢) either contain
an attribute value for attributand? — 1 attribute values for
attributes inj — 1], or contain/ attribute values for attributes
in [j — 1] and¢ for attribute;.

These observations lead to the following DP:

S(d"‘71717’}/) = Z fﬂ«
Q€A W, 2
S, 3, 1,7) = fo-Sdni=-1L1LM+ > fa
Q€A Waq, 2
forjelk],j7>1
S(d’f“7j7j77) = Z fa'S(d7'7j_17j_17max(7_wadr70))
a€A;
forjelk],j>1
S(d’r“vj7€77) = f¢7's(d7“7j_17€77)+

> faSG = 1,£= 1, max(y = waa, ,0))

a€A;
forje[k],7>1,0€[j—1]

Since the relevance scores are in multipleg),ofvhich is polyno-
mial in the error parameter, the running time of the this DP is
polynomial.

Phase 2.In the second phase of theoONT QUERY algorithm,
we draw a set oh, sample queriegi, gz, . . ., ¢» (the value ofn
will be determined later). Each quegy cup‘TY:‘1 (dr) is drawn
i.i.d. using the following procedure: First, we sample alwoent

d, with probability % Next, we sample the number of attributes
£in g; with probability“k&—{jel). This restricts the set of queries to
Q(k, ¢,00). Finally, we sample a query iQ(k, ¢, 0¢) using a DP
like the one in phase 1, the details of which are given in Fdur

(In Figure 2,q(—j) denotes(¢q(1),¢(2),...,q(j — 1)) and fs is
the product off,, over all attributes: < j.)

Next, we need to define the estimator for that we generate
using these sampled queries. Let

Q'(ds) = {g € Q(ds) : ¥t < 5, ¢ ¢ Q(d)}.

For eachy € [n], we setr; = 1if ¢; € Q'(d,); otherwisex; = 0.
The estimate foyfy returned by the algorithm is

X = <L§2—; xj) N.

Analysis. Our main technical lemma establishes the accuracy of
the above algorithm for the @JNT QUERY problem.

LEMMA 1. There is a randomized polynomial-tifnepproxi-
mation scheme for th€ouNT QUERY problem that has a multi-
plicative error of1 — ¢ for any fixede > 0 with high probability.

5The algorithm runs in time polynomial in the input paramsnd
in1/e.

B+ {a€A;:wwa >}
Foreachy € Aj, 7, + <=

ZmEB fa
if £>1then
For eachus € Aj, Pa f(a)-S(d,j— g‘fd;lfnj)x(’y Wad,0))
end if ’
if j > £then

fo-S(di—1,07)

Pe < T5(d 0

end if
Casel(j =¢=1):
For eachu € B with probabilityr., ¢(j) < a
Case2(j > (¢ =1):
For eachu € B with probability -Le-l2— S(d Z ok
4(j) + aandg(—j) < (6,0,...,6);
with the remaining probability,
q(3) + ¢ andq(—j) < Sample(d, j —
Case3(j =/ > 1):
For eachu € A; with probability p,, ¢(j) < a and
q(—j7) « Sample(d j—1,0—1,max(y — waq,0))
Case 4(j > ¢ > 1):
For eachn € A; U {¢} with probabilitypa, ¢(j) < a.

1,4,7)

if ¢(j) = ¢then
q(_.]) — Sample(dvj - 1747 7)1
else
q(—j) + Sample(d, j —1,¢—1, max(y —wa,d4,0)).
return ¢

Figure 2: The subroutine Sample(d, j, ¢,) used in phase 2 of
the algorithm for the COUNT QUERY problem

Before proving this lemma, let us show that it is sufficienptove
Theorem 1. Let us denote thedONT QUERY algorithm byO (we
call it anoracle), and the QREEDY SELECTION algorithm by A.
Recall that in each iteration o4, the document to be added to the
index X is selected as follows: for every documeh& D \ X, we
use oracle) to estimatefx ¢4y and add the document for which
this estimate is the maximum fg.

The next lemma maps the approximation ratiofofo that ofO.

LEMMA 2. For anyd > 0, there is a setting of for oracle O
such that algorithmA has an approximation ratio of — ¢ whp,
and has running time polynomial irys.

To prove this lemma, we introduce some terminology. In adly ca
to oracle®, we say that the oracle siccessfuilf the estimate pro-

duced is(1 £ ¢)-accurate; otherwise, we say that the oracle failed.

The next lemma quantifies the impact of a successful call tm
algorithm A.

LEMMA 3. Suppose in an iteration of algorithtd, document
d is selected, and lef* = argmaxgqep\ x fxugay- Further, let
Z = fxugay andW = fxyqq+}. If all the calls to oracleO in this

iteration (with parametee) are successful, thefd > (e)W.
PROOFSKETCH. LetY = fx; letY, Z, andW denote the

values ofY’, Z, andWW as estimated by oracl@. Letp = % — 1.
Thus,p € [—¢,€]. Then,

Z7-v>_ 2 Y S (l=\y
T+e 14+p-\1+e

(Calculation details deferred to full version.)]

We use this lemma to prove Lemmd 2.

PROOF OFLEMMA 2. The probability that the oract® fails in
at least one call i®(1), and is therefore absorbed in the failure
probability of algorithmA. Hence, we only need to show that if the
oracleQ is successful in every call ofl, then the approximation
ratio of Aisatmostl — 1/e — ¢

Let X; denote the selected documents in the fifgrations. Let
the sum of relative frequencies of queries covered by amabti
solution beoPT. By averaging, there is at least one documért
D\ X; such that

oPT—Y;
- Ix, > 5

By Lemma 3, the success of oraclewith parametet (we will set
the value ofe later) in iterationi + 1 implies that

Ix,u5dy

OPT— fx

in+12p< b l+fX)7

= (), the above recurrence yields

wherep = 1=

b—1 i
fx, = ()OPT<Z Z(l——) >
=0
b
P b 1
= |———— |opPT|1— 1- - .
<1+<1—p>b) < ”(b))
We setp = 1 — 7 for some constant that we will determine later.
Then,
1—- C/b —(c+1) 1
fxb><1+c)OPT(1—e)>1—g—5,
where we set = £ to ensure that
1—e¢ 1)
=1 b>eb=0> ——.
¢ (1+e> V=050 1))

We used(%)b < e~ ® (first step),b > 1 (second step), and

< 1—2candec > 0 (third step) in the calculation. [J

1+c

We now analyze the GUNT QUERY algorithm, and prove Lemma 1.
The analysis comprises two claims: that the estimafas unbi-
ased, and that for a large enough value:pX has small variance.
The next lemma combines these claims.

LEMMA 4. In the algorithm for theCOUNT QUERY problem,

PIX ¢ (1£6)fy]=o(1).
PROOF For any sample quenry; in the above algorithm,

1Yl

g N, quQl(dr) fa _ Z‘:;‘1 quQl(dr) fa
Ehﬂ§:<ﬁgi< N, - N '

r=1

Clearly, each query i®Q(Y") is present inQ’(d,) for exactly one
documentd, € Y. Therefore[E[x;] = ny and hence, the estima-
tor is unbiased.

Now, we employ Chernoff bounds (see e.g. [17]) to bound the
probability of deviation of the estimator. Lét= ny Then

2¢n
3

)

PX ¢ (1+e)fy] = [E:L (1+e)n

"The proof implicitly uses the fact that the objective funatifor
the INDEX SELECTION problem issubmodular

3

2

which iso(1) forn = w (

We now note tha% =

quQ(y) fal{r g € Q(
Z:qEQ(Y) fq

Hence,n is polynomial in the input parameters[]

)

, which in turn equals

o

Y

)}

S

< max [{r:qé€ d, < Y.
< max [{riq€Q@)} <|Y]

Running Time. The overall running time of the algorithm is

J

k k;
o} b~|D|~n~m]ax > 1A +ij.f:% ,
J i=1

i=1

which is markedly better than the running time of a naive enpl
mentation of the greedy algorithn@(b - [D[- 3= Hfil |Ail).
Further, we will now describe algorithmic and data struatup-
timization that makes our implementation of the algorithracim
more efficient than that suggested by the worst-case rurtiiregy
above. Our first observation is that the sets of sample cgigge-
erated in various calls to thedNT QUERY sub-routine need not
be independent since we are using an union bound over the erro
probabilities. This leads to the first optimization: For gvdoc-
umentd € D, we use theSamplesub-routine to generate apriori
a set of (mutually independent) sample queries fr@ifl) with
probabilities proportional to their relative frequenciese call the
setSQ(d)). Whenever the GUNT QUERY algorithm requires a
sample query fronQ(d), it is provided the first query iIFQ(d)
that has not been used previously in the current run of thentr
QUERY algorithm.

To improve the performance and scalability of theE&EDY Se-
LECTION algorithm further, we design the following data structure.
Let P be a max priority queue of all the documerts D ordered
according tofq - (1 — gq), wherefq is the sum of frequencies of
all queries covered by, andg, is the fraction of queries INQ(d)
that are already covered by the current indéx Clearly, the doc-
ument at the front of this priority queue is the next docuntaat
should be inserted iX. However, this data structure presents two
challenges:

e Every time a document is inserted K, we incur the huge
overhead of having to update the valueggfor every doc-
umentd in P.

e Since the set of documeni3 is enormous, it would take a
large amount of memory space to store the query samples
corresponding to all the documentsih

We overcome these challenges by adoptiteys policy For every
documentd in P, we maintain a countet indicating the last index
in X for which the value ofy; has been updated for documeht
Initially, ¢4 = 0 andgq = 1 for every documend € D. Further,
no sample query is generated for any document at the outeety E
step of the algorithm now comprises the following operatiowe
dequeue the document at the front of the priority quéxidet this
document bel. If ¢4 0, then we generate the set of sample
queriesSQ(d). Now, we check it < |X|; if so, then we update
the value ofg, for the current contents ok, setcq to | X|, and
re-insert document in P. (Note thatd may no longer be at the
front of the queue since the value @f might have increased). On
the other hand, ity = |X]|, then we addl to X. Clearly, in
this case, even though some of the documeniB have stale (i.e.
smaller than actual) values gf documenti is indeed the one that
maximizesf - (1 — g). Note that this solves both problems: we are

now updating the values af and g only when required, and also
generating sample queries only for documents that show theat
front of P. In fact, we observe that most documents have small
values off and therefore never appear at the fronfof

If we are required to handle multiple coverages (see the first
extension in the next section), we keep a counter, d) for ev-
ery sample query; € SQ(d) (rather thangg for documentd)
that indicates the number of documentsin 4, that cover doc-
umentd. (Recall thatX; is the prefix of X containing the first
i inserted documents.) The priority quefeis now ordered on
S pesow P" VT f,. When documend appears at the front of
P, we increase the countergq, d) by the number of documents
in X \ X4 that cover query;.

4. EXTENSIONS

In this section, we describe various extensions to tireEEdyY
SELECTION algorithm.

Multiple Coverage. As mentioned in the introductiork; > 1 in
most applications, e.g. a search engine returns multigaltse
in response to a user query. We generalize theelx SELEC-
TION problem to this scenario by introducing an utility function
u that maps the number of documents relevant to a query to their
aggregate benefit. The objective function now becomes
i Ygeq, fa - u(N(X. q)), whereN (X, q) is the number of
documents inX that are relevant to query

Note that the ®EEDY SELECTION algorithm should logically
prefer a document that covers queries that already haveidicant
coverage in the index to a document that covers queries dpéwin
coverage. This follows from the fact that the index is usédula
query only if has at leagt relevant documents. To reflect this bias,
we define the utility function as(i) = min(2°, 2*) in our exper-
iments. We may note that this choice violates the submoidylar
of the overall utility function, but as we show in the expeeints,
this leads to better results than choosir{@) = min(s, k) (which
is submodular) as in [1].

Dynamic Set of Documents.Recall that in most practical situa-
tions, the set of documents typically change over time. tFe
consider the modifications to the index on the removal of aidoc
ment. If the document was not present in the index, then weotlo n
need to do anything. On the other hand, if the document wdwin t
index, then we replace it by a new document which is chosen by
running a single iteration of the ’&EEDY SELECTION algorithm.

Now, let us consider the modifications to the index on the-addi
tion of a document. Note that we have two decisions in thig:cas
first, do we add the document to the index; and second, if we do,
which document do we evict from the index? Further investiga
tion of the problem reveals that the new document may cause mo
drastic changes of the following kind: if the new documenters
all queries covered by the documents currently in the intiean
inserting the new document in the index would make the ctirren
documents redundant (fédr = 1). In this case, we have to re-
compute the index from scratch.

However, note that the situation described above is rathtop
logical. In practice, we do not expect the index to changstarally
on the addition of a single document. To quantify this intuf
we impose the additional constraint that the index cannahgh
by more than one document for every document arrival. This ha
the added benefit that auxiliary data structures such asthexd
ing mechanisms do not need frequent drastic changes. The fol
lowing simple algorithm now solves this problem efficientfyor
every documentt € X, we estimatefx . q fox\fapugar

using GUNT QUERY calls, whered is the new document. If
fx > fx,aforallz € X, then we do not include the new docu-
mentd in the index; otherwise, we eviet" = arg maxzex fx,z,d
from the index and replace it hy. Note that the number of calls
to the GOUNT QUERY sub-routine is now proportional torather
than|D].

Streaming Set of DocumentsFinally, consider the scenario where
the set of documents appear sequentially, and the algorigeds
to immediately decide whether to include a document or disita
on its arrival. We propose the following algorithm in thigsario:
The algorithm has multiplepochs where each epoch is charac-
terized by a guessed valugt of the objective in an offline opti-
mal solution. An epoch ends when the objective of the algerit
mic solution exceedspt, at which point we double our guess and
start the next epoch. In any epoch, the algorithm includesyev
document that increases the objective value by at I%‘Téstvvhere

b- = b — | X|. Note that the increase in the objective can be com-
puted by making a single call to thedONT QUERY sub-routine.

If the set of documents have some desirable properties @g.
drawn i.i.d. from a distribution), then this simple algbrit can be
shown to have a constant approximation factor.

5. EXPERIMENTS

In this section, we evaluate theRGEDY SELECTION algorithm
on real-world data. Recall that this algorithm can be usegeteer-
ate a tiered index for the set of products in the index of a cerom
search engine. We will begin by describing the datasets insaar
experiments.

5.1 Datasets

For our experiments, we built a prototype search engine apé p
ulated it with real data from the shopping vertical of a cormis
search engine. To this end, we downloaded detailed deiscrgdor
about30 million products from a commercial online shopping cat-
alog. These products were categorized into arcitleaf-level
categories undes2 top-level categories such a$ ect r oni cs,
canera and optics, clothing and shoes, and so on.
The GREEDY SELECTION algorithm does not interact between cat-
egories, and therefore can be scaled to large indexes bggwiog
combinations of categories in parallel. For clarity andhwiit loss
of generality, we restrict our analysis to two top-levelecatries in
the catalog:el ect r oni cs andcaneras and opti cs with
around150, 000 and 40, 000 products respectively. We note that
there ar&r4 sub-categories under electronics (sucheilsevi si ons,
equal i zer s,andGPS Recei ver s)and49 sub-categories un-
der cameras (such @B gi tal caneras, t el escopes, and
| enses).

Next, we describe how we set the relevant scargg for the
products in the dataset. Consider, for examplspay br avi a
xbr tv (with product idd). Since its product description con-
tains attributebr and: sony, we setwsony,a = 1.0. Further, as
mentioned in the introduction, we enrich the product witlated
attribute value information. For example, sinsung is a rel-
evant brand fosony (i.e. users searching f@anmsung prod-
ucts previously have ended up buyisgny products), then we set
Wsamsung,d 0 SOMe value between 0 to 1. For a detailed descrip-
tion of how such similarity scores are chosen, the readefésned
to [19].

The Query Set.For our experiments, we sampled aroui6d, 000
queries Q) from the query log of the same online shopping portal.
We used uniform sampling over the queries in the query loge(no
that popular queries automatically get a bias because thesaa

more frequently in the query log). In order to analyze theetfbf
structure in the query on the performance &{E&EDY SELECTION,
we categorized these queries into five buckets dependinigechet-
gree of structure extracted from the query ranging from btitk
containing highly unstructured queries (mostly with onaaated
keyword) to bucket composed of many annotated tokens (some-
times as many as six). The number of queries in bucket 1 eonsti
tuted around20% of the queries inQ. The number of queries in
bucket 5 had a higher fraction of arous2%. In fact, the fraction
of queries with at least annotated keywords was cloge’ of Q.
We note that annotation of queries is not the focus of thidystu
Toward this end, we used the query annotator described]n [23

In our experiments, we only considered the important atteb
associated with each category. These are attributes thaghaigh
selectivity i.e. occur in a large fraction of product descriptions or
user queries. We set the selectivity threshold to a conseswalue
of 0.5 and this yielded around six important attributes in each-cat
gory, and for each selected attribute, we computed thewvelfxe-
quencies of individual attribute values in a query log thzrmed
a six-month period.

5.2 Baseline Algorithms

We compare the performance oRGEDY SELECTION with the
cache selection algorithms in Baeza-Yage¢sl [3] and Anagnos-
topouloset al [1].

In the first algorithm, the goal is to populate the cache with a
set of posting lists for important query terms. Each poslistgs
characterized by the frequengyof the associated term, and the
size of the posting list. The algorithm greedily selects the posting
list with the minimum ratios/ f repeatedly until the entire cache
is filled up. We refer to this algorithm asoRTING LISTS in our
experiments.

The algorithm in [1] is also an iterative greedy algorithnut b
selects, in each iteration, only the document that is relefer
the maximum number of queries not already covered lopched
documents. We refer to this algorithm asc&HASTIC QUERY
COVER in our experiments.

5.3 Experimental Results

Our experimental results can be categorized into two phés t
we callindex generatiomndindex serving

Index Generation Experiments. In the index generation exper-
iments, we use arounth?% of our query setQ (we call this the
training set7) for generating the index using all three algorithms
separately. The performance of the algorithms in this stepda-
sured by the fraction of queries if covered by the index. This
gives us a measure of the quality of the selection procest lmse
the three algorithms in terms of coverage achieved on the-tra
ing data itself. Note that this measure of effectivenesstiemely
well-suited to SOCHASTIC QUERY COVER since it does not test
the generalizability of the algorithm. Nevertheless, wevslthat
GREEDY SELECTION has almost the same performance asSHAS-
TIC QUERY COVER at small values of and outperforms 80CHAS-
TIC QUERY COVER for larger values ok. In addition, we show
that we consistently outperformoBTING LISTS in this set of ex-
periments.

We ran our experiments for cache sizes (or buddetsinging
from 1% to 5% of the total index size, number of resukisanging
from 6 to 148, and the relevance threshaidranging from0.1 to
0.5. We also varied the number of samples iREEDY SELEC-

8\We selected this range so that the typical valué ef 10 falls in
the middle of the range.

TION from 10 to 50, but observed that the sample size has negligi-
ble effect on the performance of the algorithm. We theretoly
report the results for a sample sizeldfin all the experiments.

Fig. 3 illustrates the relative performance oREeDY SELEC-
TION compared to BSTING LISTS and STOCHASTIC QUERY
CoveR for all the aforementioned parameter values. In Fig. 3(a),
all algorithms exhibit a drop in performance/fas increased since
it becomes more difficult to cover a query. (Recall that a guer
covered only if at least relevant documents are present in the in-
dex.) Also, as expected, TBCHASTIC QUERY COVER performs
better than ®EEDY SELECTION at small values ot because
(1) StocHASTIC QUERY COVER optimizes over only the train-
ing query set whereas REEDY SELECTION optimizes over the
entire query space, and (2)T8CHASTIC QUERY COVER uses
an expensive but accurate exhaustive search to make itdygree
choices wheareas KEEDY SELECTION uses a much more ef-
ficient but slightly less accurate sampling technique to enik
greedy choices. Interestingly, asincreases, the performance of
STOCHASTIC QUERY COVER degrades rapidly. This can be at-
tributed to the fact that ®CHASTICQUERY COVER treats docu-
ments that cover queries already having significant cacherage
identically to documents that cover queries having no cacler-
age. Clearly, the former set of documents should get precede
and as mentioned in Section 4REEDY SELECTION ensures this
by using an increasing utility function on coverage for nmakour
greedy choices. Comparing withoBTING LISTS, we note that
GREEDY SELECTION performs better than &#STING LISTS in
the entire range of since it is able to use cache space more judi-
ciously by distinguishing between individual documents ipost-
ing list based on whether they are relevant for other queremt.

In fact, GREEDY SELECTION does better than@®sTINGLISTS by
almost20% at the typical value ok = 10.

In Fig. 3(b), where we vary the relevance threstIGREEDY
SELECTION consistently outperformsdSTINGLISTS by at least
20% and the gap in performance increases with the relevancghthre
old. Again, the greater selectivity of KEEDY SELECTION in
terms of choosing documents gives it this advantage oosITING
LisTs. Furthermore, the performance oRGEDY SELECTION is
either better than or comparable to that afc@ HASTIC QUERY
CoVER at all values of), even though the evaluation is only on the
training query set.

Finally, in Fig. 3(c), we observe thatd3TINGLISTS has a less
smooth uptick in performance tharREEDY SELECTION with in-
creasing index size. This is because it is always forceddinde
entire posting lists, and therefore often cannot use rasghace in
the cache. Such behavior causes pockets of relatively tegsgss
with increase in budget, which is illustrated in Fig. 3(c)n @&e
other hand, @EEDY SELECTION, with its ability to select one
document at a time, exhibits a smoother increase in quergreov
age as the budget is increased. FurtheteEDY SELECTION gets
closer to SOCHASTIC QUERY COVER asb increases and again,
does not show a significant drop in performance when compared
STOCHASTIC QUERY COVER across the whole range of budgets.

different parameter values. We further analyzed the efiéthe
extent of structure in a query on the hit ratios. As describad
lier, we classified the queries into five buckets ranging ftoghly
unstructured=£ 1) to highly structured=£ 5). Again, we varied:
from 6 to 14 andd from 0.1 to 0.5, whereas the budget was fixed to
3% of the total index size. In Fig. 4, we illustrate the perfonoa
of the three algorithms as a function of these parameters.

As Fig. 4(a) shows, EEEDY SELECTION results in a much
better hit ratio compared todSTING LISTS and STOCHASTIC
QUERY CoVER when the queries are highly structured. However,
when the queries become less structured, even thoRgEGY SE-
LECTION continues to dominatedSTINGLISTS in performance,
STOCHASTIC QUERY COVER starts performing marginally bet-
ter than GREEDY SELECTION. Unstructured queries are less spe-
cific than structured queries and therefore, are often eovéey
more documents in the index.T8ECHASTIC QUERY COVER per-
forms well in this regime since the lack of specificity in unst
tured queries implies that they are covered by many docisnent
that also cover queries in the training set. On the other f&tnat-
tured queries tend to be more specific and are often covered by
fewer documents in the index. Such queries are often misged b
a typical LRU cache and therefore, almost always, rely orem ti
one index to be served efficiently. For such querieReEDY SE-
LECTION outperforms BSTINGLISTS and STOCHASTICQUERY
COVER by around30% for typical values oft = 10. In fact, the
relative performance of @EEDY SELECTIONINcreases as the value
of k increases. This reflects the powerful generalizing cajpybif
GREEDY SELECTION to queries with unseen or rare combination
of attribute values.

Fig. 4(b) shows the performance of the algorithms for défer
values off. Here, we observe that while the performance of all the
algorithms drops a8 increases, GEEDY SELECTIONcoNSistently
exhibits a better hit ratio thand3TINGLISTS and STOCHASTIC
QUERY COVER, especially for the highly structured queries. For
example, ford = 0.3, GREEDY SELECTIONalmost outperforms
the other algorithms 2 to 1. This again highlights the défere in
the generalizing capabilities of the algorithms. In ordeexplic-
ity measure the effectiveness of the algorithms on lesguizat
queries, we repeated the experiment using unique querigghg
ignoring the query frequencies) and we observed a similpriga
performance between REEDY SELECTION and the other algo-
rithms.

Since one of the primary applications of the selected docisne
is for tiered indexing, we measured the quality of the résglin-
dex built using these documents. The quality of a document is
measured as its average relevance score over all attribiiess
In Fig. 5, we note that @EEDY SELECTION includes more rele-
vant documents in the index compared O INGLISTS. In fact,
the document quality is almod0% better when using 8EEDY
SELECTION (see Fig. 5(a)). This can be attributed to the fact that
while POSTINGLISTS does not distinguish between documents in
the same posting list, @EEDY SELECTION selects one document
at a time and therefore, selects only high quality documieriise

To summarize, this experiment shows us that even when we re-cache.

strict ourselves to evaluation on training dataREEDY SELEC-

TION exhibits performance that is comparable to (and sometimes §, RELATED WORK

better than) $ocHASTIC QUERY COVER. Further, for various
ranges of parameters, we have exhibited th&EEDY SELEC-
TION comfortably outperforms ®sTING LISTS in this set of ex-
periments.

Index Serving Experiments. In the next set of experiments, we
measured the generalization capabilities of the algosthyndefin-
ing our test query set @ = Q\ 7 and measuring the hit ratios for

Previous work on understanding user query distributiomsrims
of their relative frequencies and repetition (see e.g. E§,has
observed on numerous occasions that users share many popula
queries. This immediately motivates a caching infrastmesuch
as the one that we propose in this paper in order to improve the
performance of search engines. In the context databaseappl
tions, there has been extensive work on building efficiertdha-

I3
=Y

0.8

0.6

= PostingsListCache
B OS5 | TTTmmeen g o7 < Gr ion 505 - =
5 Sl 8 06 g icQueryCover 2 s —_ _
> 04 === -y z 05 TN 204 e
5 ~~o_ < g - NN 5 -
303+ ST ==—— = S 04 S =N go03 ~ —
g ~ g 03 Ss o S s -
S 02 £ 0 ~o ~ §02
K] — PostingsListCache 8 -~ 7 —PostingsListCache
£o1 Gr i =01 = £oa i
o ==StochasticQueryCover 0 ~-StochasticQueryCover
T T T T Y 0
6 8 10 12 14 0.1 0.2 0.3 0.4 0.5 1 2 3 5
k 0 Budget (%)
(@) (b) (©

Figure 3: Performance of GREEDY SELECTION compared toPOSTINGLISTS and STOCHASTICQUERY COVER using cache hit ratio
on the training set of queries for various parameter ranges:(a) Effect of number of results k needed to cover a query, withh = 3%
and 6 = 0.3, (b) Effect of relevance thresholdd, with b = 3% and k = 10, and (c) Effect of index sizeb with § = 0.3 and k = 10.

12 Postingsti

+Cache-HS
tCache-HS

[N

—StochasticQueryCover-HS

o
%

—GreedySelection-HS
— GreedySelection-HU

~-StochasticQueryCover-HU
—PostingslistCache-HU

Cache Hit Ratio
o
(<]

o
IS

0.8 i i U
0.7 — GreedySelection-HU —GreedySelection-HS
: —PostingsListCache-HS —StochasticQueryCover-HS
006
2
Sos
o4
T 0.
> —
£03 T
@ R
O02 s e S T eeeeee —
T
o —_— e ————— -
6 8 10 12 14

Figure 4: Performance of GREEDY SELECTION compared toPOSTINGLISTS and STOCHASTIC QUERY COVER at index serve time:
(a) Effect of the number of documentsk needed to cover a query, withh = 3% and 6 = 0.3, (b) Effect of the relevance threshold,
with b = 3% and k& = 10. (HU = “Highly Unstructured”, HS = “Highly Structured”)

tier caches [2, 5, 15]. Early work on caching and tiering teghes
for search queries can be largely categorized into two bavads
— result caching [20, 3, 25, 10, 9] and tiered indexing [21, 18
25, 4,14, 11, 1]. The basic problem behind caching is to wstded
the cost of serving a given query workload. For example, Ragh
van and Sever [20] focused on popular queries in query logseM
recently, Gan and Suel [9] proposed a weighted caching sehem
that includes the cost of processing the more frequent egi¢oi a
search engine. Risvikt al [21] introduced the concept of tiering
in order to improve the performance of search engines. Ksoul
and Cho [18] studied term and document pruning strategiéds wi
the aim of reducing resources needed to handle a given dbieoy.
beltsynet al [25] combined result caching with index pruning for
better efficiency. Baeza-Yates al [3] compared the impact of re-
sults caching and static caching of posting lists on theoperénce
of web search engines. They concluded that static cachipgsif
ing lists outperforms all other variations of caching thepsidered
in their study. Long and Suel [16] introduced a three-leeslhing
architecture that includes on-disk caching of the postisis lfor
popular term combinations. Leurgg al [14] studied the problem
of tier selection for storing documents with the goal of mirging
the number of tier traversals for a given workload of queriBise
work of Anagnostopoulost al[1] is the closest to ours. They gave
a greedy algorithm for document selection based on a tigsento
queries. In fact, we will compare the performance of our atgm

to those of [3] and [1].

Another line of work that incorporates relevance and siritjla
functions is on topk queries (also referred to &nearest neighbors
(KNN))in databases [22]. More recent work focused on applyi
the kNN problem to searching over a database [27, 24]. Ouk wor

differs from this line of work in that we focus our work on geae
ing a tiered index that addresses the low latency requirehwéten
imposed in online search settings.

From a theoretical perspective, our algorithms fall in assla
of well-studied combinatorial optimization problems ealtover-
ing problems. Of particular relevance is the maximérooverage
problem, where the goal is to select a collection of at nkoséts
in a universe of weighted elements such that the sum of weight
of elements covered by these sets is maximized. This is ai€las
cal NP-complete problem, and it has been shown that theaiatur
greedy algorithm for this problem is indeed optimal undandard
assumptions in complexity theory [8]. Many variants andeagen
alizations of this problem have also been studied in thedlitee
(see e.g. [13, 7]), including ones where we have oracle adces
the sets. Our problem falls in this category, and the maihrtiec
cal contribution of this paper is to design a suitable oréateour
setting by exploiting the structural properties of comneesearch
queries.

7. CONCLUSION AND FUTURE WORK

In summary, we proposed a technique for caching search re-
sults for structured search domains such as commerce seath
demonstrated the effectiveness of our proposed algorititmthe-
oretically and via experiments on real-world data. Theeeraulti-
ple important questions that this work raises. For whatratkarch
domains can such result caches be generated using ourgeebfi
In particular, can our techniques be extended to unstredtdo-
mains such as general web search? How to handle arbitrarily c
related attributes and arbitrary relevance functions?

0.25

0.2

0.15

0.1

0.05 —PostingsListCache

—GreedySelection

Average Document Quality

12 14

@)

0.25
0.2

0.15

—pPostingsListCache
—GreedySelection

Average Document Quality

0.1 0.2 0.3

0

(b)

0.4 0.5

Figure 5: The quality of the index computed usingGREEDY SELECTION compared to POSTING LISTS: (a) Effect of the number of
documentsk needed to cover a query, withh = 3% and 6 = 0.3, and (b) Effect of relevance threshold), with b = 3% and k£ = 10.

8. REFERENCES

[1] Aris Anagnostopoulos, Luca Becchetti, Stefano Leonard

Ida Mele, and Piotr Sankowski. Stochastic query covering. |

WSDM pages 725-734, 2011.

Jesse Anton, Lawrence Jacobs, Xiang Liu, Jordan Parker,

Zheng Zeng, and Tie Zhong. Web caching for database

applications with oracle web cache. 5\ GMOD Conference

pages 594-599, 2002.

Ricardo A. Baeza-Yates, Aristides Gionis, Flavio Jueiga,

Vanessa Murdock, Vassilis Plachouras, and Fabrizio

Silvestri. The impact of caching on search enginesSI@IR

pages 183-190, 2007.

Ricardo A. Baeza-Yates, Vanessa Murdock, and Claudia

Hauff. Efficiency trade-offs in two-tier web search systems

In SIGIR pages 163-170, 2009.

Christof Bornhévd, Mehmet Altinel, Sailesh Krishnarttuy,

C. Mohan, Hamid Pirahesh, and Berthold Reinwald.

Dbcache: Middle-tier database caching for highly scalable

e-business architectures. 5.GMOD Conferencepage 662,

2003.

[6] Andrei Z. Broder, Marcus Fontoura, Vanja JosifovskivRa

Kumar, Rajeev Motwani, Shubha U. Nabar, Rina Panigrahy,

Andrew Tomkins, and Ying Xu. Estimating corpus size via

queries. INCIKM, pages 594-603, 2006.

Chandra Chekuri and Amit Kumar. Maximum coverage

problem with group budget constraints and applications. In

APPROX-RANDOMpages 72-83, 2004.

[8] Uriel Feige. A threshold oln n for approximating set cover.
J. ACM, 45(4):634-652, 1998.

[9] Qingging Gan and Torsten Suel. Improved techniques for

result caching in web search enginesWiVW pages

431-440, 2009.

Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Beul!.

Maggs, Todd C. Mowry, Christopher Olston, and Anthony

Tomasic. Scalable query result caching for web application

PVLDB, 1(1):550-561, 2008.

Jun-Seok Heo, Junghoo Cho, and Kyu-Young Whang. The

hybrid-layer index: A synergic approach to answering top-k

queries in arbitrary subspaces.|GDE, pages 445-448,

2010.

Richard M. Karp, Michael Luby, and Neal Madras.

Monte-carlo approximation algorithms for enumeration

problems.J. Algorithms 10(3):429-448, 1989.

Samir Khuller, Anna Moss, and Joseph Naor. The budgeted

maximum coverage problerinf. Process. Letf.

70(1):39-45, 1999.

(2]

(3]

[4]

(5]

[7]

[10]

[11]

[12]

[13]

[14] Gilbert Leung, Novi Quadrianto, Alexander J. Smolad an
Kostas Tsioutsiouliklis. Optimal web-scale tiering as a/flo
problem. InNIPS pages 1333-1341, 2010.

[15] Wen-Syan Li, Daniel C. Zilio, Vishal S. Batra, Calisto
Zuzarte, and Inderpal Narang. Load balancing and data
placement for multi-tiered database systebeta Knowl.
Eng, 62(3):523-546, 2007.

[16] Xiaohui Long and Torsten Suel. Three-level caching for
efficient query processing in large web search engines. In
WWW pages 257-266, 2005.

[17] R. Motwani and P. RaghavaRandomized Algorithms
Cambridge University Press, 1997.

[18] Alexandros Ntoulas and Junghoo Cho. Pruning policies f
two-tiered inverted index with correctness guarantee. In
SIGIR pages 191-198, 2007.

[19] Debmalya Panigrahi and Sreenivas Gollapudi. Result
enrichment in commerce search using browse trails. In
WSDM pages 267-276, 2011.

[20] Vijay V. Raghavan and Hayri Sever. On the reuse of past
optimal queries. IISIGIR pages 344-350, 1995.

[21] Knut Magne Risvik, Yngve Aasheim, and Mathias Lidal.
Multi-tier architecture for web search enginesLik-WEB
pages 132-143, 2003.

[22] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincen
Nearest neighbor queries. 8iGMOD Conferencgages
71-79, 1995.

[23] Nikos Sarkas, Stelios Paparizos, and Panayiotis Taapa
Structured annotations of web queriesSIGMOD
Conferencepages 771-782, 2010.

[24] Thomas Seidl and Hans-Peter Kriegel. Optimal mukijpst

k-nearest neighbor search. ®\GMOD Conferencepages

154-165, 1998.

Gleb Skobeltsyn, Flavio Junqueira, Vassilis Plachsyuand

Ricardo A. Baeza-Yates. Resin: a combination of results

[25]

caching and index pruning for high-performance web search

engines. IrSIGIR pages 131-138, 2008.

Yinglian Xie and David R. O’Hallaron. Locality in sedrc

engine queries and its implications for caching. In

INFOCOM, 2002.

[27] Wenjie Zhang, Xuemin Lin, Muhammad Aamir Cheema,
Ying Zhang, and Wei Wang. Quantile-based KNN over
multi-valued objects. IWCDE, pages 16-27, 2010.

[26]

