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Abstract

Coordination services provide the means for dis-
tributed applications to share resources. Many coordi-
nation services provide a hierarchical namespace with
strongly consistent semantics that applications utilize to
build basic primitives such as locks and queues.

In this paper, we explore a fresh approach which uses
a shared log as a flexible, raw substrate for implementing
coordination primitives. We show that we can reduce an
existing coordination service, ZooKeeper, to use a shared
log, and show that a shared log offers benefits such as
high performance and dynamic reconfigurability. Our
design comprises several desirable properties that were
recently introduced as enhancements to ZooKeeper, such
as reconfiguration and client scale-out.

1 Introduction

Distributed services within a cloud computing platform
must coordinate to share resources in a fault-tolerant
and scalable manner. Coordination services provide the
means for distributed applications to build basic coor-
dination primitives, such as shared locks, barriers and
queues. Many coordination services expose a hierarchi-
cal namespace similar to a filesystem. The namespace
provides strong consistency guarantees which program-
mers use to reason about the coordination primitives they
implement.

A shared log is an alternative to a hierarchical names-
pace which provides the same consistency guarantees re-
quired to implement coordination primitives. A shared
log is a powerful abstraction which enables applications
to reason about consistency in a world of failures and
asynchrony. Just as with existing coordination services,
an application can rely on a shared log to provide coor-
dination primitives with fault-tolerance and scalability.

In this work, we modify Apache ZooKeeper to run
over a shared log. We replace ZooKeeper’s replication

protocol, ‘zab’, with a shared log client to show that we
can present the same consistent hierarchical namespace
as ZooKeeper over a shared log. Our design has several
key properties:

Correctness and Compatibility. Our implementation
offers the same correctness guarantees as ZooKeeper and
presents the same API to existing ZooKeeper clients.

Simplicity.  ZooKeeper uses logging at each replica to
achieve persistence. Our design simply modifies each
server to use a shared log instead of a local log.

Reconfigurability. ~ Shraer [21] demonstrated that dy-
namic reconfiguration can be added to ZooKeeper. This
effort was complicated by the fact that ZooKeeper uses
one mechanism to provide ordering, fault-tolerance, and
state replication. Our ZooKeeper servers contain only
soft state, relying on the shared log for fault-tolerance
and ordering. This makes it simple to support reconfig-
uration. Moreover, server nodes can be shut down arbi-
trarily without impacting overall system state.

Scalability.  In the single server case, we show that us-
ing a shared log has a negligible impact on performance
(in fact, our implementation performs slightly better). In
the multiple server case, our shared log implementation
scales for reads in a manner similar to ZooKeeper with
observers [8]. For writes, on the other hand, we gain a
substantial scaling advantage over the traditional imple-
mentation due to the fact that shared log write perfor-
mance can increase with the number of log servers.

We envision that a shared log will be provided as a ba-
sic feature of future cloud computing platforms, and that
services like ZooKeeper will run on top of this flexible
resource to provide coordination and other services.

2 Background on shared logs

Logs are a widely-used structure employed by many ap-
plications, including filesystems [18] and databases [12]
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Figure 1: The shared log abstraction. Each position in
the log is a numbered offset. Once data is stored at an
offset, it is immutable. Appending to the log is not guar-
anteed to occur in any order.

to sequentialize writes and for crash recovery. A shared
log simply extends the log structure by enabling multi-
ple writers and readers to concurrently operate on the log
across a network. To operate in the cloud environment,
shared logs must also provide fault-tolerance and high
availability.

The interface of a shared log is not very different from
a normal log (Figure 1). A shared log offers two basic
primitives: read, which takes an offset and returns data
stored at that offset, and append, which takes data, ap-
pends it to the end of the log, and returns the offset of the
stored data. The primary difference between a shared log
and a normal log is that the writer does not know where
data is written until it has been appended to the log.

Since the interface of a shared log is not very different
from a typical transaction log that applications already
use to preserve data, augmenting an application that al-
ready uses logging to utilize a shared log is a relatively
straightforward task. Modifying such an application to
take advantage of a shared log may offer a quick way to
distribute it. We show the power of this modification on
ZooKeeper in Section 4.

Shared logs offer several advantages over other ab-
stractions for sharing and replicating data. First and fore-
most, shared logs mask asynchrony from applications:
append and read operations do not involve communica-
tion with other clients - clients append and read directly
from the shared log. Second, the log-based nature of a
shared log simplifies crash recovery. Finally, the shared
log acts as a distributed storage substrate, recording the
data stored with every append. In addition, since all
writes to a log are append operations, shared logs sequen-
tialize writes. This sequentialization can be beneficial for
both rotating media as well as flash memory.

In our evaluation, we utilize CORFU [2], a previously
proposed system originally designed for flash memory

which exposes a high-performance persistent shared log
to clients. CORFU performs replication internally to
provide both fault-tolerance and scalability. In prac-
tice, CORFU is capable of achieving over 200K ap-
pends/second and over 1M reads/second, which exceeds
our requirements for a high-performance shared log.

Our use of a shared logging service merits compar-
ison with existing approaches. Traditionally, a variety
of reliable distributed services for the cloud centered
around consensus protocols like Paxos [13] for consis-
tency: virtual block devices [14], replicated storage sys-
tems [15, 23], configuration management utility [16],
and transaction coordination [17, 1, 5]. Lately, a marked
shift from this design was introduced in the Chubby lock
service [4] and the ZooKeeper and BookKeeper coordi-
nation facilities [8, 10], which commoditized coordina-
tion as a service in its own right. Internally, Chubby itself
was made fault tolerant using Paxos, and BookKeeper
and ZooKeeper use their own variant of a group commu-
nication substrate. Externally, these services expose to
client applications a file-system-like hierarchical name
space of objects with advanced semantics, such as locks
and ephemeral nodes. As these successful systems have
become pillars of today’s data centers and cloud back-
ends, there is a growing recognition of the need for these
systems to meet demanding scaling requirements, both
in terms of storage-volume and operation-throughput.

From this perspective, we use a shared log as a drop-
in replacement for existing Paxos [13] implementations,
with far better performance than previous solutions. A
shared log like CORFU provides a fast, fault-tolerant
service for imposing and durably storing a total order
on events in a distributed system. Used in this manner,
our use of a shared log is a classical manifestation of the
State-Machine-Replication approach [20], with a shared
log substrate for ordering events.

Historically, shared log designs have appeared in a di-
verse array of systems. QuickSilver [6, 19] and Camelot
[22] used shared logs for failure atomicity and node re-
covery. LBRM [7] uses shared logs for recovery from
multicast packet loss. Shared logs are also used in dis-
tributed storage systems for consistent remote mirror-
ing [9]. A shared log is panacea for replicated transac-
tional systems. For instance, Hyder [3] is a proposed
high-performance database designed around a shared
log, which has also been recently implemented on top
of CORFU, where servers speculatively execute transac-
tions by appending them to the shared log and then use
the log order to decide commit/abort status.

3 Apache ZooKeeper

ZooKeeper provides coordination to clients by exposing
a hierarchical namespace we refer to as the ZooKeeper
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Figure 2: A write and read operation on ZooKeeper. At
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@, the client proposes a state changing operation to a

ZooKeeper server. At @ the server forwards the op-
eration to the leader, which decides on an ordering of
proposals it has seen and persists the operation to its log

at @ At @, the leader then uses ‘zab’ to atomically
broadcast that update, at which time other servers com-

mit the update to their logs at @ and at @, apply the

updates in order to their ZooKeeper trees. Finally, at @,
a client read is serviced directly from the server’s local
ZooKeeper tree.

tree. ZooKeeper clients propose ZooKeeper tree state
changes to ZooKeeper servers which process updates
from clients and maintain the state of the tree in-memory.
ZooKeeper servers coordinate with each other via an
atomic broadcast protocol known as ‘zab’ [11] to present
a consistent view of the ZooKeeper tree to clients.
Clients can then query any ZooKeeper server to obtain
the results of a given update, which the server services lo-
cally from its in-memory tree. The client can also request
to be notified of updates to the tree through a mechanism
called “watches”. The collection of ZooKeeper servers
that serve a ZooKeeper tree is known as a ZooKeeper
ensemble.

‘zab’ based replication.  ZooKeeper uses ‘zab’ to im-
plement a form of primary-backup replication which is
similar to Paxos [13]. Essentially, one server is elected
as a leader (or primary). All proposals to change the
ZooKeeper tree are forwarded to the leader, which de-
cides on the ordering of the proposals and broadcasts the
resulting order to all other servers using ‘zab’. We il-
lustrate a write operation on the ZooKeeper tree in Fig-
ure 2. Unlike Paxos, ‘zab’ uses a FIFO-ordering property
to ensure that multiple outstanding updates from clients
are applied in the order they were proposed by the client.
Updates successfully broadcast using ‘zab’ are recorded
in a persistent log maintained by each server. ‘zab’ is
quorum-based: as long as the leader can reach a quorum

of servers, the leader can make forward progress.

State machine replication. ~ ZooKeeper implements a
form of state-machine replication (SMR). In SMR, repli-
cas agree on a sequence of state commands and apply the
state commands in sequence to a local state machine. If
the sequence of commands are the same, each state ma-
chine will arrive at the same state. The ZooKeeper tree
can be thought of as a state machine, and operations on
the ZooKeeper tree are commands that modify that state.
ZooKeeper leverages the ordering properties of ‘zab’ to
ensure that all replicas agree on the order of state com-
mands.

Since the original release of ZooKeeper [§8], a num-
ber of features have been added or proposed by request
from the ZooKeeper community. Our implementation
supports these features, and we detail them below:

Observers. Observers were not part of the original
ZooKeeper design, but added to support scalability with-
out affecting write throughput. Observers are non-voting
members of a ZooKeeper ensemble. When a leader has
completed deciding on whether to accept a proposal,
the leader broadcasts the resulting state transition to ob-
servers. Many observers can be added to scale and in-
crease the overall read throughput of the ensemble.

Dynamic reconfiguration. Dynamic reconfiguration
was recently proposed as a patch to ZooKeeper [21], but
as of the time of this writing, has not made it into the
main branch. Dynamic reconfiguration allows servers
to be added and removed without affecting the consis-
tency of data. This feature enables ZooKeeper to be dy-
namically scalable, adjusting the total read throughput by
spawning observer replicas depending on load.

Separating metadata.  As proposed by Wang [24], sep-
arating replication of data and metadata in ZooKeeper
can reduce the load on the leader. Ordering can be de-
termined on smaller metadata chunks, and data can be
replicated by forwarding.

Stale read-only mode.  ZooKeeper recently introduced
read-only mode as a feature. Read-only servers are typi-
cally created as a result of a network partition. A server
that is no longer capable of communicating to the quo-
rum can switch to read-only mode, which allows it to
continue servicing client read requests on its stale, local
ZooKeeper tree.

4 ZooKeeper on a Shared Log

To distinguish our ZooKeeper implementation from the
classic ZooKeeper implementation, we refer to our
shared log ZooKeeper as ZooKeeper-SL. ZooKeeper-SL
is a two-tiered design. The first tier is composed of
ZooKeeper translation servers. These servers receive
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Figure 3: A write and read operation on ZooKeeper-SL.
At @ the client proposes a state changing operation to a

ZooKeeper translation server. At @, the server appends

the operation to the log @ at which point the operation
is persisted. Translation servers are constantly playing
back updates on the log in order, and at other trans-
lation servers see the update and apply the update to their
ZooKeeper trees. Finally, at , a client read is serviced
directly from the translation server’s local ZooKeeper
tree.

requests from ZooKeeper clients and convert those re-
quests to operations on the shared log, which forms the
second tier. Figure 3 illustrates read and write operations
in ZooKeeper-SL. We can scale each tier independently:
for example, we can add disks to our shared log without
reconfiguring our translation servers.

We implement our translation servers in C++. While
we could have used the existing ZooKeeper JAVA code
base and replaced ‘zab’ with a shared-log interface, we
chose not to since the libraries for operating on the
CORFU shared log were in C++, and JNI did not pro-
vide the performance we desired. With the exception of
ACLs, our translation servers support the full ZooKeeper
API, including features such as ephemeral/sequential
nodes and watches.

State Machine Replication. Just as in ZooKeeper,
ZooKeeper-SL implements state machine replication. In-
stead of using ‘zab’, we utilize the shared log’s strong or-
dering guarantees to ensure that operations are executed
in the same order by each translation server. Each trans-
lation server is constantly playing back the log, apply-
ing updates in the order they appear in the shared log.
In order to ensure that updates are applied in the order
that clients propose, and to provide the same FIFO guar-
antees ‘zab’ provides, each update in the log contains a
per-client sequence number, and updates are executed ac-
cording to their sequence number.

Abstractly, our design replaces all the ZooKeeper per-
server transaction logs with a single shared log. This
gives each ZooKeeper translation server a shared, con-
sistent view of updates being applied to the ZooKeeper
tree.

Soft State and Shared Log Persistence. The shared
log provides fault-tolerant persistence. Our translation
servers maintain only soft-state that can always be rebuilt
by replaying the shared log. This allows policy decisions
about the number of translation servers to be indepen-
dent of fault-tolerance and persistence concerns. By teas-
ing apart and separately addressing these fundamental is-
sues, we can fully subsume the benefits of the dynamic
reconfiguration and observer patches to ZooKeeper.

Disk-less operation. Traditional ZooKeeper servers
must keep a transaction log of state at each non-observer
replica. Translation servers only have soft state, so
they can operate with persistent media such as disk.
This makes our translation servers ideal for deployment
within a pay-as-you-go cloud environment, where they
can be dynamically instantiated depending on load con-
ditions.

Furthermore, in ZooKeeper, the size of the ZooKeeper
tree is capped by the storage volume at each server, since
each participant must log all updates. ZooKeeper-SL
does not have this limitation since updates are stored
in the shared log, which can span across multiple ma-
chines [2].

Polling.  Our translation servers do not need to be up-
to-date on the most recent appends to the log to serve
clients. The semantics of the ZooKeeper API allows
translation servers to return stale reads. As we will see
in Section 5, adjusting the log playback interval offers
a trade-off between consistency and performance. This
is similar to the stale read-only support recently added
to ZooKeeper, except that we always allow writes, since
appending to the log does not require any consensus or
quorum.

5 [Evaluation

We evaluate ZooKeeper-SL against ZooKeeper on sev-
eral metrics. First, we evaluate the effect of adjusting the
polling interval, a key characteristic that affects the per-
formance of our design. Next, we evaluate the effect of
scaling on ZooKeeper and ZooKeeper-SL.

Polling Interval. One of the key characteristics that
affects the performance of our design is the polling rate
of the shared log by the translation servers. Unlike
ZooKeeper servers which receive an update from the
leader, translation servers must playback the log at some
interval to receive updates that have been appended to



ZK-SL
Test ZK Ims | 10ms | 100ms
Barrier 3ms | 2ms | 2l ms | 131 ms
Lock 8ms | 3ms | 33ms | 196 ms
Queue 15ms | 9ms | 39ms | 370 ms
Query Ims | Ims | 1ms 1 ms

Table 1: Latency of several ZooKeeper recipes under 1,
10 and 100ms polling intervals. As the polling interval
increases, the read workload on the log decreases, but
the latency of operations that require sync () or wait on
watches increases.
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Figure 4: Requests per second as a function of read
percentage on ZooKeeper-SL. In our shared log imple-
mentation, the write throughput (on the left) scales as
the number of translation servers increases. The read
throughput (on the right) scales similarly to ZooKeeper.

the log. While polling can be dynamic (e.g. a translation
server could adaptively change the rate it polls the log
based on workload), we evaluate the effect of polling on
several primitives that are commonly used in ZooKeeper,
shown in Table 1. Barrier, lock and queue are based on
standard ZooKeeper “recipes” [8], while query simply
reads a node that has already been created.

As we increase the polling interval, barrier, lock and
queue operations take longer to complete because up-
dates propagate more slowly to the translation servers.
Longer polling intervals, however, allow us to batch
reads, resulting in increased throughput. At the 1 ms
polling interval, our implementation performs a little bet-
ter than ZooKeeper, while at the 100ms polling inter-
val, we perform significantly worse. Query operation
latency is unaffected, however, since it allows for stale
reads. In practice, since the shared log can support a
much higher read throughput (1M ops/sec), an interval
of 1ms offers the best performance and we perform the
rest of our evaluations with a 1ms polling interval. How-
ever, the adjustable polling interval can allow translation
servers to work well in a system with slow network links
(e.g., across datacenters).
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Figure 5: Requests per second as a function of read per-
centage on ZooKeeper. ZooKeeper performs well un-
der read workloads (on the right) since read requests are
served out of the in-memory ZooKeeper tree. Write re-
quests (on the left), however, must go through the ‘zab’
protocol. As a result, write throughput actually decreases
as the number of non-observer servers in the ensemble
increases.

Scaling.  The use of a shared log allows our system to
scale in terms of both write throughput and read through-
put. We evaluate the scaling performance of our imple-
mentation using 3, 6, and 9 servers in the ZooKeeper-
SL ensemble and compare that to ZooKeeper ensembles
of the same size. We test each configuration using a 0,
25%, 50%, 75% and 100% read workload using 512 byte
nodes. The performance of our implementation and the
ZooKeeper implementation are shown on Figure 4 and
Figure 5.

In ZooKeeper, read throughput increases as the num-
ber of servers in the ensemble increases. This scalabil-
ity property is ensured by the in-memory tree replication
provided by the servers- as the number of replicas in-
creases, the aggregate number of requests the ensemble
can sustain will increase, since each replica can be used
to serve client requests. However, increasing the number
of servers also decreases the write throughput. Each ad-
ditional server places a burden on the leader, since the
leader must communicate with all the servers through
‘zab’. As seen in Figure 5, ZooKeeper write through-
put does not scale - the maximum write throughput is
obtained only when there is a single server in the ensem-
ble.

ZooKeeper-SL allows read throughput to scale just as
ZooKeeper does. In fact, the performance of ZooKeeper-
SL is slightly better than ZooKeeper - we attribute this
improvement to the speed of our native C++ implemen-
tation. On the other hand, unlike ZooKeepeer, write
throughput scales in ZooKeeper-SL: as the number of
translation servers increases, so does the aggregate write
throughput the ensemble can sustain. We attribute the



scaling property of our implementation to the total-
ordering engine of our shared log. Writes are appended
to the shared log without communication to the rest of the
ensemble, which eliminates the bottleneck of the ‘zab’-
based design. Our write throughput is limited only by
the 200k op/sec maximum append rate of the CORFU
shared log [2].

6 Conclusion

We have demonstrated that a shared log can be used as
a drop-in buidling block for a coordination service such
as ZooKeeper, while maintaining full compatibility. The
shared log provides additional functionality like support
for dynamic reconfiguration, which is difficult to add
to ZooKeeper. Furthermore, ZooKeeper-SL has similar
read-throughput scaling and improved write-throughput
scaling.
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