
Supporting Iteration in a Heterogeneous Dataflow Engine

Jon Currey, Simon Baker, and Christopher J. Rossbach

Microsoft Research

Abstract

Dataflow execution engines such as MapReduce,
DryadLINQ, and PTask have enjoyed success because
they simplify development for a class of important
parallel applications. These systems sacrifice gener-
ality for simplicity: while many workloads are easily
expressed, important idioms like iteration and recur-
sion are difficult to express and support efficiently.
We consider the problem of extending a dataflow en-
gine to support data-dependent iteration in a hetero-
geneous environment, where architectural diversity
introduces data migration and scheduling challenges
that complicate the problem.

We propose constructs that enable a dataflow
engine to efficiently support data-dependent con-
trol flow in a heterogeneous environment, implement
them in a prototype system called IDEA, and use
them to implement a variant of optical flow, a well-
studied computer vision algorithm. Optical flow re-
lies heavily on nested loops, making it difficult to
express without explicit support for iteration. We
demonstrate that IDEA enables up to 18× speedup
over sequential and 32% speedup over a GPU imple-
mentation using synchronous host-based control.

1 Introduction

This paper addresses programmability challenges
in parallel applications running in the presence of
heterogeneous potentially distributed compute re-
sources, focusing primarily on GPUs. Compute fab-
ric of this form is increasingly common: GPU-based
super-computers are the norm [1], and cluster-as-
service systems like EC2 make GPUs available [2].
Compute-bound algorithms are abundant, even at
cluster scale, making acceleration with specialized
hardware an attractive approach. However, while
their toolchains are increasingly rich [26], program-
ming these systems remains the province of ex-
pert programmers: indeed, the implementation of a
well-tuned benchmark on distributed, heterogeneous
hardware remains a publishable result [30]. The
need for tools that make parallel heterogeneous sys-

tems accessible for non-expert programmers is ur-
gent. Achieving this goal involves challenges at many
layers of the technology stack including front-end pro-
gramming tools and runtimes. In this paper we focus
primarily on the runtime.

Developing parallel applications is characterized by
a host of well-known difficulties such as synchro-
nization, consistency, load-balancing, and resource
management. Architectural heterogeneity introduces
additional challenges such as discrete, non-coherent
memory spaces, and diverse ISAs and compilers. Our
previous work with PTask [28] demonstrated that
a dataflow execution engine can make the runtime,
rather than the programmer responsible for address-
ing many of these problems. However, PTask, like
many dataflow systems such as MapReduce [10] and
Dryad [18] , trades generality for simplicity by admit-
ting only acyclic dataflow graphs. Expressing itera-
tion in a dataflow engine requires support for cyclic
or recursive graph structures: many data-parallel ap-
plications that rely heavily on looping constructs can-
not be expressed as dataflow without it. Support for
iteration in dataflow systems is a challenging prob-
lem, evinced by the wealth of active research in the
area [7, 23, 11, 22, 25, 24]. The root cause of this
challenge is the lack of centralized control that im-
perative languages depend upon to implement such
abstractions.

This paper considers IDEA (Iterative Dataflow
Engine for Accelerators), a runtime for heteroge-
neous systems comprised of CPUs and GPUs. IDEA
supports a set of primitives that enable a dataflow
system to efficiently support algorithms with iter-
ative, data-dependent control flow. We have used
these primitives to implement a broad range of ap-
plications, including kmeans clustering, PageRank,
deep neural networks and decision tree learning, and
consider this to be reasonable evidence of their broad
applicability. In this paper we focus on their use
to implement optical flow, an embarrassingly parallel
computer vision algorithm whose heavy use of nested
loops makes it challenging to express and execute in a
dataflow system. We use optical flow as a case study
to examine the control flow primitives supported in



IDEA, show that näıve control-flow support (e.g. ex-
plicit loop-unrolling) is insufficient, and show that on
a system with CPUs and GPUs, the primitives in
IDEA enable a dataflow implementation of optical
flow that outperforms a sequential CPU implementa-
tion by 18× and a GPU-based implementation based
on traditional host-based control flow by up to 32%.

2 Motivation

We consider the problem of computing optical flow.
Optical flow is the apparent motion of brightness pat-
terns in a sequence of 2D images and is a common
building block for image processing and computer vi-
sion algorithms, e.g. removing rolling shutter wob-
ble from video [5]. Optical flow algorithms are well-
studied [6]: Most approaches use iterative optimiza-
tion of an energy function, either fixing the number of
iterations, when low latency or deterministic perfor-
mance is the primary objective, or iterating until the
error in the motion drops below a threshold, when
quality is paramount. Our implementation is a vari-
ation of the Horn-Schunck [17] algorithm which uses
a pyramid of successively smaller rescaled versions of
the input images. An optical flow value is calculated
first for the smallest images (the top level of the pyra-
mid) and the result for each level is used to seed the
calculation for the next level. This approach allows
the optimization at the lower levels of the pyramid to
converge in fewer iterations than if Horn-Schunck was
applied only to full size images, leading to improved
performance.

For the purposes of this paper, it is sufficient to un-
derstand that the number of required pyramid levels
grows slowly with the image size and that each pyra-
mid level features two loops of nested iteration: an
inner loop iteratively solves a linear system required
for each iteration of the outer loop, which refines the
flow estimate. Both the inner and outer loop can
be implemented to terminate early based on data-
dependent convergence tests.

Expressing this algorithm as dataflow without sup-
port for cycles in the graph, recursive graph struc-
tures, or other direct support for iteration is prob-
lematic. Data-dependent loop termination is impos-
sible to express in such systems. While programmer-
controlled loop unrolling could be used to implement
a fixed number of iterations, the nested iterations will
cause the size of the unrolled graph to blow up, for
example, increasing the size of the graph by over 7×
for a typical input size (720HD video). With many
algorithms having iteration counts in the tens, hun-
dreds or even thousands, unrolling loops is clearly an

1 void Laplacian(flow, result) {
2 copyToGPU(flow);
3 invokeKernel(Laplacian);
4 copyFromGPU(result);
5 }
6 void LinearSystem(flowX, flowY, ..., result) {
7 copyToGPU(flowX);
8 copyToGPU(flowY);
9 // ...

10 invokeKernel(LinearSystem);
11 copyFromGPU(result);
12 }
13 for(...level...) {
14 // ...
15 Laplacian(flowX[level], flowLapX[level]));
16 Laplacian(flowY[level], flowLapY[level]));
17 LinearSystem(flowLapX[level], flowLapY[level],...);
18 //...
19 }

Figure 1: Pseudo-code for an excerpt of a GPU-offloaded
implementation of optical flow.

untenable approach.

2.1 Dataflow for optical flow

Dataflow is an attractive programming and execu-
tion model for this workload on a heterogeneous sys-
tem for a number of reasons. First, the graph elim-
inates the need for control to be orchestrated cen-
trally, simplifying scheduling. Second, the graph only
expresses tasks and producer-consumer relationships
among them so the programmer does not write code
for communication, synchronization, and data move-
ment. Finally, the graph expresses all the inherent
parallelism in the workload, enabling the runtime to
exploit it.

Consider the pseudo-code in Figure 1, which rep-
resents an excerpt from a traditional implementation
of GPU-offload for our optical algorithm. The code
computes a Laplacian over flow values in the X and
Y dimensions, both of which results are consumed
by a linear system solver computation. Two points
are most salient. First, control flow is orchestrated
synchronously on the CPU, which coordinates execu-
tion on the GPU. Second, because most GPUs have
private memory spaces, an implementation based on
any modern GPU framework (e.g. CUDA [26]) will
feature the explicit communication code that domi-
nates the code. The näıve composition of calls re-
sults in multiple needless round trips between CPU
and GPU memory for the intermediate results pro-
duced by Laplacian. Moreover, the fact that the
Laplacian computations for the X and Y dimensions
can be computed in parallel is not expressed by the
sequential code. These shortcomings have obvious so-

2



Figure 2: A dataflow graph using our proposed control flow
constructs to perform an iterative computation.

lutions but they require programmer intervention. A
dataflow framework avoids the coupling of algorithm,
data movement, and scheduling that are difficult to
avoid in a traditional implementation.

3 Design

This section considers the design of our system, called
IDEA which extends a basic DAG-based dataflow ex-
ecution engine with constructs that can be composed
to express iterative structures and data-dependent
control flow.

3.1 Base Dataflow System

IDEA re-implements and extends the abstractions
proposed in PTask [28], with the caveat that IDEA
is entirely in user-mode. We adopt the nomencla-
ture from PTask, a token model [9] dataflow system:
computations, or nodes in the graph are tasks, whose
inputs and outputs manifest as ports. Ports are con-
nected by channels, and data moves through chan-
nels discretized into chunks called datablocks. The
programmer codes to an API to construct graphs
from these objects, and drives the computation by
pushing and pulling datablocks to and from channels.
Tasks execute when a datablock is available at all of
its input ports. Following the example of PTask, a
unique thread manages each task in the graph, al-
lowing IDEA to overlap data movement and compu-
tation for different tasks. We use the PTask approach
to scheduling tasks.

3.2 Control Flow Constructs

Our base system, like most dataflow engines, admits
only computations whose graphs are acyclic (DAGs).

FlowX_ExpandFlow_Level_0

LaplacianX_Level_0

UpdateFlow_X_Level_0

WarpImage_Level_0

FlowX_ExpandFlow_Level_1

LaplacianX_Level_1

UpdateFlow_X_Level_1

WarpImage_Level_1

FlowX_ExpandFlow_Level_2

LaplacianX_Level_2

UpdateFlow_X_Level_2

WarpImage_Level_2

FlowX_ExpandFlow_Level_3

LaplacianX_Level_3

UpdateFlow_X_Level_3

WarpImage_Level_3

FlowX_ExpandFlow_Level_4

LaplacianX_Level_4

UpdateFlow_X_Level_4

WarpImage_Level_4

FlowY_ExpandFlow_Level_0

LaplacianY_Level_0

UpdateFlow_Y_Level_0

FlowY_ExpandFlow_Level_1

LaplacianY_Level_1

UpdateFlow_Y_Level_1

FlowY_ExpandFlow_Level_2

LaplacianY_Level_2

UpdateFlow_Y_Level_2

FlowY_ExpandFlow_Level_3

LaplacianY_Level_3

UpdateFlow_Y_Level_3

FlowY_ExpandFlow_Level_4

LaplacianY_Level_4

UpdateFlow_Y_Level_4

LinearSystem_Level_0

LinearSystem_Level_1

LinearSystem_Level_2

LinearSystem_Level_3

LinearSystem_Level_4

LaplacianX_Level_5

LinearSystem_Level_5

LaplacianY_Level_5

SOR_Level_0

SOR_Level_1

SOR_Level_2

SOR_Level_3

SOR_Level_4

SOR_Level_5

MaskImage_Level_0

MaskImage_Level_1

MaskImage_Level_2

MaskImage_Level_3

MaskImage_Level_4

MaskImage_Level_5

PreBlur_imgInput1_FilterHoriz121_0

PreBlur_imgInput1_FilterVert121_0

SubtractImage_Level_0

derivX_Level_0 derivY_Level_0imgInput1_FilterHoriz121_Level_0

PreBlur_imgInput2_FilterHoriz121_0

PreBlur_imgInput2_FilterVert121_0

imgInput2_FilterHoriz121_Level_0

SOR_1_Level_0

SOR_1_Level_1

SOR_1_Level_2

SOR_1_Level_3

SOR_1_Level_4

SOR_1_Level_5

UpdateFlow_X_Level_5UpdateFlow_Y_Level_5

SubtractImage_Level_1

SubtractImage_Level_2

SubtractImage_Level_3

SubtractImage_Level_4

SubtractImage_Level_5

UpdateFlow_X_Level_0_out_0

WarpImage_Level_5

UpdateFlow_Y_Level_0_out_0

derivX_Level_1

derivX_Level_2

derivX_Level_3

derivX_Level_4

derivX_Level_5

derivY_Level_1

derivY_Level_2

derivY_Level_3

derivY_Level_4

derivY_Level_5

imgInput1_FilterHoriz121Subs_Level_0

imgInput1_FilterVert121Subs_Level_0

imgInput1_FilterHoriz121Subs_Level_1

imgInput1_FilterVert121Subs_Level_1

imgInput1_FilterHoriz121Subs_Level_2

imgInput1_FilterVert121Subs_Level_2

imgInput1_FilterHoriz121Subs_Level_3

imgInput1_FilterVert121Subs_Level_3

imgInput1_FilterHoriz121Subs_Level_4

imgInput1_FilterVert121Subs_Level_4

imgInput1_FilterVert121_Level_0

imgInput1_FilterHoriz121_Level_1

imgInput1_FilterVert121_Level_1

imgInput1_FilterHoriz121_Level_2

imgInput1_FilterVert121_Level_2

imgInput1_FilterHoriz121_Level_3

imgInput1_FilterVert121_Level_3

imgInput1_FilterHoriz121_Level_4

imgInput1_FilterVert121_Level_4

imgInput2_FilterHoriz121Subs_Level_0

imgInput2_FilterVert121Subs_Level_0

imgInput2_FilterHoriz121Subs_Level_1

imgInput2_FilterVert121Subs_Level_1

imgInput2_FilterHoriz121Subs_Level_2

imgInput2_FilterVert121Subs_Level_2

imgInput2_FilterHoriz121Subs_Level_3

imgInput2_FilterVert121Subs_Level_3

imgInput2_FilterHoriz121Subs_Level_4

imgInput2_FilterVert121Subs_Level_4

imgInput2_FilterVert121_Level_0

imgInput2_FilterHoriz121_Level_1

imgInput2_FilterVert121_Level_1

imgInput2_FilterHoriz121_Level_2

imgInput2_FilterVert121_Level_2

imgInput2_FilterHoriz121_Level_3

imgInput2_FilterVert121_Level_3

imgInput2_FilterHoriz121_Level_4

imgInput2_FilterVert121_Level_4

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPortIMAGE_PARAMS

LaplacianX_Level_5_in_0

UpdateFlow_X_Level_5_inout_0

WarpImage_Level_5_in_1

LaplacianY_Level_5_in_0

UpdateFlow_Y_Level_5_inout_0

WarpImage_Level_5_in_2

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMSIMAGE_PARAMS

SOR_Level_0_inout_6

SOR_Level_1_inout_6

SOR_Level_2_inout_6

SOR_Level_3_inout_6

SOR_Level_4_inout_6

SOR_Level_5_inout_6

SOR_Level_0_inout_7

SOR_Level_1_inout_7

SOR_Level_2_inout_7

SOR_Level_3_inout_7

SOR_Level_4_inout_7

SOR_Level_5_inout_7

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IterationMetaPort

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

IMAGE_PARAMS

PreBlur_imgInput1_FilterHoriz121_0_in_0

PreBlur_imgInput2_FilterHoriz121_0_in_0

Figure 3: The dataflow graph for our optical flow
implementation

This is a fundamental limitation, as expressing iter-
ation in a graph requires, at minimum, support for
either cyclic graphs, or for recursion.1 We avoid the
latter approach because recursion requires a dynamic
graph structure, which complicates synchronization
and optimization significantly. Classical dataflow
models suggest specialized nodes such as predicates,
“selectors”, and “distributors” [9], which can be com-
posed in a cyclic graph to express arbitrary iteration.
We take inspiration from this approach, but avoid ex-
pressing these constructs as first-class class nodes in
the graph, largely because making light-weight oper-
ations like predicate evaluation and routing schedu-
lable entities complicates the scheduler and makes it
difficult to preserve locality. For example, a predi-
cate node may be scheduled on a compute resource
such that large amounts of data must be moved to
execute a handful of instructions: the scheduler can
be coded to try to avoid this, but it is simpler if pred-
icates and routing functionality can be piggy-backed
onto existing structures. Consequently, IDEA’s con-
trol flow constructs extend the functionality of ports
and channels. IDEA Uses the following abstractions:

ControlSignals. IDEA graphs carry control sig-
nals by annotating datablocks with a control code.
The programmer defines arbitrary flow paths for
these signals using an API to define a control prop-
agation pair, which connects port pairs. Any con-
trol code received on a datablock received at the
first port, will be propagated to the datablock on
the second port. Examples of control signals include
BEGIN/END-STREAM and BEGIN/END-ITERATION.

MultiPort. A MultiPort is a specialized input
port that can be connected to multiple (prioritized)
input channels. If a datablock is available on any
of the input channels, the MultiPort will dequeue it,
preferring the highest priority channel if many are
ready.

1It is commonly argued that programmer-managed loop un-
rolling allows a programmer to express iteration in a DAG. We
address this argument in Section 2.

3



PredicatedChannel. A PredicatedChannel al-
lows a datablock to pass through it if the predi-
cate holds for the datablock. The API for config-
uring predicates allows the programmer to define
whether the datablock is dropped from the chan-
nel or queued for later re-evaluation when the pred-
icate fails. In general, the predicate function is a
programmer-supplied callback, but we provide spe-
cial support common predicates such as open/close
on control signals such as BEGIN/END-ITERATION.

InitializerChannel. An InitializerChannel pro-
vides a pre-defined initial value datablock. Initial-
izerChannels can be predicated similarly to Predi-
catedChannels: they are always ready, except when
the predicate fails. InitializerChannels simplify con-
struction of sub-graphs where the initial iteration of a
loop requires an initial value that is difficult to supply
through an externally exposed channel.

IteratorPort. An IteratorPort is a port respon-
sible for maintaining iteration state and propagating
control signals when iterations begin an end. An It-
eratorPort maintains a list of ports within its scope,
which are signaled when iteration state changes. An
IteratorPort also propagates BEGIN/END-ITERATION

control signals along programmer-defined control
propagation paths, which in combination with back-
ward/forward PredicatedChannels can conditionally
route data either to the top of another iteration, or
forward in the graph when a loop completes. Iterator-
Ports can use callbacks to implement arbitrary itera-
tors, or select from a handful of pre-defined functions,
such as integer-valued loop induction variables.

Collectively, these constructs allow us to imple-
ment rich control flow constructs and iteration with-
out additional specialized task nodes. Scheduling and
resource-management for tasks maintains conceptual
simplicity, and routing decisions are always computed
locally by construction.

Care must be taken in the configuration of the
above constructs to avoid the introduction of un-
wanted non-determinism. To do this, the inputs to
a MultiPort must all be predicated channels, with
predicates configured such that at at any given mo-
ment at most one channel will allow datablocks to
pass through. Note however that non-determinism
may be acceptable, and even desirable, in some ap-
plications. For example to allow use of a value from
one channel until an update is available via another
channel.

An example of how these constructs can be used to
orchestrate a simple iterative computation is shown
in Figure 2. In this figure, white ovals represent tasks,
gray ovals represent ports, and the black oval repre-
sents an IteratorPort. Solid arrows represent chan-

nels, and dashed arrows represent PredicatedChan-
nels. The computation executes a loop whose body
is A() followed by B(). The MultiPort input to A
is added to the scope of the IteratorPort on B, and
the port labeled out on B is set up with a control
propagation path from the IteratorPort (represented
by a gray arc in the Figure). The PredicatedChan-
nels going backward and forward from the out port
are configured with CLOSE/OPEN-on-END-ITERATION

respectively. Because the IteratorPort will set the
control signals on blocks leaving the out port, only
datablocks annotated with an END-ITERATION con-
trol code can flow forward, and only those not so
annotated can flow backward. The exposed Predi-
catedChannel entering A accepts only blocks anno-
tate with BEGIN-ITERATION. When an iteration state
datablock is pushed into the IteratorPort it signals
all objects in its scope to annotate the next block re-
ceived with a BEGIN-ITERATION control code. Con-
sequently, datablocks follow the cyclical path until
a loop completes, after which a new datablock can
be consumed from the forward PredicatedChannel at
the top of the graph.2

4 Implementation

We implemented the optical flow algorithm in IDEA
using the control flow constructs described in Sec-
tion 3. In particular, the pattern described in Fig-
ure 2 was used to implement the two nested loops
within each level of the image pyramid. Figure 3
shows the dataflow graph of our implementation. 18
distinct kernels are used, comprising approximately
1700 lines of HLSL code. Graph construction and
driver code comprise about 1600 lines of C++. In this
realization, graph construction is via a low-level API,
where each task, port and channel must be added ex-
plicitly. Higher-level tools that allow more concise ex-
pression and preclude mis-configration would be ad-
vantageous and we are actively investigating them.

The inner loop, whose body contains 2 tasks with 8
parameters each, has a dataflow analog constructed
using 2 InitializerChannels, 10 PredicatedChannels
and a single IteratorPort to manage the iteration
state. The InitializerChannels are set to be open
initially and to re-open on END-ITERATION, since we
want them to open then to seed a new iteration. Each
instance of the outer loop, whose body contains re-
quires 20 tasks (including the two for the inner loop),

2We note that a limitation of this design is that execution
of different iterations cannot be pipelined, which compromises
some of the available concurrency. Extending this design to
pipeline the execution of multiple iterations is possible, but at
a significant cost in increased complexity.

4



uses 6 predicated InitializerChannels (similarly con-
figured) 6 PredicatedChannels for backward flow to
the top of the loop, along with 2 PredicatedChannels
for data flowing to the next pyramid level. The It-
eratorPort for these outer loops must be bound to 4
MultiPorts on 3 parallel tasks.

We note that the pyramid levels could be imple-
mented as a third, outer loop, which would reduce
the size of the graph. However, our GPU kernels are
implemented in DirectCompute, which requires that
the number of GPU threads required to execute the
kernel be fixed at the time of kernel compilation. We
also choose to process a fixed number of pixels per
kernel thread. Hence we cannot reuse a task at dif-
ferent levels of the image pyramid and the pyramid
levels must be unrolled in our implementation. Each
level of the pyramid adds 20 tasks to the graph, so the
the total graph size is 136 vertices in the 720HD video
case, requiring 5 pyramid levels, and 176 vertices in
the 4K video case (7 pyramid levels).

5 Evaluation

We evaluate our implementation of optical flow by
comparing its performance against a sequential CPU-
only implementation and a GPU-based implementa-
tion that uses the same GPU kernels and a sequen-
tial driver program with synchronous control flow.
Measurements were taken on a Windows 7 x64 ma-
chine with a 2.67 GHz 4-core Intel Xeon (W3520)
with 12GB RAM, and an NVIDIA GTX 580 GPU
(512 cores, 3GB memory).

We use input image sequences of various di-
mensions, representing common video sizes: VGA
(640x480), 720HD (1280x720), 1080HD (1920x1080)
and 4K ’Ultra HD’ (4096x2160). Figure 5 reports
speedup over the CPU implementation for 3 and 5
outer and inner iterations at each level of the pyra-
mid respectively; data are the average over 5 runs.
Results for other iteration counts are similar. Both
GPU-based implementations outperform the CPU-
based implementation, by margin that increases with
image size. The IDEA-based implementation consis-
tently outperforms the synchronous control GPU im-
plementation. IDEA’s relative performance peaks for
720HD and 1080HD video (32% and 17% speedup, re-
spectively), because setup and communication costs
are dominant at the smaller image size (only 7% for
VGA) and GPU execution latency dominates at 4K
Ultra HD, (only 2%). These benefits are made pos-
sible by the asynchrony in the IDEA dataflow sys-
tem; without our proposed abstractions, the work-
load could not be coded as dataflow.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

VGA 720HD 1080HD 4K
Image Size

S
pe

ed
up

 O
ve

r 
C

P
U

Implementation

CPU

GPU − synchronous control

GPU − dataflow control

Figure 4: The speedup over CPU of GPU without
and with flow control, at different image sizes

6 Related work

Heterogeneous Compute Enginges. Hetero-
geneous compute engines such as PTask [28],
StarPU [4], MATE-CG [19], Mars [14] and oth-
ers [27, 8] address the same programmability prob-
lem addressed IDEA. IDEA could benefit from some
of the resource-management techniques used in these
systems. IDEA’s control flow support expands the
set of applications that can target such systems.

Dataflow. IDEA extends our own previous work
with PTask [28]. PTask supports dataflow program-
ming at the OS-interface, and in particular, accepts
only computations that can be expressed as DAGs.
IDEA is a user-mode runtime that addresses PTask’s
limitation by supporting abstractions that enable
cyclical graphs. Applications written in StreamIt [29]
and DirectShow [21] are expressed as graphs of nodes
which send and receive items to each other over chan-
nels. StreamIt and DirectShow are programming
models with dedicated compiler support, while IDEA
is a runtime only system that extends the set of ex-
pressible graphs.

Sponge [16],and other languages [20] such as LUS-
TRE [13] , along with Lime [3] Flextream [15] propose
language and/or compiler support for SDF model
dataflow graphs. IDEA is not an SDF system and
by avoiding dedicated nodes to represent control flow
constructs, the abstractions we propose for IDEA are
a departure from previous methods for supporting
control flow within a dataflow environment.

Dryad [18] is a graph-based fault-tolerant program-
ming model for distributed parallel execution in data
center. IDEA’s control flow support allows a de-
veloper to write applications that cannot be easily
expressed in Dryad. Extending dataflow systems to
support iteration [7, 11, 22, 25] or incremental iter-

5



ative computation [23, 12, 24] is an active research
area. IDEA’s approach of piggybacking control flow
constructs on existing graph structures is unique in
this space.

7 Conclusion

Many data parallel algorithms like optical flow re-
quire data-dependent control flow that is difficult to
implement efficiently in existing dataflow systems.
We have proposed control flow abstractions for IDEA
that enable a performant implementation at reason-
ably programming complexity.

We show that with these abstractions it is possi-
ble to achieve the performance benefits of dataflow
(over a traditional synchronous approach) for work-
loads that previously could not be implemented in
such frameworks.

Using these abstractions correctly proved to be
challenging, with much time spent debugging mis-
configured graphs. This fits with the general com-
plexity of manually designing dataflow graphs for
non-trivial applications, and confirms the need for
higher-level tools that either allow more concise graph
expression or generate the graph from an entirely dif-
ferent representation of the application.

As future work we plan to create such tools as well
as extend IDEA to support pipelining multiple out-
standing iterations, and investigate distributed exe-
cution.

References

[1] Top 500 supercomputer sites. 2013.

[2] Amazon. High Performance Computing on AWS, 2013.

[3] J. S. Auerbach, D. F. Bacon, P. Cheng, and R. M. Rab-
bah. Lime: a java-compatible and synthesizable language
for heterogeneous architectures. In OOPSLA. ACM, 2010.

[4] C. Augonnet and R. Namyst. StarPU: A Unified Runtime
System for Heterogeneous Multi-core Architectures.

[5] S. Baker, E. P. Bennett, S. B. Kang, and R. Szeliski.
Removing rolling shutter wobble. In CVPR, 2010.

[6] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,
and R. Szeliski. A Database and Evaluation Methodology
for Optical Flow. IJCV, 2011.

[7] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop:
efficient iterative data processing on large clusters. Proc.
VLDB Endow., 3(1-2):285–296, Sept. 2010.

[8] B. Catanzaro, N. Sundaram, and K. Keutzer. A map
reduce framework for programming graphics processors.
In WSTMS, 2008.

[9] A. L. Davis and R. M. Keller. Data flow program graphs.
IEEE Computer, 15(2):26–41, 1982.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1), 2008.

[11] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae,
J. Qiu, and G. Fox. Twister: a runtime for iterative
mapreduce. In HPDC ’10. ACM, 2010.

[12] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spin-
ning fast iterative data flows. VLDB, 2012.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language lustre. In
Proceedings of the IEEE, pages 1305–1320, 1991.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a mapreduce framework on graphics
processors. In PACT. ACM, 2008.

[15] A. Hormati, Y. Choi, M. Kudlur, R. M. Rabbah,
T. Mudge, and S. A. Mahlke. Flextream: Adaptive com-
pilation of streaming applications for heterogeneous ar-
chitectures. In PACT. IEEE Computer Society, 2009.

[16] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and
S. Mahlke. Sponge: portable stream programming on
graphics engines. In ASPLOS, 2011.

[17] B. K. P. Horn and B. G. Schunck. Determining Optical
Flow. Artificial Intelligence, 17:185–203, 1981.

[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from sequen-
tial building blocks. In EuroSys 2007.

[19] W. Jiang and G. Agrawal. Mate-cg: A map reduce-like
framework for accelerating data-intensive computations
on heterogeneous clusters. PDPS, 0, 2012.

[20] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal process-
ing. IEEE Trans. Comput., 36:24–35, January 1987.

[21] M. Linetsky. Programming Microsoft Directshow. Word-
ware Publishing Inc., Plano, TX, USA, 2001.

[22] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system
for large-scale graph processing. In SIGMOD. ACM, 2010.

[23] F. McSherry, R. Isaacs, M. Isard, and D. G. Murray. Com-
posable Incremental and Iterative Data-Parallel Compu-
tation with Naiad. 2012.

[24] S. R. Mihaylov, Z. G. Ives, and S. Guha. Rex: recur-
sive, delta-based data-centric computation. Proc. VLDB
Endow., 5(11):1280–1291, July 2012.

[25] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith,
A. Madhavapeddy, and S. Hand. Ciel: a universal execu-
tion engine for distributed data-flow computing. In NSDI,
2011.

[26] NVIDIA. NVIDIA CUDA Programming Guide, 2011.

[27] V. T. Ravi, M. Becchi, W. Jiang, G. Agrawal, and
S. Chakradhar. Scheduling concurrent applications on a
cluster of cpu-gpu nodes. In CCGRID. IEEE Computer
Society, 2012.

[28] C. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. Ptask: Operating system abstractions to
manage gpus as compute devices. In SOSP, 2011.

[29] W. Thies, M. Karczmarek, and S. P. Amarasinghe.
StreamIt: A Language for Streaming Applications. In
CC 2002.

[30] K. Ueno and T. Suzumura. Highly scalable graph search
for the graph500 benchmark. In HPDC, 2012.

6


