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Abstract
Sampled data from sensors, the web, and people is inherently
probabilistic. Because programming languages use discrete
types (floats, integers, and booleans), applications, ranging
from GPS navigation to web search to polling, express and
reason about uncertainty in idiosyncratic ways. This mis-
match causes three problems. (1) Using an estimate as a
fact introduces errors (walking through walls). (2) Compu-
tation on estimates compounds errors (walking at 59 mph).
(3) Inference asks questions incorrectly when the data can
only answer probabilistic question (e.g., “are you speeding?”
versus “are you speeding with high probability”).

This paper introduces the uncertain type (Uncertain〈T〉),
an abstraction that expresses, propagates, and exposes un-
certainty to solve these problems. We present its semantics
and a recipe for (a) identifying distributions, (b) computing,
(c) inferring, and (d) leveraging domain knowledge in un-
certain data. Because Uncertain〈T〉 computations express an
algebra over probabilities, Bayesian statistics ease inference
over disparate information (physics, calendars, and maps).
Uncertain〈T〉 leverages statistics, learning algorithms, and
domain expertise for experts and abstracts them for non-
expert developers. We demonstrate Uncertain〈T〉 on two ap-
plications. The result is improved correctness, productivity,
and expressiveness for probabilistic data.

1. Introduction
Applications that sense and reason about the complexity of
the physical world use estimates. Examples include GPS
sensors, which estimate location; search, which estimates
information needs from search terms; software benchmark-
ing, which estimates the performance of different software
configurations; and political polling, which estimates elec-
tion results. The difference between estimates and true values
is uncertainty. Every estimated value has uncertainty and
introduces random error.
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a 

A 

Figure 1: Sampling a probability distribution A produces
a single point a, introducing uncertainty. The distribution
quantifies potential errors. The sample a does not represent
the mean of A, but many programmers treat it as if it does.

Random variables model estimation processes by express-
ing probability distributions of data. A distribution assigns a
likelihood to each possible value of a random variable. For
example, a flip of a biased coin may have a 90% chance of
heads, and 10% chance of tails. The outcome of each flip is a
random variable. Furthermore, the outcome of one flip is only
a sample, not the expected value of a coin flip in the long run.
A probability distribution represents the uncertainty in an ob-
servation, as shown in Figure 1. A probability distribution is
fundamental to computing with estimates, since it expresses
an estimate’s uncertainty.

Most programming languages force developers to reason
about estimated data with discrete types (floats, integers,
and booleans), which do not capture uncertainty in their
values. While work in probabilistic programming [10], and
libraries for machine learning (e.g., Infer.NET [12]), specific
domains [4, 8, 15, 18–20], and statistics (e.g., PaCAL [11],
Matlab, R) address parts of this problem, they typically
require domain, machine learning, and/or statistics expertise
far beyond what many client applications require to consume
uncertain data. Consequently, motivated developers reason
about uncertainty in ad hoc ways, but because this task is
complex, many more simply ignore uncertainty. For instance,
we survey over 100 smartphone applications that use GPS
APIs, which include estimated error, and find only one
reasons about the error.

The mismatch between uncertain data and most program-
ming languages leads three types of uncertainty bugs.

Using an estimate as a fact introduces errors because it ig-
nores random noise in data.
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Computation compounds errors because each computation
on estimated data typically degrades accuracy further.

Inference on estimates creates errors when it asks concrete
instead of probabilistic questions.

These uncertainty bugs cause programs to behave in unex-
pected and incorrect ways.

This paper introduces the uncertain type, Uncertain〈T〉, a
programming language abstraction that represents probability
distributions of estimated values. The uncertain type defines
an algebra on random variables which propagates uncertainty
through calculations and inference. It exposes distributions to
developers, making it easier to reason correctly with uncertain
data. This abstraction gives developers the necessary tools to
mitigate uncertainty bugs.

We introduce a four step recipe to create and modify pro-
grams that operate on estimated data. (1) Developers identify
the probability distribution that underlies their estimated data.
This distribution is domain-specific and may come from a
library, or may be derived theoretically (e.g., from the cen-
tral limit theorem), or estimated empirically. (2) Developers
perform computations on random variables. The default al-
gebra for computations involving multiple random variables
assumes they are independent. Developers must therefore
identify any dependent variables in computations and over-
ride their joint probability distribution. (3) Developers query
distributions to make inferences. Rather than asking determin-
istic questions, such as “are you speeding?”, developers ask
probabilistic questions, such as “are you speeding with 99%
confidence?” or “on average, are you speeding?”. (4) Devel-
opers specify domain knowledge with prior distributions (e.g.,
physics, calendars, maps, facts), which they use to improve
the quality of estimates.

The Uncertain〈T〉 abstraction is useful to library experts,
and to application developers, who do not need or want to
become sensor, information retrieval, machine learning, or
polling experts, but do want to use these results in their ap-
plications. Domain experts wrap existing libraries and create
new libraries that expose Uncertain〈T〉 distributions to client
applications. The uncertain type benefits experts because its
semantics allow for Bayesian inference, making adding mod-
els and improving estimates easier. We demonstrate these
benefits and the recipe with two case studies (GPS-Walking
and SensorLife), and show how Uncertain〈T〉 helps improve
expert and non-expert developer productivity and correctness.

In summary, the contributions of this paper are (1) identify-
ing reasons for and types of uncertainty bugs; (2) a principled
abstraction and semantics to addresses these problems; and
(3) a demonstration that this abstraction improves productiv-
ity and correctness.

2. Background and related work
Probability theory This work defines the semantics of the
uncertain type with probability theory and reviews it as
needed throughout the paper. (Additional background sources

are widely available [2].) The theory of probability rests on
the concept of a random variable. For example, the outcome
of a coin flip is a random variable with a domain Ω of two
possible values (heads and tails), Each possible value has a
probability associated with it. For a fair coin, both heads and
tails have probability 0.5.

A probability distribution or probability density function
f : Ω→ [0,∞) represents these probabilities. For discrete
variables, the value of f (x) is the probability that the random
variable is equal to x ∈Ω. Continuous variables require more
care. The important point is that the probability distribution
completely defines the random variable, because it encodes
the probability that it takes on each possible value.

Probabilistic programming Current abstractions for pro-
gramming with probabilities are too low-level, forcing de-
velopers to rephrase simple problems in complex ways. For
example, the Church language offers stochastic primitive
functions in which developers express probabilistic computa-
tions and generative models of data [10]. But it is complex,
non-deterministic, and requires expertise in statistics to use
correctly, making it inaccessible to many developers.

Infer.NET is a Machine Learning (ML) framework that
democratizes ML by embedding a Bayesian inference engine
into a general programming language [12]. Like Church,
Infer.NET programmers write generative models of real
world processes. Then, given a sequence of observations of a
real world process, Infer.NET will run programs backward
to infer parameters of the generative model. In contrast,
Uncertain〈T〉 has different goals: we focus on democratizing
sound statistical techniques on estimated data for everyday
programmers and on combining disparate models.

PaCAL is a software library for computing with prob-
ability distributions [11], which also expresses arithmetic
computations on random variables. PaCAL, however, is re-
stricted to closed form distributions, whereas Uncertain〈T〉
includes closed forms and the more common arbitrary distri-
butions. PaCAL requires developers to explicitly express each
computation and the distributions that underlie them, and is
therefore too low level for many developers. PaCAL lacks
a semantics for inference over random variables, which is a
common and critical function of programs that use uncertain
data.

Domain-specific approaches to uncertainty Many domain-
specific approaches offer methods for reasoning over uncer-
tain data. For instance, input devices such as touch screens
require software to determine the target of input gestures,
which cover an area of the screen rather than a single point,
making the intended target ambiguous. Schwarz et al. [18, 19]
propose capturing input gestures as distributions to proba-
bilistically determine the target. They represent input gestures
as 2D Gaussian distributions, and for complex gestures like
dragging, they defer selecting a target until more information
is gathered. This approach generalizes to multimodal inter-
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action, combining multiple input modes to reduce ambiguity
from any one source [15], but is limited to input devices.

GPS sensors are a well-known source of uncertainty due
to the inherent random error in their sensing process [20].
Mobile systems provide a GPS fix and an error estimate
to developers, but current programming languages require
developers to create their own idiosyncratic solutions to make
use of the error estimate. For example, Newson and Krumm
[14] match GPS samples to road maps using a hidden Markov
model. Because there is no built-in support that exposes the
distribution of GPS samples, they develop their own model.
The authors improve on existing map-matching techniques
by correctly addressing sampling error, but we cannot expect
most developers to go to this extent to correctly address
uncertainty, because it requires significant extra expertise
and research.

Robustness of programs At a fundamental level, uncer-
tainty is important because it violates the usual assumptions
that programs are deterministic in their input. Programs using
uncertain data can change their output due only to random
error. Chaudhuri et al. [6] introduce a notion of robustness to
formalize this loss of determinism. A robust program’s output
is Lipschitz continuous in its inputs. That is, a program is
robust if a change in its input from x to x+ ε results in a
change in its output of at most Kε , where K does not depend
on x. Robust programs therefore handle uncertain data cor-
rectly, because input variation due to random error does not
radically change the output. Programs that are not robust are
exactly those that are susceptible to uncertainty bugs.

Approximate computing Not all programs require the guar-
antees provided by a programming language or underlying
hardware. Approximate computations allow programmers to
specify which parts of their computation are approximate
which lets compilers and hardware trade off performance
with quality. For example, loop perforation compiles an ap-
proximate loop into one that only executes a subset of loop
iterations [5]. Likewise, EnerJ [17] and Energy Types [7]
force programmers to encode approximate computations with
static types which hardware can then exploit through energy
efficient and approximate computations. These type systems
only denote computations as being approximate and unlike
Uncertain〈T〉 do not combine computations via distributions
nor force programmers to ask the right questions of their data.

Summary Prior work is either too low-level, requiring
programmers to have advanced degrees in statistics and ML,
or too domain-specific requiring programmers to reason
about uncertainty in ad-hoc ways. This paper introduces
Uncertain〈T〉: an abstraction targeted to developers who do
not need or want to learn the formal background, yet still
work with uncertain data.

3. Motivation
This section motivates the uncertain type abstraction by
examining applications that compute on GPS sensor data.

public class GeoCoordinate {
public double Latitude;
public double Longitude;
// 95% confidence interval for location
public double HorizontalAccuracy;

}
public class GeoCoordinateWatcher {

public GeoCoordinate GetPosition();
}

Figure 2: The geolocation API on Windows Phone (WP)
returns Latitude, Longitude, and a radius of uncertainty.

Windows Phone Android (a) WP: 95% CI, σ = 33 mWindows Phone Android (b) Android: 68% CI, σ = 39 m

Figure 3: GPS samples at the same location. Although smaller
circles appear more accurate, WP is more accurate after
normalising the defintions.

Our cursory survey of smartphone applications shows that
many use GPS location to compute the user’s speed. This
section then examines programming pitfalls and resulting
errors of current discrete abstractions in more detail, finding
discrete abstractions engender errors and errors are prevalent.

Interpreting estimates as facts Sensors are the interface be-
tween software and the physical world. Sensor observations
estimate physical state, such as temperature, distance, pres-
sure, mass, and location. On smartphones, Global Positioning
System (GPS) sensors estimate location.

We surveyed the most popular Windows Phone (WP)
and Android applications and found 22% of WP and 40%
of Android applications use GPS for location. The GPS
abstraction for providing error estimates is similar on both
platforms. Figure 2 shows the Windows Phone API. On closer
examination, we found only 5% of WP applications read the
error estimate, and only one application (Pizza Hut) acts on
it. The Pizza Hut application disregards GPS fixes if the error
is increasing. Most programmers are ignoring GPS error, and
treating estimates as facts. This error leads to absurd results,
such as driving in oceans.

Figure 3 shows that even considering the error estimate
is not enough–developers must also be interpret it correctly.
Both WP and Android show circles to represent horizontal
accuracy (smaller circles indicate less uncertainty). But on
WP the circle is a 95% confidence interval, whereas on
Android it is a 68% confidence interval. In Figure 3, even
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Figure 4: These probability distributions have the same mean
and horizontal accuracy, but computing with them gives very
different results.
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Figure 5: Speed computation on GPS data produces absurd
walking speeds (59 mph, and 7 mph for 35 s, a running pace).

though the Android circle is smaller, it is actually less
accurate.

Furthermore, even when interpreted correctly, error esti-
mates are insufficient for computing on the underlying dis-
tributions. Figure 4 shows three distributions with the same
error (i.e., mean and 95% confidence interval), but computing
with them gives very different results. These errors all arise
due to inappropriate abstractions for uncertain data.

Compounding error Computing on uncertain data com-
pounds uncertainty, and current abstractions do not cap-
ture this important result. We performed an experiment that
recorded GPS locations on WP while a user walked (ground
truth) and use them to estimate speed. Figure 5 shows the
calculated speed. The average human walks at 3 mph, and
Usain Bolt runs the 100 m sprint at 24 mph. The experimental
data shows an average walking speed of 3.5 mph, 35 s spent
above 7 mph (a reasonable running speed), and at one point,
a patently absurd walking speed of 59 mph. These errors,
caused by compounding uncertainty, are significant in both
magnitude and frequency.

Because the GPS location is an estimate, computations
derived from that location are also estimates. Figure 6 shows
how to correctly compute speed from GPS samples. The
resulting speed is a distribution, and is wider (more uncer-
tain) than the locations. Even if the GPS estimates are very
accurate, the speed estimates are not. Current abstractions
do not capture this compounding effect because they do not
represent the distribution, and do not propagate uncertainty
through calculations.

LastLocation Location Location - LastLocation 

Figure 6: Calculating speed using GPS locations and time.
Because location samples are estimates, substraction com-
pounds the error in the estimated speed.
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Figure 7: Probability of issuing a speeding ticket at a 60 mph
speed limit. With a true speed of 57 mph and GPS accuracy
of 4 m, there is a 32% chance of issuing a ticket.

Inference Developers use estimated data to infer answers
to questions by using conditionals. Consider the case of
using GPS-estimated speed to issue speeding tickets. If the
estimated speed is 57 mph with a speed limit of 60 mph, there
is a 32% probability of issuing a speeding ticket at 4 m GPS
accuracy. Figure 7 graphs this probability across speeds and
GPS accuracies. We have not observed GPS samples with
accuracy below 4 m.

The problem is that the application is asking a determin-
istic question about probabilistic data. Instead, it should ask
a probabilistic question, only issuing a speeding ticket if the
probability is very high (say 95%) that the user is speeding.
Without the right abstraction for uncertain data, correctly
asking these questions is difficult and error-prone.

Uncertain data abstraction GPS applications are not
unique in their treatment of uncertain data. A wide range of
modern and emerging applications compute over uncertain
data, including web search, benchmarking, medical trials,
chemical simulations, and human surveys. Many domains
require an expert to correctly characterize the uncertainty in
their data as a distribution. But many more developers use
this data and will benefit from capturing it in the appropriate
abstraction. The next section describes how the uncertain
type provides such an abstraction.
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Arithmetic operators: (+ − ∗ /)
op :: Uncertain〈T〉 → Uncertain〈T〉 → Uncertain〈T〉

Equality operators (< > ≤ ≥ 6= )
op :: Uncertain〈T〉 → Uncertain〈T〉 → Bernoulli

Logical operators (∧ ∨ ¬ )
op :: Bernoulli→ Bernoulli→ Bernoulli

Sampling methods
ExpectedValue :: Uncertain〈T〉 → SamplingDist〈T∗〉

(samples the expected value of the variable)
Prob :: Bernoulli→ SamplingDist〈Bernoulli〉

(samples the probability of the Bernoulli variable)
Project :: SamplingDist〈T〉 → T

(Project from SD〈T〉 to summary statistic, T )
Hypothesis testing (for comparisons)

HypTest :: SD〈T〉 → SD〈T〉 → [0,1]→ Boolean
(hypothesis test at level α; null hypothesis A = B)

n.b. SD〈T〉 is shorthand for SamplingDist〈T〉.

Figure 8: Uncertain〈T〉 operators and methods.

4. A first-order type for uncertain data
We propose a new generic data type, Uncertain〈T〉, to
capture and manipulate uncertainty as distributions. The
Uncertain〈T〉 abstraction correctly propagates error through
computations over T and helps programmers to reason about
uncertainty with proper statistical tests. This section describes
the operations and semantics for Uncertain〈T〉. Appendix B
defines a concrete instantiation of these semantics in C#.

The uncertain type represents arbitrary distributions by
approximating them with random sampling, which we imple-
ment concretely by storing a list of samples of type T . We can
optimize this approach for distributions with a closed form,
such as Gaussians, by subclassing the uncertain type and
overloading operators. We note that many operations reduce
from O(N) to O(1) with closed forms, but leave optimization
for future work.

There are two sources of error that Uncertain〈T〉 ad-
dresses: observation error and sampling error. Observation
error is the error induced by the problem domain (e.g. a
GPS sensor has inherent limitations which manifest in ob-
servational error). In other words, observation error is the
difference between a measured value and its true value. Sam-
pling error, on the other hand, is induced by the fact that
Uncertain〈T〉 cannot always use a closed-form representa-
tion of a distribution and has to approximate a distribution
with a finite list of samples.

The following section describes the semantics of the uncer-
tain type and how the semantics (i) correctly propagate both
forms of error through calculations, (ii) help programmers
to use proper statistical techniques, and (iii) correctly and
efficiently evaluate inferences and conditionals on uncertain
data.

4.1 Semantics of the uncertain type

The semantics of Uncertain〈T〉 draw from both theoretical
and sampling properties of probability distributions. Our
semantics strike a balance between an expressive type, that
helps programmers work correctly with uncertain data, and
an efficient implementation of that type. Figure 8 provides an
overview of the operators and methods for Uncertain〈T〉.

Propagating error through computations To help develop-
ers write correct code on uncertain data, Uncertain〈T〉 defines
an algebra over random variables, which propagates uncer-
tainty through calculations. In particular, Uncertain〈T〉 lifts
arithmetic operations on T to distributions over T via operator
overloading. Likewise, to propagate error through compari-
son operators (i.e., anything with type: T → T → Boolean),
Uncertain〈T〉 lifts operations to return a Bernoulli distribu-
tion, which is an Uncertain〈Boolean〉 that takes a value True
with probability p and False otherwise.

Note that for any T , we can create an implicit conversion
from T to a point-mass distribution Uncertain〈T〉, which
means programmers can write statements like A+10.0 where
A is an Uncertain〈Float〉.

Sampling distributions To handle distributions that do
not have a closed form, the Uncertain〈T〉 implementation
necessarily induces sampling error. To capture this error
and incorporate it into the semantics, we introduce a type
SamplingDist〈T〉 which is itself a subclass of Uncertain〈T〉.
Only two methods extract data from Uncertain〈T〉: Expect-
edValue samples the expected value of an Uncertain〈T〉 and
Prob samples the probability of a Bernoulli. Because of
sampling error, these methods return sampling distributions,
of type SamplingDist〈T∗〉 and SamplingDist〈Bernoulli〉, re-
spectively.

Notice that the expected value method returns a distribu-
tion of type SamplingDist〈T ∗〉. Because the definition of the
sample mean involves division, we must expand the group
T to a field T ∗ which possesses a multiplicative inverse. In
practical terms, the sample mean of a distribution over inte-
gers of type Uncertain〈Integer〉 is a rational number of type
Float, instead of an integer.

One of the key insights of our abstraction is that these
sampling distributions provide an efficient mechanism to
evaluate their underlying sample statistics. For example, the
Central Limit Theorem says that when sampling the expected
value of a distribution A, the result has approximately Gaus-
sian uncertainty, with variance inversely proportional to the
square root of sample size, regardless of the distribution of A.
Likewise, a Binomial distribution approximates successive
Bernoulli trials, which efficiently infers the parameter p of
the Bernoulli. These sampling distributions implement both
ExpectedValue and Prob efficiently by dynamically taking
only as many samples from the underlying distributions as
necessary to evaluate the sample statistic accurately.
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To extract a summary statistic from a SamplingDist〈T〉,
we define a Project function, which samples appropriately
from the underlying distribution until the sample statistic
satisfies the theoretical sampling distribution.

There are, of course, other sampling statistics program-
mers may want to extract from Uncertain〈T〉, such as order
statistics, including min, max, and median. They are simple
to add and we leave them for future work.

Inference with hypothesis tests Developers often use vari-
ables to make inferences using conditionals. Inference over
random variables is more complicated than with discrete
types. Other areas of science use statistical tests as a princi-
pled mechanism to compare distributions, for example, the
t-test. We believe programmers should too. For this reason,
the only way a programmer can perform inference on an
Uncertain〈T〉 is through a hypothesis test. The semantics of
Uncertain〈T〉 can hide these details.

ExpectedValue and Prob return a SamplingDist〈T〉 and
SamplingDist〈Bernoulli〉, respectively. HypTest, which com-
pares two SamplingDist〈T〉s, is the only way a developer can
use an Uncertain〈T〉 type in a conditional. Which underlying
hypothesis test our type applies is dependent on the sampling
distribution and hidden from the programmer.

These semantics are powerful because they make hypoth-
esis tests opaque to a developer. Because hypothesis tests
follow from known sampling distributions with advantageous
theoretical properties, they are cheap to evaluate. For exam-
ple, if we want to compare whether two expected values
(represented as two SamplingDist〈T∗〉s), we simply apply a
standard t-test at the 95% confidence level. Likewise, to com-
pare two Bernoulli distributions, we use the standard normal
approximation to the binomial distribution.

Because the power of a statistical test grows with the
sample size N, these approaches present a principled way
to select the sample size required to answer a particular
hypothesis test. For example, to decide if one expected value
is smaller than another, we simply continue a hypothesis
test while incrementing N, terminating the process when the
test rejects the null hypothesis. Convergence is guaranteed
unless the expected values are very close or equal, so we
impose a maximum on N. In other words, we only draw
as many samples as are required to successfully answer the
conditional.

We should note a hypothesis test can only disprove a
hypothesis (e.g., A == B can only return False as failure to
reject the null hypothesis is not the same as accepting it). But
programmers are familiar with this behavior. For example,
programmers rarely compare two floating point numbers for
equality because rounding error makes it unlikely that two
floating point numbers are ever equal. Programmer easily
side steps this problem by asking the right question of the
uncertain data, namely, (A− ε < B)∧ (A+ ε > B) implies
that A is ε-close to B.

4.2 Programming with the uncertain type

The next sections detail the following four step recipe for
programming with Uncertain〈T〉 to produce more correct,
expressive, and accurate programs.

Identifying the distribution of uncertain data is necessarily
domain-specific since it depends on the estimation process.
In many cases, library writers will provide distributions
and application writers will use and combine them, but in
some cases applications writers will specify them.

Computing with distributions will include arithmetic oper-
ations (e.g., distance and speed), converting units, and
combining with other distributions. The uncertain type
must perform these calculations over random variables for
the broad range of possible distributions.

Inference with distributions requires a new semantics for
conditional expressions on probabilities, rather than the
usual binary decisions on discrete types. To correctly make
inferences using uncertain values, developers must ask
probabilistic questions.

Improving estimates with domain knowledge combines
and adds various pieces of probabilistic evidence. The
uncertain type exploits Bayesian inference to concisely
and efficiently combine evidence and explore hypothe-
ses, which makes rich statistical techniques accessible to
library developers and advanced application developers.

We expect experts will perform the first and last steps, where
as all Uncertain〈T〉 programmers will compute and make
inferences on distributions.

5. Identifying distributions
The first step in programming with uncertain data (i.e.,
with estimated values) is to identify the underlying random
variable and its probability distribution, which is necessarily
domain-specific. We envision that libraries written by expert
developers will define distributions for applications to use.
Because the uncertain type encapsulates distributions, these
expert developers will write their libraries to return instances
of Uncertain〈T〉, effectively hiding their details from client
applications. The client developers do not need to know the
details of how the library computed the distribution. They
simply use it by following the recipe.

The expert developer has two broad approaches to select-
ing the right distribution for their particular problem.

Selecting a theoretical model Many estimation processes
have theoretical error distributions. For example, the error in
the mean of a dataset is approximately Gaussian distributed
by the Central Limit Theorem. Furthermore, the literature
abounds with sources of estimated data and their error models.
Developers can adopt these models and implement them in
their application.

Deriving an empirical model For less common data sources,
empirical measurements may determine the right distribution.
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Figure 9: The empirical PDF approximates the exact PDF
with a histogram of random samples.

A large enough sample from the underlying distribution ap-
proximates the distribution. This idea is similar to statistical
bootstrapping, which estimates the distribution of a sample
statistic by repeated random resampling.

Application developers may also create distributions by
following the above approaches, but we expect many applica-
tions will use library implementations developed by experts.

5.1 Representing arbitrary distributions

A random variable is completely defined by its probability
density function (or probability distribution). To represent an
arbitrary random variable, we therefore need to encapsulate
its probability density function.

In simple cases, we can encapsulate the density function
exactly. For example, a Gaussian random variable with mean
µ and variance σ2 has density function

f (x; µ,σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

Encapsulating this density function for a specific random
variable uses this formula and the values of µ and σ2. This
equation represents any Gaussian random variable exactly
(up to floating point error) in constant space.

But many important random variables do not have closed
form density functions, such as road maps and calendars.
Even if a distribution does have a closed form, the algebra for
computing operations over it (such as adding two Gaussians)
may become complex and unwieldy. To avoid these pitfalls,
Uncertain〈T〉 must represent arbitrarily complex density
functions.

We approximate arbitrary density functions with large
random samples of the underlying probability space. The
intuition is that we sample the domain of the function propor-
tionally to its value, so we are more likely to sample x when
f (x) is larger. Specifically, to represent a random variable X ,
we generate a sequence SN of N independent random sam-
ples of X . The Glivenko-Cantelli theorem [21] tells us that
this sequence of samples approximates the exact function f .
Formally, it says that as N → ∞, the empirical cumulative

distribution function

FN(x) = |{s ∈ SN | s < x}|/N

converges in the uniform norm almost surely to the exact cu-
mulative distribution function of f , namely F(x) =

∫
f (x)dx.

Given any ε > 0, there is therefore a sample size N such
that the error |FN(x)−F(x)| < ε for every x. We can thus
create arbitrarily good approximations of any density function
by taking a large enough random sample. Figure 9 shows this
claim in practice. The histogram of 10,000 random samples
is an approximation to the exact density function.

Of course, there are practical limits to the value of N, be-
cause we must store the value of each sample. The ideal value
of N depends on the distribution we are approximating, and
cannot be chosen exactly ahead of time. Empirically we have
seen N = 10,000 to be a good sample size for approximat-
ing distributions with one-dimensional probability spaces. In
Section 6 we discuss the trade-off that N represents, and in
Section 7 we discuss some ways to choose N dynamically
based on the questions the developer asks. We leave to future
work further optimizing this representation.

6. Computing with distributions
The second step in programming with uncertain data is
performing computations on random variables. For example,
a developer might average a set of uncertain noise readings
over time for use in a filter. Most computations use the four
usual arithmetic operators, so we focus our attention on them.

Independent random variables Two random variables are
independent if the value of one has no effect on the value
of another. For example, two flips of an unbiased coin are
independent of each other, because the result of the first flip
has no effect on the result of the second flip. Formally, we
say two random variables X and Y are independent if the
combined random variable (X ,Y ) has probability density

fX ,Y (x,y) = fX (x) fY (y). (1)

Given two independent random variables, with a a sample of
the random variable A, and b a sample of the random variable
B, a+b is a sample of the random variable A+B. Because
we approximate probability distributions by large vectors of
independent random samples, to compute A+B, we simply
sum the vectors representing A and B. The new vector is an
approximation of the probability density for A+B.

Formally, if fX (x) and fY (y) are the probability densities
for two independent random variables X and Y , then the
probability density fX+Y for the sum X +Y is the convolution
of fX and fY ,

fX+Y (z) =
∫

∞

−∞

fX (z− y) fY (y)dy.

The intuition for the convolution is that, for a possible value z
of the random variable X +Y , we consider each possible pair
x,y such that x+ y = z, and sum the probabilities of each of
those pairs to find the probability of z.
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Figure 10: Approximating sum of two Gaussian distributions
with the uncertain type. Vector size N controls speed (time)
and accuracy (error in approximated mean) tradeoff.

Dependent random variables Arithmetic operations on
dependent variables are not as straightforward because the
value of a sample of one depends on the other. The probability
of drawing a from A depends on the value of b from B, and
requires information about the probability of drawing a from
A given each particular possible value of B.

Formally, if two random variables are dependent, the
developer must define their joint probability distribution
function, written as the conditional probability

fA,B(a,b) = fA(a|B = b) · fB(b).

The probability that A = a and B = b is the probability that
B = b multiplied by the probability that A = a given that
B = b. Notice that if A and B are independent, then fA(a|B =
b) = fA(a), and this expression for fA,B(a,b) reduces to (1).
Since the joint distribution is domain-specific, developers
must override operations on dependent random variables to
correctly compute with them.

Trading speed for accuracy We approximate the sum of
two independent random variables X and Y by summing
the two vectors that approximate the distributions for X and
Y , which has complexity O(N), where N is the size of the
vector. Section 5 shows that the quality of the approximation
improves as N becomes larger embodying the classic speed-
accuracy trade-off. Larger values of N cause computation to
take longer and improve accuracy.

Figure 10 shows an experiment that sums two Gaussian
distributions using the uncertain type and records the time it
takes. Because there is a closed form solution to this sum, we
can measure the error between the approximated mean and
the true mean. As N increases, the time to compute the sum
increases, but the error in the approximated mean decreases.
We choose N = 10,000 since it offers moderate execution
time (10−3 s) for a low error rate (0.1%).

7. Inference with distributions
The third step in programming with uncertain data is us-
ing it to make decisions. With discrete types, a coffee
shop application might trigger a notification if the user is

200 mPr[Distance < 200]

0 100 200 300
Distance (m)

Figure 11: Developers expect simple conditional expressions
to be deterministic, but there is a probability that the random
variable is larger than 200 m, and that it is smaller.

within 200 m of a coffee shop by testing the conditional
DistanceToShop < 200, and if true, alerting the user. But
if we calculate DistanceToShop using the GPS, it is an es-
timate, because locations are estimates and distance is a
function of location. Therefore DistanceToShop has a distri-
bution. The problem is that the semantics of the expression
DistanceToShop < 200 are not defined on a distribution. Fig-
ure 11 demonstrates this issue. The distribution defines a
probability that DistanceToShop < 200 (the highlighted area
under the curve), but developers expect that semantically,
either a conditional is true or not. To introduce probabilities
to these semantics creates confusion for developers.

7.1 Asking the right questions

The root of this conflict is at a high level — developers
want to ask deterministic questions. In the coffee shop case,
the deterministic question is “am I within 200 m of the
coffee shop?” With perfect information, this question has
a deterministic yes or no answer. But computers and sensors
do not deliver perfect information about the physical world.
This conflict is a type mismatch. Developers currently ask
deterministic questions that the probabilistic cannot always
answer correctly.

The questions Uncertain〈T〉 answers correctly specify the
evidence for a conclusion, for example, “how much evidence
is there that I am within 200 m of the coffee shop?” These
types of questions account for the uncertainty of the data in
an intuitive style. If the data is very uncertain, the evidence
is weaker. They also account for the magnitude of the data.
Weaker evidence (more uncertain) is required if the distance
is very far from 200 m, whereas stronger evidence (less
uncertain) is required if the distance is very close to 200 m.
Below, we describe the two mechanisms in Uncertain〈T〉
for answering questions that leverage different areas of the
underlying statistical theory.

7.2 Evidence thresholds

Our first approach is evidence thresholds. Consider the prob-
ability p ∈ [0,1] that DistanceToShop < 200 (the area under
the distribution to the left of x = 200 m) Evidence thresholds
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choose a threshold α ∈ [0,1] and ask if p > α . The threshold
controls how strong the evidence must be. Intuitively, the
system only says yes when DistanceToShop < 200 is highly
likely. The evidence threshold α controls the trade-off be-
tween false positives and false negatives. Higher thresholds
require stronger evidence and produce fewer false positives
(extra reports when ground truth is false) but more false neg-
atives (missed reports when ground truth is true).

Software benchmarking example One familiar use of evi-
dence thresholds is software benchmarking [3, 9]. Suppose a
researcher is developing a soft real-time garbage collector and
wishes to evaluate its performance against a deadline [16].
She measures the time taken to perform a collection GCTime
in milliseconds. The incorrect approach to this problem is
trivial:

if (GCTime < 10)
GetGrantMoney(); // Meets the deadline

else LoseTenure(); // Fails the deadline; lose my job!

This comparison ignores the effect of uncertainty. Random
error in computer systems leads to variation in the runtime
of each benchmark [3, 9, 13]. More uncertainty is introduced
because it is not feasible to benchmark the entire population
of programs, so we choose a sample of programs instead.

Comparing just one measurement, without considering
uncertainty, is proven to lead to wrong conclusions [3, 9, 13]
due to uncertainty bugs. The correct question must consider
data over many benchmarks and executions, which we can
capture in the form of a distribution.

There are at least two distinct ways a researcher can
benchmark her new GC. Firstly, she can ask if, on average,
the GCTime is less than 10 milliseconds. Under the hood,
Uncertain〈T〉 uses a t-test at the default 95% confidence
interval to mitigate the effect of sampling error on this
conditional.
if (GCTime.ExpectedValue() < 10)
GetGrantMoney(); // Meet deadline on average

else if (GCTime.ExpectedValue() >= 10)
LoseTenure(); // Fails deadline on average

else // Sampling error is too great
HireGradStudent(); // Need more experiments

Here we have turned a deterministic question (“does the
collector meet the deadline?”) into a probabilistic one (“does
the collector meet the deadline, on average?”).

However, this may be too strict given that the collector is a
soft-real time collector. Instead, the researcher may ask if the
GCTime is less than 10 milliseconds 80% of the time, which
as asked as follows:

if ((GCTime < 10).Prob() > 0.80)
GetGrantMoney(); // Meets deadline with 80% prob

else if ((GCTime >= 10).Prob() > 0.80)
LoseTenure(); // Fails deadline with 80% prob

else // The uncertainty is too great
HireGradStudent(); // Need more experiments

Here we have again turned a deterministic question into a
probabilistic one (“is there an 80% chance that the collector
meets the deadline?”). Under the hood, Uncertain〈T〉 again

Hospital A 

Hospital B 

Kevin 

a b 

Figure 12: Kevin needs to select a hospital to walk to, but
only has estimates of his distance from each hospital. Notice
that single samples a and b are not sufficient to choose the
right one.

uses a hypothesis test at the 95% confidence level to mitigate
sampling error. The 95% threshold is a commonly accepted
practice for statistical significance. By reasoning about evi-
dence, rather than just treating one sample as fact, we ask the
right question and limit uncertainty bugs.

Ternary logic The evidence threshold approach introduces
ternary logic when the threshold α is not 0.5. Many devel-
opers expect and want a total order for comparisons, i.e.,
exactly one of A < B or A≥ B is true. With evidence thresh-
olds, sometimes neither A < B nor A ≥ B is true with α%
confidence. This case corresponds to the “uncertainty is too
great” answer to the question. Some problems however re-
quire a total order and for these problems, Uncertain〈T〉 uses
expected values.

7.3 Expected values

Uncertain〈T〉 exposes the expected value (or mean) E[A] for
a distribution A with probability density function f (x), which
is defined as

E[A] =
∫

x · f (x)dx.

Other choices are however possible, including maximum
likelihood and Bayes estimation, but the semantics of the
expected value are interesting for two reasons. First, because
X is real-valued, so too is E[X ]. Therefore a total order exists
over the expected values of a collection of random variables,
resolving the ternary logic issue. Second, the expected value
of a random variable is the long-run average value of that
variable, so using it to compare two distributions is asking
the order of the variables in the average case.

Hospital example Kevin has broken his leg. He must visit
a hospital and he prefers the closest one. “Not confident
enough to choose” is not an acceptable answer. There are
two hospitals A and B in Kevin’s home town, but he does
not know exactly his distance from each of them. Instead,
he has only two estimates (i.e., distributions) DistanceToA
and DistanceToB, as shown in Figure 12. Because Kevin is
excited about a recent paper he read, he realizes location is
a distribution and the evidence threshold approach may not
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choose a hospital, so he chooses expected values. Expected
values are distinct from samples. Figure 12 shows two sam-
ples a and b, but using expected values in the comparison
gives the opposite result to using the samples. Kevin writes
the following code.

double a = DistanceToA.ExpectedValue().Project();
double b = DistanceToB.ExpectedValue().Project();
if (a < b) GoTo(HospitalA);
else if (a >= b) GoTo(HospitalB);

This code eliminates the ternary logic problem, and Kevin’s
application guarantees he will visit one hospital. Moreover,
this interpretation is optimal in the sense that, in the average
case, the application will make the right choice of the closest
hospital, but may make the wrong choice in individual cases.
When Kevin’s iHospitalFinder application is downloaded
and used by millions of users, the average outcome will be
correct.

8. Improving estimates with domain
knowledge

The previous sections treat the estimation processes that
produce uncertain data as immutable, but in many cases,
adding domain knowledge to estimation will improve accu-
racy. Uncertain〈T〉 unlocks this capability because it captures
entire distributions, and may therefore leverage the rich sta-
tistical power of Bayesian inference.

8.1 Bayesian inference

Bayesian statistics is an interpretation of probability in which
the true state of the world is represented by beliefs. Bayesian
probability evaluates questions by first proposing a hypothe-
sis, and then updating that hypothesis based on available data.
Importantly, both the hypothesis and the updated hypothesis
(known as the prior and posterior, respectively) are distri-
butions, not discrete values. The distributions represent the
belief that the variable takes a value.

This structure makes Bayesian probability well suited
for use in working with estimation processes. For example,
we can derive a prior hypothesis about a user’s speed from
physics and transportation mode, and then combine it with an
observation of speed from a sensor. Bayesian inference is a
principled way to combine evidence with prior knowledge to
form a posterior belief about the user’s speed. This inference
is based on the sampled distribution, which is why the
uncertain type makes such inference straightforward. The
simplest approach assumes no prior knowledge, in which
case the prior distribution is uniform.

Formally, Bayes’ theorem takes two random variables,
a target variable B and an estimation process E. Initially,
the distribution Pr[B = b] for each b represents our prior
assumptions about the target variable. Then we observe a
sample e from the estimation process. Bayes’ theorem tells
us that the posterior distribution is

Pr[B = b|E = e] =
Pr[E = e|B = b] ·Pr[B = b]

Pr[E = e]
.

Notice the result is a function of b, that is, a posterior distri-
bution for B. This equation tells us what our updated belief
for the target variable B is, given that we observed a piece of
evidence e. The term Pr[E = e|B = b] is a likelihood model
for E. It is inherent to the estimation process, and represents
the likelihood of observing the evidence e assuming that the
true value of the target is b. The likelihood model is therefore
related to the distribution for the estimation process.

8.2 Incorporating knowledge through priors

This Bayesian approach is powerful, because developers may
encode domain knowledge as prior distributions and naturally
incorporate that knowledge into estimation processes.

Developers may source prior distributions from other data
sources or create new models. For example, a developer may
turn a road map into a distribution and use it to support the
hypothesis that the user is on a road when driving or that
the user is next to the road or on a sidewalk when walking.
Alternatively, developers may construct priors from theory.
For example, human walking speeds could be Gaussian dis-
tributed with a given mean and standard deviation, and a
walking application could use this model as a prior distribu-
tion for speed.

Because the joint distribution of independent events is
found by multiplying their probability densities, library writ-
ers may easily combine prior distributions together. We ex-
pect that for many data sources, library writers will develop
the models for priors using the uncertain type to improve
their estimation processes transparently to client applications.
These implementations will support application developers
who simply wish to use estimated data without considering
Bayesian inference or statistics. Some advanced developers
may want direct access to these models. Furthermore, some
applications may need to combine evidence in new and un-
expected ways, and therefore libraries should expose each
individual model implemented with Uncertain〈T〉.

One middle ground is to expose some models through
a constraint abstraction interface for priors, giving client
applications the option to turn on or off different prior
distributions on a data source. This middle ground does not
require statistical sophistication from application developers.
For example, a GPS library may provide prior distributions
sourced from calendars (for meeting locations), road maps,
location history, etc. The client application can toggle each
of these distributions on or off independently, and the library
will incorporate the enabled priors into the estimation process.
For example, a GPS navigation application specifies domain
knowledge over location — the user is driving on roads (a
distribution over locations) and in a car (a distribution over
speeds). The constraint abstraction therefore makes the rich
statistical technique of Bayesian inference accessible to all
developers, but implemented by library experts.
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9. Case studies
This section demonstrates using the uncertain type and our
programming recipe for uncertain data with two case studies.
To demonstrate that Uncertain〈T〉 helps programmers easily
write code with uncertain data, we apply our recipe to a GPS-
based walking application. To demonstrate Uncertain〈T〉
correctly deals with errors in estimations, we induce noise
into a game and show that with the uncertain type, a program
can simply and correctly deal with error.

9.1 GPS-Walking

Our first example is a smartphone application that uses the
GPS to measure the user’s walking speed, a common feature
of fitness applications. GPS-Walking estimates the user’s
walking speed by taking two samples from the GPS and
computing the distance and time between them. Figure 13
shows the code for the main loop of GPS-Walking before and
after being updated to use the uncertain type.

Defining the distributions The first step is to identify and
define the distributions. We use the GPS sensor to estimate
location. We can model GPS as a random variable with a
probability distribution over location. Because most smart-
phones have GPS libraries provided by the operating system,
we assume an expert developer updates the GPS library to use
the uncertain type and derives the error distribution for a GPS
observation. We outline this process for GPS theoretically in
Appendix A, and present an implementation in Appendix C.
The updated GPS library provides the function

Uncertain<GeoCoordinate> GPSLib.GetGPSLocation();

which returns a distribution over locations, representing a
belief about the user’s current location.

Computing with random variables Because the locations
returned by GetGPSLocation are estimates, so too is the
distance calculated by Distance. Therefore, speed is an
estimate. Since Distance returns an Uncertain〈Double〉,
speed is also an Uncertain〈Double〉.

This type change requires a change in the application code,
because the speed is now of type Uncertain〈Double〉, but the
call to Display does not understand distributions. We choose
to throw away information, because we do not want to display
the entire distribution. Instead we display just the mean of
the speed distribution, writing:
Display(Speed.ExpectedValue().Project());

This method of calculating speed captures the compounding
of error from each of the two GPS distributions. Figure 6
shows this effect in a 1D world. Even if two location fixes
are very good, the resulting calculation of speed is still very
uncertain. For example, two GPS fixes with 95% confidence
intervals of 4 m result in a speed with a 95% confidence
interval of 12.7 mph.

The uncertainty of the speed calculation explains the
absurd values in Figure 5. Figure 14(a) shows the same data

but with 95% confidence intervals, which we can calculate
easily because we are now using the uncertain type. The size
of these confidence intervals shows that the absurd results are
due to random error. This effect is easily revealed because we
use the uncertain type; the developer did not need to change
the calculation code at all.

Inference over random variables Early work on human
locomotion suggested that humans walking faster than ap-
proximately 4 mph used more energy than running. More
recent work shows this hypothesis is likely incorrect, but
regardless we will sound an alarm whenever the user walks
faster than 4 mph, suggesting they slow down. We want to
write the conditional Speed > 4. But speed is an estimate,
so the uncertain type forces us to interpret this conditional.
Our guiding principle is not to annoy the user with false pos-
itives, because speed is a very noisy estimate. We use the
evidence threshold approach and write

if ((Speed > 4).Prob() > 0.75) {
SoundSpeedAlarm();

}

This code only sounds the alarm if the evidence says there is a
75% chance that Speed > 4. The choice of 75% is arbitrary
and reflects the developer’s choice of the balance between
false positives and false negatives.

Improving GPS estimates with priors The power of the
uncertain type is that we can incorporate prior knowledge
to improve the quality of estimated data. For GPS-Walking,
we assume the user only uses the application when they are
walking, and so can assume they are walking. (Alternatively, a
walking detection algorithm could use accelerometer sensors
to generate a probability distribution, which we leave for
future work.) We incorporate this domain knowledge by
constructing a prior distribution about the user’s speed. It
is incredibly unlikely that a human is walking at 60 mph or
even 10 mph. This prior distribution does not have to be a
perfect truth. Furthermore, strong evidence from the GPS
may override it.

The code in Figure 13(b) implements this improvement
using the constraint abstraction. The library developer adds
support for incorporating speed priors into GPS locations, and
the application developer provides their chosen speed prior to
the GPS library. Figure 14(b) shows the improved results
achieved by using this prior knowledge. The confidence
interval is much smaller than in Figure 14(a), and the physics
model removes the absurd results, such as walking at 59 mph.

Summary GPS-Walking uses the uncertain type to display
the user’s walking speed. The developer only made mini-
mal changes to their application code, but is rewarded with
improved correctness, by both reasoning correctly about ab-
surd data (Figure 14(a)) and by eliminating it with domain
knowledge (Figure 14(b)). This complex logic is difficult
to implement without the uncertain type, as the application
developer must know the error distribution for GPS, how to
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int dt = 1;

GeoCoordinate LastLocation
= GPSLib.GetGPSPosition();

while (true) {
Sleep(dt); // wait for dt seconds
GeoCoordinate Location

= GPSLib.GetGPSPosition();
double Speed =

GPSLib.Distance(Location, LastLocation) / dt;
Display(Speed);
if (Speed > 4) {

SoundSpeedAlarm();
}
LastLocation = Location;

}

(a) Without the uncertain type.

int dt = 1;
Uncertain<double> SpeedPrior
= Uncertain<double>.Gaussian(0, 2);

Uncertain<GeoCoordinate> LastLocation
= GPSLib.GetGPSPosition(GPSLib.WALKING, SpeedPrior);

while (true) {
Sleep(dt); // wait for dt seconds
Uncertain<GeoCoordinate> Location
= GPSLib.GetGPSPosition(GPSLib.WALKING, SpeedPrior);

Uncertain<double> Speed =
GPSLib.Distance(Location, LastLocation) / dt;

Display(Speed.ExpectedValue().Project());
if ((Speed > 4).Prob() > 0.75) {
SoundSpeedAlarm();

}
LastLocation = Location;

}

(b) With the uncertain type.

Figure 13: The main loop of GPS-Walking, before and after being updated to use the uncertain type.
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(b) Incorporating prior knowledge from a physics model. Confidence
interval is for improved speed.

Figure 14: Data from the GPS-Walking application. The uncertain type allows the developer to calculate confidence intervals for
the estimated speed, and also to incorporate prior domain knowledge to improve the estimate.

propagate it through calculations, and how to incorporate ex-
tra domain knowledge to improve the results. The uncertain
type abstraction hides this complexity from application devel-
opers, improving programming productivity and application
correctness.

9.2 Conway’s Uncertain Game of Life: SensorLife

This section demonstrates how Uncertain〈T〉 simplifies error
handling for an application that employs noisy digital sen-
sors. In particular, we emulate a ubiquitous binary sensor
with Gaussian noise. This case study serves two purposes.
First, it demonstrates how Uncertain〈T〉 enables non-expert
programmers to work with noisy sensors and how expert pro-
grammers can simply and succinctly use domain knowledge
(i.e., the fact that the sensor has Gaussian noise) to improve
the sensor’s estimates. Second, because we induce noise into
sensors, we have ground truth for comparing the results of a
noisy program to one without noise.

Conway’s Game of Life (SensorLife) is a cellular-automata
simulation that operates in a two-dimensional grid of cells.
Each cell is in one of two states: dead or alive. The game
is broken up into generations. During each generation, the
program updates each cell in the 2D world by (i) sensing the
state of the cell’s 8 neighbors, (ii) summing the binary value
(i.e., dead or alive) of each of those 8 neighbors, and (iii)
using the sum in the following rules.

1. Any live cell with less than 2 live neighbors dies due to
under-population.

2. Any live cell with 2 or 3 live neighbors lives on to the next
generation.

3. Any live cell with more than 3 live neighbors dies due to
overcrowding.

4. Any dead cell with exactly 3 live neighbors becomes alive
due to reproduction.
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Despite simple rules, mathematicians and computer scientists
have found that the Game of Life provides complex and inter-
esting dynamics (e.g. Game of Life is Turing complete [1]).

Defining the distributions The standard implementation
of Game of Life does not have error. We induce error into
SensorLife in order to compare the results of the error free
implementation with the uncertain one. To induce error, we
simulate sensors with Gaussian noise. In particular, every
cell senses whether its 8 neighbors are alive or dead using
8 distinct sensors. We model each sensor as a binary sensor
with added Gaussian noise (e.g., s+N(0,σ) where s is the
binary value of the sensor and σ defines the amount of noise
in each sensor).

Computing with random variables In each generation,
SensorLife (i) senses each of its 8 neighbors, (ii) sums all 8
sensors and (iii) applies the above rules to determine if the
cell is alive or dead in the next generation. The original ap-
plication uses 4 conditionals, whereas Uncertain〈T〉 applies
4 t-tests. To get ground truth, we perform the same steps in
concert, but without added noise.

Errors in each sensor are uncorrelated and as such, the
only changes required to the SensorLife are to change the
SenseNeighbors function. As the name suggests, this function
senses whether the 8 neighbors of a cell are alive or dead, and
returns an Uncertain〈Double〉 instead of an integer, which is
the sum of all 8 sensors.

Inference over random variables After calling SenseNeigh-
bors, we implement each of the above rules using hypothesis
tests at a user-defined confidence level. For example, to im-
plement rule 1. listed above, which determines if a cell lives
to the next generation, we write:

// @ 60% confidence level
if ((numNeighbours.ExpectedValue() < 2.0).HypTest(0.6))
shouldLive = false;

Improving estimates This section demonstrates how to use
domain knowledge, specifically the type of noise on each
sensor, to improve the estimates in SensorLife.

Suppose we observe a value v from a sensor. By definition,
v is drawn from either N(0,σ) or N(1,σ) (i.e., v is either
a 0 with added noise, or 1 with added noise). The result is
two hypotheses as to the origin of v: H0, which implies v is
drawn from N(0,σ), and H1, which implies v is drawn from
N(1,σ).

To improve estimates, we note that a sensor reading, v,
is evidence, and Bayes’ theorem provides a mechanism to
calculate posteriors Pr[H0|E = v] and Pr[H1|E = v] given this
evidence. In other words, Bayes’ theorem provides us with
a mechanism to calculate the most likely source of v, H0
or H1, respectively, given the evidence, v. To improve an
estimate, we calculate the most likely source of v and then
“fix” the sensor reading to be 0 or 1, depending on whether
Pr[H0|E = v]> Pr[H1|E = v].
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Figure 15: Uncertain〈T〉 mitigates errors in uncertain pro-
grams

To use Bayes’ theorem to calculate these posteriors given
our evidence, v, requires we add prior knowledge about our
domain. In particular, we need (i) the likelihood of H0 and
H1, and (ii) a way to calculate the likelihoods Pr[E = v|H0]
that v is drawn from H0, and Pr[E = v|H1] that v is drawn
from H1.

For this example, we assume Pr[H0] = Pr[H1] = 0.5 (i.e.,
we have no prior knowledge whether a cell is more likely
to be dead or alive). Because we know the error model is
Gaussian, we use the Gaussian density function to calculate
the probability of the evidence v being drawn from H0 and
H1:

Pr[E = v|H0] =
1

σ
√

2π
exp−

(v−0)2

2σ2

Pr[E = v|H1] =
1

σ
√

2π
exp−

(v−1)2

2σ2

We just substitute v into the Gaussian density function
and read out the value. Given these probabilities, we use
Bayes’ theorem to solve for the posteriors Pr[H1|E = v] and
Pr[H0|E = v]:

Pr[H0|E = v] =
Pr[E = v|H0] ·Pr[H0]

Pr[E = v|H1] ·Pr[H1]+Pr[E = v|H0] ·Pr[H0]

Pr[H1|E = v] =
Pr[E = v|H1] ·Pr[H1]

Pr[E = v|H1] ·Pr[H1]+Pr[E = v|H0] ·Pr[H0]

With these posteriors in hand, the output of the faulty sensor
is 1.0 if H1 is more likely to be the source of the sample, and
0.0 otherwise.

Evaluation We use SensorLife, with noise, to evaluate how
Uncertain〈T〉 allows non-expert programmers to succinctly
and correctly deal with estimates in their program.

Figure 15 demonstrates that as we change the confidence
level of the hypothesis test we affect the accuracy — the
number of times our Uncertain〈T〉 program sets a cell to
alive when it should be dead. To collect these data, we ran
SensorLife 30 times, each time for 25 generations. Each run of
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Figure 16: Uncertain〈T〉 allows programmers to balance
performance and accuracy

the program evaluates 80,000 cells in total and counts the total
number of incorrect cell updates over those 25 generations.
Each execution is parameterized by the confidence level
(x axis) and executes in three configurations with different
amounts of Gaussian noise added to each sensor: Low noise
(i.e., N(0,0.01)), Med noise (i.e., N(0,0.05)), and High noise
(i.e., N(0,0.1)). The fourth configuration High++ is the High
noise configuration with our improved estimates applied to
the sensor output, as described in Section 9.2. A bar on this
graph (x,y) demonstrates how, as the confidence level (x)
increases, so too does the accuracy of SensorLife (y).

Even with very high noise, the Uncertain〈T〉 type and
the correct question mitigates the errors. At the 99.9% con-
fidence level with high noise, on average, the errors drop to
100 out of 80,000 cell updates, versus 200 to 400 at lower
confidence levels. As the confidence interval increases, errors
reduce, showing that Uncertain〈T〉 helps programmers mit-
igate errors with a single parameter. But for all confidence
intervals above 50%, High++ makes no incorrect choices,
mitigating all the noise and error. This result demonstrates
that by making it easy to improve estimates, Uncertain〈T〉
gives developers a powerful tool for delivering high accuracy
even with large uncertainty.

The ability to mitigate noise has a cost. For example, the
uncertain type has to do more work per decision (branch) of
the program, as we evaluate a hypothesis test for each branch.
Figure 16 demonstrates that if a program requires higher
accuracy (by settings a higher confidence level), it necessarily
has to do more work per branch (take more samples at each
branch). A point on this graph (x,y) plots the number of
samples required to come to a conclusion per hypothesis test
in our program (x) against the accuracy of the result of that
branch (y). As we increase the confidence level (each point on
a line is a different confidence level), the overheads increase.

The High++ approach demonstrates that even with high
noise, Uncertain〈T〉 mitigates incorrect decisions due to
noise by adding better models. High++ makes no incorrect
choices on average, and only requires a handful of samples
(30) per hypothesis test (i.e., in Figure 16, High++ is a point
at (30,0) for all confidence intervals). By making it easy for

programmers to combine models and evidence, Uncertain〈T〉
achieves both better efficiency and accuracy.

10. Conclusion
Programmers need help as they seek to solve increasingly
ambiguous and challenging problems with big and little
data from sensors, biological and chemical processes, non-
deterministic algorithms, and people. These applications need
to operate over uncertain data. This paper identifies three
fundamental problems programmers currently face when
programming with uncertain data in imperative languages and
how they lead to bugs. (1) Treating estimates as facts quickly
leads to wrong conclusions. (2) Computation on estimates
compounds errors, leading to more bugs. (3) Inference on
estimates must consider probability to produce sensible
answers.

We propose a new abstraction, called the uncertainty type,
and show how it helps experts and application developers
to correctly operate and reason with estimated data. We de-
scribe its syntax and semantics. We use two case studies to
explore the job of writing libraries and application code with
Uncertain〈T〉. We show how the semantics and concision
of Uncertain〈T〉 improves programmer productivity, expres-
siveness, and correctness. We point to future work for im-
proving efficiency and modeling common phenomena, such
as physics, calendar, and history in Uncertain〈T〉 libraries
to better support application writers. Although we focus on
mobile sensor examples, we believe that Uncertain〈T〉 will
help developers with large data sets as well.
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Appendix A GPS error distribution
Expert developers must define error distributions for uncer-
tain data. This appendix shows how to derive an error distri-
bution for a GPS observation. The expert developer would
perform this derivation and use it to update the GPS library,
replacing the method

GeoCoordinate GetGPSLocation();

with the new method
Uncertain<GeoCoordinate> GetGPSLocation();

which expresses a distribution over possible locations.
We adopt the convention within equations that discrete

values like Actualt are set in italics and random variables like
GPSt are set in bold.

Theoretical setup Formally, we can express the GPS pro-
cess in the following way. Define

World := [−90,90]× (−180,180]

and say that at time t our true location is the point

Actualt := (TrueLatt ,TrueLongt) ∈World.

Then the GPS sensor’s view of our location at time t is a
random variable

GPSt = (TrueLatt +LatErrt ,TrueLongt +LongErrt).

Here the random variables LatErrt and LongErrt represent
the error in each direction, due to inherent flaws or biases
in the sensor and due to environmental conditions at time t
(such as atmospheric conditions, obstructions, etc.).

The act of taking a GPS sample at time t is the act of
drawing a sample of the random variable GPSt , which yields
a discrete point

Samplet = (SampleLatt ,SampleLongt).

It is this discrete point that most geolocation libraries provide
today and this pointmass representation clearly ignores the
distribution of GPSt .

The distribution of GPSt clearly depends on the distribu-
tions of LatErrt and LongErrt . Knowing these distributions
exactly based on theory is a difficult problem, but the litera-
ture suggests a model which we will adopt [22]. This model
says that LatErrt and LongErrt are independent and iden-
tically distributed (i.i.d.), and follow a normal distribution,
with mean zero and an unknown variance. Formally, this says
that

LatErrt ∼ N(0,σ2
t )

LongErrt ∼ N(0,σ2
t )

where the fact that the mean is zero reflects an unbiased sen-
sor, and the fact that σ depends on t reflects the environmental
conditions at time t.

Belief in location The first important problem with the
theoretical derivation is that of course our software does
not know Actualt . What we are trying to do is estimate the
value of Actualt based on observations from the GPS sensor.
Bayesian statistics provides a framework to represent this
approach. We introduce a random variable Locationt , which
represents our software’s belief about our location. Initially,
before taking a sample, we know nothing about our location;
that is, for every point p in the world,

Pr[Locationt = p] =Uni f orm

If we had an oracle, it could tell us the “perfect” belief in
Locationt , namely

Pr[Locationt = Actualt ] = 1

Pr[Locationt = p] = 0, p 6= Actualt .

We use Bayes’ theorem to incorporate the GPS sensor as
evidence into our belief about Locationt . Intuitively, Bayes’
theorem tells us that, if we observe a GPS sample Samplet , the
most likely values of Locationt are exactly those locations
most likely to cause the GPS to generate that sample. So, for
example, it is unlikely that Locationt is a long distance from
Samplet , because it is unlikely according to our theoretical
derivation that the GPS would generate a sample a long
distance from the true location. Formally, Bayes’ theorem
says that

Pr[Locationt = p|GPSt = Samplet ]

∝ Pr[GPSt = Samplet |Locationt = p] ·Pr[Locationt = p].

Notice that the left hand side is a function of p. For each
point p in the world, this function gives the probability that
the true location is p given that we observed a GPS sample
Samplet . This function is called the posterior distribution
for Locationt , because it represents our belief about the true
location after observing a sample from the GPS. Because we
have no prior knowledge about Locationt , we assumed that
Pr[Locationt = p] = 1, which simplifies this function to

Pr[Locationt = p|GPSt = Samplet ]

∝ Pr[GPSt = Samplet |Locationt = p]. (2)

It is this posterior distribution that we want to return from
the GPS sensor. Rather than a discrete point, this distribution
captures how likely the user is to be standing at each point in
the world, given the evidence from the GPS.

Deriving a likelihood model In the expression for the pos-
terior distribution, the term

Pr[GPSt = Samplet |Locationt = p]

is a likelihood model for the GPS sensor. It captures the like-
lihood of the GPS generating the particular sample Samplet
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if the true location was p. Substituting p into the expression
for GPS gives us

GPSt = (pLat +LatErrt , pLong +LongErrt).

So the likelihood that GPSt = Samplet is exactly the likeli-
hood that

(LatErrt ,LongErrt) = Samplet − p. (3)

But in our model, we do not know the scale of the distribu-
tions for LatErrt and LongErrt , so we cannot evaluate this
likelihood directly.

One solution is simply to assume the scale as part of our
model. However, this assumption does not take into account
the fact that the scale varies according to the environment of
the sensor. Most GPS sensors, however, also give an estimated
confidence interval for the GPS error. This confidence interval
εt is the value in metres such that there is a 95% probability
that Actualt is within εt metres of the GPS sample. Formally,
this says that

Pr [‖GPSt −Actualt‖< εt ] = 0.95. (4)

But observe that

‖GPSt −Actualt‖
= ‖(TrueLatt +LatErrt ,TrueLongt +LongErrt)

−(TrueLatt ,TrueLongt)‖
= ‖(LatErrt ,LongErrt)‖ .

Furthermore, since our model assumes that LatErrt and
LongErrt are i.i.d. with mean zero, it is a well-known identity
that

‖(LatErrt ,LongErrt)‖=
√

LatErr2
t +LongErr2

t

∼ Rayleigh(ρt).

for some unknown parameter ρt . The Rayleigh distribution
is a continuous single-parameter non-negative probability
distribution with density function

Rayleigh(x;ρ) =
x

ρ2 e
− x2

2ρ2 , x≥ 0.

But (4) allows us to calculate ρt since ‖GPSt −Actualt‖=
‖(LatErrt ,LongErrt)‖ and we know the distribution of the
right hand side. In particular, this means that

0.95 =
∫

εt

0

x
ρ2

t
e
− x2

2ρ2
t dx

= 1− e
− ε2

t
2ρ2

t

∴ ρt = εt/
√

ln [(1−0.95)−2]

= εt/
√

ln400.

So now we know that

‖(LatErrt ,LongErrt)‖ ∼ Rayleigh(εt/
√

ln400)

where εt is known from the GPS sensor, which trivially gives
us a way to approximate (3). We can say that the likelihood
that

(LatErrt ,LongErrt) = Samplet − p

is approximated by the likelihood that

‖(LatErrt ,LongErrt)‖= ‖Samplet − p‖ .

Since we know how to evaluate this likelihood, we have found
way to evaluate

Pr[GPSt = Samplet |Locationt = p]

which is the likelihood model needed to evaluate the posterior
function in (2).

Summary We derived a posterior distribution for the user’s
location based on GPS evidence. The GPS sensor returns to
us a location Samplet and a confidence interval εt . Then for
any point p in the world, the likelihood of the user being at
location p given this GPS sample is

Pr[Locationt = p|GPSt = Samplet ]

= Pr[GPSt = Samplet |Locationt = p]

= Rayleigh(‖Samplet − p‖ ;εt/
√

ln400)

up to a normalising constant. We use the posterior to model
estimation in our GPS version of Uncertain〈T〉, described in
Section 9.1. Figure 17 shows the Rayleigh distribution and
the resulting posterior distribution. It is interesting to note
that the distribution carries little mass in the center of the
distribution, implying a user is less likly to be at the center of
a GPS sample.
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(a) The Rayleigh distribution Rayleigh(ρ = 6).

(b) The posterior distribution for location is a distribution over the
Earth’s surface.

Figure 17: The derivation of a posterior distribution for location uses the Rayleigh distribution as a likelihood model for the GPS
sensor. Notice that the centre of the posterior (which is the point Samplet ) has very low likelihood; a surprising consequence of
the assumed model for GPS error.
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Appendix B Implemented semantics
This appendix defines Uncertain〈T〉’s semantics in C# (following the description from Section 4) and demonstrates how the
type system and operator overloading makes computing and inference with distributions opaque to developers.

// The uncertain type represents arbitrary distributions. It implements
// IEnumerable, because it encapsulates a list of Ts (a list of random samples)
public class Uncertain<T> : IEnumerable<T> {

// Arithmetic operators lift the operation on type T to operate on
// distributions over Ts
public static Uncertain<T> operator +(Uncertain<T> lhs, Uncertain<T> rhs);

// Comparing two distributions results in a Bernoulli distribution, which
// represents the probability that A < B
public static Bernoulli operator <(Uncertain<T> lhs, Uncertain<T> rhs);
public static Bernoulli operator >(Uncertain<T> lhs, Uncertain<T> rhs);

// The expected value is of type T*, but for implementation in languages
// without type classes, we assume T has a multiplicative inverse (e.g. float)
public SamplingDistribution<T> ExpectedValue();

// Values of type T can be implicitly treated as point mass distributions
public static implicit operator Uncertain<T>(T t);

}

// Sampling distributions represent the sampling error created by approximating
// a distribution
public class SamplingDistribution<T> : Uncertain<T> {

// Compare two sampling distributions by performing a hypothesis test
public static HypothesisTest operator <(SamplingDistribution<T> lhs, SamplingDistribution<T> rhs);
public static HypothesisTest operator >(SamplingDistribution<T> lhs, SamplingDistribution<T> rhs);

// Values of type T can be implicitly treated as point masses for use in
// hypothesis tests
public static HypothesisTest operator <(SamplingDistribution<T> lhs, T rhs);
public static HypothesisTest operator >(SamplingDistribution<T> lhs, T rhs);

// Project a sampling distribution down to an estimate of the statistic
public T Project();

}

// A hypothesis test compares two sampling distributions at a given confidence
// threshold. This class is never instantiated by clients, only by the uncertain
// type.
private class HypothesisTest {

// Perform the encapsulated hypothesis test at the given confidence
public bool HypTest(double confidence);

// Implicitly perform the hypothesis test at 95% confidence -- the statistical default
public static implicit operator bool(HypothesisTest t);

}

// Bernoulli distributions are random variables with two possible values, true
// (with probability p) or false (probability 1-p). An instance of Bernoulli is
// bound to a specific comparison.
public class Bernoulli : Uncertain<bool> {

// Sample the underlying comparison this Bernoulli is bound to, to produce a
// distribution over Bernoullis.
public SamplingDistribution<Bernoulli> Prob();

// Floats in the range [0,1] can be implcitly treated as Bernoulli distributions
public static implicit operator Bernoulli(double t);

// Get the parameter p of this distribution
public double P();

}
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// A demonstration of how to use this implementation
class Program {

static void Main(string[] args) {
var X = new Uncertain<double>(); // Some arbitrary distribution
var Y = new Uncertain<double>(); // Some arbitrary distribution

// Perform some computation
var Z = X + Y;

// Compare two expected values using a hypothesis test
if (Z.ExpectedValue() < X.ExpectedValue()) {

Console.WriteLine("E[Z] < E[X]");
}

// Compare an expected value to a pointmass using a hypothesis test
if (Z.ExpectedValue() < 10) {

Console.WriteLine("E[Z] < 10");
}

// Perform an evidence threshold test, asking if there is an 85% chance
// that Z < X. This also performs a hypothesis test.
if ((Z < X).Prob() > 0.85) {

// This is saying we are confident that the parameter of the Bernoulli
// distribution Z < X is at least 0.85.
Console.WriteLine("Pr[Z < X] > 0.85");

}

// Perform an evidence threshold test with a pointmass, asking if there
// is an 85% chance that Z < 60.
if ((Z < 60).Prob() > 0.85) {

Console.WriteLine("Pr[Z < 60] > 0.85");
}

// Perform an evidence threshold test, but using a different confidence
// level for the hypothesis test
if (((Z < 60).Prob() > 0.85).HypTest(0.99)) {

Console.WriteLine("Pr[Z < 60] > 0.85, at the 99% confidence level");
}

// Compare an expected value without doing a hypothesis test, to avoid
// ternary logic.
double ZMean = Z.ExpectedValue().Project();
if (ZMean < 60) {

Console.WriteLine("E[Z} < 60");
} else if (ZMean >= 60) {

Console.WriteLine("E[Z] >= 60");
} else {

assert(false); // Unreachable because Project() ensures a total order
}

// These tests do not compile because they are uncertainty bugs, asking
// the wrong questions of estimated data

// if (Z < X) { }
// if (Z < 10) { }

}
}
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Appendix C Instantiating the uncertain type for GPS
This appendix shows how to instantiate an Uncertain〈GeoCoordinate〉 in code. It uses the theoretical model derived in
Appendix A and the implementation of Uncertain〈T〉 presented in Appendix B. This implementation would be written by a
library programmer, and client programs would simply the GetGPSLocation method and receive a GPS distribution.

public class GPSLib {
// How many points to use in approximating the distribution
private int SAMPLE_SIZE = 10000;
// We need to convert between metres and degrees when using the error estimate
private double EARTH_RADIUS = 6371*1000;
private double DEGREES_PER_METRE = Math.Degrees(1/EARTH_RADIUS);

public Uncertain<GeoCoordinate> GetGPSLocation() {
// Firstly, get the estimate from the hardware
GeoCoordinate Point = GetSampleFromGPSHardware();
double ErrorRadius = GetErrorEstimateFromGPSHardware();

// Compute the parameter rho of the Rayleigh distribution
double rho = ErrorRadius / Math.Sqrt(Math.Log(400));

// We generate samples from the surface (Figure 18(b)) in polar
// coordinates: the radius is a Rayleigh sample, and the angle a uniform
// random angle

// Generate samples from the Rayleigh distribution
double[] radii = RandomRayleigh(rho, SAMPLE_SIZE);
// Generate random angles to rotate by from a uniform distribution
double[] thetas = RandomUniform(0, 2*Math.PI, SAMPLE_SIZE);

// Convert the polar coordinates to x,y coordinates in degrees. Assumes
// +, *, Sin and Cos all do elementwise operations on vectors.
double[] x = Point.Longitude + radii*Math.Cos(thetas)*DEGREES_PER_METRE;
double[] y = Point.Latitude + radii*Math.Sin(thetas)*DEGREES_PER_METRE;

// Transpose the list to be 10,000 pairs (x_i, y_i)
GeoCoordinate[] coords = Zip(x, y);

return new Uncertain<GeoCoordinate>(coords);
}

// These methods expose the raw estimate from the hardware

// Return the sampled point
private GeoCoordinate GetSampleFromGPSHardware();
// Return the estimated 95% confidence interval
private double GetErrorEstimateFromGPSHardware();

// These methods return random samples from distributions. Most statistics
// libraries would provide implementations of RandomRayleigh, and all
// math libraries provide implementations of RandomUniform.

// Generate Rayleigh random samples
private double[] RandomRayleigh(double rho, int size) {

// If X ˜ N(0, sˆ2) and Y ˜ N(0, sˆ2) then R = sqrt(Xˆ2 + Yˆ2) ˜ Rayleigh(s)
double[] x = RandomNormal(0, rho, size);
double[] y = RandomNormal(0, rho, size);

// x and y are vectors, we assume *, + and Sqrt all do elementwise operations
return Math.Sqrt(x*x + y*y);

}
private double[] RandomNormal(double mean, double stdev, int size);
private double[] RandomUniform(double low, double high, int size);

}
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