
Structural and Temporal Patterns-Based Features
Venkatesh-Prasad Ranganath

Microsoft Research, India
rvprasad@microsoft.com

Jithin Thomas
Microsoft Research, India

t-jithit@microsoft.com

Abstract—In this paper, we propose a data transformation pat-
tern to transform sequential data into a set of binary/categorical
features and numerical features to enable data analysis. These
features capture both structural and temporal information in-
herent in sequential data.

I. CATEGORIZATION

Assuming data analysis consists of four phases: data cleans-
ing, data transformation, data processing, and result valida-
tion, the proposed pattern is a data transformation pattern.

II. INTENT

Extract features from sequential data composed of events
for the purpose of data analysis. The features should capture
event ordering information inherent in the data. If the events
are structured, the features should capture structural informa-
tion inherent in events.

III. MOTIVATION

Consider a scenario where we have a set of logs from a web
server under various loads and we want to identify similar
loads on the web server. If similar loads result in similar
logs, then we can compare the logs for similarity, e.g.compare
the frequency distribution of events in logs. An immediate
extension of this scenario is to detect if a new load (based
on the corresponding log) is similar to any of the previously
observed loads.

Another scenario is when we have (failing) logs from a
web server that is functioning with errors and we would
like to identify the possible faults/causes. If the logs capture
information about faults (or failures or errors) and we have
(non-failing) logs from the same web server while functioning
without errors, then we can compare failing logs and non-
failing logs to identify “features” that are unique to failing
logs. The comparison could be based on simply on the
presence/absence of events and event orderings.

Above scenarios are specific instances of classification,
clustering, and trace comparison problems that often arise
during data analysis. While classic off-the-shelf clustering
and classification algorithms can be used to address these
problems [2], their success would depend on the richness of
the features extracted from the data. Hence, feature extraction
is an important task during data analysis, and patterns-based
feature extraction is a way to accomplish this task.

IV. DESCRIPTION

Most often, data is a composition of instances of various
patterns. Hence, given a set of patterns exhibited by a data
set, binary/categorical features can be constructed to indicate
if a pattern is exhibited by a datum.

A. Structural Patterns-Based Features

Given the structured data {x=3, y=‘foo’, z=3} where x,
y, and z are attributes of the data, all non-empty subsets of
attributes along with their values {x=3, y=‘foo’, z=3}, {x=3,
y=‘foo’}, {y=‘foo’,z=3}, {x=3, z=3}, {x=3}, {y=‘foo’}, and
{z=3} are valid abstractions of the data and they capture struc-
tural information about the datum. Hence, such abstractions
can be viewed as structural patterns exhibited by the data.

With the set of structural patterns observed in a data
set, binary/categorical features can be trivially constructed.
Such features can also be constructed for sequential data
by considering the structural patterns exhibited by events in
sequential data.

B. Temporal Patterns-Based Features

Consider the following trace of events A, B, C, and D.
A A C A B D B C B D

This trace can be viewed as a composition of temporal
patterns that capture event ordering information.

A A - A B - B - B -
- - C - - D - C - D

Specifically, based on the above projections of the trace, the
trace can be viewed as a composition of temporal patterns:
A

∗
� B, A

∗
� B, C

a
� D, and C

a
� D where the patterns

are defined as follows.
• X

∗
� Y (Y

∗
� X) patterns denote every occurrence

of event X will be followed (must be preceded) by
an occurrence of event Y. These temporal patterns are
referred to as eventually patterns, and fopen

∗
� fclose

and fopen
∗
� fclose are examples of such patterns.

• X
a
� Y (Y

a
� X) patterns denote every occurrence

of event X will be followed (must be preceded) by an
occurrence of event Y without any intervening occurrence
of event X. These temporal patterns are referred to as
alternation patterns, and lock

∗
� unlock and lock

∗
�

unlock are examples of such patterns.
Instead of considering entire events, abstractions of events

can be considered to construct temporal patterns. For more



details about these sorts of structural and temporal patterns,
please refer to [3].

V. CONSIDERATIONS

A. Applicability

Structural patterns-based feature extraction works well when
• events are structured,
• not all parts of events are equally relevant, and
• correlations between attributes and their valuations in

events are relevant.
Similarly, temporal patterns-based feature extraction works

well with sequential data and the ordering between events is
relevant.

B. Cost (Complexity)

Observe that, an event with 10 attributes can yield 210−1 =
1023 structural patterns and 220 ≈ 1046529 linear binary
temporal patterns of a kind (e.g.binary eventually follows
patterns). With this sort of explosion in patterns, the use of
this pattern and the subsequent data analysis can be expensive.
An effective way to curb this explosion (and associated cost)
is to use domain knowledge to limit the number of attributes
considered to generate the abstractions of events. This results
in fewer number of abstractions per event. For example, if
only 5 out of 10 attributes are relevant, then the number of
structural and linear binary temporal patterns comes down to
25 − 1 = 31 and 210 ≈ 961, respectively.

Another technique to curb this explosion is to use domain
knowledge to abstract values of attributes and limit the number
of unique abstractions considered during analysis. For exam-
ple, while dealing with software trace data, it might suffice to
abstract 32-bit pointer values as NULL and non-NULL values,
i.e. 232 − 1 unique values are reduced to 2 unique values!

C. Choice of Patterns

While most sequential data sets exhibit both structural and
temporal patterns, there can be scenarios in which only struc-
tural patterns-based features might suffice. Similarly, there can
be scenarios that demand temporal patterns-based features.
However, in many scenarios, the best feature vector for a data
set will be a combination of features based on both sorts of
patterns. So, depending on the application scenario (and the
domain), an appropriate combination of features should be
identified. For example, when comparing two data sets in terms
of unique features, a combination of features based on all
structural patterns along with features based only on temporal
patterns that involve structural patterns that are common to
both data sets (ignoring unique temporal patterns that involve
unique structural patterns) would form a good feature set.

In a similar vein, the choice of using patterns involving
abstractions will yield different sets of features for a data
set and this choice should be driven by the domain and the
application scenario.1

1We explored both these choices when we used patterns-based features to
perform compatibility testing as described in [5].

D. Alternative Patterns

In this exposition, we have considered the simple linear
binary temporal patterns defined in [3]. As alternatives, n-
grams [4] and finite state machines can be considered as well.

E. Quantitative Features

Most often, observed patterns are associated with a nu-
merical/statistical property local to data (e.g. frequency, mini-
mum/maximum distance between events participating in tem-
poral patterns). So, we can construct quantitative features that
represent statistical properties of patterns observed in the data.

F. Presentation

A set of structural patterns along with the ⊆ relation form
a partially ordered set. Hence, while presenting structural
patterns-based features to humans, only features based on
structural patterns that are maximal/minimal elements of the
partially ordered set can be presented to reduce informa-
tion overload. For example, given a set of unique structural
patterns-based binary features {f1, f2, f3, f4} such that only
f1 ⊆ f4, f2 ⊆ f4, and f3 ⊆ f4 (where fx ⊆ fy denotes the
set of structural patterns corresponding to fx is a subset of the
set of structural patterns corresponding to fy), either {f4} or
{f1, f2, f3} can be presented without loss of information.

A similar technique can be adopted to trim a set of temporal
patterns-based features. Also, these techniques can be used as
feature filters while processing patterns-based features.

VI. EXAMPLE

The USB 3.0 protocol driver stack in Windows 8 was a
clean room implementation. To ensure the USB 3.0 protocol
driver stack supported existing USB 2.0 devices, the team
had to test if the behavior of the USB 3.0 protocol driver
stack was similar to the behavior of the USB 2.0 protocol
driver stack in Windows 7 when both stacks were servicing the
same USB 2.0 device. Besides testing with various devices to
uncover incompatibility issues observable via device failures,
they also employed patterns-based trace comparison—logs of
traffic between USB 2.0 client device drivers and USB 3.0
and 2.0 protocol driver stacks were compared in terms of
their structural and temporal patterns-based features (akin the
use case scenario mentioned in Section III). This comparison
uncovered compatibility issues even when devices under test
were functioning without errors.

An example of compatibility issues that can be captured
as patterns is the USB 3.0 protocol driver stack completed
isochronous transfer requests at PASSIVE_LEVEL interrupt
request level while USB 2.0 driver stack completed such
requests at DISPATCH_LEVEL interrupt request level. This
issue was captured as a structural pattern.

The details of this effort can be found in [5]. The tool used
to mine structural and temporal patterns in this effort can be
found at [1].



REFERENCES

[1] Tark: Mining linear temporal rules. http://research.microsoft.com/en-
us/projects/tark/, 2011.

[2] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifica-
tion. Wiley-Interscience, 2000.

[3] David Lo, Ganesan Ramalingam, Venkatesh Prasad Ranganath, and Kapil
Vaswani. Mining quantified temporal rules: Formalism, algorithms, and

evaluation. In Proceedings of the 2009 16th Working Conference on
Reverse Engineering, 2009.

[4] Christopher D. Manning and Hinrich Schuetze. Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[5] Venkatesh Prasad Ranganath, Pradip Vallathol, and Pankaj Gupta. Com-
patibility testing via patterns based trace comparison. In Microsoft
Technical Report, 2012.


