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Abstract

In this paper, we investigate near-duplicate detection, particularly looking at the detection of evolving
news stories. These stories often consist primarily of syndicated information, with local replacement of
headlines, captions, and the addition of locally-relevant content. By detecting near-duplicates, we can
offer users only those stories with content materially different from previously-viewed versions of the
story. We expand on previous work that improves the performance of near-duplicate document detection
by weighting the phrases in a sliding window based on the term frequency within the document of terms
in that window and inverse document frequency of those phrases. We experiment on a subset of a publicly
available web collection that is comprised solely of documents from news web sites. News articles are
particularly challenging due to the prevalence of syndicated articles, where very similar articles are run
with different headlines and surrounded by different HTML markup and site templates. We evaluate
these algorithmic weightings using human judgments to evaluate similarity. We find that our techniques
outperform the state of the art with statistical significance and are more discriminating when faced with
a diverse collection of documents.

1 Introduction

Near-duplicate document detection is a problem with a long history spanning many applications. Notable
applications include duplicate result suppression for web search engines, filesystem compression through bet-
ter dictionary seeding, reducing backup storage requirements, improved bandwidth utilization using delta
compression from similar packets, copyright infringement, plagiarism detection, and visual image clustering
by recognizing rotation, scale, and lighting invariants. Near-duplicate documents are those where the docu-
ments are not identical, so a hash-based comparison of the full content will fail, but are comprised of many
identical features. Near-duplication is not necessarily transitive, a ≈ b and b ≈ c do not guarantee a ≈ c.

In 2008, Theobald et al. investigated a set of techniques, SpotSigs, for detecting near-duplicate news
items. Inspired by this, and armed with a relatively recent tool for approximating weighted Jaccard values for
arbitrary non-negative weights, we seek to find algorithmic weightings (based solely on statistical properties
of the collection) that yield comparable or better results, without the ad-hoc explicit choice of a small
preferred set of stop words, as used by SpotSigs. In this context, we are concerned with the lexical similarity
of the text, and are not aiming to identify semantically identical text fragments such as “The Greatest” and
“Muhammad Ali”, or “Venus” and “Morning (or Evening) Star”’; various techniques are known to work for
semantic equivalence.

In the context of a web search service, algorithms for near-duplicate document detection face a number
of real-world challenges, such as pages containing common navigational text, legal notices, user-generated
content, contents of form fields (including lists of months and days), and content from services that suggest
related pages or articles. These challenges are even greater in collections of news articles, due to syndication,
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Figure 1: Two news articles discussing the same topic assessed as near-duplicates by the authors.

markup from software used by the publisher to control layout, local event listings, neighborhood shoppers
(free papers) with repeated content, and section summaries mostly containing a single article from the
section’s subject in addition to abstracts for a number of additional articles. As an example of these
challenges, Figure 1 shows the text version of two near-duplicate news articles. Some of the paragraphs
in these articles have syntactic similarity, while others have semantic similarity. Note the difference in
the paragraph breaks and slight rewording of the text which make near-duplicate detection a very difficult
problem.

To evaluate our techniques when facing these real-world challenges, we experiment on subsets of a publicly
available web collection, as well as on the SpotSigs test set We evaluate our algorithmic weightings using
human judgments (by both the authors, and those generated using crowdsourcing) to evaluate both similarity
and relevance to the task of detecting duplicate news stories. All variants of our techniques which eliminate
templates outperform (with statistical significance) the state of the art and are more discriminating when
faced with a diverse collection of relevant documents.

The remainder of this paper is laid out as follows. In Section 2 we discuss related work, Section 3 describes
our approach, and the experiments are described in Section 4. Finally, we conclude in Section 5.

2 Related work

Near-duplicate detection algorithms have been utilized in a variety of ways. Some of the more significant
ones, which we do not consider further in this paper, include: plagiarism detection [11, 13, 21], sub-document
level replication [6, 2, 7, 18], Winnowing [20], finding near-duplicate files in a local or remote filesystem [15,
24, 17, 22], and web crawling [16].

Our consideration of the Theobald, et al. SpotSigs paper [23] suggested to us that the primary aspect
differentiating their technique from the sampling approaches they rejected (shingling [3] and SimHash [5])
is that the Theobald approach is highly selective in the choice of phrases from which to draw samples.
While SimHash is easily tuned to offer weighted sampling, the individual samples are words, not phrases.
Preferentially weighting stop words would result in frequency matching of occurrences of those words (or
their immediate successors), which is unlikely to distinguish news stories from one another. Shingling, as
originally considered, uses phrases, and allowed for integer phrase weighting.

Gollapudi and Panigrahy [9] found a weighted sampling technique running in time logarithmic to the
weights, suitable for weights larger than some positive constant; Manasse et al. [14] presented an expected
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constant-time sampling algorithm for arbitrary non-negative weights. Ioffe [12] subsequently improved this
to a Monte Carlo randomized algorithm running in constant time.

Recently, Gibson et al. [8] considered the specific problem of news story de-duplication, principally using
a text extractor to reduce news pages to just the story, followed by the use of known sketching algorithms.
We also tried a news story extractor in some of our algorithms to try to restrict our attention to just the news
content of the story. Our techniques improve on Gibson by using aspects of the feature selection suggested
by SpotSigs.

3 Algorithmic Approach

From Theobald [23], we take the idea that, in news stories, phrases beginning with common words are more
likely to be body text of an article than to be captions or headlines. As such, these phrases are likely to be
preserved as articles get rewritten as a breaking news story evolves, or as articles transit from a wire service
to appearance in a newspaper. We therefore investigate phrase weightings giving higher weight to phrases
beginning with oft-used terms.

From Broder [3] , we take the efficiency of replacing exact Jaccard computation by sample-based approxi-
mation, allowing the identification of highly-similar pairs drawn from billions of documents. We additionally
take the idea of supershingling, the computation of hashes of a collection of samples, so that collisions in
supershingle values strongly indicate high levels of simlarity, so that we can detect such instances in nearly
linear time.

From Henzinger’s comparison of shingling to SimHash [10], we take seriously that unweighted shingling
is inferior to the weighted term selection of SimHash.

Ioffe’s work on consistent sampling [12] offers a Monte Carlo constant-time technique for approximating
weighted Jaccard values, allowing us to use arbitrary non-negative weightings of phrases. We use information-
retrieval standards, such as term and document frequency, and modifications of such weightings using loga-
rithms and powers.

Reflecting on these, we seek weighting schemes offering heightened probability of selection to those phrases
SpotSigs prefers, but allowing some probability of selection to all phrases. We seeki weights so we can use
weight-proportional sampling to create compact sketches of identified news articles. In contrast to SpotSigs,
compact sketches (and supershingles) allow significantly larger corpora to be considered. SpotSigs presents
clever techniques for rapidly determining if the similarity measure of a pair of files exceeds some threshold,
but offers little to avoid considering all pairs.

SpotSigs chooses a small set of antecedent words common in English. It then selects only those phrases
beginning with an element of the antecedent set for comparison using unweighted Jaccard. SpotSigs chose a
test collection starting from a small number of known news stories, clustering near-duplicates in this small
collection, and evaluating recall and precision for variants of SpotSigs within this collection. In attempting
to replicate the SpotSigs results, we discovered that their reported results test only among related stories,
largely eliminating false positives.

We taker a less restricted collection of documents, hoping to identify news stories within a large pool of
documents selected from known news source web sites. We use a probabilistic approximation to weighted
Jaccard to identify likely near-duplicates in this collection. The weights are based on term and phrase
frequencies. We do not explicitly choose a preferred set of antecedents, and generally give all phrases which
do not appear to be boilerplate some positive weight.

To elaborate and unify the computations involved, all of the algorithms assign a weight to every phrase of
a chosen target length. SpotSigs confounds this simplification by picking phrases which omit the antecedent
words; we do not attempt to replicate this behavior in our algorithms. For SpotSigs this seems inessential,
most phrases will begin with either “the” or “said” but not both. SpotSigs then assigns weight one to phrases
beginning at the position of a word in the antecedent set, and weight zero to all other phrases.

Weighted Jaccard for non-negative weightings W1 and W2 over a universe of phrases U is defined to be∑
u∈U min(W1(u),W2(u))∑
u∈U max(W1(u),W2(u))

.

For binary weightings, the numerator is the cardinality of the intersection of W1 and W2, while the
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denominator is the cardinality of the union of W1 and W2, viewing W1 and W2 as sets containing those
elements with weight one, resulting in the conventional definition for the Jaccard value.

For whole-numbered weightings, the definition above corresponds to computing the unweighted Jaccard
value of sets where each phrase u with weight W (u) is replaced by new phrases (u, 1), (u, 2), . . . , (u,W (u)).

In choosing weightings, in order to systematically approximate SpotSigs, we considered term frequency
(both within a document, and in the entire corpus), and approximations or exact computation of phrase
frequency in the corpus, in order to reduce the impact of boilerplate text.

Due to working with a corpus of considerable size, we call the one percent of phrases found in more
than forty-two distinct documents common. This set can be efficiently stored in a relatively small amount
of memory on even a modest computer and features that utilize both the presence and absence of a phrase
in this set can be derived. For the same reason, we chose to work with unbiased estimations of the Jaccard
value, rather than computing the exact Jaccard value for all pairs. The SpotSigs paper computes exactly the
set of document pairs whose Jaccard value exceeds a chosen threshold, but it does this in a corpus where the
number of pairs is bounded by a few million; we aim for corpora in which the number of individual documents
is best measured in billions, resulting in quintillions of document pairs, rendering even the enumeration of
all pairs impractical. We also seek to understand whether our algorithms help separate news stories from
non-news, at least when one of the articles is judged as news. As such, we evaluated pairs across the spectrum
of Jaccard similarity, rating selected pairs as irrelevant (two non-news stories), and duplicate or not. In our
first experiments, as follows, we viewed the identification of a non-news story as a near-duplicate of a valid
news story to be a false positive, reducing our precision value.

We discovered a few encouraging things: many variants of weighting produced results comparable to one
another and to SpotSigs, as measured by F1 and Matthews values and by Pearson correlation of the results.
We discovered many techniques using the document frequency of individual words to push the weighting
towards a SpotSigs-like binary decision about the initial “stoppiness” of a phrase work about equally well:
working better than SpotSigs on our new collection, but less well on the SpotSigs collection. We further
discovered that SpotSigs performed surprisingly (to us) poorly on our broader collection, marking many
documents as duplicates which shared only a significant amount of boilerplate text – for instance, the text
associated with the navigational controls on different pages from a single news site – leading to low precision
numbers for SpotSigs and for our first proposed weightings when applied to our test set.

We then refined some of the algorithms by down-weighting common phrases, using both a variant of
inverse document frequency for phrases, and a simple threshold cut-off for phrases common to more than
a few dozen documents. This improved the precision of our techniques to the point that our techniques
significantly outperform SpotSigs on the judged portion of our collection. Using this variant to trim our
sample collection, the F1 value of SpotSigs approached the values seen in their 2008 paper.

Computations using the algorithms described above are highly parallelizable – samples for different
documents can be drawn independently in time linear in the document length multiplied by the number
of samples to be drawn, if the phrase frequencies to determine weightings are in memory. Supershingling
or other hashing techniques allow us to avoid the quadratic effort of considering all pairs of documents,
allowing us to focus directly on pairs which collide, and therefore are likely to have sufficient similarity to
be duplicates.

4 Evaluation

4.1 Experimental Setup

This section describes the data and computational infrastructure that we used to carry out our experiments.
We started with the “Category A” English subset of the ClueWeb09 dataset1 distributed by CMU. This
subset contains 503 million English language web pages. Additionally, we retrieved the RDF version of the
Open Directory Project site on September 23, 2010. In order to build a large test corpus comprised primarily
of news documents, we filter the ClueWeb Category A English documents to contain only documents from
one of the 7,261 distinct hostnames in the ODP News category, resulting in a set of 11,826,611 web pages.
We further filter this set to remove exact duplicate pages by including only one representative from each

1http://boston.lti.cs.cmu.edu/Data/clueweb09/
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Label Frequency
Duplicate 42
Containment 10
Non-duplicate 252
Duplicate, Irrelevant 10
Non-duplicate, Irrelevant 142

Table 1: Distribution of labels for CW1.

group of exactly matching text pages. We also remove all content from Wikipedia. The resultiing collection
of 5,540,370 web pages from news sites forms the corpus we use hereinafter.

To evaluate the effectiveness of near-duplicate detection algorithms, we first need to compute the similar-
ity of the documents in the collection. It is computationally infeasible to compute the pairwise similarity of
all 5.5 million documents. Past work [8, 23] has built small collections of documents either via clustering or
by querying a search engine with an existing news article’s title and retrieving the results to obtain duplicate
stories. We took a different approach, which we believe yields a collection that surfaces many of the thorny
issues in near-duplicate document detection.

We begin by extracting the potential news article from each of the documents in our corpus using the
Maximum Subsequence Segmentation approach described in [19]. We then parse the documents using an
HTML parser producing a sample of document pairs where the articles share at least one seven word phrase
whose IDF is in the interval [0.2, 0.85]. From each group of documents that share a phrase, samples are
drawn uniformly for all pairs in that group. The number of drawn samples is proportional to the number
of pairs in the group. Once we have obtained the distinct set of pairs from all groups, we compute the
unweighted Jaccard coefficient of the pairs of extracted articles. A histogram of these Jaccard values was
then calculated and used to obtain a sample of 456 document pairs distributed approximately evenly across
the set of Jaccard values.

Two authors labeled all of these pairs of pages, assigning a label with potential values of Containment,
Duplicate, Non-duplicate, Duplicate Irrelevant, and Non-duplicate Irrelevant. The two sets of
labels were compared for agreement, and the pairs where the labels were not in agreement were rejudged in
consultation in order to obtain a set of labels with complete agreement. We refer to this dataset as CW1 for
the remainder of this paper. The distribution of labels is depicted in Table 1. The labels are available from
the authors via email.

It is worth noting that taking a random sample of pairs does not lead to a viable corpus of near-duplicate
documents. To verify this, we selected 100 million document pairs at random. We then computed the
Jaccard coefficient of the extracted article for each of these pairs. As expected, 99, 932, 445 of the 100 million
pairs had a Jaccard coefficient of 0 and 7, 779 had a coefficient of 1. The coefficients for the remaining pairs
were distributed between 0 and 1, heavily skewed towards low values, so that labeling only these pairs does
not produce a viable corpus.

In addition to the author-labeled near-duplicate news articles in ClueWeb09, we also used a set of crowd-
sourced labels described in the following subsection, as well as the Goldset2 of documents used in [23]. The
SpotSigs Goldset dataset has 2,167 articles covering 68 different news stories.

4.2 Crowdsourced Labels

Like many others, when attempting to scale the labeled dataset, we turned to crowdsourcing, where tasks are
outsourced to an unknown set of workers. Using the same methodology as for CW1, we initially sampled 4,107
pairs of documents from our corpus. While labeling CW1, the authors used a labeling tool (implemented
specifically for this task) that presented both documents at the same time, and assigned a label to the pair.
This assignment actually incorporated multiple decisions: are both documents news articles, if so, are they
about the same story, and finally, if they are about the same story, does one of them contain the other.
After assessing CW1 and discussing disagreements, the authors defined some rules about what makes (or
not) a news article. This categorization, along with several examples, was added to new versions of the

2Available from http://www.mpi-inf.mpg.de/~mtb/
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Figure 3: Flowchart of work quality control for
phases 1 and 2.

experiments as part of the crowdsourcing pipeline. We streamlined this process for the labels we generated
via crowdsourcing, which includes using a more generic tool for implementing the tasks.

To validate the new experimental design, we took the CW1 data set and ran it through phase 1 of the
crowdsourcing pipeline. We compared the agreement between us and the workers using Cohen’s Kappa and
reported κ = 0.766, which indicates substantial agreement.

At a high level, we follow the same process described in [1] by using an iterative approach for the design
and implementation of each experiment. We designed and tested both designs (Figures 4 and 5) with small
data sets before involving crowds. We batched the data sets and adjusted quality control using honey pots
and manually checking for outliers. We now describe each step in more detail.

We used a Microsoft internal system (Universal Human Relevance System) for gathering all crowd as-
sessments.

We designed a crowdsourced labeling pipeline that consisted of two separate experiments: news identifi-
cation (phase 1) and duplicate detection assessment (phase 2). The labeling process works as follows: Once
we had our initial sample, we generated a list of distinct documents from the sampled pairs, and then asked
workers to determine if a document was or was not a news article, or if the worker was unable to determine.
After computing agreement, we then filtered the list of document pairs to include only those where both
documents had been labeled as news articles. We then asked assessors if the articles in the pair were about
the same event, and if so, if one of the articles had more detail than the other. Once there is output from
phase 1, this process allows us to parallelize the assessment work by having the two experiments running at
the same time. Figure 2 provides a graphical depiction of this process.

Work quality control is a key part in any task that requires human computation and we implemented
a workflow that combines different crowds at different stages of both phases. Initially, we use a small data
set to test the design of phase 1 experiments. Each URL was assessed by 3 workers (the authors) and all
disagreements resolved in person. The output was used as a honey-pot data set to check the quality of the
same experiment template using a different crowd (MS tool workers). In this step, an overlapping medium
size data set is used and each URL is assessed by 2 workers. All those URLs where both workers agree are
then used to generate the URL pairs, which are the input for phase 2. In this second phase, each URL pair
was assessed by 3 workers and for those few cases where at least 2 of the additional workers disagree with
the initial judgment, we (the authors) provided an extra label to compute the final list. Figure 3 describes
the quality control mechanisms used in our work

We assessed 4,107 pairs in phase one, containing 3,992 distinct ids. Each document was assessed as a
news article or not by two assessors where the values were one of Yes, No, I don’t know, or Other. The
assessments we received resulted in a Cohen’s Kappa κ = 0.73, indicating substantial agreement. Table 2
lists the distribution of labels.

Once we had a set of documents that was labeled as news articles or not news articles, we returned to
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Label Frequency
Yes 4,235
No 7,877
I don’t know 208
Other 412
Non English 45

Table 2: Distribution of raw labels for first crowdsourced task identifying documents that are news articles.

Please read the following document and let us know
if the article is a news article.The following are con-
sidered news:

• Generic news articles (e.g., finance, politics,
etc.)
• Press releases by a company or institution
• Government data reports or election returns

The following are not considered news:

• Weather reports (conditions)
• Headlines with a single or no sen-

tences/paragraph or photo captions
• Event calendars
• Article or blog post that describes another ar-

ticle with a teaser quoting a small amount of
content from the original article.
• Library collections or course listings

Does the document above contain a news article writ-
ten in English?

• Yes. It is a news article.
• No. It is not a news article.
• I don’t know
• Other. Web page didn’t load/error mes-

sage/etc.
• Non English. This document is not in English.

Figure 4: Experiment design for phase 1.

Please only consider the article itself (not the
surrounding template). Ignore ads, images and
formatting. We are only considering the core
text of the articles. Note that headlines can be
different.
1. Are these 2 news articles about the same
event/topic?

• Yes. These news articles are about the
same.
• No. These news articles are not the

same.
• I don’t know. I can’t tell if the news

articles are the same or not.
• Other. Web page didn’t load/error mes-

sage/etc.
• Non English. This document is not in

English.

2. Does one document cover more detail than
the other?

• Document A covers more detail than doc-
ument B.
• Document B covers more detail than doc-

ument A.
• No

Figure 5: Experiment design for phase 2.

the list of document pairs that we initially sampled and considered each pair where both documents had
been labeled as news articles. The main goal of phase 2 was to answer two questions about each pair of
news articles, as shown in Figure 5. Due to the experiment design, we expected all responses to question 1
to be either yes or no, we provided the other three responses as an escape clause if the judge was unsure of
the result or to allow for operational issues. For phase 2, we report agreement using Fleiss’ Kappa κ = 0.74,
indicating again substantial agreement.

For the assessments from Phase 2, we directly take all URL pairs that have consensus and the authors
resolved any disagreements by providing an additional assessment. Table 3 shows the results of this task.
When comparing these results against CW1, note that Table 1 identifies duplicates and containment sepa-
rately, while Table 3 counts all incidents of containment also as a duplicate. Therefore all of the results from
Q2 - Yes are also counted in Q1 - Yes. Due to the two-phase nature of the crowdsourced pipeline, many
sampled pairs were not carried forward from phase 1 to phase 2 because at least one article in the pair was
not labeled as a news article. Despite the similar magnitude of the results inTable 1 and Table 3, the scale
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Label Frequency
Yes 311
No 265
I don’t know 0
Other 0

Table 3: Distribution of raw labels for question
1 of second crowdsourced task identifying near-
duplicate news articles.

uniform (ln df)2 df2

df (ln df)3 df3

ln df (ln df)4 df4

(ln df)10 ln(DocumentCount/df)

Table 4: Functions to calculate final sample
weight.

of the crowsourced experiment was much larger because of the labels obtained in phase 1. In this paper, we
do not utilize the results from question 2; we leave this for future work. For the remainder of this paper, we
refer to this dataset as CW2. As with CW1, the labels are available from the authors via email.

To conclude this section, it is important to describe operational issues that both crowds (authors and
workers on UHRS) reported at different times. In general, with the exception of a few spammers, workers try
to follow instructions as best they can. Unfortunately, at times the content is not in the best shape, creating
problems for locating the article (i.e. “The news story is a way down the page, but is news”), server errors
(i.e. “Half the page didn’t load correctly and the bottom is just a photo is [sic] a caption”), or formatting
problems ( i.e. “is FCC report, but can’t download it and in [sic] weird left-to right format... really not
sure”). These issues do have an impact on the label quality so, by design, we selected those URLs where
there was unanimous consensus before generating pairs.

4.3 Experimental Results

In order to compute sample values for our documents, we use Ioffe’s [12] constant time weighted sampling
technique.

Ioffe’s technique extends on shingling, by selecting a weighted sketch of each document. We consider
a document to be equivalent to its set of phrases, consecutive terms from the document. A weighted
document is a document together with a weighting function, mapping each phrase to a non-negative weight.
Symbolically, the set of phrases in a document is {ρi}, and a weight function maps each i to a non-negative
value W (i). A weighted sample < ρ,w > is a pair where, for some i, ρ = ρi and 0 < w < W (i). We want a
family of sampling functions {Fi} where averaged over that family, the expected probability of agreement is
equal to the Jaccard value. Thus, Probi(Fi(A) = Fi(B)) = J(A,B). Such estimators are unbiased.

Ioffe shows that we can produce such a family by picking a family of pseudo-random uniform generators
of values in the range between zero and one. For each phrase ρ, we seed the generator with ρ. We then
compute five numbers u1, u2, v1, v2, β. Let r = 1

u1u2
, and t = bβ + logr wc. The weight y associated with

phrase ρ is rt−β , and the associated value a = − ln v1v2
ry . Looking at all phrases, choose as the sample the

< ρ, y > with the numerically least a value.
We experiment with several families of algorithms for setting weights. First, we generalize the SpotSigs

approach of taking samples that occur immediately after one of a small number of antecedents. SpotSigs
assigns equal weight to all antecedents. Variants of SpotSigs have antecedent sets that vary from the single
term is to the 571 stopwords used in SMART [4]. We combine three different values to compute the weight
for a given sample. First, we consider the document frequency of the first term in the window. Second, we
scale this by the inverse document frequency of the complete phrase. Third, we multiply that by a binary
value, which is 1 if the phrase is a “rare” phrase or 0 is the phrase is common. A rare phrase is a phrase
that occurs in at most n% of the documents, as measured by document frequency. We computed results
where the rare phrases are selected from the bottom 1%, 5%, 25%, 50%, 75%, 95%, and 99%. A function
is then applied to the combined weight in order to determine a final weight for this phrase. Many of the
values we utilize when calculating the weights are readily computed during the index construction phase
for a search engine, or can be independently calculated with a pass over the corpus. The complete list of
functions we applied is listed in Table 4. We use the following abbreviations when reporting results: DF
(Document Frequency), IDF (Inverse Document Frequency), TP (True Positive), and FN (False Negative).
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4.4 Results on ClueWeb Labeled Data

As described in Section 4.1, we drew plausible pairings by examining the Jaccard similarity of paired pages.
We then took samples of roughly equal size from small ranges of Jaccard similarity, so that our samples
would span the gamut of syntactic similarity. We chose the uniform distribution so that we could explore
our techniques in a variety of settings.

All sampled document pairs were split apart, and individual pages examined to check whether the pages
were news stories. For those pairs consisting of two news stories, we then asked our judges two further
questions: Were the stories about the same thing? Did one story subsume the other? These questions
determined whether the pages were news duplicates, and whether one contained the other.

We performed the experiments twice, drawing independent samples from the same collection. We then
computed the Earth Mover Distance between the resulting distributions of documents. The first set, which
we judged entirely in-house, had a distribution very close to uniform, although slightly oversupplied with
low Jaccard similarity when compared to the uniform distribution. The second distribution is somewhat
different; it was roughly three times farther from the uniform distribution than was our first sample. The
Jaccard distribution of the first sample was significantly closer to the uniform distribution than it was to
the new sample distribution. We do not fully understand the genesis of these discrepancies; one possible
explanation is that the second samples were drawn precisely as described above, while the first set of samples
were concurrently assessed as pairs for duplication as well as newsworthiness. We suspect that the difference
is due in part to the level of personal investment by judges; when asked first to decide whether a page
contains news, the judge has no personal stake in the page as yet. When asked to first decide whether two
pages are duplicates, and then asked if they are news, the judge has to think more deeply as to whether the
similar aspects of the pages constitute news, focusing the attention of the judge on the parts of the page
they deem similar. More simply, the sets of pairs were drawn before ascertaining relevance to the task, but
the surviving pairs in the later experiment are only those deemed to be news, reducing the set of pairs by
eliminating many non-textual pages.

To assess the quality of our techniques for automatically determing when two articles are dupiicates in the
desired sense, we look at the F1 measure. Because our functions are not linearly-related, the threshold values
we use for cutoffs are largely unrelated. Accordingly, we set the threshold for each technique by choosing a
sample of the document pairs, and finding the threshold value resulting in the maximum F1 score on this
set. We then use this threshold on the full set of pairs and compute and report the F1 scores. Because of
the differing scales for each technique, we then compare the F1 scores for thresholds in small neighborhoods
of the predetermined threshold, to assess sensitivity of our techniques to the choice of threshold value.

The F1 measure is easily described in terms of recall and precision, which measure the fraction of detected
positives, TP

TP+FN , and the fraction of positives which are correct, TP
TP+FP . Using these, F1 is

2
recall × precision
recall + precision

=
2TP

2TP + FN + FP

.
In a particular example we considered weights equal to the fourth power of document frequency for

the first word in a phrase, divided by the document frequency of the entire phrase. We computed recall,
precision, and F1 curves at a range of thresholds from zero to one. In this case, the curve stayed reasonably
flat from thresholds of 1

4 to 3
4 , suggesting relative insensitivity to the precise setting of the threshold.

All of the experiments in this paper use a phrase length of 7. SpotSigs does not consider phrase windows
of a fixed size, instead, “chains” of some chain length c are constructed where the the non-stopwords that
are at least d terms apart are selected. The best settings reported in the SpotSigs paper are a chain length of
3 plus a distance of 2, akin to our phrase length of 7 in the absence of stopwords within the phrase window:
we include the first term in the phase window while SpotSigs omits it.

4.5 Rare Phrases

We also experimented with considering various fractions of rare (or not-so-rare) phrases. We calculated
results for all of the functions in Table 4 where we set the weight for a phrase to 0 if it occurred more
frequently than the bottom 1, 5, 25, 50, 75, 95, and 99% of phrases by document frequency. For the
ClueWeb09 dataset, this table of rare phrases contains at most 847,281 elements, which can be easily stored
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Antecedent list Max F1
Is 0.6720
The 0.7868
Is,The 0.7851
Is,The,Said 0.7901
Is,The,Said,Was 0.7896
Is,The,Said,Was,There 0.7886
Is,The,Said,Was,There,A 0.7918
Is,The,Said,Was,There,A,It 0.7967
The,A,Can,Be,Will,Have,Do 0.7734
Smart stopword list 0.7572

Table 5: Maximum F1 scores for SpotSigs simi-
larity.

Weighting function Max F1
uniform 0.8352
df 0.8275
logDF 0.8429
log Idf 0.8093
logDF 2 0.8505
logDF 3 0.8449
logDF 4 0.8470
(logDF )2 0.8352
(logDF )3 0.8288
(logDF )4 0.8257
(logDF )10 0.8307

Table 6: Maximum F1 scores for rare phrase
weighting functions.

with the counts in an in-memory hashtable (we did not, but suspect one could, use a streaming heavy
hitters algorithm to probabilistically identify common phrases.) While all of the rare phrase variants of our
technique perform well, we find that considering the bottom 50% performs best. Table 6 lists the F1 value
we compute for each weighted sampling technique. The F1 values we computed for all rare phrase variants
are superior to all other techniques, including SpotSigs, which are listed in Table 5, primarily (as best we
can guess) due to the presence of significant amounts of boilerplate in newspaper formatting, which has little
to do with the contents of an individual story.

We compared SpotSigs similarity against Rare Phrase similarity by looking at all of our pairs of doc-
uments. We scored each algorithm by whether it correctly predicted the judged assessment of similarity.
Looking at just the judgements, all of our algorithms compared to the best SpotSigs algorithm produced a
large number of points of agreement with the judges and with one another. Simple χ2 testing revealed no
significant differences: both disagreed about equally often with each often choosing positive.

However, as Table 6 shows, our F1 scores are typically 5% better than SpotSigs, and, when considering
whether we agree with the judges at points of disagreement, the likelihood of that improved F1 score being
due to chance is almost always below 2% as measured by χ2, and often vanishingly small as measured using
a two-sided T test.

4.6 Pearson Correlation

We computed Pearson’s sample correlation coefficient, r, for all methods against the truth set of labels.
This coefficient is in the range [−1, 1] where a value of 0 signifies no correlation between the variables and a
value of 1 signifies that the variables are perfectly correlated; the Pearson correlation coefficient is the best
linear term in mapping two real variables after normalizing for scale. The top five weighting functions for
Pearson correlation coefficient are listed in Table 7. As depicted by the table, we see that near duplicate
detection using weighted samples is highly correlated with human labels of duplicate news documents. It
is worth noting that the best functions for weights all incorporate the least popular 50% of phrases, as
further evidence that this variant is the most selective. Several of the weighting functions with the lowest
correlation coefficients were functions with uniform weights, which is very close to Shingling. In terms of
comparison with SpotSigs, the best SpotSigs correlation coefficient is 0.5517, which is for the variant where
the antecedent set consists of: Is, The, Said, Was, There.

In computing Pearson correlation to the truth set, we mapped False and True to zero and one respectively
(any distinct constants would do, due to scale invariance).

We also used Pearson correlation to check the similarity between different choices of method. Setting
a threshold for Pearson correlation of at least 0.9, we find that all of the SpotSigs variants other than The

correlate with one another. For weighted sampling, within blocks of similar weighting functions we find
strong correlation. The correlation holds completely at the 0.9 level among all rare phrase variants at the 1
and 5% level, and at the 25 and 50% level. Reducing the cutoff to 0.8 causes most of the inverse document
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Weighting function Pearson r
df2 rare phrase 50% 0.7564
df3 rare phrase 50% 0.7550
df4 rare phrase 50% 0.7530
df rare phrase 50% 0.7447
(ln df)10 rare phrase 50% 0.7437

Table 7: Top 5 weighting functions for Pearson correlation coefficient.

frequency and first-term weight variants to closely resemble SpotSigs variants. It also causes almost all rare
phrase variants at 25% to match all other rare phrase variants.

4.7 Matthews Correlation

The Matthews Correlation Coefficient, or MCC, which is defined to be

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

is a correlation coefficient with a value in the range [−1, 1] commonly used to evaluate machine learning
algorithms. A correlation coefficient value of 1 indicates perfect classification. Figure 6 shows the MCC for a
select few of the methods we experimented with. Each of the displayed methods is compared to the ground
truth. We selected the best-performing methods within each class of technique; other methods performed
similarly.

We observe that our rare phrase variants do quite well compared to the best variant of SpotSigs, except
for a small range of thresholds. We consider this acceptable: the variants we chose concentrate around a
threshold of roughly 1

4 to 1
2 . There is no intrinsic correlation between the thresholds for different methods;

it makes sense to select a value for each that typically performs well.
Again, the worst-performing methods are a uniform weighting (which closely approximates shingling),

and the best variant of SpotSigs. As noted by Henzinger, straight shingling is an inferior method, falling
prey to a host of irrelevancies in the document. The inverse phrase-frequency weighting has intermediate
performance: better than SpotSigs, roughly equal to uniform rare phrase (but with a flatter range for tuning),
and inferior to an exponentially-weighted rare phrase variant. Although not depicted, these comparisons are
consistent across the gamut of variants.

4.8 Results on SpotSigs GoldSet

We computed the SpotSigs variants as well as the weighted sampling measures evaluated over the 2,346,862
document pairs that exist in the SpotSigs GoldSet, where ground truth values are determined by the directory
hierarchy. On the GoldSet, we observe that some SpotSigs variants outperform the weighted sampling
techniques. SpotSigs configured to use an antecedent list of [Is, The, Said, Was] performs the best with
an F1 score of 0.87, while the best weighted sampling function, df4 configured using rare phrases, obtains
a F1 score of 0.84. There may be multiple factors that contribute to this outcome. The GoldSet set is
relatively small, with only 68 clusters of articles. Hence many documents that contain specific phrases are
indicative of these clusters, which is unlike the larger ClueWeb collection, where duplicate phrases occur in
non-duplicate documents very frequently due to legal notifications such as privacy policies, instructions for
comment areas, and the shared boilerplate that comes from a small number of corporations owning a large
number of publications. Further investigation is required to fully determine the reasons for this difference.
We note only that the existing SpotSigs algorithms perform comparatively poorly on our other dataset.

5 Conclusion

We have presented an algorithm for effectively detecting near duplicate news stories. This algorithm general-
izes the SpotSigs approach by using the term and phrase frequencies to weight sample choices. Further, non
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Figure 6: Matthews Correlation Coefficient for a selection of techniques.

binary weights are utilized giving our approach more of a SimHash flavor, thereby addressing issues raised
by Henzinger. Our experimental results significantly improve performance using a battery of statistical tests
on a test set presenting real-world challenges. In addition to the algorithm, we make our test set available
for use by the research community.

In this work, we took note of only very-common phrases due to the difficulty of exact counting of frequency
given the large number of uncommon phrases. In the future, approximate counting Bloom filters might be
an economical way to find most of the heavy hitters. We had the opportunity to use exact counting, but
given that we used frequency for rarity only as a binary decision, fuzzier counts would suffice.

While we may think that assessing duplicate documents is a simple task, in practice it is difficult and
demanding. There are a number of presentation issues (e.g., formatting, broken images, fonts, colors, different
styles, etc.) that the assessor has to deal with to locate the “core” of the document. Different news agencies
often produce different paragraph breaks making it difficult for workers to find visual anchors to compare
similarity. To make matters worse, paragraphs are also reordered. To address these issues we implemented
a tool for cleaning up documents so it is possible to perform document assessment without formatting
distractions.

We also introduced a crowdsourcing pipeline that consists of two phases for gathering labels and improves
the overall label quality. As part of the quality control, the authors resolved many disagreements and even
there we couldn’t always agree and had to manually break ties.

Assessing archival or historical reference collections where part of the visual material is not available is a
challenge as workers have to make an effort to locate the important pieces of material first, before producing
any labels.
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