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Abstract

Many real-world datasets are comprised of different rep-
resentations or views which often provide information
complementary to each other. To integrate information
from multiple views in the unsupervised setting, multi-
view clustering algorithms have been developed to clus-
ter multiple views simultaneously to derive a solution
which uncovers the common latent structure shared by
multiple views. In this paper, we propose a novel NMF-
based multi-view clustering algorithm by searching for a
factorization that gives compatible clustering solutions
across multiple views. The key idea is to formulate a
joint matrix factorization process with the constraint
that pushes clustering solution of each view towards
a common consensus instead of fixing it directly. The
main challenge is how to keep clustering solutions across
different views meaningful and comparable. To tackle
this challenge, we design a novel and effective normaliza-
tion strategy inspired by the connection between NMF
and PLSA. Experimental results on synthetic and sev-
eral real datasets demonstrate the effectiveness of our
approach.

1 Introduction

Many datasets in real world are naturally comprised of
different representations or views [5]. For example, the
same story can be told in articles from different news
sources, one document may be translated into multiple
different languages, research communities are formed
based on research topics as well as co-authorship links,
web pages can be classified based on both content and
anchor text leading to hyperlinks, and so on. In these
applications, each data set is represented by attributes
that can naturally be split into different subsets, any
of which suffices for mining knowledge. Observing that
these multiple representations often provide compatible
and complementary information, it becomes natural
for one to integrate them together to obtain better
performance rather than relying on a single view. The
key of learning from multiple views (multi-view) is to

leverage each view’s own knowledge base in order to
outperform simply concatenating views.

As unlabeled data are plentiful in real life and in-
creasing quantities of them come in multiple views from
diverse sources, the problem of unsupervised learning
from multiple views of unlabeled data has attracted
attention [3, 17], referred to as multi-view clustering.
The goal of multi-view clustering is to partition objects
into clusters based on multiple representations of the
object. Existing multi-view clustering algorithms can
be roughly classified into three categories. Algorithms
in the first category [3, 17] incorporate multi-view inte-
gration into the clustering process directly through op-
timizing certain loss functions. In contrast, algorithms
in the second category such as the ones based on Canon-
ical Correlation Analysis [8, 4] first project multi-view
data into a common lower dimensional subspace and
then apply any clustering algorithm such as k-means to
learn the partition. The third category is called late in-
tegration or late fusion, in which a clustering solution
is derived from each individual view and then all the
solutions are fused base on consensus [7, 13].

In this paper, we propose a new multi-view cluster-
ing approach based on a highly effective technique in
single-view clustering, i.e., non-negative matrix factor-
ization (NMF) [18]. NMF, which was originally intro-
duced as a dimensionality reduction technique [18], has
been shown to be useful in many research areas such
as information retrieval [20] and pattern recognition
[18]. NMF has received much attention because of its
straightforward interpretability for applications, i.e., we
can explain each observation as an additive linear com-
binations of nonnegative basis vectors. Recently, NMF
has become a popular technique for data clustering, and
it is reported to achieve competitive performance com-
pared with most of the state-of-the-art unsupervised al-
gorithms. For example, Xu et al. [20] applied NMF to
text clustering and gained superior performance, and
Brunet et al. [6] achieved similar success on biological
data clustering. Recent studies [9, 11] show that NMF
is closely related to Probabilistic Latent Semantic Anal-



ysis (PLSA) [15] which is one of the most popular topic
modeling algorithms.

As NMF has shown to generate superior clustering
results which are easy to interpret, it will be very useful
to have an NMF-based multi-view clustering approach.
However, studies on NMF-based multi-view approaches
for clustering are still limited. The main challenge
of applying NMF to multi-view clustering is how to
limit the search of factorizations to those that give
meaningful and comparable clustering solutions across
multiple views simultaneously. Moreover, traditional
normalization strategies proposed for standard NMF
are either difficult to be optimized in the multi-view
setting [20], or cannot generate meaningful clustering
results [21, 10]. In this paper, we approach this
problem by proposing a novel normalization strategy
and following the principle that factors representing
clustering structures learnt from multiple views should
be regularized toward a common consensus.

It is worthwhile to highlight several advantages of
the proposed approach as follows:

1. As far as we know, this is the first exploration
towards a multi-view clustering approach based
on joint nonnegative matrix factorization, which is
different from traditional approaches simply fixing
the shared one-side factor among multiple views.

2. As discussed, existing normalization strategies for
standard NMF cannot keep factors from different
views comparable and meaningful in the multi-
view setting for clustering, making the fusion of
views difficult and inconclusive. To tackle this chal-
lenge, we develop a novel normalization procedure
inspired from connection between NMF and PLSA.

3. We propose an iterative optimization framework
which is scalable and convergent. In terms of accu-
racy, it outperforms the state-of-the-art algorithms
in our experiments by 6% on average.

The rest of this paper is organized as follows. In
the next section, a brief overview of NMF and its
relationship with PLSA is provided. The proposed
multi-view NMF algorithm is then presented in Section
3. Extensive experimental results are shown in Section
4. A discussion of related work is given in Section 5.
Finally, in Section 6 we provide conclusions.

2 Overview of NMF and PLSA

In this section, we briefly introduce Non-Negative Ma-
trix Factorization (NMF) [18] and its relationship [9, 11]
with Probabilistic Latent Semantic Analysis (PLSA)
[15]. In the next section, this relationship inspires us
to develop the joint non-negative matrix factorization
framework for multi-view clustering.

Let X = [X·,1, . . . , X·,N ] ∈ RM×N
+ denote the

nonnegative data matrix where each column represents
a data point and each row represents one attribute.
NMF aims to find two non-negative matrix factors
U = [Ui,k] ∈ RM×K

+ and V = [Vj,k] ∈ RN×K
+ whose

product provides a good approximation to X:

(2.1) X ≈ UV T .

Here K denotes the desired reduced dimension, and to
facilitate discussions, we call U the basis matrix and V
the coefficient matrix.

We can also view this approximation column by
column:

Xj ≈ U(Vj,·)
T =

K∑
k=1

U·,kVj,k

where U·,k is the k-th column vector of U and Vj,· is the
j-th row vector of V . Correspondingly, we call U·,k the
basis vector and Vj,· the coefficient vector.

One of the common reconstruction processes can be
formulated as a Frobenius norm optimization problem,
defined as:

min
U,V
||X − UV T ||2F , s.t. U ≥ 0, V ≥ 0

where || · ||F is the Frobenius norm and U ≥ 0, V ≥ 0
represent the constraints that all the matrix elements
are non-negative. It is known that the objective func-
tion above is not convex in U and V together. There-
fore, it is unrealistic to expect an algorithm to find the
global minimum. [18] presented “multiplicative update
rules” to be executed iteratively to minimize the objec-
tive function as follows:

(2.2) Ui,k ← Ui,k
(XV )i,k

(UV TV )i,k
, Vj,k ← Vj,k

(XTU)j,k
(V UTU)j,k

.

Note that given the NMF formulation in Equation
2.1, for arbitrary invertible K ×K matrix Q, we have

(2.3) UV T = (UQ−1)(QV T ).

Therefore there could be many possible solutions, and it
is important to enforce additional constraints to ensure
the uniqueness of the factorization in clustering.

We next introduce NMF’s relationship with Proba-
bilistic Latent Semantic Analysis (PLSA) [15] and this
connection helps clustering. PLSA is a traditional topic
modeling technique for document analysis. It models
the M × N term-document co-occurrence matrix X
(each entry Xij is the number of occurrences of word
wi in document dj) as being generated from a mixture
model with K components:

P (w, d) =
K∑

k=1

P (w|k)P (d, k)



where parameters are estimated by maximizing the like-
lihood through Expectation Maximization algorithm.

Without loss of generality, we assume ||X||1 = 1. In
Eq. 2.2, if Q is a diagonal matrix where Qk,k =

∑
i Ui,k,

earlier studies [9, 11] revealed that (UQ−1) (or (QV T ))
has all the formal properties of conditional probabil-
ity matrix [P (w|k)] ∈ RM×K

+ (or [P (d, k)]T ∈ RK×N
+ ).

This provides theoretical foundation for using NMF to
conduct clustering. Specifically, in the clustering for-
mulation, each row in V indicates to which degree data
point i is associated with cluster k. Note that ||QV T ||1
approximately equals to 1 because

∑
P (d, k) = 1. This

property can also be verified from the following equa-
tion:

||X|| = ||
∑
j

Xj || ≈
K∑

k=1

||U·,k
∑
j

Vj,k|| =
K∑

k=1

||
∑
j

Vj,k|| = ||V ||.

Now it is clear thatQV T behaves similar to a cluster
indicator matrix where each column of it describes
the joint probability of one data point and different
clusters.

3 Multi-View NMF

In this section, we present the proposed joint matrix
factorization formulation for multi-view clustering and
effective iterative update rules to solve the optimization
problem. The basic idea is as follows. For clustering,
we assume that a data point in different views would
be assigned to the same cluster with high probability.
Therefore, in terms of matrix factorization, we require
coefficient matrices learnt from different views to be
softly regularized towards a common consensus. This
consensus matrix is considered to reflect the latent
clustering structure shared by different views.

Additionally, to ensure the uniqueness and correct-
ness of factorizations, we need to adopt some normaliza-
tion strategies during the optimization. However, tra-
ditional strategies proposed for standard NMF are ei-
ther difficult to be optimized in the multi-view setting
[20], or cannot generate meaningful clustering solutions
[21, 10, 14], making the fusion of different views difficult
and inconclusive. In light of this challenge, we design
a novel normalization procedure, which can successfully
solve the problem. Specifically, we do ℓ1 normalization
with respect to the basis vectors during the process of
optimization1. This is inspired by the relationship be-
tween NMF and PLSA introduced in the last section,
from which we can provide coefficient matrices of dif-
ferent views with probabilistic explanation, rendering
them comparable during optimization and meaningful

1Within traditional normalization for NMF, ℓ2 norm or other

constraints are adopted and this step is always done during post
processing.

for clustering.

3.1 Objective function Assume that we are
now given nv representations (i.e., views). Let
{X(1), X(2), . . . , X(nv)} denote the data of all the views,
where for each view X(v), we have factorizations that
X(v) ≈ U (v)(V (v))T . In standard NMF, coefficient vec-

tor V
(v)
j,· can be regarded as low-rank representation

of the jth data point in terms of the new basis U (v).
Here for different views, we have the same number of
data points but allow for different number of attributes,
hence V (v)s are of the same shape but U (v)s can differ
along the row dimension across multiple views.

The following loss function is used as a measure of
disagreement between coefficient matrix V (v) and the
consensus matrix V ∗:

D(V (v), V ∗) = ∥V (v) − V ∗∥2F .

Note that V (v) in different views might not be com-
parable at the same scale and they are not meaningful
for clustering since the product of V (v) and an arbitrary
invertible matrix Q(v) could still be a solution according
to Eq. 2.3. To make the disagreement measure proper
for different V (v) against the same consensus and let
them theoretically meaningful for clustering, a possi-
ble solution is to normalize V (v) and then compute the
distance measure. However, such a normalization can
make the optimization intractable. To solve the prob-
lem, we propose to impose the ℓ1 normalization with

respect to the basis vectors U
(v)
·,k . In this way, ||V (v)||1

approximately equals to 1 under the assumption that
||X||1 = 1 which is discussed in last section. As V (v)

is within the same range for different v, we can ensure
the comparison between the coefficient matrix V (v) and
consensus matrix V ∗ is reasonable. Additionally, after
normalization, each element in V (v) has probabilistic ex-
planation because it can be viewed as P (d, k)(v), mak-
ing the consensus V ∗ meaningful in terms of clustering,
i.e., each element in the matrix V ∗ is the consensus of
P (k|d)(v) weighted by P (d)(v) from different views.

Incorporating this idea into the NMF framework
for individual views, we obtain the following joint
minimization problem over U (v), V (v), V ∗, 1 ≤ v ≤ nv:

nv∑
v=1

∥X(v) − U (v)(V (v))T ∥2F +

nv∑
v=1

λv∥V (v) − V ∗∥2F

s.t. ∀1 ≤ k ≤ K, ||U (v)
·,k ||1 = 1 and U (v), V (v), V ∗ ≥ 0

(3.4)

where λv is the only parameter within the proposed al-
gorithm, which not only tunes the relative weight among
different views, but also between standard NMF re-
construction error and disagreement term D(V (v), V ∗).



The selection of appropriate λv will be discussed in the
experimental section.

Then the equality constraint on U (v) can be re-
moved by introducing auxiliary variables to simplify the
computation. Let

(3.5) Q(v) = Diag

(
M∑
i=1

U
(v)
i,1 ,

M∑
i=1

U
(v)
i,2 , . . . ,

M∑
i=1

U
(v)
i,K

)

where Diag(·) denotes a diagonal matrix with non-
zero elements equal to the values in the parenthesis
sequentially. According to Eq. 2.3, the problem of
minimizing Eq. 3.4 is equivalent to minimizing the
following objective function O:

O =

nv∑
v=1

∥X(v) − U (v)(V (v))T ∥2F

+

nv∑
v=1

λv∥V (v)Q(v) − V ∗∥2F(3.6)

s.t. ∀1 ≤ v ≤ nv, U
(v) ≥ 0, V (v) ≥ 0, V ∗ ≥ 0.

To solve this optimization problem, we propose
an iterative update procedure which is convergent.
Specifically, the following two steps are repeated until
convergence: (1) fixing V ∗, minimize O over U (v)

and V (v) (Section 3.2), and (2) fixing U (v) and V (v),
minimize O over V ∗ (Section 3.3).

3.2 Fixing V ∗, minimize O over U (v) and V (v)

When V ∗ is fixed, for each given v, the computation of
U (v) does not depend on U (v′) or V (v′), v′ ̸= v. There-
fore, we use X,U, V and Q to represent X(v), U (v), V (v)

and Q(v) for brevity in this subsection. Now Eq. 3.6
reduces to minimize:

∥X − UV T ∥2F + λv∥V Q− V ∗∥2F s.t. U, V ≥ 0.(3.7)

Then the following multiplicative updating rules for U
and V can be used to update their values sequentially
and iteratively.

3.2.1 Fixing V ∗ and V (v), compute U (v) Let Ψ be
the Lagrange multiplier matrix for the constraint U ≥ 0,
and L be the Lagrange L = O+Tr(ΨU), where Tr(·) is
the trace function. We only care about terms that are
relevant to U (v) at this step, and thus minimizing L is
equivalent to minimizing L1 as follows:

L1 = Tr(UV TV UT − 2XV UT ) + λvR+ Tr(ΨU)

where R = Tr(V QQTV T − 2V Q(V ∗)T ) contains the
relevant terms in the regularizer ∥V Q − V ∗∥2F . With

Algorithm 1 Multi-View NMF (MultiNMF)

Input: Nonnegative Matrix {X(1), X(2), . . . , X(nv)},
parameters {λ1, λ2, . . . , λnv}, number of clusters K

Output: Basis Matrices {U (1), U (2), . . . , U (nv)}, Coef-
ficient Matrices {V (1), V (2), . . . , V (nv)} and Consen-
sus Matrix V ∗

1: Normalize each view X(v) such that ||X(v)||1 = 1
2: Initialize U (v),V (v) and U∗ (1 ≤ v ≤ nv)
3: repeat
4: for v = 1 to nv do
5: repeat
6: Fixing V ∗ and V (v), update U (v) by Eq. 3.8
7: Normalize U (v) and V (v) as in Eq. 3.9
8: Fixing V ∗ and U (v), update V (v) by Eq. 3.10
9: until Eq. 3.7 converges.

10: end for
11: Fixing U (v) and V (v) (1 ≤ v ≤ nv), update V

∗ by
Eq. 3.11.

12: until Eq. 3.6 converges.

substitution of Eq. 3.5, we have

R =

N∑
j=1

K∑
k=1

(Vj,k

M∑
i=1

Ui,k

M∑
i=1

Ui,kVj,k)

−
N∑

j=1

K∑
k=1

(Vj,k

M∑
i=1

Ui,kV
∗
j,k).

Taking derivative of R with respect to U gives

Pi,k =
∂R

∂Ui,k
= 2

(
M∑
l=1

Ul,k

N∑
j=1

V 2
j,k −

N∑
j=1

Vj,kV
∗
j,k

)
.

Using Karush-Kuhn-Tucker (KKT) conditions, we have

∂L1

∂U
= −2XV + 2UV TV + λvP +Ψ = 0

Ψi,kUi,k = 0, ∀1 ≤ i ≤M, 1 ≤ k ≤ K.

Based on this condition, we can derive the following
update rule:
(3.8)

Ui,k ← Ui,k

(XV )i,k + λv

∑N
j=1 Vj,kV

∗
j,k

(UV TV )i,k + λv

∑M
l=1 Ul,k

∑N
j=1 V

2
j,k

.

It is easy to see that Ui,k remains non-negative after
each update.

3.2.2 Fixing V ∗ and U (v), compute V (v) For each
1 ≤ v ≤ nv, we first normalize the column vectors of U
using Q as in Eq. 3.5:

U ← UQ−1, V ← V Q.(3.9)



Table 1: Computational operation counts for each iteration in MultiNMF
addition multiplication division overall

NMF: U MNK + (M +N)K2 MNK + (M +N)K2 MK O(MNK)
NMF: V MNK + (M +N)K2 MNK + (M +N)K2 NK O(MNK)

MultiNMF: U MNK + (M +N)K2 + (2N + 3M − 3)K MNK + (M +N)K2 + (2N + 3)K MK O(MNK)

MultiNMF: Q (M − 1)K MK +NK K O(MK +NK)
MultiNMF: V MNK + (M +N)K2 + 2NK MNK + (M +N)K2 + 2NK NK O(MNK)

NMF: U Update rule for basis matrix U in NMF (similar meaning for MultiNMF: U)
NMF: V Update rule for coefficient matrix V in NMF (similar meaning for MultiNMF: V)
MultiNMF: Q Normalization step as in Eq. 3.9

Note that this normalization does not change the value
of Eq. 3.7, and now we just need to minimize ∥X −
UV T ∥2F +λv∥V −V ∗∥2F with the constraint V ≥ 0. Let
Φ be the Lagrange multiplier matrix for the constraint
V ≥ 0. The Lagrange writes as:

L2 = Tr(UV TV UT − 2XV UT )

+ λvTr(V V T − 2V (V ∗)T ) + Tr(ΦV ).

Using KKT conditions, we have:

∂L2

∂V
= 2V UTU − 2XTU + 2λv(V − V ∗) + Φ = 0

Φj,kVj,k = 0, ∀1 ≤ j ≤ N, 1 ≤ k ≤ K.

The solution leads to the following update rule:

(3.10) Vj,k ← Vj,k

(XTU)j,k + λvV
∗
j,k

(V UTU)j,k + λvVj,k
.

3.3 Fixing U (v) and V (v), minimize O over V ∗.
We take the derivative of the objective function O in
Eq. 3.6 over V ∗:

∂O

∂V ∗ =
∂
∑nv

v=1 λv∥V (v)Q(v) − V ∗∥2F
∂V ∗

=

nv∑
v=1

λv(−2V (v) + 2V ∗) = 0.

Solving it, we have an exact solution for V ∗:

(3.11) V ∗ =

∑nv

v=1 λvV
(v)Q(v)∑nv

v=1 λv
≥ 0.

The two-step procedure is summarized in Algorithm
1. We call the proposed algorithm MultiNMF, which
stands for a joint non-negative matrix factorization
procedure for multi-view clustering. Note that once we
obtain the consensus matrix V ∗, the cluster label of data
point i could be computed as argmaxk V

∗
i,k.

Due to the connection between NMF and PLSA, the
proposed algorithm has a nice probabilistic interpreta-
tion: each element in the matrix V ∗ is the consensus
of P (d|k)(v) weighted by P (d)(v) from different views.

Therefore, it is especially effective for data collections
in which data points from different clusters do not lie
along the same direction in the vector space. For exam-
ple, as shown in topic modeling algorithms, document-
word co-occurrence matrix possesses this property and
thus can be modeled by this proposed approach.

However, for those data which is do not have
the property mentioned above, one can simply use k-
means directly on V ∗ where V ∗ is viewed as a latent
representation of the original data points.

3.4 Computational Complexity Analysis In this
subsection, we discuss the computational complexity
of the proposed algorithm in comparison to standard
NMF. Besides expressing the complexity of the algo-
rithm using big O notation, we also count the number
of arithmetic operations to provide more details about
running time. We show the result in Table 1.

Based on the updating rules summarized in Algo-
rithm 1, it is not hard to count the arithmetic op-
erations of inner loop2 in MultiNMF for each single
view, which is quite similar to the multiplicative up-
dating rule for single-view NMF as in Eq. 2.2. Sup-
pose the multiplicative updates stops after tin itera-
tions, the time cost of multiplicative updates then be-
comes O(nvtinMNK). Besides the multiplicative up-
dates, MultiNMF also needs O(nvNK) to compute the
consensus matrix according to Eq. 3.11 after the con-
vergence of inner loop. Assume the outer loop3 which
pushes all views toward the consensus stops after tout
iterations, the overall cost for MultiNMF is

O(touttinnvMNK).

Therefore, overall the running time of MultiNMF is
linear with respect to the number of data points, clusters
and views. Note that within each iteration of the outer
loop, we actually start multiplicative updates from the
convergent points in the previous iteration. This usually
saves a lot of time and ensures the descent of the
objective function value. It is also worth noting that

2line 5-9 in Algorithm 1
3line 1-11 in Algorithm 1



the out loop converges very fast, which is demonstrated
in the experimental section.

4 Experiment

In this section, experiments were conducted to demon-
strate the effectiveness of the proposed MultiNMF in
discovering the underlying clustering structure shared
by multiple views of data.

4.1 Datasets One synthetic and three real world
datasets are used in the experiment. Among the three
real world datasets, the first two are text data, and
the last one is handwritten digit data. The important
statistics of them are summarized in Table 2.

Table 2: Statistics of the four datasets
dataset size # view # cluster
Synthetic 10000 2 4
3-Sources 169 3 6
Reuters 600 3 6
Digit 2000 2 10

• Synthetic dataset: It is a toy example consisting
of two views for generated data in a two dimen-
sional space. In either view, two of the randomly
picked clusters’ centers are highly overlapped and
therefore difficult to distinguish. This dataset is
also designed for the complexity analysis which will
be covered in Section 4.6.

• 3-Sources Text dataset4: It is collected from
three online news sources: BBC, Reuters, and The
Guardian. In total there are 948 news articles
covering 416 distinct news stories from the period
February to April 2009. Of these stories, 169
were reported in all three sources. Each story was
manually annotated with one of the six topical
labels: business, entertainment, health, politics,
sport and technology [13].

• Reuters Multilingual dataset5: This test col-
lection contains feature characteristics of docu-
ments originally written in five different languages
, and their translations, over a common set of 6
categories [2]. We use documents originally in En-
glish as the first view and their French and German
translations as the second and third view. We ran-
domly sample 600 documents from this collection
in a balanced manner, with each of the 6 clusters
having 100 documents.

• UCI Handwritten Digit dataset6: This hand-
written digits (0-9) data is from the UCI repository.

4http://mlg.ucd.ie/datasets
5http://multilingreuters.iit.nrc.ca
6http://archive.ics.uci.edu/ml/datasets.html

The dataset consists of 2000 examples, with view-1
being the 76 Fourier coefficients and view-2 being
the 240 pixel averages in 2× 3 windows.

4.2 Baseline Algorithms To demonstrate how the
clustering performance can be improved by the pro-
posed approach, we compared with the following algo-
rithms:

• Single View (BSV and WSV): Runing each view
using the NMF technique. We normalize U and V
after convergence according to [20]. Then both the
best and the worst single view results are reported,
which are referred to as BSV andWSV respectively.

• Feature Concatenation (ConcatNMF): Concate-
nating the features of all the views, and then run
NMF directly on this concatenated view represen-
tation. The normalization strategy is the same as
that of the single-view NMF method.

• Collective NMF (ColNMF): Using the shared
coefficient matrix but different basis matrices
across views as shown below[19, 1]:

nv∑
v=1

λv∥X(v) − U (v)(V (∗))T ∥2F .

It is easy to verify that ColNMF is equivalent to
ConcatNMF when no normalization is involved in
the latter algorithm.

• Co-regularized Spectral clustering (Co-reguSC):
Adopting co-regularization framework to spectral
clustering [17]. We used gaussian kernel to build
the affinity matrix for each view and set the pa-
rameter in this algorithm to be 0.01 as suggested.

• Multi-View NMF (MultiNMF): This is the pro-
posed algorithm. In our experiments, we empiri-
cally set λv to 0.01 for all views and datasets. The
parameter study will be later discussed.

For the sake of comparison, multiple views are consid-
ered with equivalent importance in the evaluation of
all the multi-view algorithms. The clustering result is
evaluated by comparing the obtained label of each data
point with the label provided by the dataset. Two met-
rics, the accuracy (AC) and the normalized mutual in-
formation (NMI) are used to measure the clustering per-
formance. Please refer to [20] for detailed definitions.

4.3 Results Table 3 shows the clustering perfor-
mance of different algorithms on all the four datasets.
In order to randomize the experiments, 20 test runs
with different random initializations were conducted
and the average performance as well as the standard
deviation are reported. As we can see, MultiNMF out-
performs the second best algorithm in terms of accu-
racy/normalized mutual information as 16.6%/12.8% on



Table 3: Clustering performance on four real datasets (%)

Algorithm
Accuracy(%) Normalized Mutual Information(%)

Synthetic 3-Sources Reuters Digit Synthetic 3-Sources Reuters Digit

BSV 66.0±.09 60.8±.01 46.8±.02 68.5±.05 56.2±.10 53.0±.01 38.8±.02 63.4±.03
WSV 51.7±.11 49.1±.03 46.4±.00 63.4±.04 54.3±.05 44.1±.02 34.2±.00 60.3±.03

ConcatNMF 68.4±.14 58.6±.03 47.3±.00 67.8±.06 60.9±.14 51.7±.03 34.1±.00 62.4±.04
ColNMF 61.8±.08 61.3±.02 51.2±.00 66.0±.05 47.3±.07 55.2±.02 34.6±.00 62.1±.03
Co-reguSC 75.4±.00 47.8±.01 50.6±.02 86.6±.00 71.2±.00 41.4±.01 35.7±.01 77.0±.00
MultiNMF 92.0±.10 68.4±.06 53.5±.00 88.1±.01 84.0±.15 60.2±.06 40.9±.00 80.4±.01
* Result of MultiNMF is obtained when λv = 0.01. For other values, it still outperforms others in most cases.

synthetic dataset, 7.6%/5.0% on 3-Source, 2.3%/2.1%
on Reuters and 1.5%/3.4% on Digit.

On the synthetic dataset, surprisingly, MultiNMF
outperforms the baseline methods with a large margin
about 16%/12.8%. One of the possible reasons is that
the two views are generated independently with com-
plementary information, which satisfies the multi-view
assumption well. The difference is significant especially
between NMF-based algorithms and MultiNMF which
is as large as 23%/23%. The proposed MultiNMF can
find the true clustering effectively and efficiently be-
cause it restricts matrix factorization towards the right
direction instead of simply concatenating all the fea-
tures together, which loses information of “view” itself.

On the two relational datasets, i.e., 3-Sources and
Reuters, MultiNMF still achieves much improvement in
AC and NMI compared with the baselines. The differ-
ence is especially noticeable on 3-sources, where Multi-
NMF has 68.4%/60.2% when the best view’s AC/NMI
is 60.8%/53.0% and the highest AC/NMI obtained by
baseline methods is 61.3%/55.2%. Therefore, it sup-
ports our claim that the proposed MultiNMF algorithm
is quite useful in clustering relational data and its power
is amplified by its connection to PLSA.

On the handwritten digit dataset, both Co-reguSC
and MultiNMF are demonstrating encouraging cluster-
ing results. MultiNMF performs slightly better than
Co-reguSC and achieves about 20%/17% performance
gain over the other NMF-based algorithms. On this
dataset, it is essential to utilize the constraint to regu-
larize clustering solutions obtained from multiple views
towards a consensus solution. Therefore, NMF-based
algorithms that fail to utilize the complementary per-
spectives of multiple views cannot find the underly-
ing clustering solution. In contrast, by adopting co-
regularization framework to learn the nonnegative fac-
tors across different views, MultiNMF succeeds in cap-
turing such knowledge.

4.4 Parameter Study There are nv parameters in
our MultiNMF algorithm: the regularization parame-

ters λv for each view. The relative value of λv among
multiple views reflects each view’s importance. If we
have some prior knowledge that some views are noisy,
then it is better to set relatively small λv for such views.
In [12], the authors suggest to set the relative weight
according to the disagreement between each single view
and the consensus. Meanwhile, the absolute value of λv

reflects how much we want to enforce the regularization
constraint. A large λv focuses on reaching consensus
across views, while a small λv cannot tolerate matrix
factorization error. In the extreme case, when λvs are
all 0, the problem reduces to the same as doing NMF
with normalization for each view seperately; when λvs
go to infinity, V (v)Q(v) for different views share the same
value. Note that it is still different from directly fixing
the shared factor as ColNMF.

Figure 1 shows how the accuracy of MultiNMF on
four datasets varies with changes in parameters λv,
respectively. Figures on NMI measure are omitted
due to space limit. Considering the convenience of
comparison, we set λv to be the same for all the views.
As we can see, MultiNMF performs relatively stable
when λv is around 0.01, which is the value we set to get
the experimental results in this section. Moreover, most
of the time, MultiNMF still outperforms the baseline
methods when λv takes various values. It is not strange
that all the datasets share the same preference for
the value of λv simply because ||V ∗||1 ≈ ||X||1 = 1,
implying that the difference in scales of two terms in Eq.
3.6 should not vary significantly for different datasets.

4.5 Convergence Study The updating rules for
minimizing the objective function of MultiNMF in
Eq. 3.6 are essentially iterative and it can be proved
that these rules are convergent. Figure 2 shows the
convergence curve together with its performance. The
black solid line shows the value of the objective function
and the red dashed line indicates the accuracy of the
method. As can be seen, only after around 15 iterations,
the algorithm will converge.
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Figure 1: Performance of MultiNMF w.r.t. parameters λv.
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Figure 2: Convergence and corresponding performance curve.

4.6 Computational Complexity Study As dis-
cussed in subsection 4.6, MultiNMF has linear time
complexity in the number of data points, clusters, and
views. In this part, we verify this claim on the synthetic
data mentioned earlier in this section.

We conduct the experiments on a desktop with Intel
Core I7 2600 and 16GB memory. We change the number
of data points, clusters, and views respectively. The
default setting is 10000 data points, 4 clusters, and
2 views. During the experiment, we fix two aspects
and change the remaining one. Figure 3 shows the
running time of MultiNMF and CoreguSC in terms
of varying data points. Additional figures regarding
the varying number of clusters and views are put in
the supplementary material. Clearly, MultiNMF is
linear in execution time and can scale well to large
data sets. Although CoreguSC is proposed based
on the similar co-regularization framework, it requires
eigendecompositions of non-sparse matrices which costs
too much time and space7.

5 Related work

We have discussed three categories of multi-view clus-
tering algorithms in the introduction, and here we par-
ticularly discuss several algorithms proposed for spec-
tral clustering [22, 16, 17]. In [22], the normalized cut
approach is generalized to multiple views via a ran-
dom walk formulation. [16] approaches the problem
by adopting an co-training framework [5] such that the
similarity matrix in one view is affected by the simi-
larity estimated based on the eigenvectors of Laplacian
matrix in the other view. In [17], a co-regularization

7It is difficult to estimate CoreguSC when number of data
points is over 20,000 due to memory limitation.

framework is proposed to enforce the pairwise similari-
ties computed from the eigenvectors learnt from differ-
ent views to be close. However, due to non-sparseness
of the intermediate matrices for eigendecomposition, the
computational complexity becomes an issue, which can
be observed in Figure 3.

A few clustering algorithms have been proposed to
apply NMF on multi-relation (heterogeneous) or multi-
view data. Collective NMF [19] is designed for rela-
tional learning based on multi-relations where each en-
tity type is represented by one factor. In this setting,
data is in a single view but contains multiple relations,
which is different from what we are trying to solve. In
[1], this idea is extended to multi-view clustering sce-
nario by enforcing a shared coefficient matrix among
different views. This is equivalent to first concatenat-
ing features of different views together and then apply-
ing NMF to factorize. However, whether this approach
is optimized for clustering is questionable. First, this
hard assumption seems too strong and many times we
prefer relatively soft constraints. Second, with proper
normalization, previous work [20] has shown to achieve
better performance in terms of clustering. For these two
purposes, the proposed MultiNMF algorithm maintains
meaningful clustering results obtained from each view
but only biases their findings towards a common cluster-
ing solution via regularization constraints. [13] assumes
that clustering solutions have been obtained from mul-
tiple views separately, and employs matrix factorization
techniques over the clustering results, and thus it is a
late integration strategy. Therefore, it is quite different
from the proposed MultiNMF approach as we aim at
conducting clustering instantaneously on the raw data
of multiple views.
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Figure 3: Running time of MultiNMF v.s. CoreguSC on synthetic dataset.

6 Conclusions

In this paper, we introduced a novel algorithm for multi-
view clustering based on nonnegative matrix factoriza-
tion. In order to efficiently learn the underlying clus-
tering structure embedded in multiple views, we require
coefficient matrices learnt from factorizations of differ-
ent views to be regularized towards a common consen-
sus. To achieve this, we develop a joint matrix factor-
ization algorithm to incorporate not only individual ma-
trix factorizations but also inconsistency between each
view’s coefficient matrix and the consensus. Moreover,
we design a novel and effective normalization procedure
to keep different factors comparable and meaningful in
terms of clustering. We also show that the proposed
method converges with linear time. Experiments on
both synthetic and three real world datasets demon-
strate its effectiveness.
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