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ABSTRACT 

SQL Server 2012 introduced two innovations targeted for data 

warehousing workloads: column store indexes and batch 

(vectorized) processing mode. Together they greatly improve 

performance of typical data warehouse queries, routinely by 10X 

and in some cases by a 100X or more. The main limitations of the 

initial version are addressed in the upcoming release. Column store 

indexes are updatable and can be used as the base storage for a 

table. The repertoire of batch mode operators has been expanded, 

existing operators have been improved, and query optimization has 

been enhanced. This paper gives an overview of SQL Server’s 

column stores and batch processing, in particular the enhancements 

introduced in the upcoming release. 
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1. INTRODUCTION  
SQL Server has long supported two storage organizations: heaps 

and B-trees, both row-oriented. SQL Server 2012 introduced a new 

index type, column store indexes, where data is stored column-wise 

in compressed form. Column store indexes are intended for data-

warehousing workloads where queries typically process large 

numbers of rows but only a few columns. To further speed up such 

queries, SQL Server 2012 also introduced a new query processing 

mode, batch processing, where operators process a batch of rows 

(in columnar format) at a time instead of a row at a time.  

Customers have reported major performance improvements when 

using column store indexes. One customer achieved a speedup of 

over 200X on a star schema database with a fact table containing 

two billion rows. They ran a nightly report generation process that 

took 18 hours.  After upgrading to SQL Server 2012 and creating a 

column store index on the fact table, they were able to generate the 

reports in 5 minutes on the same hardware. Some queries that scan 

the fact table now run in about three seconds each compared with 

up to 17 minutes previously. References to this and other case 

studies can be found in a column store index FAQ [11]. 

The initial implementation in SQL Server 2012 had several 

limitations that are remedied in the upcoming release: column store 

indexes are updatable, they can be used as the primary storage of a 

table, they can be further compressed to save disk space, and batch-

mode processing has been significantly extended and enhanced. 

This paper describes the main enhancements of column stores 

indexes and batch processing in the upcoming release of SQL 

Server. For completeness, we begin with an overview of the basics 

of column store indexes and batch processing in section 2. Section 

3 outlines the extensions needed to allow a column store index to 

be used as the primary or base storage for a table. Section 4 covers 

how inserts, deletes and updates of a column store index are 

handled. Enhancements to query optimization and query processing 

are discussed in section 5. Archival compression is covered in 

section 6. Some performance results are presented in section 7. 

2. BACKGROUND 
This section describes the basic structure of column store indexes 

and how they are constructed and stored. It also outlines how batch 

processing works. More detailed information can be found in the 

paper on the initial implementation [9], product documentation 

[10], and the column store index FAQ [11].   

2.1 Index Storage 
Figure 1 illustrates how a column store index is created and stored. 

The set of rows is first divided into row groups of about one million 

rows each. Each row group is then encoded and compressed 

independently and in parallel, producing one compressed column 

segment for each column included in the index. For columns that 

use dictionary encoding the conversion may also produce a number 

of dictionaries. Note that data in a column store index is not sorted, 

not even within a column segment. 

Figure 1 shows a table with three columns divided into three row 

groups. The conversion produces nine compressed column 

segments, three segments for each of columns A, B, and C. Column 

A used dictionary encoding so the output also includes three 

dictionaries, one for each segment of column A. More details about 

encoding and compression can be found in our earlier paper [9].  

The column segments and dictionaries are then stored using 

existing SQL Server storage mechanisms as illustrated on the right 

side of Figure 1. Each column segment and dictionary is stored as 

a separate blob (LOB). A blob may span multiple disk pages but 

this is automatically handled by the blob storage mechanisms.   
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A directory keeps track of the location of segments and dictionaries 

so all segments comprising a column and any associated 

dictionaries can be easily located.  The directory contains additional 

metadata about each segment such as number of rows, size, how 

data is encoded, and min and max values. 

Storing the index in this way has several benefits. It leverages the 

existing blob storage and catalog implementation - no new storage 

mechanisms are needed - and many features are automatically 

enabled for the new index type, for example, storage space 

management, logging, recovery, and high availability. 

2.2 Caching and I/O 
Column segments and dictionaries are brought into memory as 

needed during query processing. They are not stored in the buffer 

pool but in a new cache for large objects. Each object is stored 

contiguously on adjacent memory pages. This simplifies and 

speeds up scanning of a column because there are no "page breaks" 

to worry about. 

A blob storing a column segment or dictionary may span multiple 

disk pages. To improve I/O performance, read-ahead is applied 

aggressively both within and among segments. In other words, 

when reading a blob storing a column segment, read-ahead is 

applied at the page level. A column may consist of multiple 

segments so read-ahead is also applied at the segment level. Read-

ahead is of course also applied when loading data dictionaries.  

2.3 Batch Mode Processing 
SQL Server traditionally uses a row-at-a-time execution model, 

that is, a query operator processes one row at a time. Several new 

query operators were introduced that instead process a batch of 

rows at a time. This   greatly reduces CPU time and cache misses 

when processing a large number of rows. 

A batch typically consists of around a thousand rows. As illustrated 

in Figure 2, each column is stored as a contiguous vector of fixed-

sized elements. The "qualifying rows" vector indicates whether a 

row has been logically purged from the batch. 

Row batches can be processed very efficiently. For example, to 

evaluate a simple filter like “Col1 < 5”, all that is needed is to scan 

the Col1 vector and, for each element, perform the comparison and 

set/reset a bit in the "qualifying rows" vector. As shown by the 

MonetDB/X100 project [2], this type of vector processing is very 

efficient on modern hardware; it enables loop unrolling and 

memory pre-fetching and minimizes cache misses, TLB misses, 

and branch mispredictions. 

In SQL Server 2012 only a subset of the query operators are 

supported in batch mode: scan, filter, project, hash (inner) join and 

(local) hash aggregation. The hash join implementation consists of 

two operators: a build operator and an actual join operator. In the 

build phase of the join, multiple threads build a shared in-memory 

hash table in parallel, each thread processing a subset of the build 

input. Once the table has been built, multiple threads probe the table 

in parallel, each one processing part of the probe input.  
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Figure 1: Illustrating how a column store index is created and stored. The set of rows is divided into row groups that are 

converted to column segments and dictionaries that are then stored using SQL Server blob storage 

Figure 2: A row batch is stored column-wise and contains 

one vector for each column plus a bit vector indicating 

qualifying rows  
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Note that the join inputs are not pre-partitioned among threads and, 

consequently, there is no risk that data skew may overburden some 

thread. Any thread can process the next available batch so all 

threads stay busy until the job has been completed. In fact, data 

skew actually speeds up the probing phase because it leads to higher 

cache hit rates.  

The reduction in CPU time for hash join is very significant. One 

test showed that regular row-mode hash join consumed about 600 

instructions per row while the batch-mode hash join needed about 

85 instructions per row and in the best case (small, dense join 

domain) was a low as 16 instructions per row. However, the SQL 

Server 2012 implementation has limitations: the hash table must fit 

entirely in memory and it supports only inner join.  

The scan operator scans the required set of columns from a segment 

and outputs batches of rows. Certain filter predicates and bitmap 

(Bloom) filters are pushed down into scan operators. (Bitmap filters 

are created during the build phase of a hash join and propagated 

down on the probe side.) The scan operator evaluates the predicates 

directly on the compressed data, which can be significantly cheaper 

and reduces the output from the scan. 

The query optimizer decides whether to use batch-mode or row-

mode operators. Batch-mode operators are typically used for the 

data intensive part of the computation, performing initial filtering, 

projection, joins and aggregation of the inputs. Row-mode 

operators are typically used on smaller inputs, higher up in the tree 

to finish the computation, or for operations not supported by batch-

mode operators.  

3. CLUSTERED INDEXES 
In SQL Server 2012 column store indexes could only be used as 

secondary indexes so data was duplicated.  One copy of the data 

would be in the primary storage structure (heap or B-tree) and 

another copy would be in a secondary column store index. The 

upcoming release of SQL Server removes this restriction and 

allows a column store to be the primary and only copy of the data. 

Although column store data is not really ‘clustered’ on any key, we 

decided to retain the traditional SQL Server convention of referring 

to the primary index as a clustered index. This section briefly 

touches on the SQL Server engine enhancement needed to enable 

this feature.  

3.1 Improved Index Build 
The way a column store index is built has been improved to make 

the process more dynamic and improve the quality of the index.  

SQL Server column stores use a form of dictionary encoding 

wherein frequently occurring values are mapped to a 32 bit id via 

the dictionary. SQL Server uses two forms of dictionaries, a global 

dictionary associated with the entire column and a local dictionary 

associated with a row group. The earlier implementation would fill 

in the entries in the global dictionary as it built the index. This did 

not guarantee that the most relevant values went into the global 

dictionary.  

We modified the query plan to build the index in two steps. The 

first step samples the data for each column, decides whether or not 

to build a global dictionary for a column, and picks the set of values 

to include in the global dictionary. This ensures that the most 

relevant values are included in the global dictionary. The second 

step actually builds the index using the global dictionaries 

constructed in the first step. 

The column store build process is quite memory intensive, hence 

we do a memory reservation up-front before starting the build 

process. Each thread needs enough memory to hold a full row group 

plus sufficient scratch space. Depending on the initial memory 

reservation and the memory estimate for each thread we then 

choose the number of threads that will participate in the build 

process.  The number of threads does not change after we’ve made 

this initial determination. This static degree of parallelism (DOP) 

can sometimes cause the build process to use a suboptimal number 

of threads to build the index, because the initial memory estimate 

can be quite inaccurate. It is difficult to accurately estimate the 

memory requirement without looking at the actual data, because the 

memory required depends on the data distribution.  

We solved this problem by enabling the build process to 

dynamically vary the number of threads that actively participate in 

the build. The build process continually monitors the memory being 

consumed by each thread and the amount of memory available to 

the query to calculate the optimal number of active threads.   

3.2 Sampling Support 
The SQL Server query optimizer uses statistics about the data 

distribution of columns involved in a query to generate the query 

plan. The statistics consists of histograms that are computed from a 

random sample of rows. To enable this scenario we implemented 

sampled scans on column stores. Non-clustered column stores did 

not need to support sampling because the statistics could be 

computed from the base data.  

We implemented two forms of sampled scans. One implementation 

is optimized for performance while giving up some accuracy, 

whereas the second algorithm is highly accurate but has a higher IO 

and CPU cost.  

The performance optimized sampled scan uses cluster sampling: a 

set of row groups is first randomly selected, followed by a random 

sample of rows within each group. The number of rows and row 

groups selected are mandated by the sampling percentage.  Row 

groups that are not selected in the initial step are not read from disk. 

Sampling from a B-tree or heap also uses cluster sampling and 

selects a random subset of pages. 

The second form of sampling is truly random row level sampling. 

This implementation scans all segments of a column and randomly 

selects a subset of rows. Truly random row sampling is always used 

when building a histogram from a column store for later use in 

query optimization. This produces more accurate histograms than 

for B-trees and heaps which use page sampling. Cluster sampling 

of the columnstore is only used to help with dictionary creation 

during the index build process, never to create histograms for query 

optimization. 

3.3 Bookmark Support 
In SQL Server terminology a bookmark is a value that uniquely 

identifies a row: a logical row pointer. The actual bookmark type 

depends on the clustered index; if it is a heap, the bookmark 

consists of <page ID, row ID> and if it is a B-tree it is the B-tree 

key, possibly augmented with an additional uniquifier column. 

Any index in SQL Server storing the primary copy of a table must 

be able to locate a row given a bookmark.  Bookmarks are used by 

a variety of query plans, the most frequent of which is a delete plan 

which first collects the bookmarks for a set of rows to delete before 

actually deleting them.  
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So a clustered column store index also needs to support bookmark 

lookup. Since a column store index does not have a key that 

uniquely identifies a row, we associated a unique tuple id with each 

row within a row group (simply its sequence number, which is not 

stored) and used the combination of row group id and tuple id to 

uniquely identify a row.  

3.4 Other Enhancements 
The SQL Server 2012 implementation did not support a number of 

data types such as numeric beyond precision 18, datetimeoffset  

beyond precision 2, GUID and binary columns. The upcoming 

version adds support for all the above data types.  It also introduces 

support for storing short strings by value instead of converting all 

strings to a 32 bit id within a dictionary. This removes the extra 

overhead associated with the dictionary and helps improve the 

column store compression even further.  

We also extended a number of other features and added several new 

features to improve feature parity between the column store indexes 

and row store indexes. For example, it is possible to add, drop and 

modify the set of columns that are part of a clustered column store, 

unlike the nonclustered columnstore index which does not allow 

such changes. We extended the data check functionality for column 

stores to do more in-depth data validity checks, and shrink file and 

shrink database functionality now work with column store indexes.   

4. UPDATE HANDLING 
Columnar storage greatly improves read performance but once 

compressed, the data is prohibitively expensive to update directly. 

Some compressed formats allow for append-only updates, one row 

at a time, but they achieve lower compression ratios than techniques 

that compress large blocks (segments) of data at a time. 

Compression is more effective if a significant amount of data is 

compressed at once, allowing the data to be analyzed and the best 

compression algorithm chosen.  

The prime target for columnar storage is data warehouse fact tables 

which typically have a high rate of inserts and a very low rate of 

updates or deletes. Data past its retention period can be removed in 

bulk almost instantly from a partitioned table via partition 

switching. This being the case, it is crucial to achieve high 

performance for regular insert and bulk insert operations while the 

performance of update and delete operations is less critical. 

Two new components were added to make SQL Server column 

store indexes updatable: delete bitmaps and delta stores. 

Each column store index has an associated delete bitmap that is 

consulted during scans to disqualify rows that have been deleted. A 

bitmap has different in-memory and on-disk representations. In 

memory it is indeed a bitmap but on disk it is represented as a B-

tree with each record containing the row ID of a row that was 

deleted. 

New and updated rows are inserted into a delta store which is a 

traditional B-tree row store. An index may have multiple delta 

stores. Delta stores are transparently included in any scan of the 

column store index.  

With this infrastructure in place, insert, delete and update 

operations on column stores become possible. 

 Insert: The new rows are inserted into a delta store. This can 

be done efficiently because delta stores are traditional B-tree 

indexes. 

 Delete: If the row to be deleted is in a column store row 

group, a record containing its row ID is inserted into the B-

tree storing the delete bitmap. If it is in a delta store, the row 

is simply deleted.  

 Update: An update operation is simply split into a delete and 

an insert action. That is, the old row is marked as deleted and 

the new row is inserted into a delta store. 

 Merge:  A merge operation is split into corresponding insert, 

delete, or update actions.  

A delta store contains the same columns as the corresponding 

column store index. The B-tree key is a unique integer row ID 

generated by the system (column stores do not have unique keys). 

A column store can have zero, one, or more delta stores. New delta 

stores are created automatically as needed to accept inserted rows. 

A delta store is either open or closed. An open delta store can accept 

rows to be inserted. A delta store is closed when the number of rows 

it contains reaches a predefined limit.   

SQL Server automatically checks in the background for closed 

delta stores and converts them to columnar storage format. This 

periodic background task is called the Tuple Mover. After the Tuple 

Mover has converted a delta store, it is deallocated. The Tuple 

Mover does not block read scans but concurrent deletes are forced 

to wait for the conversion to complete. The Tuple Mover can also 

be invoked on demand. 

The Tuple Mover reads one closed delta store at a time and starts 

building the corresponding compressed segments. During this time 

scans continue to see and read the delta store. When the Tuple 

Mover has finished compressing the delta store, the newly created 
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segments are made visible and the delta store is made invisible in a 

single, atomic operation. New scans will see and scan the 

compressed format. The Tuple Mover then waits for all scans still 

operating in the delta store to drain after which the delta store is 

removed.  

Because the Tuple Mover does not block reads and inserts, it has 

minimal impact on overall system concurrency. Only concurrent 

delete and update operations against a delta store may be blocked 

while the delta store is converted by the Tuple Mover. 

4.1 Trickle Inserts 
Normal, non-bulk insert operations – here called trickle inserts -  

are handled by transparently intercepting the data to be inserted into 

a column store index and writing it instead into a delta store. The 

Query Processing layer is unaware of this and operates as if it had 

inserted the data into a column store. The internal Access Methods 

layer is responsible for managing the delta stores, for including 

their contents in column store scans, for creating delta stores and 

for locating a delta store when needed. 

4.2 Bulk Inserts 
Large bulk insert operations do not insert rows into delta stores but 

convert batches of rows directly into columnar format. The 

operation buffers rows until a sufficient number of rows has 

accumulated, converts them into columnar format, and writes the 

resulting segments and dictionaries to disk. This is very efficient; it 

reduces the IO requirements and immediately produces the 

columnar format needed for fast scans. The downside is the large 

memory space needed to buffer rows. 

Bulk insert operations must compress and close the data when the 

statement finishes. The batch_size parameter of the bulk insert API 

determines how many rows are processed by one bulk insert 

statement. For efficient compression a large batch size of 1M rows 

is recommended.   

But even with a large batch size there may be cases where there 

simply are not enough rows to justify a compressed row group. 

SQL Server handles this situation transparently by automatically 

switching to a delta store if a statement finishes without having 

enough rows accumulated. This simplifies the programming and 

administration of column store ETL operations because there is no 

requirement to force a large volume of rows to accumulate in the 

ETL pipeline. SQL Server will decide the proper storage format 

and, if the data was saved in the row store format, it will later 

compress the delta store when it has accumulated enough rows. The 

number of rows in a row group is kept high (around one million) to 

achieve high compression ratios, and maintain a large column store 

segment size to yield fast, low-overhead query processing. 

Given the significant performance advantage of the bulk insert API 

over traditional insert statements, the query execution engine will 

internally use the bulk insert API for “insert into … select from …” 

statements that are targeting a column store. This operation is fairly 

frequent in ETL pipelines and this change allows it to create 

directly the highly efficient compressed format.  

4.3 Deletes and Updates 
Delete operations operate differently on compressed row groups vs. 

delta stores. For rows stored in compressed format, a delete 

operation will insert the row ID (ordinal position number within the 

row set) of the deleted row in the deleted bitmap.  For rows stored 

in a delta store, the row is removed because B-trees support 

efficient row removal. Recall that an update operation is executed 

as a delete operation and an insert operation. 

4.4 Effect on Query Execution 
The handling of delta stores and the deleted bitmap is done entirely 

in the Access Methods layer.  The Query Execution layer will see 

the compressed data and the delta store data as one uniform set of 

rows that has columnar storage characteristics, exposed for batch 

processing. This allows the system to maintain the orders-of-

magnitude query speedups possible with column stores and batch 

mode, even with the introduction of row-based delta stores. 

The deleted bitmap is consulted by scans and if the current row id 

is present in the deleted bitmap, the row is skipped. This is handled 

internally in the Access Methods layer; thus deleted rows are never 

surfaced to query processing.  

The process of segment elimination during scans (by checking 

segment metadata containing the minimum and maximum values 

in columns) does not need to consult the deleted bitmap. The 

interval between the minimum and maximum values within a 

column cannot grow when rows are deleted. Therefore, the original 

minimum and maximum values computed during column store 

segment creation can safely be used for segment elimination even 

after deletes.  

A large number of deleted rows can reduce scan performance. The 

cost of IO for reading the segments is not reduced by deleting rows 

because compressed segments are immutable and the cost of 

reading and consulting the bitmap is added. The workloads targeted 

by columnar storage typically have a low frequency of updates and 

deletes so having many deleted rows rarely occurs. Column store 

indexes with a large volume of deleted rows can be rebuilt to restore 

performance and reclaim space.  

Parallel scans assign each delta store to a single thread of execution. 

A single delta store is too small to justify scanning in parallel but 

multiple delta stores can be scanned in parallel. Scanning delta 

stores is slower than scanning data in columnar format because 

complete records have to be read and not just the columns needed 

by the query. This is mitigated by the relatively small size of delta 

stores and by the fact that the engine actively converts delta store 

data into the compressed columnar format. This keeps the number 

of delta stores low, so under normal operating conditions, the great 

majority of data stays in columnar format, optimized for efficient 

space usage and query execution. 

5. QUERY PROCESSING AND 

OPTIMIZATION 
Batch processing in SQL Server 2012 supported only the most 

heavily used query patterns in data warehousing scenarios, for 

example, inner but not outer joins, and group-by-aggregate but not 

scalar aggregates. Query plan segments using batch processing had 

a rigid shape; the join order was fixed and generated heuristically 

based on cardinality estimates. Query plans had to prepare for the 

possibility of a “bailout” to row-by-row processing, in case of 

insufficient memory during execution.  

The upcoming release of SQL Server extends batch processing 

capabilities in several ways.  We consider batch execution for 

iterators anywhere in the query plan, regardless of whether their 

inputs are using batch execution, and regardless of whether the data 

originates in a column store or row store.  The join order for batch 

execution is no longer a fixed one generated heuristically.  Batch 

processing is supported for all SQL Server join types, union all, and 
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scalar aggregation. Finally, we have done extensive work on 

memory management and spilling support for batch mode 

operators.  

5.1 Mixed Execution Mode 
In SQL Server 2012 the transition between row and batch 

processing happens only at prescribed points in the plan, and the 

transition between batch and row processing occurs only when 

absolutely necessary. This limitation is cumbersome and the 

forthcoming release of SQL Server has a completely new model for 

dealing with batch to row mode transitions.  

Like the sortedness of output rows, the execution mode is treated 

as a physical property of a query plan iterator, and the physical 

property framework is used to manage execution mode transitions. 

It is now possible to transition from one execution mode to another 

at any point in an execution plan. These transitions have a cost 

associated with them, thus ensuring that the optimizer does not 

become too transition-happy.  The ability to freely transition 

between batch and row modes allows the optimizer to explore the 

logical space only once, and moves all decisions related to 

execution model into the implementation phase.    

The example plan in Figure 4 illustrates how it is now possible to 

have mixed execution modes. The query is TPCH Q22, and most 

of the execution occurs in batch mode, except for the four 

unsupported iterators (inside the red boxes) that run in row mode.   

5.2 Hash Join 
Improvements in query execution were focused mainly on the 

batch-mode hash join operator. Its original implementation had 

limitations that meant it could not be used in some important 

scenarios.  

Firstly, only inner joins were supported. The current version 

handles the full spectrum of join types: inner, outer, semi- and anti-

semi joins.  

Secondly, there had to be enough memory available for the query 

to build a hash table containing all the rows coming from the build 

side of the join. It the hash table did not fit entirely into memory, 

join processing switched on the fly from batch mode to row mode. 

Row-mode hash join is able to execute in low memory conditions 

by spilling some of the input data temporarily to disk. This solution, 

however, was not satisfactory because query performance dropped 

significantly when the switch happened. We enhanced batch-mode 

hash join by adding spilling functionality.  

Thirdly, we improved our implementation of bitmap filters for 

batch-mode hash joins. Bitmap filters are used to reject at an early 

processing stage rows on the probe side of a join that do not have 

matching rows on the build side. Bitmap filters have been enhanced 

to support any number of join key columns of any type. 

5.2.1 Spilling  
When forced to spill to disk, it is important to minimize the amount 

of data that is written to disk. Let us first consider a single join that 

spills a fraction of its input data from the build side. Before building 

the hash table, this data is partitioned in memory into many buckets 

based on a hash function. Each time we decide to spill more data, 

another bucket is chosen and marked for spilling. A new temporary 

file is created and all rows that have already been assigned to this 

bucket are written to it and released from memory. All rows that 

are assigned to this bucket in the future will be appended to this file 

directly. After processing in this way all input from the build side, 

a hash table is created for the buckets that remain in memory.  

When processing the probe side of a join, we do not partition 

incoming rows, but before doing a hash table lookup for a row we 

check whether its corresponding bucket on the build side has been 

spilled. If so, the row is written to another temporary file that stores 

probe side rows belonging to the bucket. After having processed all 

input rows on the probe side the hash table is released.  

We are then left with pairs of files generated for the build and the 

probe side, one pair for each spilled bucket. For each pair the same 

join algorithm is executed but this time it is getting inputs from files 

instead of child operators. The new iteration of a join deals with 

less data.  Spilling may happen again, of course, but fewer rows 

will be spilled.  

We use a slightly modified version of TPCH Q10 to illustrate the 

effects of spilling.  The query joins four tables (lineitem, orders, 

customer, nation) and then applies a group-by and a top operator. 

The query plan contains a sequence of batch-mode hash joins: 

lineitem is first joined with orders, then customer, and finally 

nation. Consequently, three hash tables (on orders, customer, and 

nation) are present in memory at the same time, competing for 

space.  

In order to measure performance under spilling, we gradually 

reduced the memory available to the query, with the expectation 

that query performance will degrade slowly and not show any cliff-

like behavior. The x-axes in Figure 5 represent the percentage of 

memory available to the query, 100% being the “desired” memory 

level that avoids all spilling. The left chart shows the impact of 

spilling on response time as the memory situation becomes tighter. 

The performance of the new implementation (labeled SQLNext) 

degrades gracefully. With just 6% of the desired memory, the 

Figure 4: Query plan with mixed batch and row mode processing. The operators enclosed in red boxes run in row mode, 

the rest in batch mode. 
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response time degrades by 5X, whereas the SQL Server 2012 

implementation degrades by almost 37X. (Note that both the x and 

y axes are normalized. Actual response time and absolute memory 

requirements are both lower for SQLNext than for SQL2012).  

Most of the cost of spilling involves IO, but there is also a CPU-

time penalty. The chart on the right of Figure 5 shows that the CPU 

overhead grows with the amount of spilling involved and reaches 

90% for SQL Server 2012 and a much lower 33% for SQLNext.    

 What is new in batch-mode hash join compared to its row-mode 

equivalent is the way a right-deep chain of joins is treated, e.g. a 

join between a fact table and several dimension tables. All joins 

share the same memory pool, which allows some flexibility in 

deciding how much each join should spill when approaching the 

limit for available memory.  

We use the simple rule of always spilling from a hash table with 

more rows before spilling from a table with fewer rows. The 

number of rows can only be estimated, of course. The logic behind 

the rule can be explained by an example. Suppose we join a large 

fact table F containing 10M rows with two dimension tables, D1 

containing 1,000 rows and D2 containing 10,000 rows. On average 

each D1 row will join with 10,000 F rows and each D2 row will 

join with 1,000 F rows. This means that if we spill one row from 

D1, we will on average have to spill 10,000 F rows but only 1,000 

F rows for each row spilled from D2. It follows that spilling rows 

from the larger dimension table is expected to minimize the 

expected spill on the (much larger) probe side.  

For each right-deep chain of joins, we sort the hash tables based on 

estimated size and start building from the smallest. However, we 

make exceptions from this rule when we need to satisfy bitmap 

dependencies. If a bitmap created by join A is to be used as a filter 

on the build side of join B, then we force hash table A to be built 

before hash table B. 

5.3 Bitmap Filters  
The next release of SQL Server also has many changes around how 

bitmap filters are generated and placed in the plan. In SQL Server 

2012 bitmaps were generated only in cases where the optimizer was 

able to predetermine their exact final placement. This choice was 

working well because it did not force the optimizer to spend time 

moving bitmap filters around but at the same time it seriously 

limited the potential benefits of bitmap filters.  

With the support for outer joins and semi-joins this approach began 

to show its limitations. Adding filters below each join and relying 

on exploration rules to push the filters into the right position quickly 

proved infeasible because it leads to an explosion of the logical plan 

space. To avoid this explosion, hash join operators now store 

information about bitmaps and their estimated selectivity. At 

implementation time, the selectivity information is passed to the 

child, enabling it to adjust its cost to account for the bitmap 

selectivity. In order to limit the amount of optimization requests to 

child groups the optimizer does not treat each request as different, 

but rather clusters requests based on their selectivity thus being able 

to reuse far more than it would otherwise. Once a plan is chosen, 

the optimizer performs an extra pass over the plan to push down all 

bitmap filters from their respective join operators to the lowest 

possible location.  

There are two kinds of bitmaps that can be generated from a batch-

mode hash join. The first is called a simple bitmap, which is an 

array of bits indexed by an integer column value relative to some 

base value. The second is a complex bitmap, which is a modified 

Bloom Filter optimized for better use of CPU caches. In SQL 

Server 2012 bitmap use was limited to single column keys, and to 

data types that can be represented as 64-bit integers. Currently 

complex bitmaps can be used for multiple columns and all data 

types. Only for the previously supported data types can they be 

pushed down as far as the scan in the storage engine layer. For the 

newly supported data types a filter iterator is inserted in the query 

execution plan. If a bitmap is generated for multiple integer key 

columns, we still try to split it into multiple single-column bitmaps 

and push them down to the storage engine.  

Bloom filters may return false positives, and there is a trade-off 

between the false positives rate and the size of the filter. Compared 

to SQL Server 2012, we improved both the performance and false 

positives rate for complex bitmaps. Based on the actual cardinality 

of the input set and other statistics, computed during the 

repartitioning phase of a batch-mode hash join, we decide whether 

to pick a simple or complex bitmap. In case of a complex bitmap, 

we also decide how many bits per key value to use. For small 

cardinalities we use larger complex bitmaps to achieve a lower false 

positive rate. 

One of the problems observed in SQL Server 2012 was that when 

a hash join runs out of memory and spills some data to disk, bitmap 

filters are not created and therefore in some cases a lot more data 
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Figure 5: Performance comparison of old and new hash join implementation under memory pressure. 
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on the probe side must be processed. When adding spill support to 

batch-mode hash join we allowed it to create a complex bitmap also 

when the data does not fit into memory. We reserve some memory 

for that purpose but if the bitmap grows too large, its creation may 

be abandoned. 

6. ARCHIVAL COMPRESSION 
Most data warehouses have some data that is frequently accessed 

and some that is accessed more infrequently. For example, the data 

may be partitioned by date and the most recent data is accessed 

much more frequently than older data. In such cases the older data 

can benefit from additional compression at the cost of slower query 

performance. To enable this scenario we added support for archival 

compression of SQL Server column stores.  

The archival compression option is enabled on a per table or 

partition (object) basis; a column store can contain objects with 

archival compression applied and objects without. To allow for 

easy extensibility of existing on-disk structures, archival 

compression is implemented as an extra stream compression layer 

that transparently compresses the bytes being written to disk during 

the column store serialization process and transparently 

decompresses them during the deserialization process. Stream 

decompression is always applied when data is read from disk. Data 

is not cached in memory with stream compression. 

We used the Xpress 8 compression library routine for compression. 

Xpress 8 is a Microsoft internal implementation of the popular 

LZ77 algorithm. For performance and scalability, it is designed to 

work in a multi-threaded environment and uses data streams up to 

64KB in size. 

Table 1 shows the compression ratios achieved with and without 

archival compression for several real data sets. The further 

reduction obtained by archival compression is substantial, ranging 

from 37% to 66% depending on the data. We also compared with 

GZIP compression of the raw data. Archival compression 

consistently achieved a better compression ratio, sometimes 

considerably better. 

7. PERFORMANCE RESULTS 
In this section we present measurements for query, update, and load 

performance, as well as compression rates, given the new 

capabilities recently added to SQL Server. 

7.1 Batch Mode Performance   
SQL Server 2012 introduced vectorized batch-mode query 

execution for data coming from non-clustered (secondary) column 

store indexes. For some operations, this can reduce CPU cycles per 

row by over 40X, and improve cycles per instruction as well. This 

is a critical component that goes hand-in-hand with columnar 

storage to improve query speed. It is even more important than 

columnar format if all data fits in memory.  

To illustrate the kind of performance that can be achieved in batch 

mode, we ran some queries on the TPC-DS database at the 100GB 

scale factor. We compared the results from a copy of this database 

with clustered column store indexes on every table, to a copy of the 

same database with B-tree indexes on every table.  

A 16 core machine with 48GB RAM and 4 hard drives was used 

for the tests. We focused on the table store_sales which contains 

approximately 288 million rows, and ran the following five queries. 

 

 

 

 

 

Q_count: 
select count(*) from store_sales 

Q_outer: 
select  item.i_brand_id brand_id, item.i_brand brand, 
  sum(ss_ext_sales_price) ext_price 
from item left outer join store_sales  

  on (store_sales.ss_item_sk = item.i_item_sk) 
where item.i_manufact_id = 128 
group by item.i_brand_id, item.i_brand 
order by ext_price desc, brand_id 

 
Q_union_all: 
select d.d_date_sk, count (*) 
from (select ss_sold_date_sk as date_sk, 
             ss_quantity as quantity  
      from store_sales 
         union all  
      select ws_sold_date_sk as date_sk, 
             ws_quantity as quantity  
      from web_sales) t, date_dim d 
where t.date_sk = d.d_date_sk 
and d.d_weekend = 'Y' 
group by d.d_date_sk; 

 

Q_count_in: 
-- Here, store_study_group contains a  
-- set of 100 IDs of interesting stores. 

select count(*)  

from store_sales  

where ss_store_sk  

  in (select s_store_sk from store_study_group); 

Q_not_in: 
-- bad_ticket_numbers contains a set of ticket numbers 
-- with known data errors that we want to ignore. 
select ss_store_sk, d_moy, sum(ss_sales_price)  
from store_sales, date_dim 
where ss_sold_date_sk = d_date_sk and d_year = 2002 
and ss_ticket_number  
       not in (select * from bad_ticket_numbers) 
group by ss_store_sk, d_moy 

Database 

Name 

Raw data 

size (GB) 

Compression ratio 

Archival compression? GZIP 

No Yes 

EDW 95.4 5.84 9.33 4.85 

Sim 41.3 2.2 3.65 3.08 

Telco 47.1 3.0 5.27 5.1 

SQM 1.3 5.41 10.37 8.07 

MS Sales 14.7 6.92 16.11 11.93 

Hospitality 1.0 23.8 70.4 43.3 

Table 1: Comparison of compression ratios with and 

without archival compression and GZIP compression. 
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Table 2 contains a summary of the performance for these queries 

with the recent extensions to SQL Server. All times are in seconds.  

Prior to the recent query processing enhancements of batch mode 

query execution, the warm start execution times were roughly 

equivalent for column store and row store, because the queries did 

not use batch mode. Column stores still benefited in the past for 

cold start from reduced I/O. 

The large cold speedup (64.1X) for Q_outer is in large part due to 

selection of a plan with an index nested loop join when using the 

row store, which caused random I/O in a cold start situation. This 

illustrates the fact that column store performance is more consistent 

compared with index-based plans using B-trees because sequential 

scan of the column store is always used. 

7.2 Storage Requirements 
In clustered column store format, the store_sales table requires 

13.2GB of space, or 46 bytes per row. This is versus 35.7GB in the 

uncompressed row store (clustered B-tree) format, plus an 

additional 7.7GB of non-clustered B-trees, or 43.5GB total and 151 

bytes per row. This data set is not particularly compressible since it 

contains randomly generated data. Real data sets tend to be more 

compressible. 

7.3 Delete Performance 
Delete performance was measured on another table “Purchase” 

containing 101 million rows of movie ticket purchase information. 

“Purchase” is a data warehouse fact table with 19 columns. About 

5.5% of the rows (about 5.5M rows) were deleted from the 

Purchase table at random throughout the table using this statement: 

delete from Purchase where MediaId % 20 = 1; 

In our experience with customers, they sometimes delete or modify 

around 5% of the rows in a table to correct errors or adjust data with 

late-arriving values, so this level of deletions is interesting from a 

practical perspective.  

On a 4-core machine, with the data on one disk, the delete statement 

finished in 57 seconds. On the same machine, when the Purchase 

table was stored as a clustered B-tree, the same delete statement 

took 239 seconds. The reason the deletes are faster with the column 

store is that we simply insert a set of <row_group_id, row_number> 

pairs in a B-tree (the delete bitmap) to mask the rows. For the 

clustered B-tree, the rows are actually removed from pages. This 

generates more log data and requires more storage reorganization, 

so it takes longer. If enough data is deleted (say >>10%) then a 

manual column store index rebuild is recommended to reclaim 

space. 

7.4 Bulk and Trickle Load Rates 
Bulk load rates for clustered column store have been measured at 

about 600GB/hour on a 16 core machine, using 16 concurrent bulk 

load jobs (one per core) targeting the same table 

We did a trickle load test on a single thread whereby we inserted 

3.93 million rows, one at a time in independent transactions, into 

an empty column store index. This was done on a machine with 4 

cores and 8 hardware threads. The test was implemented with a 

cursor reading from a source table and inserting one row at a time 

into the target. The data was drawn from the Purchase table 

mentioned earlier. The test took 22 minutes and 16 seconds. The 

insertion rate was 2,944 rows/second.  

The tuple mover had completed compressing three row groups to 

column store format at the end of the test, and the remainder was in 

one open delta store, so these figures include compression time. 

The table could be queried with interactive response time during 

the insertions.  

Much higher load rates can be obtained by batching groups of rows 

together (say 1,000 at a time) in small bulk loads and by using 

concurrent streams to add data, rather than a single thread as was 

done in this test.  

As a basic demonstration of this, we loaded 20 million rows in 

batches of 1,000 rows using the SQL Server bcp program, our 

external bulk loader. The test was single-threaded. The target was 

an empty version of the Purchase table, with a clustered column 

store index. The 20 million rows were loaded in 9 minutes 46 

seconds, which is a rate of 34,129 rows per second. This is 11.5 

times faster than when inserting a row at a time. During this trickle 

bulk load test, the data could be queried with interactive response 

time for full scans. Immediately after the bcp job completed there 

were 20 total row groups, with 18 compressed row groups, one 

closed delta store, and one open. In just over a minute, the tuple 

mover had moved the closed row group to compressed format, 

leaving 19 compressed row groups and one open row group. 

8. RELATED WORK AND SYSTEMS 
The idea of decomposing records into smaller subrecords and 

storing them in separate files goes back to the seventies.  Hoffer 

and Severance [6] published a paper on the optimal decomposition 

into subrecords in 1975. A 1979 paper by Batory [1] considered 

how to compute queries against such files.  A 1985 paper by 

Copeland and Khoshafian [3] discussed fully decomposed storage 

where each column is stored in a separate file, that is, full columnar 

storage.  

Many prototype and commercial systems relying on columnar 

storage have been developed. MonetDB was one of the early 

pioneers; its development began in the early nineties at CWI [4]. 

Sybase launched Sybase IQ, the first commercial columnar 

database system, in 1996.  A 2005 paper by Stonebraker et al [12] 

on C-Store rekindled interest in column stores. 

Several commercial systems using column-wise storage are 

available today. Most are pure column stores but some are hybrid 

systems that support both column-wise and row-wise storage. 

The earliest pure column stores are Sybase IQ [21] and MonetDB 

[18], which have been available for well over a decade.  Newer 

players include Vertica [23], Exasol [14], Paraccel [19], InfoBright 

[16] and SAND [20]. In addition to SQL Server, three other systems 

support both row-wise and column-wise storage: Actian 

VectorWise [17], Greenplum [15], and Teradata [22].  

Query 

Rowstore Columnstore Speedup 

Cold Warm Cold Warm Cold Warm 

Q_count 13.0 4.33 0.309 0.109 42.1 39.7 

Q_outer 263 1.03 4.1 0.493 64.1 2.1 

Q_union_all 20.8 19.0 3.0 1.41 6.9 13.5 

Q_count_in 62.5 24.0 2.29 1.15 27.3 20.9 

Q_not_in 12.0 10.2 6.95 1.31 1.7 7.8 

Table 2: Comparison of execution times with and without 

column store indexes. 
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VectorWise [17] originated in the MonetDB/X100 project [2] and 

is now embedded in the Ingres DBMS [8].  VectorWise began as a 

pure column store but now also supports hybrid storage. Updates 

are handled by a technique called Positional Delta Trees (PDT). 

Conceptually, a PDT is an in-memory structure that stores the 

position and the change (delta) at that position. Scans merge the 

changes in PDTs with data stored on disk. PDTs only use a 

configurable amount of memory. Once the memory pool is 

exhausted the PDT changes must be written to persistent storage. 

This can be an expensive operation since it effectively rewrites the 

entire table.   

Greenplum [15] began as a row store but added column store 

capabilities. Their Polymorphic Storage feature allows different 

partitions of the same table to be stored in different form, some row-

wise and some column-wise. We have not been able to find 

information on how deeply column-wise processing has been 

integrated into the engine and whether data stored column-wise can 

be updated. 

Teradata introduced columnar storage in Teradata 14 [22]. In their 

approach, a row can be divided into sub-rows, each containing a 

subset of the columns. Sub-rows can then be stored column-wise or 

row-wise. Whether Teradata 14 uses any form of vectorized or 

batch processing is not clear. Deletes and updates may be expensive 

because Teradata appears not to use any form of delta store so all 

affected columns have to be accessed and updated.  
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