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Abstract. Hyperbolicity is a property of a graph that may be viewed as being a
“soft” version of a tree, and recent empirical and theoretical work has suggested
that many graphs arising in Internet and related data applications have hyperbolic
properties. Here, we consider Gromov’s notion of δ-hyperbolicity, and we estab-
lish several positive and negative results for small-world and tree-like random
graph models. In particular, we show that small-world random graphs built from
underlying grid structures do not have strong improvement in hyperbolicity, even
when the rewiring greatly improves decentralized navigation. On the other hand,
for a class of tree-like graphs called ringed trees that have constant hyperbolicity,
adding random links among the leaves in a manner similar to the small-world
graph constructions may easily destroy the hyperbolicity of the graphs, except
for a class of random edges added using an exponentially decaying probability
function based on the ring distance among the leaves. Our study provides the
first significant analytical results on the hyperbolicity of a rich class of random
graphs, which shed light on the relationship between hyperbolicity and naviga-
bility of random graphs, as well as on the sensitivity of hyperbolic δ to noises in
random graphs.

Keywords: Graph hyperbolicity, complex networks, small-world networks, random
graphs, decentralized navigation

1 Introduction

Hyperbolicity, a property of metric spaces that generalizes the idea of Riemannian man-
ifolds with negative curvature, has received considerable attention in both mathematics
and computer science. When applied to graphs, one may think of hyperbolicity as char-
acterizing a “soft” version of a tree—trees have hyperbolicity zero, and graphs that
“look like” trees in terms of their metric structure have “small” hyperbolicity. Since
trees are an important class of graphs and since tree-like graphs arise in numerous ap-
plications, the idea of hyperbolicity has received attention in a range of applications. For
example, it has found usefulness in the visualization of the Internet, the Web, and other
large graphs [22, 26, 31]; it has been applied to questions of compact routing, naviga-
tion, and decentralized search in Internet graphs and small-world social networks [11,
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19, 1, 20, 8]; and it has been applied to a range of other problems such as distance esti-
mation, sensor networks, and traffic flow and congestion minimization [2, 13, 27, 10].

The hyperbolicity of graphs is typically measured by Gromov’s hyperbolic δ [12, 4]
(see Section 2). The hyperbolic δ of a graph measures the “tree-likeness” of the graph
in terms of the graph distance metric. It can range from 0 up to the half of the graph
diameter, with trees having δ = 0, in contrast of “circle graphs” and “grid graphs”
having large δ equal to roughly half of their diameters.

In this paper, we study the δ-hyperbolicity of families of random graphs that intu-
itively have some sort of tree-like or hierarchical structure. Our motivation comes from
two angles. First, although there are a number of empirical studies on the hyperbolicity
of real-world and random graphs [2, 13, 24, 23, 27, 10], there are essentially no system-
atic analytical study on the hyperbolicity of popular random graphs. Thus, our work
is intended to fill this gap. Second, a number of algorithmic studies show that good
graph hyperbolicity leads to efficient distance labeling and routing schemes [6, 11, 9,
7, 21, 8], and the routing infrastructure of the Internet is also empirically shown to be
hyperbolic [2]. Thus, it is interesting to further investigate if efficient routing capability
implies good graph hyperbolicity.

To achieve our goal, we first provide fine-grained characterization of δ-hyperbolicity
of graph families relative to the graph diameter: A family of random graphs is (a) con-
stantly hyperbolic if their hyperbolic δ’s are constant, regardless of the size or diameter
of the graphs; (b) logarithmically (or polylogarithmically) hyperbolic if their hyper-
bolic δ’s are in the order of logarithm (or polylogarithm) of the graph diameters; (c)
weakly hyperbolic if their hyperbolic δ’s grow asymptotically slower than the graph di-
ameters; and (d) not hyperbolic if their hyperbolic δ’s are at the same order as the graph
diameters.

We study two families of random graphs. The first family is Kleinberg’s grid-based
small-world random graphs [16], which build random long-range edges among pairs
of nodes with probability inverse proportional to the γ-th power of the grid distance of
the pairs. Kleinberg shows that when γ equals to the grid dimension d, decentralized
routing can be improved from Θ(n) in grid to O(polylog(n)), where n is the number
of vertices in the graph. Contrary to the improvement in decentralized routing, we show
that when γ = d, with high probability the small-world graph is not polylogarithmically
hyperbolic. We further show that when 0 ≤ γ < d, the random small-world graphs is
not hyperbolic and when γ > 3 and d = 1, the random graphs is not polylogarithmically
hyperbolic. Although there still exists a gap between hyperbolic δ and graph diameter
at the sweetspot of γ = d, our results already indicate that long-range edges that enable
efficient navigation do not significantly improve the hyperbolicity of the graphs.

The second family of graphs is random ringed trees. A ringed tree is a binary tree
with nodes in each level of the tree connected by a ring (Figure 1(d)). Ringed trees can
be viewed as an idealized version of hierarchical structure with local peer connections,
such as the Internet autonomous system (AS) topology. We show that ringed tree is
quasi-isometric to the Poincaré disk, the well known hyperbolic space representation,
and thus it is constantly hyperbolic. We then study how random additions of long-range
links on the leaves of a ringed tree affect the hyperbolicity of random ringed trees. Note
that due to the tree base structure, random ringed trees allow efficient routing within
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O(log n) steps using tree branches. Our results show that if the random long-range
edges between leaves are added according to a probability function that decreases ex-
ponentially fast with the ring distance between leaves, then the resulting random graph
is logarithmically hyperbolic, but if the probability function decreases only as a power-
law with ring distance, or based on another tree distance measure similar to [17], the
resulting random graph is not hyperbolic. Furthermore, if we use binary trees instead of
ringed trees as base graphs, none of the above versions is hyperbolic. Taken together,
our results indicate that δ-hyperbolicity of graphs is quite sensitive to both base graph
structures and probabilities of long-range connections.

To summarize, we provide the first significant analytical results on the hyperbolicity
properties of important families of random graphs. Our results demonstrate that efficient
routing performance does not necessarily mean good graph hyperbolicity (such as log-
arithmic hyperbolicity).

Related work. There has been a lot of work on decentralized search subsequent to
Kleinberg’s original work [16, 17], much of which has been summarized in the re-
view [18]. In a parallel with this, there has been empirical and theoretical work on
hyperbolicity of real-world complex networks as well as simple random graph mod-
els. On the empirical side, [2] showed that measurements of the Internet are negatively
curved; [13, 24, 23] provided empirical evidence that randomized scale-free and Internet
graphs are more hyperbolic than other types of random graph models; [27] measured the
average δ and related curvature to congestion; and [10] measured treewidth and hyper-
bolicity properties of the Internet. However, on theoretical analysis of δ-hyperbolicity,
the only prior work we are aware of is [28], which proves that with non-zero probabil-
ity extremely sparse Erdős-Rényi random graphs are not δ-hyperbolic for any positive
constant δ.

There are a number of works that connect graph hyperbolicity with efficient dis-
tance labeling and routing schemes [6, 11, 9, 7, 21, 8]. Understanding the relationship
between graph hyperbolicity and the ability of efficient routing is one motivation of our
research. Our analytical results show, however, that the ability of efficient routing does
not necessarily mean low hyperbolicity δ.

Ideas related to hyperbolicity have been applied in numerous other networks appli-
cations, e.g., to problems such as distance estimation, sensor networks, and traffic flow
and congestion minimization [30, 14, 15, 27, 3], as well as large-scale data visualiza-
tion [22, 26, 31]. The latter applications typically take important advantage of the idea
that data are often hierarchical or tree-like and that there is “more room” in hyperbolic
spaces of a given dimension than corresponding Euclidean spaces.

The full version of this conference paper, including detailed proofs and additional
results, is available as the technical report [5].

2 Preliminaries on hyperbolic spaces and graphs

We provide basic concepts concerning hyperbolic spaces and graphs used in this paper.
For more comprehensive coverage on hyperbolic spaces, see, e.g., [4].
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(a) Poincaré disk (b) Tessellation of
Poincaré disk

(c) Binary tree (d) Ringed tree

Fig. 1. Poincaré disk, its tessellation, a binary tree, and a ringed tree.

2.1 Gromov’s δ-hyperbolicity

In this paper, we use the following four-point condition originally introduced by Gro-
mov [12] as the hyperbolicity measure of a metric space.

Definition 1 (Gromov’s four-point condition). In a metric space (X, d), given u, v, w, x
with d(u, v) + d(w, x) ≥ d(u, x) + d(w, v) ≥ d(u,w) + d(v, x) in X , we denote
δ(u, v, w, x) = (d(u, v)+d(w, x)−d(u, x)−d(w, v))/2. (X, d) is called δ-hyperbolic
for some non-negative real number δ if for any four points u, v, w, x ∈ X , δ(u, v, w, x) ≤
δ. Let δ(X, d) be the smallest possible value of such δ, which can also be defined as
δ(X, d) = supu,v,w,x∈X δ(u, v, w, x).

An undirected, unweighted and connected graph G = (V,E) can be viewed as a
metric space (V, dG) with the standard graph distance metric dG. We then apply the
four-point condition defined above to define the δ-hyperbolicity of graph G, denoted as
δ(G) = δ(V, dG). Trees are 0-hyperbolic, and it is often helpful to view graphs with a
low hyperbolic δ as tree-like when viewed at large-size scales.

Let D(G) denote the diameter of the graph G. By the triangle inequality, we have
δ(G) ≤ D(G)/2. We will use the asymptotic difference between the hyperbolicity
δ(G) and the diameter D(G) to characterize the hyperbolicity of the graph G.

Definition 2 (Hyperbolicity of a graph). For a family of graphs G with diameter
D(G), G ∈ G going to infinity, we say that graph family G is constantly (resp. logarith-
mically, polylogarithmically, or weakly) hyperbolic, if δ(G) = O(1) (resp.O(logD(G)),
O((logD(G))c) for some constant c > 0, or o(D(G))) when D(G) goes to infinity;
and G is not hyperbolic if δ(G) = Θ(D(G)), where G ∈ G.

The above definition provides more fine-grained characterization of hyperbolicity
of graph families than one typically sees in the literature, which only discusses whether
or not a graph family is constantly hyperbolic.

2.2 Poincaré disk

The Poincaré disk is a well-studied hyperbolic metric space. In this paper, we use the
Poincaré disk to mainly convey some intuition about hyperbolicity and tree-like behav-
iors, and thus we defer its technical definition to [5]. Visually, the Poincaré disk is an
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open disk with unit radius, and a (hyperbolic) line in the Poincaré disk is the segment
of a circle in the disk that is perpendicular to the circular boundary of the disk, and thus
all lines bend inward towards the origin (Figure 1(a)). For two points maintaining the
same Euclidean distance on the disk, their hyperbolic distance increases exponentially
fast when they move from the center to the boundary of the disk, meaning that there are
“more room” towards the boundary. This can be seen from a tessellation of the Poincaré
disk shown in Figure 1(b).

3 δ-hyperbolicity of grid-based small-world random graphs

In this section, we consider the δ-hyperbolicity of random graphs constructed according
to the small-world graph model of Kleinberg [16], in which long-range edges are added
on top of a base grid, which is a discretization of a low-dimensional Euclidean space.
The model starts with n vertices forming a d-dimensional base grid (with wrap-around).
More precisely, given positive integers n and d such that n1/d is also an integer, let
B = (V,E) be the base grid, with V = {(x1, x2, . . . , xd) | xi ∈ {0, 1, . . . , n1/d −
1}, i ∈ [d]}, E = {((x1, x2, . . . , xd), (y1, y2, . . . , yd)) | ∃j ∈ [d], yj = xj + 1
mod n1/d or yj = xj − 1 mod n1/d,∀i 6= j, yi = xi}. Let dB denote the graph
distance metric on the base grid B. We then build a random graph G on top of B,
such that G contains all vertices and all edges (referred to as grid edges) of B, and
for each node u ∈ V , it has one long-range edge (undirected) connected to some node
v ∈ V , with probability proportional to 1/dB(u, v)

γ , where γ ≥ 0 is a parameter.
We refer to the probability space of these random graphs as KSW (n, d, γ); and we
let δ(KSW (n, d, γ)) denote the random variable of the hyperbolic δ of a randomly
picked graph G in KSW (n, d, γ). Recall that Kleinberg showed that the small-world
graphs with γ = d allow efficient decentralized routing (with O(log2 n) routing hops
in expectation), whereas graphs with γ 6= d do not allow any efficient decentralized
routing (with Ω(nc) routing hops for some constant c) [16]; and note that the base grid
B has large hyperbolic δ, i.e., δ(B) = Θ(n1/d) = Θ(D(B)). Intuitively, the structural
reason for the efficient routing performance at γ = d is that long-range edges are added
“hierarchically” such that each node’s long-range edges are nearly uniformly distributed
over all “distance scales”.

Results and their implications. The following theorem summarizes our main technical
results on the hyperbolicity of small-world graphs.

Theorem 1. With probability 1− o(1) (when n goes to infinity), we have

1. δ(KSW (n, d, γ)) = Ω((log n)
1

1.5(d+1)+ε ) when d ≥ 1 and γ = d, for any ε > 0
independent of n;

2. δ(KSW (n, d, γ)) = Ω(log n) when d ≥ 1 and 0 ≤ γ < d; and
3. δ(KSW (n, d, γ)) = Ω(n

γ−2
γ−1−ε) when d = 1 and γ > 3, for any ε > 0 indepen-

dent of n.

This theorem, together with the results of [16] on the navigability of small-world
graphs, have several implications. The first result shows that when γ = d, with high



6 Wei Chen, Wenjie Fang, Guangda Hu, and Michael W. Mahoney

probability the hyperbolic δ of the small-world graphs is at least c(log n)
1

1.5(d+1) for
some constant c. We know that the diameter isΘ(log n) in expectation when γ = d [25].
Thus the small-world graphs at the sweetspot for efficient routing is not polylogarith-
mically hyperbolic, i.e., δ is not O(logc log n)-hyperbolic for any constant c > 0. How-
ever, there is still a gap between our lower bound and the upper bound provided by the
diameter, and thus it is still open whether small-world graphs are weakly hyperbolic
or not hyperbolic. Overall, though, our result indicates no drastic improvement on the
hyperbolicity (relative to the improvement of the diameter) for small-world graphs at
the sweetspot (where a dramatic improvement was obtained for the efficiency of decen-
tralized routing).

The second result shows that when γ < d, then δ = Ω(log n). The diameter of the
graph in this case is Θ(log n) [25]; thus, we see that when γ < d the hyperbolic δ is
asymptotically the same as the diameter, i.e., although δ decreases as edges are added,
small-world graphs in this range are not hyperbolic. The third result concerns the case
γ > d, in which case the random graph degenerates towards the base grid (in the sense
that most of the long-range edges are very local), which itself is not hyperbolic. For the
general γ, we show that for the case of d = 1 the hyperbolic δ is lower bounded by
a (low-degree) polynomial of n; this also implies that the graphs in this range are not
polylogarithmically hyperbolic. Our polynomial exponent γ−2γ−1−εmatches the diameter
lower bound proven in [29].

Outline of the proof of Theorem 1. In our analysis, we use two different techniques,
one for the first two results in Theorem 1, and the other for the last result. For the first
two results, we further divide the analysis into two cases d ≥ 2 and d = 1.

When d ≥ 2 and 0 ≤ γ ≤ d, we first pick an arbitrary square grid with `0 nodes
on each side. We know that when only grid distance is considered, the four corners
of the square grid have the Gromov δ value equal to `0. We will show that, as long
as `0 is not very large (to be exact, O((log n)

1
1.5(d+1)+ε ) when γ = d and O(log n)

when 0 ≤ γ < d), the probability that any pair of vertices on this square grid have
a shortest path shorter than their grid distance after adding long-range edges is close
to zero. Therefore, with high probability, the four corners selected have Gromov δ as
desired in the lower bound results.

To prove this result, we study the probability that any pair of vertices u and v at grid
distance ` are connected with a path that contains at least one long-range edge and has
length at most `. We upper bound such `’s so that this probability is close to zero. To do
so, we first classify such paths into a number of categories, based on the pattern of paths
connecting u and v: how it alternates between grid edges and long-range edges, and the
direction on each dimension of the grid edges and long-range edges (i.e., whether it
is the same direction as from u to v in this dimension, or the opposite direction, or
no move in this dimension). We then bound the probability of existing a path in each
category and finally bound all such paths in aggregate. The most difficult part of the
analysis is the bounding of the probability of existing a path in each category.

For the case of d = 1 and 0 ≤ γ ≤ d, the general idea is similar to the above. The
difference is that we do not have a base square to start with. Instead, we find a base ring
of length Θ(`0) using one long-range edges e0, where `0 is fixed to be the same as the
case of d ≥ 2. We show that with high probability, (a) such an edge e0 exists, and (b)
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the distance of any two vertices on the ring is simply their ring distance. This is enough
to show the lower bound on the hyperbolic δ.

For the case of γ > 3 and d = 1, a different technique is used to prove the lower
bound on hyperbolic δ. We first show that, in this case, with high probability all long-
range edges only connect two vertices with ring distance at most some `0 = o(

√
n).

Next, on the one dimensional ring, we first find two verticesA andB at the two opposite
ends on the ring. Then we argue that there must be a path P+

AB that only goes through
the clockwise side of ring from A to B, while another path P−AB that only goes through
the counter-clockwise side of the ring from A to B, and importantly, the shorter length
of these two paths are at most O(`0) longer than the distance between A and B. We
then pick the middle point C and D of P+

AB and P−AB , respectively, and argue that the
δ value of the four points A, B, C, and D give the desired lower bound.

Extensions to other models. We further study several extensions of the KSW model,
including base grid without wrap-around, constant number of long-range links per node,
and independent linking probabilities of each edge. We show that Theorem 1 still holds
in all these models (except the case of d = 1 and γ > 3 for the grid with no wrap-around
extension) and their combinations.

4 δ-hyperbolicity of ringed trees
In this section, we consider the δ-hyperbolicity of graphs constructed according to a
variant of the small-world graph model, in which long-range edges are added on top of
a base binary tree or tree-like low-δ graph. In particular, we consider as based graphs
both binary trees (Figure 1(c)) and ringed trees (Figure 1(d)), which contain concentric
rings connecting all nodes in the same level of the binary tree, and adding long range
links on these base graphs. The ringed tree is formally defined as follows.

Definition 3 (Ringed tree). A ringed tree of level k, denoted RT (k), is a fully binary
tree with k levels (counting the root as a level), in which all vertices at the same level
are connected by a ring. More precisely, we can use a binary string to represent each
vertex in the tree, such that the root (at level 0) is represented by an empty string, and
the left child and the right child of a vertex with string σ are represented as σ0 and σ1,
respectively. Then, at each level i = 1, 2, . . . , k − 1, we connect two vertices u and v
represented by binary strings σu and σv if (σu + 1) mod 2i = σv , where the addition
treats the binary strings as the integers they represent. As a convention, we say that a
level is higher if it has a smaller level number and thus is closer to the root.

Note that the diameter of the ringed tree RT (k) is Θ(log n), where n = 2k − 1 is the
number of vertices in RT (k), and we will use RT (∞) to denote the infinite ringed
tree when k in RT (k) goes to infinity. Thus, a ringed tree may be thought of as a
soft version of a binary tree. To some extent, a ringed tree can also be viewed as an
idealized picture reflecting the hierarchical structure in real networks coupled with local
neighborhood connections, such as Internet autonomous system (AS) networks, which
has both a hierarchical structure of different level of AS’es, and peer connections based
on geographical proximity.

Results and their implications. A visual comparison of the ringed tree of Figure 1(d)
with the tessellation of Poincaré disk (Figure 1(b)) suggests that the ringed tree can been
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seen as an approximate tessellation or coarsening of the Poincaré disk, just as a two-
dimensional grid can been seen as a coarsening of a two dimensional Euclidean space.
Quasi-isometry is a technical concept making it precise what coarsening means. We
show that the infinite ringed treeRT (∞) is indeed quasi-isometric to the Poincaré disk.
This also implies that ringed tree RT (k) for any k is constantly hyperbolic (technical
definition of quasi-isometry and the above results are included in [5]).

We now consider random ringed trees constructed by adding random edges between
two vertices at the outermost level, i.e., level k−1, such that the probability connecting
two vertices u and v is determined by a function g(u, v). Let Vk−1 denote the set of
vertices at level k − 1. Given a real-valued positive function g(u, v), let RRT (k, g)
denote a random ringed tree constructed as follows. We start with the ringed treeRT (k),
and then for each vertex v ∈ Vk−1, we add one long-range edge to a vertex u with
probability proportional to g(u, v), that is, with probability g(u, v)ρ−1v where ρv =∑
u∈Vk−1

g(u, v).
We study three families of functions g, each of which has the characteristic that

vertices closer to one another (by some measure) are more likely to be connected by a
long-range edge. The first two families use the ring distance dR(u, v) as the closeness
measure: the first family uses an exponential decay function g1(u, v) = e−αdR(u,v),
and the second family uses a power-law decay function g2(u, v) = dR(u, v)

−α, where
α > 0. The third family uses the height of the lowest common ancestor of u and v,
denoted as h(u, v), as the closeness measure, and the function is g3 = 2−αh(u,v). Note
that this last probability function matches the function used in a tree-based small-world
model of Kleinberg [17]. The following theorem summarizes the hyperbolicity behavior
of these three families of random ringed trees.

Theorem 2. Considering the follow families of functions (with u and v as the variables
of the function) for random ringed trees RRT (k, g), for any positive integer k and
positive real number α, with probability 1− o(1) (when n tends to infinity), we have

1. δ(RRT (k, e−αdR(u,v))) = O(log log n);
2. δ(RRT (k, dR(u, v)−α)) = Θ(log n);
3. δ(RRT (k, 2−αh(u,v))) = Θ(log n);

where n = 2k − 1 is the number of vertices in the ringed tree RT (k).

Theorem 2 states that, when the random long-range edges are selected using exponen-
tial decay function based on the ring distance measure, the resulting graph is logarithmi-
cally hyperbolic, i.e., the constant hyperbolicity of the original base graph is degraded
only slightly; but when a power-law decay function based on the ring distance measure
or an exponential decay function based on common ancestor measure is used, then hy-
perbolicity is destroyed and the resulting graph is not hyperbolic. Intuitively, when it is
more likely for a long-range edge to connect two far-away vertices, such an edge cre-
ates a shortcut for many internal tree nodes so that many shortest paths will go through
this shortcut instead of traversing through tree nodes. In Internet routing paths going
through such shortcuts are referred to as valley routes.

As a comparison, we also study the hyperbolicity of random binary treesRBT (k, g),
which are the same as random ringed trees RRT (k, g) except that we remove all ring
edges.
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Theorem 3. Considering the follow families of functions (with u and v as the variables
of the function) for random binary trees RBT (k, g), for any positive integer k and
positive real number α, with probability 1− o(1) (when n tends to infinity), we have
δ(RBT (k, e−αdR(u,v))) = δ(RBT (k, dR(u, v)

−α)) = δ(RBT (k, 2−αh(u,v))) = Θ(logn),

where n = 2k − 1 is the number of vertices in the binary tree RBT (k, g).
Thus, in this case, the original hyperbolicity of the base graph (δ = 0 for the binary tree)
is destroyed. Comparing with Theorem 2, our results above suggest that the “softening”
of the hyperbolicity provided by the rings is essential in maintaining good hyperbol-
icity: with rings, random ringed trees with exponential decay function (depending on
the ringed distance) are logarithmically hyperbolic, but without the rings the resulting
graphs are not hyperbolic.

Extensions of the random ringed tree model. We further show that all our results in
this section apply to extended models that allow a constant number of long-range edges
per node, or independent selection of long-range edges for each node, or both.

5 Discussions and open problems
Perhaps the most obvious extension of our results is to close the gap in the bounds on the
hyperbolicity in the low-dimensional small-world model when γ is at the “sweetspot”,
as well as extending the results for large γ to dimensions d ≥ 2. Also of interest is char-
acterizing in more detail the hyperbolicity properties of other random graph models, in
particular those that have substantial heavy-tailed properties. Finally, exact computation
of δ by its definition takes O(n4) time, which is not scalable to large graphs, and thus
the design of more efficient exact or approximation algorithms would be of interest.

From a broader perspective, however, our results suggest that δ is a measure of tree-
like-ness that can be quite sensitive to noise in graphs, and in particular to randomness
as it is implemented in common network generative models. Moreover, our results for
the δ hyperbolicity of rewired trees versus rewired low-δ tree-like metrics suggest that,
while quite appropriate for continuous negatively-curved manifolds, the usual definition
of δ may be somewhat less useful for discrete graphs. Thus, it would be of interest to
address questions such as: does there exist a measure other than Gromov’s δ that is
more appropriate for graph-based data or more robust to noise/randomness as it is used
in popular network generation models; is it possible to incorporate in a meaningful way
nontrivial randomness in other low δ-hyperbolicity graph families; and can we construct
non-trivial random graph families that contain as much randomness as possible while
having low δ-hyperbolicity comparing to graph diameter?
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