
A Demonstration of SQLVM: Performance Isolation in

Multi-Tenant Relational Database-as-a-Service

Vivek Narasayya§ Sudipto Das§ Manoj Syamala§

Surajit Chauduri§ Feng Li† Hyunjung Park‡

§Microsoft Research †NUS ‡Stanford University
Redmond, WA 98052, USA Singapore 117590 Stanford, CA 94305, USA

{viveknar, sudiptod, manojsy, surajitc}@microsoft.com li-feng@comp.nus.edu.sg hyunjung@stanford.edu

ABSTRACT

Sharing resources of a single database server among multiple ten-
ants is common in multi-tenant Database-as-a-Service providers,
such as Microsoft SQL Azure. Multi-tenancy enables cost reduc-
tion for the cloud service provider which it can pass on as savings to
the tenants. However, resource sharing can adversely affect a ten-
ant’s performance due to other tenants’ workloads contending for
shared resources. Service providers today do not provide any as-
surances to a tenant in terms of isolating its performance from other
co-located tenants. SQLVM, a project at Microsoft Research, is an
abstraction for performance isolation which is built on a promise
of reserving key database server resources, such as CPU, I/O and
memory, for each tenant. The key challenge is in supporting this ab-
straction within a RDBMS without statically allocating resources to
tenants, while ensuring low overheads and scaling to large numbers
of tenants. This demonstration will show how SQLVM can effec-
tively isolate a tenant’s performance from other tenant workloads
co-located at the same database server. Our demonstration will use
various scripted scenarios and a data collection and visualization
framework to illustrate performance isolation using SQLVM.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Relational databases

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Cloud computing, multitenancy, performance isolation, resource
isolation, relational database-as-a-service

1. INTRODUCTION
Services such as Microsoft SQL Azure, which offer relational

Database-as-a-Service (DaaS) functionality in the cloud, are de-
signed to be multi-tenant; a single database server process hosts

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

Figure 1: A multi-tenant relational database system where mul-

tiple tenants share the same database process and content for

resources at the server.

databases of different tenants. Figure 1 illustrates such a multi-
tenant relational database (RDBMS) architecture. Multi-tenancy is
crucial to make the service economical since dedicating a machine
for each tenant is expensive. Such multi-tenancy in DaaS is also rel-
evant for on-premise clouds where a server consolidates databases
of multiple independent applications within an enterprise.

A consequence of multi-tenancy and resource sharing is that a
tenant’s workload competes with workload from other co-located
tenants for key resources such as CPU, I/O and memory of the
database server. As a result, the performance of a tenant’s workload
can vary significantly depending on the workloads issued concur-
rently by other tenants. Such performance unpredictability arising
from contention with other tenants for shared database server re-
sources is a serious concern for performance sensitive tenants.

While assurances on high-level performance metrics at the level
of SQL queries, e.g., throughput (queries/sec) or query latency, is
desirable, it is also extremely challenging to provide such guaran-
tees for arbitrary SQL queries which the tenants execute. Even on a
database server that is exclusively used by one tenant, the resource
needs and execution times of different instances of a single query
template, such as a stored procedure, can vary dramatically depend-
ing on parameter values. In addition, service providers need to also
support ad-hoc queries (i.e., queries not seen previously) without
limiting the workload type or the SQL query language supported.
Furthermore, a tenant’s data size, distribution, and access patterns
can change over time. These factors contribute to even greater vari-
ability in throughput and latency.

A fundamental challenge, however, is to reduce the variability
in performance that arises due to contention with other tenants for
critical shared database server resources. That is, a tenant’s per-
formance must be unaffected by the workloads of other co-located
tenants. Our approach is to provide the tenants assurances at the
level of key resources such as CPU, I/O, buffer pool memory, and
working memory for operators such as hash and sort. The rationale
is that isolating the key resources will provide performance isola-
tion which can be leveraged to support higher-level assurances.

At first glance, it may appear that techniques developed for re-
source management in traditional enterprise DBMS may be ade-
quate for such resource-level assurances. These techniques are typ-
ically based on relative priorities, proportional sharing, or enforc-
ing maximum limits on resource usage. However, particularly in
a public cloud setting, a major drawback of relative priorities and
proportional sharing is that the assurance of how much resources
a tenant will receive is not absolute and depends on which other
tenants are active (and their priorities/shares). Similarly, enforc-
ing maximum limits also suffers from this drawback when the ser-
vice provider overbooks (i.e., promise more resources in aggregate
to tenants than the available system capacity) to increase utiliza-
tion and cost-effectiveness. In contrast, resource reservations in
SQLVM is much more meaningful to a tenant, since the assurance
of how much resources the tenant will receive is independent of
other tenants. As a concrete example, consider the I/O resource.
Suppose tenant T1 is promised a reservation of 100 I/Os per sec-
ond (IOPS). The promise is that if T1’s workload demands 100
IOPS (or more) and the system assumes responsibility for granting
100 IOPS no matter which other tenants are executing concurrently
on the server.

In order to be cost-effective and support high consolidation fac-
tors, static resource allocation to support such resource reservations
is impractical. It is therefore possible that a tenant may not always
receive the resources it was promised (e.g., due to overbooking).
Thus, metering the promised reservation becomes crucial to estab-
lish accountability. That is, if resource allocation is less than the
reservation, one can objectively determine if the tenant’s workload
had less demand for resources (i.e., no violation), or if the system
did not allocate resources even though there was sufficient demand
(i.e., a violation). Referring to the I/O example above, suppose T1

was allocated 80 IOPS when its reservation is 100 IOPS. If T1’s
queries did not generate sufficient I/O requests, the provider did
not violate the promise. On the other hand, if T1 generated suffi-
cient I/O requests, T1’s I/O reservation was violated. The challenge
of metering is to determine sufficient demand for each resource
without making any assumptions about the workload or limiting
the workload. Metering is independent of the actual resource al-
location mechanisms and is essential to establish trust between the
tenant and the provider who might have conflicting interests.

SQLVM [4], a project at Microsoft Research, is a reservation of

a set of key resources for a tenant inside the database server. Reser-
vations in SQLVM is a promise of a minimum amount of resources
and every resource promise has an associated metering logic. Con-
ceptually, the tenant is exposed a familiar abstraction of a virtual
machine (VM) with a specified set of resources such as CPU, I/O
and memory, but inside the database server. SQLVM’s assurances
apply to any RDBMS workload without any restrictions, assump-
tions, or limitations. Internally, new promise-aware resource al-
location mechanisms exercise fine-grained control to orchestrate
shared resources across tenants without requiring static allocation
upfront. If a tenant’s resource reservation is not met, then meter-
ing logic for that resource establishes accountability. Note that the
obvious alternative of actually creating VMs (one per tenant) and

running an instance of the database server process within each VM
is too heavyweight and fails to achieve the degree of consolida-
tion demanded for DaaS [1]. In contrast, SQLVM is much more
lightweight, allowing consolidation factors of hundreds of tenants.

Curino et al. [1] and Lang et al. [3] approach consolidation of
multiple databases in a single server by analyzing the workloads,
identifying how these workloads interact with one another, and
recommending which databases should be co-located in order to
meet performance goals (or Service-Level-Objectives). Xiong et
al. [5] constructs machine learning models to predict query per-
formance as a function of resources allocated to it, and then ex-
ploit such models to allocate resources so that query latency SLO
can be met. SQLVM is complementary to these approaches since
it provides resource-level isolation for tenants and makes no as-
sumptions about the specific workloads of tenants. SQLVM can
potentially be used as a building block to build such recommenders,
since SQLVM can ensure that the tenants are actually allocated the
resources that the models assume. There has also been extensive
work in area of workload management, particularly in a traditional
data warehouse setting where queries can be resource intensive
(Krompass et al. [2] present an overview). We believe that SQLVM
can be valuable even in such traditional enterprise scenarios since
it can be used to more tightly control resource allocation to differ-
ent classes of queries. Finally, resource reservation and scheduling
mechanisms have been explored both in the operating systems and
virtualization contexts. However, DBMSs typically need to assume
control of most systems resources, and therefore cannot benefit di-
rectly from such OS or hypervisor level mechanisms. Furthermore,
database workloads and the DaaS context bring unique challenges
that require us to rethink the assurances and the mechanisms nec-
essary to support them within the DBMS.

Narasayya et al. [4] presented the detailed SQLVM model, the
challenges in efficiently implementing this model within a com-
mercial RDBMS engine, and outlined some of resource schedul-
ing techniques used to support the model. This demonstration will
highlight the benefits of the SQLVM abstraction from the tenant’s
perspective. In particular, we will focus SQLVM’s ability to pro-
vide performance isolation while other tenants are being added or
removed from the system. We will demonstrate how a tenant within
a SQLVM with resource reservations is unaffected as other co-
located tenant workloads are added or removed. We will use a mix
of workloads to emulate the variety likely to be observed in a multi-
tenant platform. With the help of a data collection and visualization
framework, the audience will be able to monitor and visualize each
tenant’s end-to-end performance and the resource utilization.

2. SQLVM DESIGN OVERVIEW
SQLVM is a reservation of a set of key resources in a database

system, such as CPU, I/O, and memory. Conceptually, a tenant is
promised a VM with specified resources, but within the database
server process. Unlike a traditional VM, a SQLVM is much more
lightweight since its only goal is to provide resource isolation across
tenants. Reservations in a SQLVM is a promise of a minimum
amount of resources which will be allocated if the tenant has suffi-
cient demand for the resources. In this section, we provide a high-
level overview of the SQLVM model; see [4] for more details about
the model and the I/O scheduling mechanism.

2.1 CPU
For a tenant, and a given core, the CPU utilization over an inter-

val of time is defined as the percentage of time for which a task of
that tenant is running on that core. This definition extends naturally

to the case of k cores as the total time for which tasks of that tenant
run across all cores, as a percentage of (k× time interval).
Promise: SQLVM promises to reserve for the tenant (Ti) a CPU
utilization, denoted by ResCPUi, equivalent to a slice of the CPU
time on available core(s). For example, if ResCPU = 10%, then
in a metering interval of 1 sec, the tenant should be allocated CPU
time of at least 100 msec, provided the tenant has sufficient work.
CPU reservations can correspond to a fraction of a core, thus allow-
ing better consolidation ratios since reservations can be supported
to many more tenants than available cores.
Metering: The metering problem is as follows: of the total time
during which Ti had at least one task running or ready to run, it
must receive at least ResCPUi percentage of the CPU; the provider
violated the promise otherwise. For instance, if T1 was promised
ResCPU1 = 10% and if T1 had at least one task ready to run
(or running) for 500 ms, the provider violates the promise only if
the allocated CPU is less than 50 ms, i.e., T1’s effective utiliza-
tion is less than 10%. This definition of metering is fair since the
provider is not held accountable for the tenant being idle (i.e., no
tasks ready to run), while ensuring that a provider cannot arbitrarily
delay a tenant’s task without violating the promise.

2.2 I/O
Fine-grained sharing of the disk bandwidth is important. For

simplicity in the discussion below we refer to I/O throughput, al-
though the definitions can be extended for bandwidth (such as bytes
per second) as well.
Promise: SQLVM promises to reserve for the tenant a certain
IOPS, denoted ResIOPSi. This promise can again be viewed as
a slice of the IOPS capacity available of the underlying physical
disk drives. Note that our promise makes no distinction between
sequential and random I/Os.
Metering: The key challenge in metering I/O throughput is in de-
termining if the tenant had “sufficient I/O requests” to meet its
reservation and whether the I/O throughput achieved is commensu-
rate with the promise. Observe that if a tenant had at least one I/O
request pending, then it had work to utilize the I/O resources. We
define the effective I/O throughput achieved as the IOPS achieved
for the time when the tenant had at least one pending I/O request in
the given metering interval. The I/O metering logic flags a violation
if the effective I/O throughput is less than ResIOPSi.

2.3 Memory
While there are many uses of memory in a relational DBMS, we

focus here on the two major uses: buffer pool and working mem-
ory. The buffer pool is a cache of database pages that is managed
using a page replacement strategy (e.g., LRU-k). If a page is not
found in the buffer pool, the DBMS incurs I/O to obtain it from
secondary storage. Working memory is private to a physical opera-
tor used in a query execution plan, such as Hash or Sort. If working
memory is limited, the operator may need to spill its state (e.g., par-
titions of the hash table) to secondary storage, thus again incurring
additional I/O. Therefore, promises on memory are also crucial for
performance. Similar to static reservation of CPU and I/O capac-
ity, statically allocating a tenant’s memory also limits consolida-
tion. Therefore, SQLVM dynamically distributes memory across
tenants, but provides a precise promise to tenants that exposes an
illusion of statically-allocated memory.
Promise: To allow dynamic and fine-grained sharing of memory
among tenants, our promise is that the number of I/Os incurred
in the multi-tenant system is the same as though the system had
dedicated a certain amount (say 1 GB) of buffer pool memory for

the tenant; a similar promise applies for working memory. For a
given amount of memory M , we define Relative IO as follows:

Relative IO =
Actual IOs − Baseline IOs (M)

Baseline IOs (M)
(1)

SQLVM promises a tenant Relative IO ≤ 0 for a given amount
of memory. Similar to other resources, a tenant is promised a mem-
ory reservation (ResMemi). For example, suppose a tenant is
promised a 1 GB buffer pool memory reservation. In effect, the
promise is that the tenant’s workload will see the same hit ratio as
though a 1 GB buffer pool was reserved for the tenant. Similarly for
working memory, a promise of 500 MB implies that there would be
no more I/O to/from disk for Hash or Sort operators compared to
500 MB of working memory dedicated to that tenant.
Metering: Since memory is allocated dynamically and a tenant’s
actual memory allocation might differ from ResMemi, the key
challenge for metering memory is to determine Baseline IOs (M);
Actual IOs can be measured directly. SQLVM simulates the I/O
behavior of the workload as though the tenant had M units of
memory dedicated to it. The challenge lies in doing this base-
line simulation accurately and with low overhead. For example,
for buffer pool memory, the observation is that the relative I/O is
dependent on the page access order, page replacement policy and
page metadata (such as dirty bit), and not the actual contents of
the pages. The CPU overhead to simulate this baseline buffer pool
can be piggybacked on the actual buffer pool accesses and page
replacement, and is almost negligible in practice. Finally, any I/O
incurred as a result of insufficient memory allocation, as flagged by
the metering logic, is not charged against the tenant’s I/O reserva-
tion (ResIOPSi).

3. DEMONSTRATION DESCRIPTION
The goal of this demonstration is to illustrate when a tenant is

running within a SQLVM, how its performance remains unaffected
by the workloads of other co-located tenants. This demonstration
will have three parts. In the first part, we will briefly outline the
basic model of SQLVM and its resource reservations. This will
provide the audience with the necessary background. In the second
part, we will have a few scripted scenarios to demonstrate resource
and performance isolation for a tenant executing within a SQLVM
while other co-located tenants contend for resources. The final part
will allow the audience to interact with the different SQLVM con-
figurations and experience its impact on the tenant’s performance.

3.1 Demo Setup
SQLVM is an abstraction implemented in Microsoft’s SQL Azure.

The demonstration will comprise an adapted version of SQL Azure
running on our clusters which will act as the back-end. The front-
end will emulate different tenant workloads executing against the
database back-end. We will use a visualization tool (Performance

Monitor for Windows) to monitor and visualize the various perfor-
mance counters that are of interest.

To emulate variety in the tenant workloads typically observed
in a multi-tenant cloud platform, our workload suite will comprise
multiple workload types. Tenants in our workload suite will be
able to execute TPC-C (OLTP-like workload),1 TPC-H (DSS-like
workload),2 Dell DVD Store (e-commerce scenario),3 and a cus-
tom workload for generating bursts of CPU- and I/O-intensive ac-

1http://www.tpc.org/tpcc/
2http://www.tpc.org/tpch/
3http://linux.dell.com/dvdstore/

http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
http://linux.dell.com/dvdstore/

(a) No performance isolation (b) Tenant of interest running within a SQLVM

Figure 2: A screenshot of the demo experience and visualization. This figure illustrates the end-to-end throughput of the tenant of

interested (shown in thick red line) when running without a SQLVM (sub figure (a)) and within a SQLVM (sub figure (b)).

tivity. A tenant’s workload will be an instance of one of the work-
loads in the suite. We will have scripts to execute combinations of
these workloads to emulate variety in tenant workloads typically
observed in a multi-tenant platform.

3.2 Demo Script
The basic demo experience will focus on SQLVM’s performance

and resource isolation features. The basic demo setup will have
multiple tenants co-located at a database server where each ten-
ant can be individually configured to execute with or without a
SQLVM. Tenants executing within a SQLVM has reservations for
the critical resources within the database server while tenants with-
out a SQLVM only have best-effort resource allocations. One of
these tenants (T1) will be our tenant of interest. We will moni-
tor T1’s performance in terms of end-to-end throughput (transac-
tions per second) and response times (or latency). T1’s workload
starts executing first and then additional resource-intensive tenants
are added into the system. We will consider two scenarios: first
where T1 is executing without a SQLVM, i.e., without any perfor-
mance isolation, and the second where T1 is requests performance
isolation using SQLVM; in both scenarios, the remaining tenants
execute without SQLVM. In the first scenario, the database server
will provide best-effort resource allocation to all tenants and hence
as other tenant workloads are added, T1’s performance will be im-
pacted. On the other hand, when T1 executes within a SQLVM, its
resource allocation is isolated from other tenants, thus effectively
isolating T1’s performance from the other tenants.

Figure 2 provides an illustration of the demo experience for the
audience; this figure presents a screenshot of the visualization that
will be used during the demo. Figure 2 shows the throughput (T1’s
throughput is plotted in the thick red line) as time progresses and
other tenants start executing their respective workloads. Figure 2(a)
shows the throughput when T1 is executing without a SQLVM
while Figure 2(b) shows the throughput when T1 is isolated within
a SQLVM. During the demo, other similar visualization will mon-
itor the response times and the critical resources such as the CPU
utilization and I/O requests per second for each tenant.

The demonstration setup will also have additional scripted sce-
narios to illustrate other aspects of SQLVM. These scenarios in-
clude, but are not limited to: (i) providing low latency for bursty
workloads; (ii) high consolidation ratios with a large number of
tenants sharing a server and each executing within a SQLVM with
resource reservations; (iii) low variance in performance even at
high resource utilization levels when tenants are executing within a
SQLVM; (iv) and resource allocation and end-to-end performance
characteristics when multiple tenants execute within a SQLVM and

at least one of the critical resources (such as CPU or I/O) at the
server is overbooked; and (v) the effectiveness of metering in de-
tecting violations when the resources are overbooked.

3.3 User Interactions with SQLVM
The amount of resources reserved in a SQLVM is dynamically

configurable. For instance, if a tenant executing within a SQLVM
requires additional CPU or I/O, the SQLVM configurations can be
dynamically changed to provide the additional resources if they are
available at the server. Similarly, all tenant workloads also have
configuration parameters to vary the offered load and the number
of concurrent database connections concurrently issuing workload
for a tenant. In addition, a custom workload in the suite allows
changing data access patterns and hence the resource usage of the
workload. The demo setup will allow the audience to interact with
the system to change the SQLVM or workload configurations and
observe the corresponding impact on the tenant’s performance.

Acknowledgments

Authors F. Li and H. Park contributed to SQLVM when visiting
Microsoft Research. Badrish Chandramouli, Hamid Moussavi, and
Vamsidhar Thummula have also contributed to the SQLVM project.
Several members of the Microsoft SQL Azure group, including
Peter Carlin, George Reynya, and Morgan Oslake, have provided
valuable feedback that has influenced our work.

4. REFERENCES
[1] C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan.

Workload-aware database monitoring and consolidation. In
Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 313–324, 2011.

[2] S. Krompass, A. Scholz, M.-C. Albutiu, H. A. Kuno, J. L.
Wiener, U. Dayal, and A. Kemper. Quality of service-enabled
management of database workloads. IEEE Data Eng. Bull.,
31(1):20–27, 2008.

[3] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. Towards
multi-tenant performance slos. In Proc. 28th Int. Conf. on

Data Engineering, pages 702–713, 2012.

[4] V. Narasayya, S. Das, M. Syamala, B. Chandramouli, and
S. Chaudhuri. SQLVM: Performance Isolation in
Multi-Tenant Relational Database-as-a-Service. In Proc. 6th

Biennial Conf. on Innovative Data Systems Research, 2013.

[5] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and
H. Hacigümüs. Intelligent management of virtualized
resources for database systems in cloud environment. In Proc.

27th Int. Conf. on Data Engineering, pages 87–98, 2011.

	Introduction
	SQLVM Design Overview
	CPU
	I/O
	Memory

	Demonstration Description
	Demo Setup
	Demo Script
	User Interactions with SQLVM

	References

