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Figure 1: Example computer graphics applications that use Laplacian matrices.

Abstract

We present a new multi-level preconditioning scheme for discrete
Poisson equations that arise in various computer graphics applica-
tions such as colorization, edge-preserving decomposition for two-
dimensional images, and geodesic distances and diffusion on three-
dimensional meshes. Our approach interleaves the selection of fine-
and coarse-level variables with the removal of weak connections be-
tween potential fine-level variables (sparsification) and the compen-
sation for these changes by strengthening nearby connections. By
applying these operations before each elimination step and repeat-
ing the procedure recursively on the resulting smaller systems, we
obtain a highly efficient multi-level preconditioning scheme with
linear time and memory requirements. Our experiments demon-
strate that our new scheme outperforms or is comparable with other
state-of-the-art methods, both in terms of operation count and wall-
clock time. This speedup is achieved by the new method’s ability
to reduce the condition number of irregular Laplacian matrices as
well as homogeneous systems. It can therefore be used for a wide
variety of computational photography problems, as well as several
3D mesh processing tasks, without the need to carefully match the
algorithm to the problem characteristics.

CR Categories: G.1.8 [Numerical Analysis]: Partial Differential
Equations—Multigrid and Multilevel Methods; G.1.3 [Numerical
Analysis]: Numerical Linear Algebra—Linear Systems Direct and
Iterative Methods;

Keywords: matrix preconditioning, Laplacians, multigrid, mesh
processing, computational photography

Links: DL PDF WEB

∗e-mail: dilip@cs.nyu.edu
†e-mail:raananf@cs.huji.ac.il
‡e-mail:szeliski@microsoft.com

1 Introduction

A large number of problems in computer graphics and compu-
tational photography are formulated as norms over gradients and
solved using discrete Poisson equations. Examples in computa-
tional photography include gradient-domain tone mapping [Fat-
tal et al. 2002], Poisson blending [Pérez et al. 2003], alpha
matting [Sun et al. 2004], image colorization [Levin et al.
2004], tonal adjustment [Lischinski et al. 2006], edge-preserving
smoothing [Farbman et al. 2008], and image relighting and non-
photorealistic rendering [Bhat et al. 2010]. Three-dimensional ge-
ometric processing applications include mesh segmentation [Liu
and Zhang 2007] and geodesic distance computation [Crane et al.
2012], as well as mesh deformations and skinning weight compu-
tations. While the Poisson equation approach excels in terms of
quality and mathematical conciseness, it comes at a considerable
computational cost, as it requires solving very large and poorly-
conditioned linear systems.

State of the art sparse direct solvers [Davis 2006] require approx-
imately O(n3/2) computer operations to solve planar (manifold)
Poisson systems in n variables. Given the widespread use of Lapla-
cian matrices in physical sciences, various preconditioning schemes
have also been developed to accelerate their iterative solution. The
geometric multigrid (GMG) method is one example, known to pro-
vide an optimal O(n) running time for regular homogeneous Pois-
son equations [Trottenberg et al. 2001]. While classical GMG
performs poorly on problems with strong spatial inhomogeneities,
its generalization, the Algebraic Multigrid (AMG) method [Brandt
1986; Trottenberg et al. 2001], performs much better. AMG meth-
ods reformulate the problem over a hierarchy of adaptively selected
coarser grids, related by interpolation weights tailored to capture
the strong connections and stiff modes of the matrix. However,
the irregular grid selection increases the bandwidth of non-zero el-
ements in the coarser matrices and undermines AMG’s efficiency.
Using a more aggressive coarsening [Vaněk 1995] or regular sub-
grids with adaptive interpolation schemes [Zeeuw 1990; Szeliski
2006; Krishnan and Szeliski 2011] avoids this problem but also
undermines the solver’s effectiveness in the case of severe spatial
inhomogeneities.

In this paper, we extend the method of Krishnan and Szeliski [2011]
with adaptive coarsening to handle irregular meshes and inhomoge-
neous Laplacian matrices commonly used in computer graphics and
computational photography. Our algorithm interleaves the adap-
tive selection of coarse and fine variables with a sparsification step,
which carefully removes (relatively weak) connections while com-
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pensating (strengthening) nearby connections in order to minimize
the change in energy at low-frequency modes. By applying these
steps repeatedly, we obtain a multi-level (hierarchical) approxima-
tion of the original matrix that provides an effective and efficient
preconditioner. Our algorithm, which we call HSC, for hierarchi-
cal sparsify and compensate, is guided by formal insights into the
effect of the sparsification and compensation steps on the condition
number of the system.

Our new method is highly efficient and has an overall linear O(n)
construction time and memory complexity. Our experiments show
that it outperforms or equals other state of the art methods, both in
terms of operation count and wall-clock time. This speedup results
from the new method’s ability to dramatically reduce the matrix
condition number. Our experiments also show that condition num-
bers of orders of 106 due to severe spatial irregularities are reduced
to less than 10.

In the case of homogenous problems, our algorithm reduces to the
GMG method and hence achieves optimal performance. For lin-
ear or tree-like inhomogeneous regions, our algorithm devolves to
linear time cyclic reduction [Golub and Van Loan 1996] and (paral-
lel) tree-based preconditioners. Performing well on these extreme
cases makes our method well suited for mixed systems that contain
large uniform regions separated by strong discontinuities, which of-
ten arise in graphics applications, such as edge-preserving smooth-
ing [Farbman et al. 2008]. Our optimized MATLAB/Mex code
is available for download at http://www.cs.huji.ac.il/
˜raananf/projects/hsc/.

We note that our algorithm is restricted to Laplacians which are
M-matrices having non-positive off-diagonals. For those 3D mesh
processing applications where cotangent Laplacians are necessary,
it necessitates replacing the cotangent with a simpler M-matrix ap-
proximation.

2 Previous Work

Solving linear equations arising from discrete Laplace operators has
received much attention from various scientific communities. We
mention here the most popular methods for solving discrete Poisson
equations and describe the main ideas behind them.

State of the art sparse direct solvers [Davis 2006] are based on the
nested dissection method [Lipton et al. 1979]. From a theoretical
perspective, nested dissection has strong guarantees on fill-in for
systems arising from planar graphs. The best known algorithms for
planar graphs run in time O(n1.5) and are incorporated as direct
solvers in software packages such as MATLAB. General dense di-
rect solvers such as Gaussian elimination and LU factorization run
in O(n3) time [Kincaid and Cheney 1991]. LU (and the related
Cholesky) decomposition are often used for matrix preconditioning
by dropping terms from the complete LU factorization [Saad 2003].

Iterative linear solvers such as Jacobi, Gauss-Seidel and CG are
applicable to diagonally dominant and positive semi-definite ma-
trices [Kincaid and Cheney 1991] including the Laplacian matri-
ces we are considering. Since these methods consist of matrix-
vector multiplications, each iteration runs in O(n) time when solv-
ing sparse systems. However, as we noted earlier, in the case of
Laplacian matrices, the number of iterations needed to achieve a
particular accuracy depends on the matrix dimension and hence the
complexity of these methods exceeds O(n). Linear running time is
achieved by applying these iterative solvers in a multi-level fashion,
as in the geometric multigrid method [Brandt 1973]. The hierar-
chical basis method [Yserentant 1986; Szeliski 1990] use a similar
approach, where a multi-level basis is used to precondition the ma-
trix in conjunction with an iterative solver. The GMG method was

extended to handle variable coefficients in [Alcouffe et al. 1981].

Several multigrid solvers have been adapted for specific computer
graphics purposes. A streaming multigrid solver capable of solv-
ing very large problems, arising from processing gigapixel images,
is described in [Kazhdan and Hoppe 2008]. Farbman et al. [2011]
describe a highly optimized pyramid-based solver for tone map-
ping and interpolation. A multigrid framework for the simulation
of high-resolution elastic deformable models, supporting linear and
co-rotational linear elasticity, is described in [Zhu et al. 2010].

Shi et al. [2006] develop a multigrid solver to handle mesh deforma-
tion problems. They show significant speedup over direct solvers
for meshes of upto 3 million vertices. The solver we present in this
paper is faster in wall-clock time and also has higher accuracy. For
example, the solver in [Shi et al. 2006] takes 2.8 seconds to process
a mesh with 800K vertices on a Pentium 4, 3.8GHz with relative
residual 10−3. We process a mesh of the same size in about 0.5s
on a single-core Xeon 2.7GHz with relative residual 10−6. Bolz et
al. [2003] present a GPU-based multigrid solver. However, they
restrict their numerical experiments to small grids with less than
200K vertices.

The condition number of inhomogenous Laplacian matrices is often
considerably higher than their homogeneous counterparts; clusters
of strongly-connected variables that are weakly connected to the
rest of the system introduce very weak modes, known as approx-
imate zero modes, which increase the condition number [Trotten-
berg et al. 2001]. Spatially homogeneous solvers, such as GMG,
fail to capture these spatially irregular modes and do not perform
effectively on such problems.

The algebraic multigrid method (AMG) [Brandt 1986; Brandt
2001] generalizes its geometric counterpart and has a better abil-
ity to isolate and rescale the weak modes in spatially varying ma-
trices. Adaptive coarse-grid selection plays a key role in AMG’s
success in capturing these modes, but at the same time, it leads to a
growth in the bandwidth of non-zero matrix elements at coarse lev-
els. The aggregation-based AMG [Vaněk 1995] and its smoothed
version [Vaněk et al. 1996] limit the number of non-zero elements in
the prolongation matrices that relate successive levels. This avoids
the growth in the matrix bandwidth but also lowers its precondi-
tioning abilities and increases the number of required cycles. The
lean AMG solver [Livne and Brandt 2011] also falls into this cate-
gory but offers a more sophisticated agglomeration rule as well as
a correction step that improves the representation of weak modes at
coarser levels. The use of fixed coarsening is another way to avoid
growth in the matrix bandwidth [Zeeuw 1990; Moulton et al. 1998].
A hierarchical basis analogue of the AMG that also employs regular
grid selection is described [Szeliski 2006]. A careful comparison,
however, shows that methods that use adaptive grid selection of-
fer better overall performance on highly irregular problems [Krish-
nan and Szeliski 2011]. The recently introduced Bootstrap AMG
method [Brandt et al. 2011] automates the process of creating pro-
longation matrices using smoothing iterations over low-energy vec-
tors.

Recent work in theoretical computer science has led to the devel-
opment of preconditioners for graph-Laplacian matrices. A general
umbrella term for these methods is combinatorial preconditioning
[Spielman 2010]. The key is to construct a sparser approximation
of the original matrix that is easy to invert and to then use it as
a preconditioning matrix. For example, Vaidya [1990] suggested
preconditioning with the Laplacian of a maximum spanning tree
derived from the graph of the original Laplacian. This construc-
tion, however, does not offer an attractive bound on the resulting
condition number. Boman and Hendrickson [2001] showed that
better bounds are attained using low-stretch spanning trees. How-
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ever, such constructions require O(n logn) operations and still do
not guarantee that the resulting condition number is independent of
n.

Vaidya [1990] also suggests improving the preconditioning by
adding O(n) edges to the spanning tree. This construction,
which is known as an ultra-sparsifier, solves sparse Laplacian
matrices in O(n log15 n) time and is constructed in nearly lin-
ear time [Spielman and Teng 2006]. The fastest known ultra-
sparsifier based solver is described in [Koutis et al. 2010] and runs
in O(n log2 n(log logn)2) time. Finally, Koutis et al. [2011a] use
the notion of conductance from the support theory of graphs to de-
rive an aggregation-based AMG method. Much progress has re-
cently been made in the theory [Koutis et al. 2011b; Kelner et al.
2013], although practical solvers have yet to emerge from these ef-
forts.

There are also specialized methods that work well in some ap-
plications normally solved using Laplacian matrices. The edge-
avoiding wavelets in [Fattal 2009] offer fast running times for edge-
preserving interpolation and tone mapping. However, unlike our
approach, they consist of a regular sampling strategy and produce
results of limited accuracy. Edit propagation using KD-trees in [Xu
et al. 2009] is another example. Our solution applies to a larger
family of Laplacian matrices, defined over arbitrary domains and
boundary conditions, and is therefore applicable to a wider variety
of applications.

3 Mathematical Background

In this section, we review Laplacian matrices and their connection
to quadratic regularization problems. We use bold letters to denote
vectors, e.g., x= (x1, ..., xn) ∈ Rn, capital letters to denote ma-
trices, and calligraphic letters for sets. We use n as the number of
variables and denote the set of indices by I = {1..n}.

3.1 Laplacian Matrices

Laplacian matrices result from minimizing objective functions of
the form

F (x)=
∑
i∈I

[
ui(xi − yi)2 +

∑
j∈Ni

wij(xi − xj − zij)2
]
. (1)

The first sum contains data terms that measure the proximity of x
to a given input data vector y. The second sum contains smooth-
ness terms that measure the derivatives (pairwise differences) be-
tween every variable xi and its neighbors xj , j ∈Ni, with respect
to (potentially zero) input derivatives zij . As we describe later, in
the applications we are interested in, each set of neighborsNi con-
sists of a small number of variables that are geometrically close to
xi. Typical choices in the case of two-dimensional regular arrays
of pixels are the four- or eight-nearest pixels. The weights ui and
wij define the cost for deviating from the data and smoothness ob-
jectives respectively and are non-negative. The problem becomes
spatially homogeneous when ui and wij are constant and is con-
sidered spatially inhomogeneous otherwise.

The objective F (x) can be expressed in matrix-vector form as

F (x)=(x− y)>U(x− y) + (Dx− z)>W (Dx− z), (2)

where the matrix D is the discrete derivative operator whose rows
correspond to pairs of neighboring variables i and j ∈ Ni. The
weights matrix W is diagonal and contains wij on the row that
corresponds to the interaction between the i-th and j-th elements.
The data weights matrix U is an n-by-n diagonal matrix with Uii=
ui.

The minimum of this discrete quadratic form is obtained by setting
dF/dx=0, which amounts to solving the following linear system

Lx=Uy +D>Wz, (3)

where L is the discrete Laplacian matrix given by

L = U +D>WD. (4)

The matrix L is, by construction, symmetric and positive semi-
definite since x>Lx = x>Ux + x>D>WDx = x>Ux +
(Dx)>W (Dx) and both U and W are diagonal with non-negative
values. The off-diagonal elements of L are all non-positive and
given by Lij = −wij . The diagonal entries are given by Lii =
ui +

∑
j∈Ni

wij and are hence non-negative. These Laplacian ma-
trices are associated with a graph whose vertices are the variables
i and whose edges are weighted by wij . The data terms ui can be
considered as weights of edges connecting the vertices with a set of
auxiliary variables.

The solver we describe in this paper applies for the general family
of Laplacian matrices described by Eq. 1. This family includes a
large portion of Laplacian matrices used in computer graphics and
computational photography applications. For example. the image
colorization of Levin et al. [2004] uses ui = 1 at pixels i containing
user input colors yi and ui = 0 elsewhere. The weightswij depend
inversely on the difference between the i and j pixels gray-level
values. The reference gradient field is set to zero, zij = 0. The
weighted least squares edge-preserving smoothing of Farbman et
al. [2008] uses a similar definition for the smoothness weights but
sets all data terms ui = 1 and provides the input image as the data
y. The dynamic range compression algorithm of Fattal et al. [2002]
and Poisson blending of Perez et al. [2003] use ui = 0 and set zij
to the manipulated gradient field being integrated. This problem is
homogeneous, i.e., wij = 1.

In 3D geometry processing applications, the Laplacian occurs in
such problems as mesh segmentation [Liu and Zhang 2007] and
geodesic distance computation [Crane et al. 2012]. The Laplacian
can either be homogeneous or based on the local curvature or ge-
ometry (inter-vertex distances and angles) in the 3D mesh. Some
of these Laplacian variants, e.g., the co-tangent Laplacian [Crane
et al. 2012], may result in negative weights wij .

Given that most AMG methods, as well as our method, are appli-
cable to Laplacian matrices with strictly negative off-diagonal (M-
matrices), we restrict the formulation of 3D processing problems
this class of matrices. In many cases, defining such matrices while
preserving the same qualitative nature of the operator is possible.
For example, Crane et al. [2012] describe their algorithm for arbi-
trary discretization of the Laplacian operator and then provide two
alternatives. In Section 5, we show a particular discretization that
results in an M-matrix and at the same time achieves the desired
result.

In computer vision applications, problems of the form Eq. 1 arise
from Gauss-Markov MRF models. The data terms are known as
unary potentials and the smoothness terms as binary (or pairwise)
potentials. Example application of such models is optical flow reg-
ularization [Baker et al. 2011].

Energy Function. The Laplacian matrix L assigns an energy value
to each vector x, defined by the Rayleigh quotient

EL(x)=(x>Lx)/(x>x). (5)

The energy values are always non-negative due to the positive semi-
definiteness of L. The eigenvalues of L are the energy values



assigned to their corresponding eigenvectors, since if Lx = λx,
(x>Lx)/(x>x)=(x>λx)/(x>x)=λ.

The input data values yi and derivatives zij contribute only to the
right-hand side of Eq. 3 and hence do not affect the properties of
L. The energy function EL is therefore an intrinsic function of the
Laplacian matrix and it is closely related to the solvability of Eq. 3.

3.2 Matrix preconditioning

The condition number of a symmetric positive definite matrix is
defined as

κ(L)=
λmax

λmin
=
EL(xmax)

EL(xmin)
=

maxxEL(x)

minxEL(x)
, (6)

where λmax and λmin are the maximal and minimal non-zero eigen-
values of L and xmax and xmin are their corresponding eigenvec-
tors. The last equality results from the fact that eigenvalues of L are
the extremal values of EL.

The number of iterations it takes iterative solvers to achieve a cer-
tain accuracy depends on κ(L): O(κ) iterations for Jacobi and
Gauss-Seidel and O(

√
κ) for conjugate gradients [Saad 2003]. In

the case of homogeneous matrices, κ(L) = O(l2), where l is the
domain’s length, l ∝ d

√
n, and d is the spatial dimension (d=2 for

images). Inhomogenous Laplacians often contain approximate zero
modes [Trottenberg et al. 2001], which, according to Eq. 6, lead to
very high values of κ(L).

The condition number of a matrix can be reduced by converting
the linear system, Lx = b, into a related problem by multiply-
ing it with a preconditioning matrix Q−1 such that the condition
number of Q−1L is significantly lower than that of L. In order to
achieve effective preconditioning, the matrix Q−1 must meet sev-
eral additional requirements. Iterative linear solvers such as Jacobi,
Gauss-Seidel and CG consist of repeated matrix-vector multiplica-
tions with Q−1L, which is typically computed in succession, with
L and then with Q−1. Therefore, multiplying a vector with Q−1

must not be significantly more expensive than multiplication with
L. For example, in the case of sparse Laplacian matrices, these
operations must cost O(n). Note that this does not require Q−1

to be sparse; there just needs to be an efficient procedure for mul-
tiplying it with vectors, which is the case with various hierarchi-
cal schemes (Section 3.3). Another important aspect is that Q−1L
must meet solver-specific requirements, for example maintain the
positive definiteness of L in case of the Preconditioned Conjugate
Gradient (PCG) method.

A fundamental theorem in combinatorial matrix preconditioning
shows that the effectiveness ofQ−1 as a preconditioning matrix de-
pends on how well EQ approximates EL. More specifically, given
a, b>0 such that

∀x, aEQ(x) ≤ EL(x) ≤ bEQ(x), (7)

κ(Q−1L) ≤ b/a [Boman and Hendrickson 2003, Prop. 2.4]. We
make use of this rule in our derivations.

3.3 Hierarchical preconditioning

Hierarchical preconditioners are constructed by formulating a
smaller version of the original problem and using its solution as
the approximate inverse for the original problem [Trottenberg et al.
2001; Saad 2003; Szeliski 2006]. Geometric multigrid techniques
use a regular set of decimation rules (e.g., full octave decimation)
and standard interpolation operators as their basis, and are partic-
ularly well suited for homogeneous problems [Trottenberg et al.

Figure 2: Effect of Sparsification. The left graph shows how our
sparsification step maintains an average bandwidth below 4 (blue
curve) in all the hierarchy levels. Without the sparsification the (red
curve) bandwidth grows until it reaches the matrix dimension. The
right graph shows the scheme’s ability to achieve an exponential
reduction in the number of variables (blue curve), where without
sparsification, fewer variables can be marked as fine and get elim-
inated (red curve). We used an inhomogeneous two-dimensional
regular five-point Laplacian matrix in this example. Note that the
sparsified hierarchy has fewer levels, as it more quickly reaches
target coarse level size.

2001]. Algebraic multigrid techniques use both adaptive coarsen-
ing strategies and adaptive interpolation weights, which make them
better suited for inhomogeneous problems. Unfortunately, the elim-
ination of fine-level variables results in an increase in the matrix
bandwidth, or, alternatively, a sub-exponential decrease in the ma-
trix size (Figure 2). In order to reduce the bandwidth growth (fill-
in) in coarser problems, AMG techniques drop small off-diagonal
terms.

Adaptive basis functions [Szeliski 2006; Krishnan and Szeliski
2011] perform the sparsification (element elimination) before cre-
ating the coarser-level (smaller) problem, which allows them to
compensate for these eliminations by increasing nearby connec-
tions. In Section 4.2, we derive an alternative compensation strat-
egy that is based on an analysis of the spaces spanned by the fine
and coarse variables and hence produces a better preconditioner
(slower growth in condition number).

Once the Laplacian matrix has been sparsified and compensated,
we divide the variables into coarse C and fine F sets such that the
coarse variables encode the low-frequency modes in the solutions,
i.e., the modes that are not well solved by local smoothing or relax-
ation, and the fine level variables have no remaining connections
between each other. The exact method for selecting these variables,
which in our new algorithm is interleaved with the sparsification
step, is described in Section 4.3.

Once the selection of coarse and fine variables has been done, we
rearrange the indices in I such that C come first followed by F .
Under this permutation, the matrix L becomes

L=

[
LCC LCF
LFC LFF

]
, (8)

where LCC contains only the connections between the coarse vari-
ables, LFC = L>CF contains the connections between coarse and
fine variables, and LFF among the fine variables. Since the fine
variables are uncoupled, LFF is diagonal. The elimination of the
fine variables is obtained by computing the Schur complement us-
ing the transformation matrix

P =

[
ICC 0

−L−1
FFLFC IFF

]
, (9)

which is applied to L on both sides,

P>LP =

[
LCC−LCFL−1

FFLFC 0
0> LFF

]
. (10)



Note that the matrix L−1
FF is an inverse of a diagonal matrix and is

trivial to compute, and that S = L−1
FFLFC is the interpolation (or

prolongation) matrix used in hierarchically preconditioned conju-
gate gradient [Krishnan and Szeliski 2011, Algorithm 1]. Since L
is a sparse matrix, so is P , and this elimination step is computed in
linear time.

The resulting two-block matrix in Eq. 10 describes two systems that
are solved independently. The fine system, LFF , is diagonal and
solved exactly. In Appendix A (Lemma 1) we show that the coarser
system, LCC−LCFL−1

FFLFC , is a Laplacian matrix like the original
matrix L. This allows us to apply the same procedure again over
this system, compute a Schur matrix, and repeat this process recur-
sively over the resulting coarse system. At each level, we do not
operate on the fine variables eliminated in the previous levels and
hence obtain a sequence of of n-by-n transfer matrices P 1, P 2, ..
that contain the current level’s prolongation matrix as the top-left
block and are identity over the remaining coordinates (correspond-
ing to the fine variables of all previous levels). The recursive elim-
ination process is terminated once the number of coarse variables
falls below some threshold (e.g., 1024, although changing this to
512 or 2048 does not affect our performance), since the direct so-
lution of such small systems using Cholesky decomposition takes a
negligible amount of time compared to finer-level operations.

4 Sparsification and Coloring

In the previous section, we presented a general framework en-
compassing previously developed hierarchical preconditioning al-
gorithms for the solution of sparse Poisson equations. How does
our new approach, Hierarchical Sparsify and Compensate, differ
from these other techniques?

The key difference is that rather than using a fixed sparsification and
coarsening scheme, as in ABF [Krishnan and Szeliski 2011], we
adaptively select which edges to sparsify and which nodes to select
as coarse and fine variables. (This process is often called coloring
[Trottenberg et al. 2001].) Our extensions allows the ABF algo-
rithm, which already performed well on a wide variety of computa-
tional photography applications, to now also perform well on more
inhomogeneous problems as well as unstructured meshes. Com-
pared to AMG [Brandt 1986] and CMG [Koutis et al. 2011a], our
technique does a better job of creating a hierarchy of smaller ap-
proximate problems (because of our use of adaptive interpolants
and compensations steps), and hence has better convergence and
run-time properties.

Our sparsification and coloring algorithm tries to simultaneously
satisfy two somewhat conflicting goals. The first is to produce a
large number of disconnected fine variables, since the smaller we
can make the coarse system, the easier it is to solve or invert. The
second is to only sparsify connections that are already quite weak
compared to the neighboring compensation paths. We solve this
tension by developing a greedy algorithm that visits fine and un-
marked variables and searches for connections to other variables
that can be sparsified, which then enables these variables to also be
colored as fine. The exact algorithm is described in Section 4.3. Be-
fore we get there, however, we first describe how to find good con-
nections to sparsify and how to compensate for such operations.

4.1 Matrix Sparsification

We now explain how we avoid the growth in matrix bandwidth
and increase the number of fine variables by carefully dropping
off-diagonal elements at every level of the hierarchy, before exe-
cuting the elimination. Unfortunately, eliminating a large number
of off-diagonal elements introduces approximation errors, meaning

that it cannot be used for computing the exact inverse of L. As we
explained earlier, we use the approximated inverse for matrix pre-
conditioning and accelerating different iterative solvers. In order
to achieve low condition numbers, we need to keep the sparsified
matrix ‘close’ to the original Laplacian. In this section, we explain
how we carefully chose the off-diagonals to drop fromL to produce
L̃ based on its effect on the condition number κ(LL̃−1). Let us first
define more precisely what we mean by dropping connections in the
matrix.

There are two properties that we need to preserve when sparsifying
a matrix. We need to preserve its nature as a Laplacian matrix so
that the following levels of the hierarchy are constructed in the same
manner. To preserve its symmetry when setting Lij to zero, we also
set Lji to zero. However this alone does not preserve the type of
the problem, for example, in the case of purely regularization data-
less problem, where ui = 0, the row and column sums of L are
zero. Setting off-diagonal elements to zero results in a matrix with
positive row and column sums which corresponds to a problem with
data terms.

We avoid this problem by replacing Lii by Lii+Lij and Ljj by
Ljj +Lij when we drop the i, j element. From now on, we in-
terchangeably say that we drop Lij or the weight wij and in both
cases refer to the same procedure where the diagonal elements are
modified.

In order to decide which off-diagonal elements are dropped, we
refer to the condition described in Section 3.2 which guarantees
κ(LL̃−1) ≤ b/a, given lower and upper energy bounds b and a
obeying Eq. 7. If the energies assigned by the sparsified matrix L̃
are close enough to those assigned by the original matrix L, the
sparsified matrix will provide a good preconditioning. As we dis-
cussed in Section 3.1, the energy EL(x) (Eq. 5) does not depend
on the norm of the vector ‖x‖ and hence we can restrict the dis-
cussion to unit vectors x, in which case the energy function co-
incides with the objective function in Eq. 2. Dropping a weight
wij means that the energy function ceases to account for changes
between xi and xj . However, in case there is a third coordinate
k such that both wik > 0 and wjk > 0, any difference between
xi and xj must be accompanied by a difference between xi and
xk or between xj and xk. Thus, for example if wij � wik, wjk,
the penalty term wij(xi − xj)2 is dominated and negligible com-
pared to either wik(xi − xk)2 or wjk(xi − xk)2. In Appendix A,
Lemma 2, we prove that in such cases of triangular connectivity,
when dropping the weakest weight, we get a = 1 and b ≤ 3 and
hence κ(LL̃−1) ≤ 3.

In view of these observations and the fact that we need to remove
many connections to ensure rapid coarsening, we apply the follow-
ing sparsification procedure. At each level of the hierarchy, we
search for triplets of variables that form a triangle and remove the
weakest edge in each triangle. This procedure is applied by scan-
ning the matrix elements until no more triangles are found.

Figure 2 shows the non-zero matrix bandwidth and the matrix di-
mension at each hierarchy level with and without applying spar-
sification. In this experiment our strategy selects and eliminates
between 40% − 50% of the variables at each level and avoids a
growth in bandwidth. These actions are highly local, at the scale
of three coupled variables, and hence run in time linear in the num-
ber of variables and connections in the matrix. As we explain next,
we further improve the energy preservation by adjusting the two
remaining weights of every sparsified triangle.



Figure 3: Scheme Progression. We show the connectivity graphs at each level for a highly discontinuous EPS problem, starting from a
four-point Laplacian matrix defined by the left image. Red circles show fine (eliminated) variables and black show the coarse ones. Green
lines show the connections kept between variables and red show the ones removed during sparsification. The thickness of the lines indicates
the corresponding weights strengths. Please see the supplementary results for additional examples.

4.2 Compensation Step

When computing a single level of the hierarchy, low condition num-
bers are achieved even though multiple overlapping triangle are pro-
cessed and the theoretical bound becomes κ ≤ 3r where r is a
bound on the number of times the same edge participates in a trian-
gle. However, when applying this strategy at every hierarchy level,
the sparsification errors of the different levels accumulate. For ex-
ample, there could be a vector x whose energy drops by a factor of
3 due to the sparsification that takes place at each level. Thus, after
the expected number of m = log(n) hierarchy levels, its energy
drops by a factor of 3log(n) = O(n), meaning that the condition
number κ(LQ−1) = O(n), where Q represents the approximate
operator obtained by the entire hierarchy. As we discussed earlier,
this dependency of κ on n is observed in non-preconditioned Lapla-
cian matrices.

The key observation that allows us to cope with this shortcoming
is the fact that at each hierarchy level, about half the variables are
eliminated and these variables define a linear subspace that does not
experience the sparsification taking place in the following levels.
This means that there is a hierarchy of subspaces that undergo a dif-
ferent number of sparsification steps. Similarly to Szeliski [2006],
we alter the remaining matrix elements in order to compensate for
the loss of those elements dropped during sparsification. Our com-
pensation formula, however, is based on an analysis that character-
izes vectors based on the number of sparsification steps they un-
dergo. Thus, we both extend Szeliski’s approach to an adaptive
coarsening schemes as well as improve it by establishing the sense
at which L̃ should best approximates L.

In Appendix B, we show that the linear subspace spanned by the
columns of P 1P 2..P l, which correspond to the fine variables elim-
inated in the l-th hierarchy level, is affected by the sparsification
steps in the first l hierarchy levels. We further show that this sub-
space is characterized by having low energy values, since the elim-
ination steps that define it correspond to the minimization of the
energy over the eliminated variables. In view of this relation be-
tween the number of sparsification steps and low-energy vectors,
whenever a triangle is sparsified, we compensate by adjusting its
two remaining weights such that the triangle’s energy contribution
remains unchanged over low-energy vectors.

Assuming thatwij is the weakest weight of a triangle which is set to
zero, our compensation procedure consists of finding the sparsified
matrix weights w̃ik and w̃jk of L̃ that satisfy

EL(u) = wij(ui−uj)
2+wik(ui−uk)

2+wjk(uj−uk)
2+E′

= w̃ik(ui−uk)
2+w̃jk(uj−uk)

2+E′ = EL̃(u),
(11)

where u is one of two low-energy vectors. (The same equation is
defined over the second vector v.) The scalar E′ accounts for the
total cost of the rest of the energy terms in Eq. 2 that are unrelated to
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Figure 4: Sparsification and Compensation in a Triangle. Left
shows how the two vectors u and v are aligned with respect to
the triangle and at the right we see the sparsified and compensated
triangle weights which preserve the energy of u and v.

wij , wik, and wjk and can therefore be omitted from Eq. 11. Since
Eq. 11 and its counterpart for v consist only of differences between
the variables, they are invariant to the addition of any constant to
ui, uj , uk and vi, vj , vk.

These invariants leave us with only a single degree of freedom in
u and v, which we need to determine in order to model the shape
of low-energy vectors at the coordinates i, j and k. We use the
following rationale to obtain these two model low-energy vectors.
Consider the scenario where wik is much greater than wjk (and
wjk > wij). In this case, differences (ui − uk)

2 lead to a higher
energy than (ui − uj)

2 and hence the former is expected to be
much lower in the case of low-energy u. Low-energy vectors will
therefore attain similar values at i and k and acquire different val-
ues at uj . Given the invariants we discussed, this situation can be
modeled by choosing [ui, uj , uk] = [0, 1, 0]. The reverse scenario
where the j-th and k-th variables are strongly coupled and both are
weakly connected to the i-th, can be modeled by the second vec-
tor [vi, vj , vk] = [1, 0, 0]. These scenarios are often encountered
in the two-dimensional computer graphics applications that we are
interested in, where the weights are determined by pixel differences
of some reference image. The two constellations result from strong
edges in the reference image that pass through the i, j, k triangle
and separate its pixels into two sets of distinct colors.

In this choice of u and v, we dismiss a third scenario, where wik ≈
wjk and both of them are much higher than wij . This scenario
is less common in the applications that we are interested in since
there is no assignment of pixel values that will lead to such weights.
Furthermore, in such situations, the cost of wij(ui − uj)

2 will be
penalized by either wik(ui − uk)

2 or wjk(uj − uk)
2 since both

wik and wjk are assumed large. Lastly, the low-energy vectors are
expected to be close to uniform at such triangle and, as we shall see
below, we handle these situations properly with our current choice
of u and v.

Solving Eq. 11 for u and its analog for v boils down to simple
and efficient update formulas for w̃ik and w̃jk. The energy of
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Figure 5: Modeling Fourier Modes. Illustration shows how our
choice of u models locally the shape of horizontal low-frequency
Fourier modes. The transposed diagram applies for v.

[ui, uj , uk] = [0, 1, 0] before sparsification is given by wij + wjk.
After dropping wij , the energy becomes w̃ik and hence to preserve
this energy, we need

w̃ik = wik + wij , (12)

and similarly, for [vi, vj , vk] = [1, 0, 0], we get

w̃jk = wjk + wij . (13)

This action is illustrated in Figure 4.

The AMG method in [Livne and Brandt 2011] also corrects the ma-
trices with respect to low-energy vectors. However, these vectors
are computed globally by applying an iterative method to reduce
the energy of random vectors. In order to achieve very low-energy
vectors as our analysis suggests, many such iterations are needed
for larger systems. Our method avoids this additional cost through
its simple local operation.

Data Connections. The derivation of both the sparsification and
compensation accounts only for the smoothness terms in Eq. 2.
Non-zero data terms, ui in Eq. 1 can be viewed as weighting differ-
ences with auxiliary variables of fixed values, namely yi in Eq. 1.
Since each of these auxiliary variables is connected to only a single
variable xi, it never participates in a triangle. Hence, these connec-
tions need not be involved in any sparsification and compensation
steps. In practice, this means that the sparsification and compensa-
tion steps are applied onL after removing its excess diagonal values
so that its rows and columns become zero-sum. Once these steps
have been applied, the excess diagonal values are added back to L̃.

Homogeneous Systems. In the case of homogeneous Laplacian
matrices, such as the spatially invariant Poisson used in [Fattal et al.
2002; Pérez et al. 2003; Sun et al. 2004], the eigenvectors of L are
the Fourier modes [Trottenberg et al. 2001]. The two lowest en-
ergy (non-constant) eigenvectors are low-frequency horizontal and
vertical sinusoids. From the perspective of three variables forming
a triangle in the grid, these functions appear as two linear ramps. As
shown in Figure 5, our compensation function preserves the energy
in these Fourier modes.

If we make sure that our selection of coarse and fine variables as we
drop matrix elements maintains spatial homogeneity, our construc-
tion boils down to a geometrical multigrid method for homogenous
problems.

Our scheme is also important in the case of inhomogeneous prob-
lems, which often contain large homogeneous regions, e.g., due to
nearly constant regions in the reference image. In the next section
we explain how we make sure our scheme maintains spatial homo-
geneity in such regions.

Table 1 shows the effect that careful compensation has on condition
numbers for homogenous Poisson matrices of increasing size. We
compare our method with a sparsification-only version, where we
drop the weakest edges in each triangle but do not perform any
compensation. Running our method with compensation has the
property of h-independence, while without it, the condition num-
ber increases with the problem size.

Algorithm 1 Sparsify and color
input: Laplacian matrix L and optionally the coordinates of the mesh vertices;
output: Fine F and coarse C variable indices and the sparsified matrix L̃,
which, according to Eq. 9, determine the prolongation matrix S.

1. Remove the excess diagonals from L and store them in E
2. Set all vertices as unmarked except for the first one, which we mark as fine
3. Flag variables as geometric or non-geometric
4. Cycle through vertices i in the matrix

if i is marked as coarse, skip to the next vertex
for each triangle in which vertex i participates

if all three vertices are flagged as geometric
Cut longest edge in the triangle and compensate
Mark the vertices in this triangle as coarse or fine

according to the global red/black settings
else
Cut the weakest edge in the triangle and compensate
If vertices on weakest edge are unmarked, mark them as fine

endif
Set unmarked neighbors of i as coarse

endfor
5. Set unmarked vertices that have fine neighbors to coarse, else fine
6. For any fine-fine connections, set one of the endpoints to coarse
7. Set any coarse variables connected only to coarse variables as fine.
8. Add the excess diagonal in E back to L to produce L̃

4.3 Coloring algorithm

With our sparsification and compensation steps in place, we need
to decide how to color the original variables in the Laplacian as
coarse C or F and how to interleave the process of sparsifica-
tion/compensation into this procedure.

The algorithm we have developed is based on the observation that
we want to produce a large number of fine variables (to obtain
smaller problems), but that it is best to cut weak edges to limit the
growth in condition number.

Our algorithm (Algorithm 1) visits nodes in their lexicographic or-
der (how they were given in the original problems), ignoring nodes
already marked as coarse, since we do not need to cut connections
between these nodes and their neighbors. For each unmarked or fine
node, we search its neighbors and neighbors’ neighbors, looking for
triangles where an edge emanating from the current node can be cut
because it is no larger than the other edges in the triangle. When we
find such an edge, we eliminate it, compensate the other two edges
in the triangle, and mark both endpoints of the eliminated edge as
fine. At the end of this procedure, we label any unmarked vari-
ables as fine or coarse (depending on their neighbors), fix fine-fine
connections by marking one endpoint as coarse, and check for any
coarse variables surrounded by coarse variables, which can be set
to fine.

In homogeneous regions where we have additional geometric in-
formation, i.e., the (x, y) locations of variables, we modify the
above edge selection and coloring procedure to produce a regular
red/black coloring. To determine if a variable is in a homogenous
region, we take the difference between the strongest and weak-
est connections of the variable and divide this difference by the
strongest connection. We then find the mean of these ratios over
all variables. Any variable whose ratio is below or equal to the
mean ratio is marked as geometric. When sparsifying triangles, if
all three vertices are marked as geometric, we cut the longest edge
in the triangle based on its geometric distance. We also mark ver-
tices according to a global red/black coarsening scheme, so that fine
variables are disconnected from each other. These steps ensure that
our scheme reduces to geometric multigrid for smoothly varying
problems. In this approach, homogeneous regions in inhomoge-
neous problems are also processed using geometric coarsening.



Problem Size Original CN CN with comp. CN with no comp.
1024 423 1.2 1.6
4096 1676.7 1.2 2.4
16384 6674 1.3 3.7
65536 26629 1.4 5.6
262144 106380 1.5 8.6
1048576 452500 1.5 13

Table 1: Comparison of condition numbers with and without compensation. First columns gives the dimension of the homogenous Laplacian.
Second column gives the unpreconditioned condition number. Third and fourth columns give the preconditioned condition number with and
without compensation, respectively.

Once our hierarchical preconditioner has been constructed, we use
it in combination with conjugate gradients to precondition the so-
lution of Lx = b using the multilevel V-cycle described in [Krish-
nan and Szeliski 2011, Algorithm 1]. In the experiments we report
in this paper, we use a single step of post-smoothing, νpost = 1,
and no pre-smoothing, νpre = 0 and a V-cycle (γ = 1) since
this resulted, on average, in the fastest running algorithms. For our
smoothing algorithm, we use lexicographic-order Gauss-Seidel.

4.4 Updating the Preconditioner for Diagonal Shifts

In a number of applications [Farbman et al. 2008] and [Crane et al.
2012], diagonally shifted versions of the original laplacian L are
considered. These perturbations result in Laplacians of the form
L + tI , where I is the identity matrix and t is a non-negative
scalar. For example, in edge-preserving decomposition [Farb-
man et al. 2008], these perturbations give rise to a multi-scale
decomposition—larger values of t correspond to coarser scale ver-
sions of the original image. In smoothed geodesic computation on
meshes [Crane et al. 2012], the scalar t controls the smoothness of
geodesic distances on a mesh. The offset t is often not known in
advance and needs experimental determination.

In order to avoid the expensive steps of sparsification, compensa-
tion, and coloring, we developed the following approximate method
for computing a good preconditioner for L + tI given our already
constructed hierarchical preconditioner for L. We define the excess
diagonal at the finest level as E0 = tI . The finest-level Lapla-
cian is modified from L0 to L0 + E0. The excess diagonal for the
next coarser level is then computed as E1 = diag(S1T diag(E0)),
where S1 is the interpolation matrix at the next level as defined
in Algorithm 1. The operator diag is analogous to MATLAB: it
extracts the main diagonal from a matrix, or embeds a vector into
the main diagonal of a matrix. This results in E1 being a diago-
nal matrix. The Laplacian at level 1 is then changed from L1 to
L1 + E1, where only the diagonal elements of L1 are modified.
This process is continued all the way through the hierarchy, and the
modified Cholesky decomposition of the coarsest level Laplacian is
also recomputed accordingly.

This update process does not require any new sparsification, com-
pensation or Schur elimination of the coarse level matrices, and is
hence extremely fast, typically an order of magnitude faster than re-
computing the preconditioner. This updated preconditioner is also
very accurate, usually only requiring only one extra CG iterations,
as compared to using the recomputed hierarchy for L+ tI . In Sec-
tion 5, we give timings for an edge-preserving sharpening applica-
tion on a multi-megapixel image.

We experimented with the same update scheme for the other pre-
conditioning methods we compare against in Section 5. The result-
ing hierarchies proved very poor preconditioners.

Figure 6: Mesh Segmentation using Spectral Embedding: The 3D
mesh is embedded into the 2D planar shape. Contour analysis is
performed on this planar shape to determine segments in the origi-
nal mesh. The fingers of the mesh are mapped to the spiky parts of
the planar graph. Our solver is used to compute the lowest eigen-
vectors of the mesh Laplacian, to perform the spectral embedding.

4.5 Efficient Multilevel Eigensolver

A number of applications such as mesh segmentation [Liu and
Zhang 2007] and spectral matting [Levin et al. 2007] require the
computation of a few lowest eigenvectors of a Laplacian. In mesh
segmentation, a 3D mesh is spectrally projected onto the plane by
projecting the mesh coordinates on the lowest two non-zero eigen-
vectors of the mesh Laplacian. Contour analysis is then performed
on the projected planar shape (Figure 6). Two types of Laplacians
are used in this application: a graph (homogenous) Laplacian and a
geometric Laplacian designed to enhance concavity of the resulting
planar shape.

Since our hierarchy explicitly preserves low energies, a natural
strategy is to use a multi-scale approach to compute the lowest
eigenvectors. First, we compute the lowest few eigenvectors at a
coarse level. We then interpolate these eigenvectors to the finest
level. This interpolation already gives us a very good approxima-
tion to the true lowest eigenvectors. To refine the vectors further,
we perform a few iterations of block Davidson smoothing [Arbenz
et al. 2003] at the finest level. Typically, less than a dozen iterations
of block Davidson smoothing gives us a very accurate estimate with
a relative error of 10−4. This level of accuracy suffices for most
graphics applications. The resulting multilevel eigensolver is twice
as fast as MATLAB’s built-in eigensolver for meshes with a million
or more vertices, which uses the state of the art Lanczos methods to
determine eigenvectors. In Section 5, we give timings for the eigen-
solver for meshes of different sizes. Kushnir et al. [2010] also de-



Figure 7: Independence to system size. Left plot shows the condi-
tion number of the precondition systems achieved by various meth-
ods with respect to the matrix dimension n. Similarly, the right plot
shows the number of CG iterations needed to achieve a fixed error
or 10−4 with each method. Both the geometric multigrid method
and our method show invariance to the scale.

velop a multilevel eigensolver using algebraic multigrid methods.
However, due to lack of available code, we are unable to compare
with their scheme.

5 Results

In this section, we compare the performance of our precondition-
ing scheme against a number of other preconditioners, as well as
MATLAB’s direct solver, for a range of 2D and 3D problems. We
embed the different preconditioners in the preconditioned conjugate
gradient (PCG) method described in [Krishnan and Szeliski 2011,
Algorithm 1] with νpre = 0, νpost = 1, and γ = 1. Note that
it is not essential to have a symmetric preconditioner for PCG to
converge [Bouwmeester et al. 2012] and we choose to not have pre-
smoothing since it does not help with convergence and adds com-
putational complexity. We implement our solver in MATLAB/Mex.
Our code is publicly available 1. Please see the supplementary ma-
terials for additional visual results, e.g., the input and output images
and meshes.

In our experiments, we measure the convergence of a solver for
Lx = b using two metrics: error with respect to the true solution
computed by a direct solver, and relative residual, given by ‖Lx−
b‖/‖b‖. The relative residual is the measure used for terminating
PCG iterations. For all experiments involving linear solvers, we use
a target relative residual of 10−6.

We compare the performance of our preconditioner against five
other state of the art preconditioners. The first is combinatorial
multigrid (CMG) [Koutis et al. 2011a]. This is an agglomerative
multigrid method that clusters strongly coupled variables into a sin-
gle coarse-level variable. The interpolation operators simply copy
the value of the coarse variable into all fine variables that belong to
the cluster. The second is another variant of this approach that takes
the classic Ruge-Stuben AMG approach in [Brandt 1986; Trotten-
berg et al. 2001] and truncates the prolongation matrix to a single
variable at every row (which makes it agglomerative as well) in or-
der to avoid the growth in the matrix bandwidth. The third method
is the lean algebraic multigrid (LAMG) [Livne and Brandt 2011],
which was described in Section 2. The fourth is a standard geo-
metric multigrid (GMG) method that employs first-order prolonga-
tion and restriction matrices [Trottenberg et al. 2001]. The fifth is
the adaptive basis function (ABF-Pre7) method of [Krishnan and
Szeliski 2011] that uses fixed coarsening. Except for AMG and
GMG, we used code provided by the authors. For all these meth-
ods, we compare the reduction in error with respect to the number of
iterations and floating-point operations (flops) and the decrease in
relative residual with respect to iterations. We also report the wall-

1http://www.cs.huji.ac.il/˜raananf/projects/hsc/

Problem Size
Gauss-Seidel

Its./Time
Jacobi

Its./Time
HDR comp. 4.2M 10/6.6s 7/5.3s
Colorization 5.0M 3/4.8s 4/6.5s

EPD compress (3 scales) 4.2M 51/45.5 57/52.6s
EPD sharpen (5 scales) 4.2M 49/41.8s 55/42.4s

Table 4: Comparing 2D problem solves with different smoothers:
Gauss-Seidel and Jacobi. Both smoothers are used as post-
smoothing only, the Jacobi smoother being used with a damping of
0.8. In each column we list the number of iterations (Its.) and wall-
clock time in seconds to reach a relative residual of 10−6. Neither
smoother always outperforms the other. For the EPD problems, we
report the total number of iterations and time over multiple scales.
Setup times are the same for both smoothers and are not reported
here.

clock running times needed to achieve a sensible accuracy thresh-
old. These latter (tabular) results include running time comparisons
with MATLAB’s direct solver, which is highly optimized.

5.1 2D Problems

We evaluate our algorithms on three kinds of 2D computational
photography problems: homogeneous Poisson equations, non-
homogeneous Poisson equations that arise in image coloriza-
tion [Levin et al. 2004], and those that arise in EPD problems [Farb-
man et al. 2008].

Homogenous Poisson Problem. Homogenous Poisson matrices
are used for various problems that require the integration of a ma-
nipulated gradient image field, e.g., tone mapping [Fattal et al.
2002] and Poisson blending [Pérez et al. 2003]. In Figure 7, we em-
pirically verify h-independence we discussed in 4.2 by tone map-
ping the same image at various sizes. The plots show that our
method, similarly to GMG, does not depend on the problem size.
There are more efficient methods for solving this problem [Farbman
et al. 2011]. However, ensuring that the h-independence property
holds for our technique allows our method to scale well on prob-
lems with mixed coefficients that have large uniform regions within
them.

Edge-Preserving Decomposition (EPD) and Image Coloriza-
tion. In Figure 8, we compare the methods on the highly irregular
matrices arising from the use of EPD for dynamic range compres-
sion and detail enhancement [Farbman et al. 2008]. Our method
and CMG perform the best. Geometric methods such as GMG and
ABF perform poorly because they use regular subsampling grids
that fail to preserve thin regions at coarser levels. As described in
Section 4.4, our preconditioner can be efficiently updated for prob-
lems such as Edge-Preserving decomposition, where a series of di-
agonally shifted Laplacians are generated.

In Table 2, we show the timing results for EPD compression and
EPD sharpening for multiple such shifts. Neither CMG nor the di-
rect solver have such an update, so their performance suffers com-
pared to our solver. CMG is competitive with our solver for EPD-
like problems if only a single solve is required. However, for mul-
tiple solves, our performance greatly improves due to our efficient
preconditioner update.

Figure 8 also compares the methods on matrices arising from the
colorization problem [Levin et al. 2004] of a very large image. This
problem uses less irregular weights and hence the piecewise con-
stant basis functions that CMG use undermine its performance.

In Table 2, we summarize the wall-clock running times of the dif-

http://www.cs.huji.ac.il/~raananf/projects/hsc/


Problem Size Direct CMG HSC LAMG AMG ABF GMG
HDR comp. 4.2M 31.1 29.8 15.3 107.4 24.5 14.8 19.9
Colorization 5.0M 118.9 19.7 12.8 129.7 26.1 12.6 27.3

EPD compress (3 scales) 4.2M 140.4 88.8 70.4 - - - -
EPD sharpen (5 scales) 4.2M 125.0 97.7 55.7 - - 75.8 -

Table 2: Total wall-clock time taken (Setup + Solve) in seconds for problems arising on 2D grids. For each problem, winners are highlighted
in bold. Timings within 15% of each other are considered a tie. A ’-’ means the iterative method did not converge to the target relative
residual (10−6) within 30 CG iterations. In all cases, our HSC method is faster than the direct solver by factors ranging from 1.2 to 9.3. The
first column gives the number of unknowns. Our method performs the best over a range of problems with different levels of continuity.

Problem Size Unpreconditioned CMG HSC LAMG AMG ABF GMG
HDR comp. 4.2M 1.7× 106 12.4 1.5 5.7 14.0 1.5 1.4
Colorization 5.0M 2.2× 107 11.6 2.2 2.0 19.9 2.3 20.8

EPD compress 4.2M 1.0× 106 9.0 5.9 - - - -
EPD sharpen 4.2M 6.7× 105 10.7 6.6 - 6.9 - -

Table 3: Condition numbers achieved by the solvers for different 2D problems. The third column gives the condition number of the unprecon-
ditioned Laplacian. The fourth column onwards list the condition number achieved by each method for that problem. For the EPD problems,
the Laplacian at the finest level was used to compute the condition numbers. A ’-’ means that the method did not converge for a problem.

ferent methods on different 2D problems. In Table 3, we present
the condition numbers achieved by the different methods on these
2D problems.

Finally, in Table 4, we replace the Gauss-Seidel post-smoothing in
our algorithm with a Jacobi smoother, to isolate the effect of the
smoothing algorithm. The Gauss-Seidel smoother seems better for
heterogenous problems, but Jacobi is better for homogenous prob-
lems. In our code we provide user options to switch between these
two smoothers.

5.2 3D Meshes

We now consider applications of Laplacians arising in 3D mesh
processing. The first is mesh segmentation, the second is geodesic
distance computation on meshes, and the third is mesh denoising.
We note that for both geodesic distance computation and mesh de-
noising, cotangent Laplacians are usually used. Since our precon-
ditioner requires an M-matrix as input, we use instead the homoge-
nous Laplacian for geodesic distance computation and a Laplacian
with inverse Euclidean-based distance measure for mesh smooth-
ing.

Mesh Segmentation. As explained in Section 4.5 and shown in
Figure 6, the mesh segmentation method developed in [Liu and
Zhang 2007] uses at its core an eigensolver to compute the three
lowest eigenvectors of a Laplacian defined over the 3D mesh. Two
types of Laplacians are described in the paper: a homogenous graph
Laplacian and a geometric Laplacian. In Table 5, we compare the
timings taken by our eigensolver, AMG, and MATLAB’s built-in
eigensolver, eigs, to compute the three lowest eigenvectors of ho-
mogenous Laplacians defined over 3D meshes of different sizes.
For larger mesh sizes, we are between two and three times faster
than MATLAB’s eigensolver. We observe similar performance for
the non-homogenous Laplacians defined in [Liu and Zhang 2007].
The CMG solver does not have an explicit preservation of low
eigenvectors across the hierarchy. As a result, a multi-scale ini-
tialization works poorly for eigenvector computation.

Geodesic Distance Computation. In [Crane et al. 2012], a heat
kernel is used to compute geodesic distance between points on a
3D mesh. The method introduced in their paper involves the solu-
tion of two linear systems. The Laplacians in these two systems are
related to each other by a diagonal shift. Hence, our preconditioner

Mesh Vertices
MATLAB

eigs
AMG

(Speedup)
HSC

(Speedup)
Hand 50K 0.9 0.9 (1x) 0.9 (1x)
Lion 150K 3.9 3.0 (1.3x) 2.6 (1.5x)
Lago. 800K 27.1 16.1 (1.7x) 10 (2.7x)

Neptune 2M 60.9 35.6 (1.7x) 30.8 (2x)
Statuette 5M 154.8 82.3 (1.9x) 66.5 (2.3x)

Table 5: Wall clock time (in seconds) to compute the lowest three
eigenvectors of homogenous Laplacian defined on a 3D mesh, com-
paring our eigensolver, agglomerative AMG, and MATLAB’s eigs.
The speedup of our solver and AMG over the direct solver is given
in parentheses.

Mesh Vertices Direct Solver
HSC Setup/Solve

(Speedup)
Lion 150K 7.5 1/0.5 (15.6x)
Lago. 800K 36.2 2.6/1.7 (21.3x)

Neptune 2M 104.4 11.3/6.2 (16.8x)
Statuette 5M 202 29.1/13.3 (15.2x)

Table 6: Wall clock time (in seconds) to compute geodesic dis-
tances on 3D meshes of different sizes. We compare our solver and
speedup over MATLAB’s direct solver. The agglomerative methods
AMG and CMG failed to converge to an accurate solution for these
Laplacians (see text for details). The speedup ratios are given for
the solve phase over the direct solver.

update scheme (Section 4.4) helps to reduce the overall computa-
tion time. In Table 6, we compare our solver and MATLAB’s direct
solver on homogenous Laplacians defined over meshes of different
sizes. CMG failed to construct a hierarchy (with a bug that we were
unable to fix). AMG was very slow, taking over 100 PCG iterations
to achieve an accuracy of 10−2. Our solver provides a significant
speedup over the direct solver. Figure 1 (right) shows the visualiza-
tion of geodesic distances computed on the Caesar mesh. Here, the
distances are computed from a point on Caesar’s nose (red is closer
to the source point, blue is farther). The isolines of the resulting
distance function are also shown.

Mesh Smoothing. We perform Laplacian-based smoothing of
noisy meshes, using the inverse Euclidean distance measure be-



Figure 8: Performance comparison for 2D problems with varying degrees of homogeneity: top: HDR Compression on a 2048×2048 image;
middle: image colorization on a 1962×2533 size image; and Edge-Preserving Dynamic range compression on a 2048×2048 image (single
level). Our method consistently ranks at or near the top on all the metrics considered: error with respect to iterations and flop count; and
relative residual.

Figure 9: Example of mesh smoothing using an in homogenous
Laplacian based on an inverse distance measure between vertices.
Left: original mesh; Middle: noisy mesh; Right: denoised mesh
with our solver with smoothing parameter t = 0.1.

tween vertices , wij = ‖vi − vj‖−2, as the entries in the Lapla-
cian. Given the noisy vertices Vn of the original mesh, we com-
pute smoothed vertices Vs, by solving the smoothing equation
(I + tL)Vs = Vn. For comparison, on a mesh with 150K vertices,
our method takes less than 1 second for the solve phase, whereas the
bilateral filtering approach in [Fleishman et al. 2003] takes about
24 seconds on a mesh with 100K vertices (on results reported in
2003). Laplacians based on bilateral filtering-based similarity mea-
sures may also be used for denoising. In Figure 9, we give an ex-
ample of mesh smoothing, and we report timing results in Table 7.

Mesh Vertices Direct Solver
HSC Setup/Solve

(Speedup)
Lion 150K 2.5 0.7/0.9 (2.8x)
Lago. 800K 26.3 2.1/0.5 (52x)

Neptune 2M 87.1 8.2/6.7 (13x)
Statuette 5M 176.2 18.9/50.4 (3.5x)

Lucy 14M 1246 80.6/76.9 (16.2x)

Table 7: Wall clock time (in seconds) to to smooth noisy meshes
of different sizes. We compare our solver and speedup over MAT-
LAB’s direct solver. The agglomerative methods AMG and CMG
achieved poor accuracy in 50 PCG iterations for these inhomoge-
nous Laplacians. The speedup ratios are given for our solve phase
over the direct solver.

6 Discussion and Conclusions

We have presented an efficient and effective multi-level matrix pre-
conditioning scheme that applies to a large class of Laplacian ma-
trices used in computer graphics, including inhomogeneous com-
putational photography problems and 3D mesh processing. Un-
like existing hierarchical preconditioners [Szeliski 2006; Krish-
nan and Szeliski 2011] that use a fixed coarsening and sparsifica-
tion scheme, our method adaptively selects the variables that are
eliminated and the connections that are dropped and compensated,
guided by principles that aim to maximize the preconditioning ef-



fectiveness. The derivation of our scheme is based on a formal
analysis that ties the algorithmic decisions with their effect over the
condition number of the preconditioned system. We derive a new
compensation scheme based on this analysis that considers the in-
terplay between levels in the hierarchy. This compensation helps to
decouple the resulting condition number from the system size n.

The experiments we report show that our new preconditioner out-
performs or equals other state-of-the-art iterative and direct meth-
ods in all scenarios, both in terms of operation count and wall-clock
time. The ability to perform well on all applications makes it a more
useful technique than specialized solvers such as GMG, CMG, or
ABF, which only work well under certain conditions. Our perfor-
mance results from our ability to reduce the condition number of
highly irregular Laplacian matrices as well as our use of geomet-
ric coarsening in homogeneous regions, i.e., a mixed strategy well-
suited for many computer graphics applications.

Our approach is inherently limited to Laplacian matrices that have
non-positive off-diagonals entries. This is an important limitation
as 3D mesh problems in graphics mostly use non M-matrices such
as cotangent Laplacians. The multi-level solvers developed by Ak-
soylu et al. [2005] can handle cotangent Laplacians, but their hi-
erarchical mesh simplification scheme leads to increased fill-in at
coarser levels. Other than direct solvers, we are unaware of practi-
cal fast solvers to handle such matrices. Therefore, as future work,
we plan to generalize our approach to non M-matrices. We also
plan to extend our approach to 3D volumetric applications in com-
puter graphics and simulation, and to develop parallel (multicore
and GPU-based) implementations of our algorithms. Finally, we
plan to study the theoretical relationship between our approach and
existing algorithms such as GMG, AMG, and CMG, to see if we
can derive formal proofs on the condition number and scaling prop-
erties of our approach.
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A Proofs of Lemmas

Lemma 1. Let L be a Laplacian matrix with the following charac-
teristics: it is symmetric, diagonally dominant and has non-positive
off-diagonals. Let C andF be disjoint variables index sets such that
no two variables in F are connected to each other in L. Then the
coarse level system L1 =LCC−LCFL−1

FFLFC is also a Laplacian
matrix which shares the same properties as L.

Proof. Since no variable in F is connected to any other variables,
LFF , is a diagonal matrix with positive diagonal entries (which
was the case in L). Since the off-diagonal entries in L are all non-
positive, all the entries in LCF are also non-positive. Hence all
the entries in LCFL−1

FFLFC are positive. The matrix LCC also has
non-positive off-diagonals since it is a sub-matrix of L. Hence all
the off-diagonal values of L1 are non-positive. The diagonal ele-
ments in Laplace matrices are greater than or equal to the negative
of the sum of the corresponding columns (without the diagonal ele-
ments). HenceL−1

FFLFC consists of negative values greater than -1.
Similarly, the row sums of −LCF are smaller than the correspond-
ing diagonal elements in LCC . Hence, all the diagonal elements in
LCFL

−1
FFLFC (which are positive) are smaller than those in LCC

and therefore the diagonal elements of L1 are all positive.

Lemma 2. Let T be a Laplacian matrix of three variables. Let
w12, w13 and w23 be −T12,−T13 and −T23 respectively, where
Tij are the entries of the matrix T . Assume these weights are posi-
tive and w12, w13 ≥ w23. The matrix T̃ produced by dropping w23

will obey
ET̃ ≤ ET ≤ bET̃ , (14)

with b ≤ 3, where the energies ET and ET̃ are with respect to any
vector x.



Proof. The definition of ET in terms of the weights is given in
Eq. 16. ET̃ ≤ ET follows immediately sinceET̃ has one less term,
w23(x2 − x3)2, than ET . Without loss of generality let us assume
‖x‖ = 1, in which case ET̃ = w12(x2 − x1)2 + w13(x1 − x3)2.
However, since w12, w13 ≥ w23 we get ET̃ ≥ w23

(
(x2 − x1)2 +

(x1−x3)2
)

and since s2 + t2 ≥ (s+ t)2/2 for any s and t, we get
ET̃ ≥ w23(x2−x3)2/2. Thus, 3ET̃ ≥ w23(x2−x3)2+ET̃ = ET

and therefore b = 3 satisfies the upper bound.

B Characterization of Sparsified Spaces and
Compensation

As we explained in Section 4.2, the errors introduced by the spar-
sification done in each hierarchy level can add up and hurt the pre-
conditioning such that κ(LQ−1) = O(n) as in the case of a non-
preconditioned system.

The key observation that allows us to cope with this shortcoming
is the that at each hierarchy level about half the variables are elimi-
nated and these variables define a linear subspace that does not ex-
perience the sparsification taking place in the following levels. This
means that there is a hierarchy of subspaces that undergo a different
number of sparsification steps. Hence, when designing the compen-
sation step, we focus on minimizing the error due to sparsification
in the subspaces that are affected by the largest number of sparsifi-
cation steps. In order to carry this out, we first establish the sense
in which L̃ should best approximate L.

The sparsification that takes place at the finest level, over the input
matrix L, is likely to affect most of Rn. The second sparsification,
which takes place at the second hierarchy level, operates over the
sub-matrix that corresponds to the coarse variables selected at the
finest level after nearly half of the variables were eliminated. This
gives rise to two linear spaces, one of which is affected by this
second sparsification step and one that is not. To characterize these
vector spaces, let us ignore the sparsification done at the finest level
and consider the system resulting after computing the first level of
the hierarchy,

Lx = b ⇒ (P 1)>LP 1y1 = L1y1 = (P 1)>b, (15)

The solution y for this problem provides an exact solution, x =
P 1y, for the original system. However, once we sparsify L1,
and get L̃1, this procedure computes an approximate solution for
x. Equivalently, the matrix P 1(L̃1)−1(P 1)> is the precondition-
ing matrix Q−1 that approximates L−1in this one-level construc-
tion. As we see in Eq. 10, the resulting matrices L1 and L̃1

are block diagonal, meaning that the coarse and fine coordinates
of y1 = [y1

C ,y
1
F ]
> ∈ Rn are uncoupled. Furthermore, since

the sparsification at that level (producing L̃1 from L1) operates
only over the top-left block that corresponds to the coarse vari-
ables y1

C , we see that the fine coordinates y1
F are not affected by

it. At the original coordinates x, the latter subspace is given by
{x : ((P 1)−1x)C = 0} and the one affected by the sparsification
by {x : ((P 1)−1x)F = 0}. In fact, according to the definition
of an inverse matrix, these subspaces are given more explicitly by
{P 1[0,y1

F ]
> : ∀y1

F} and {P 1[y1
C ,0]

> : ∀y1
C} respectively.

This rationale can be applied at any hierarchy level l, where we
see that {P 1P 2..P l[yl

C ,0]
> : ∀yl

F} is affected by the sparsifica-
tion steps of the first l + 1 levels (and the following levels com-
puted), whereas {P 1P 2..P l[0,yl

F ,0]
> : ∀yl

F} by the sparsifica-
tion of only the first l levels. In fact, by starting this analysis from
an arbitrary level l, we get that {P lP l+1..P l′ [0,yl′

F ,0]
> : ∀yl′

F}
are vectors that are given in the coordinates of the l-th level and that
undergo the following l′ − l sparsification steps.

This implies that in order to avoid excessive energy mismatch over
vectors that undergo multiple sparsification steps, at every hierar-
chy level l, the compensation should improve the accuracy of the
sparsified matrix over the column vectors of P lP l+1..Pm that cor-
respond to coarser levels. The problem is, however, that at the time
we construct the l-th level, the matrix P lP l+1..Pm is not yet de-
fined and depends on our operations at the l-th level, including the
compensation itself. Therefore, a more qualitative description of
the coarse spaces is needed.

In order to achieve this, let us consider again a single level of the
hierarchy and neglect the sparsification done at the finest level. The
column vectors of P 1 that correspond to the coarse variables de-
scribe an interpolation from the coarser system y1

C to the original
grid, i.e., y1

C 7→ P 1[y1
C ,0]

> ∈ Rn. According to its definition
in Eq. 9, the matrix P 1 has ICC at its top-left block and hence the
coarse variables in the original grid receive the same values they
have at the coarser system y1

C . The fine variables in the original
grid are also determined by y1

C and, according to Eq. 9, they are
given by −(L−1

FFLFC)y
1
C .

On the other hand, in the case of null input values and derivatives
(yi, zij =0), the energy is related to the objective function in Eq. 2
by

EL(x)=F (x)/(x>x) =
∑
i∈I

(
uix

2
i + wij(xi − xj)2

)
/(x>x).

(16)
The two coincide on unit-norm vectors, x>x = ‖x‖2 = 1, and both
are given by x>Lx. Let us constrain the coarse coordinates of xC
to be equal to y1

C and minimize the functional with respect to the
remaining variables xF . This constrained optimization is computed
by dF (x)/dxF = d(x>Lx)/dxF=0 given xC , and gives[

ICC 0
LFC LFF

]
x=

[
y1
C
0

]
⇒ xC = y1

C
LFCxC + LFFxF = 0,

(17)

implying that
xF = −

(
L−1
FFLFC

)
y1
C , (18)

which is what P 1y1
C produces at the fine variables of x.

Thus, P 1[y1
C ,0]

> are the minimal-cost vectors given the assign-
ment y1

C over its coarse coordinates. If we assume no sparsifica-
tion (and compensation) steps are applied throughout the hierarchy,
computing multiple elimination steps in the hierarchy is equivalent
to eliminating these variables at once. Hence, P 1P 2..P l[yl

C,0]
>

are the minimal-cost vectors given the assignment yl
C over its

coarse coordinates. However, since there are far less variables in
the l-th level as l grows, this optimization has fewer constraints and
hence it is expected to achieve lower energies.

Based on this observation, we associate variables at coarser levels
with vectors of low energy in the finer levels and focus the com-
pensation step to preserve the energy of such vectors. As explained
in Section 4.2, whenever a triangle is sparsified, we compensate by
adjusting its two remaining weights such that the triangle’s energy
contribution remains unchanged over low-energy vectors. This re-
quires modeling the profile of low-energy vectors locally, over three
variables in a triangular connectivity, but it does not require know-
ing P l of coarser levels. In Section 4.2, we explain how the low-
energy vectors are modeled.

Finally, this reasoning did not take into account the sparsification
(and compensation) applied to the matrices; the low-energy vectors
that we use in this process are predicted based on a sparsified hi-
erarchy. However, assuming we succeed in preserving the energy
of low-energy vectors, in each step, the predictions we make in the
next level will be reasonably accurate.


