
Ranking-Based Name Matching for Author Disambiguation
in Bibliographic Data

Jialu Liu† Kin Hou Lei†∗ Jeffery Yufei Liu‡∗ Chi Wang†∗ Jiawei Han†
†Department of Computer Science ‡Department of Statistics

University of Illinois at Urbana-Champaign, Urbana, IL
{jliu64, klei2, liu105, chiwang1, hanj}@illinois.edu

ABSTRACT
Author name ambiguity is a frequently encountered problem
in digital publication libraries such as Microsoft Academic
Search. The cause of this problem mostly is that different
authors may publish under the same name, while the same
author could publish under various names due to abbrevia-
tions, nicknames, etc. Author disambiguation is exactly the
goal of the Track II of KDD Cup Data Mining Contest 2013.
In this paper we introduce our ranking-based name matching
algorithm and system called RankMatch. One important
feature of our solution is using heterogeneous meta-paths to
evaluate the similarity between two potential duplicate au-
thors whose names are compatible. We participated under
team name “SmallData” and our final solution achieved a
Mean F1 score of 99.157%, ranking in the second place in
the contest.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Name disambiguation, Name matching

1. INTRODUCTION
While you are searching for academic papers by an author
name, have the returned papers ever surprised you? Some-
times you want to take a look at the publications of W.
Wang, a theoretical physicist. Unfortunately, as you might
have anticipated, this query leads to an intimidatingly long
list of papers by all different authors publishing under “W.
Wang”, with topics ranging from neurology, chemistry to
computer science. When you glance through the list and

∗Equal Contribution.

still couldn’t find a paper you are particularly interested in,
it suddenly occurs to you that the “missing” paper was in
fact published under name “Wei Wang”.

Author name ambiguity is indeed an often encountered prob-
lem in digital publication libraries such as Microsoft Aca-
demic Search. Author disambiguation [2, 10] is important
for an apparent reason: it helps refine search results for end
users and thus improves user experience and productivity.
Another reason is that it empowers more accurate bibiomet-
ric analysis such as mining academic social networks. The
Track II of KDD Cup Data Mining Contest 2013 hosted
by Microsoft Academic Search and Kaggle precisely aims to
solve this problem.

In the Microsoft Academic Search database each unique au-
thor is represented by one or multiple author IDs. The task
of the Author Disambiguation Challenge is to enumerate all
the duplicate cases for each author ID in the given index
author ID set. We will briefly review the data sets provided,
evaluation metrics as well as some challenges. Detailed task
description can be found in [8] by the contest organizers.

The task is structured in a totally unsupervised manner,
where no ground truth is provided to train the disambigua-
tion model. Therefore it is up to the contestants to use
their own judgment to determine whether two authors are
duplicates. This is different from Treeratpituk and Giles [10]
where they have training labels. Fortunately several addi-
tional data sets are provided to contestants to assist the de-
cision making. The given data involves 2,293,837 unique au-
thor IDs and 2,258,482 papers which are published in 22,227
journals and 4545 conferences proceedings. By combining
the given data we can derive a connected network or graph
that link about 2.2 million papers with their authors, titles,
keywords, publication years and venues. The derived net-
work can also be used to generate deeper features of author’s
publishing patterns such as co-author and co-venue relation-
ships, which are claimed to be useful in previous work [11].

To evaluate the disambiguation outcome the Mean F1 score
is adopted in this contest. In the literature of information
retieval F1 score is a commonly used measure for quality
of classification, search, etc. It is defined as the harmonic
mean of precision and recall: F1 = 2pr/(p + r), where p is
the precision and r is the recall. For instance, suppose for
a given index author ID we retrieved 10 duplicate author
IDs, out of which 8 are real duplicates. Then the precision



p is the proportion of correctly retrieved items with respect
to all retrieved items p = 8/10. Also suppose the index
author ID has a total 15 duplicates in the database. So
recall r is the proportion of correctly retrieved duplicates
among all duplicates, i.e., r = 8/15. The final Mean F1

score is calculated as the average F1 for the 247, 203 indexing
author IDs in the data set to be disambiguated. It’s worth
mentioning that the 247, 203 indexing author IDs is a subset
of all the 2,293,837 unique author IDs in the whole given
data.

Several challenges underlying author disambiguation make
it a difficult task. In addition to the obvious complication
that different authors could share the same names, most of
the challenges are due to the fact that many authors pub-
lish under inconsistent names due to abbreviations, nick-
names, etc. For instance, publishing names Michael Lewis,
Mike Lewis, Michael James Lewis, Michael J. Lewis and
M. J. Lewis could all correspond to the same person. It’s
sensible to use similar/dissimilar publishing patterns such
as co-authors, publication venues and years to identify/rule
out duplicate authors, where an author’s publishing pat-
terns can be computed from the given data. This idea is
actually adopted in our approach and how well it works to
some extent depends on data quality. The data is over-
all very comprehensive and reliable, although we have seen
some misspelling and extraction errors of author names, pa-
per titles, etc. For some fields such as author affiliations
there are frequent missing values. We also found some data
inconsistency cases. For example, in the given author-paper
data set, for some papers one can find two co-authors shar-
ing identical names, while only one is the true author and
the other is false. So a desired author disambiguation sys-
tem should be robust to data inconsistency, exceptions and
missing values.

The remaining of the paper is organized as follows. In Sec-
tion 2 we explain the intuition of our approach and lay out
the system framework of RankMatch. In Section 3 we il-
lustrate in details the major components in our system. We
show empirical results in Section 4 and discussions in Section
5, followed by conclusion in Section 6.

2. SYSTEM OVERVIEW
Given the complex nature of this real world data challenge,
it would be sensible to develop a set of methods that are
carefully designed to tackle different aspects of the problem.
In the following we briefly present our intuitions at designing
our system and its major components. Figure 1 shows the
diagram of our system framework.

Because the evaluation metric F1 score is the harmonic mean
of precision p and recall r, it is natural to attempt to max-
imize p and r simultaneously. However, directly doing so
is difficult because maximizing one will usually compromise
the other, so it is critical to find a balance point between p
and r. We take a two-step strategy to first maximize r and
then maximize p. Specifically, the two steps are as follows:

• r-step: enlarge candidate pool of duplicates. For each
indexing author ID, we try to pull out all the author
IDs whose author names are possible variations of the
indexing author name. Ideally this pool covers all the

Enlarge candidate pool of 
duplicates based on 	



author name similarity	



a	



Rank and merge candidates based 
on meta-path-based similarity	



Recalculate meta-path-based 
similarity	



Calculate meta-path-based 
similarity	



a	



Post-processing 	


(removing unconfident dupl.)	



Input: raw data	



Pre-processing : 	


data cleaning	



Output: final submission result	



r-step	



p-step	



Figure 1: System diagram of RankMatch.

duplicates and is as compact as possible. To come
up with the pool we take into account a number of
cases where names can mutate or be disturbed. For
instance, Mike Lewisg can be safely assumed to be a
noisy variant of Mike Lewis by an extra “g”, while it
is not the case for Chinese names Wei Lin and Wei
Ling, as both “Lin” and “Ling” are valid last names.
So we designed algorithms to specifically detect some
names of different nationalities such as Chinese, Ko-
rean and Japanese names, and apply customized name
similarity matching. The name matching and candi-
date pooling criteria will be covered in detail in the
next section.

• p-step: trim the candidate pool based on authors’ pub-
lication features (i.e., meta-paths) we have calculated.
Examples of publication features include co-author net-
work, publication venues, years, titles words and key-
words. These features turn out to be discriminative for
identifying real duplicates from the candidate pool.

After we run the r- and p- steps, we feed the disambiguation
results back to the authors’ publication features (i.e., meta
paths) calculation engine. This is a crucial step as it will help
refine calculation of the features using more accurate data
source. In addition to the major steps mentioned above, we
also have a pre-processing procedure to handle noisy and
missing values. At the end we have a post-processing step
to remove unconfident duplicates based on certain measures.
In the following section we will illustrate our algorithms in
details.

3. ALGORITHM
In this section, we propose our ranking-based name match-
ing algorithm following the intuition that it is more likely
for string-based similar names to refer to the same author
entity if they have higher similarity score inferred from the
non-string-based information of the data set.

With this idea, as introduced in last section, we study two
crucial aspects of the algorithm that are closely related to
the performance measure: recall r and precision p. The r-



step aims to find similar name strings and corresponding au-
thor IDs, which is called string-based name matching. The
p-step aims to accurately infer the true candidates with a
ranking-based merging method based on meta-paths. These
two steps are integrated to an iterative framework that can
effectively identify the real duplicates of authors. In addi-
tion, the pre-processing and post-processing steps will be
carefully explained to futher improve the results.

3.1 Pre-processing
Before going deeper to the p- and r-steps, we need to first
clean the data to recover part of author names. We observe
that many authors’ names are noisy due to the imperfect-
ness of the parser when obtaining the name strings from the
raw bibliographic data. Fortunately, under the assumption
that noises introduced by the parser can be diverse and the
majority name strings from the parser are correct and con-
sistent, we are able to recover the real names by learning
such consistency from the dataset itself.

Here we list two main types of noises we successfully detected
and recovered.

Noisy First or Last Names: Some examples of noisy
names belonging to this type are Eytan H. Modiano and
Eytan Modianoy, Nosrat O. Mahmoodo and Nosrat O. Mah-
moodiand, UniversityofBonn Andreu Mas Colell and Andreu
Mas Colell. To recover the correct first and last names from
the noisy observations, we first build statistics of single name
units. Later for rare last and first names, we compare them
with the possible sub-strings by discarding the characters
at the beginning or end of the name unit. If theses sub-
strings appear frequent in the data set, we believe these
name strings should get recovered. For instance, if name
unit “Modianoy” only appears one time but “Modiano” ap-
pears many times, it is likely that “Modianoy” should be
taken place by “Modiano”.

Mistakenly Separated or Merged Name Units: Name
units are defined as elements split by whitespace or other
punctuation marks like dash as delimiters. Sometimes, dif-
ferent name units are mistakenly separated or merged in the
data set. Examples include Sazaly Abu Bakar and Sazaly
AbuBakar, Vahid Tabataba Vakili and Vahid Tabatabavakili.
To handle this kind of noise, similar to the previous type,
we still build statistics of name units. But this time co-
occurrences of name units appeared within the same author
name are recorded. By referring to the times of appear-
ance of concatenated name units, we are able to separate or
merge name units if they are originally mistakenly merged
or separated.

3.2 The r-Step: Improving the Recall
Improving the recall of the algorithm means that given an
author ID, one should find as many potential duplicates as
possible. In our model, we propose to enhance the recall via
two main categories of considerations. The implementation
details for efficiency consideration are also provided.

3.2.1 String-based Consideration:
The first category is purely based on the name string sim-
ilarity. We consider two names to be potential duplicates

once they have close distance defined based on the strings.

Levenshtein Edit Distance: Levenshtein edit distance
[7] between two strings is the minimum number of single
character edits required to change one string into the other.
Thus, we can see that two strings of name are similar if they
have small edit distances. For example, misspell names will
have a small edit distance and thus they are similar.

Soundex Distance: Soundex algorithm [4] is a phonetic
algorithm that indexes words by their pronunciation in En-
glish. For example, names like“Michael”,“Mickel”and“Michal”
share the same Soundex distance because their pronuncia-
tion are very close to each other. Besides the Soundex al-
gorithm, there are other phonetic algorithms available like
Metaphone Coding Method [6] and Guth Name-Matching
[3].

Overlapping Name Units: Two strings are viewed as
similar if one name string shares most of its name units
with the other. For example, name strings like: Wing Hong
Onyx Wai and Onyx Wai Wing Hong are viewed as similar
because each unit in one string is identical to another, the
only difference is in the order of the name units.

3.2.2 Name-Specific Consideration
The second category relies on human knowledge about the
rules of names and is difficult to be inferred from the above
string-based similarity.

Name Suffixes and Prefixes: Name prefixes like “Mr”
and “Miss”, generational titles like “Jr”, “I”, “II” are ignored
during name comparison. For example, Frederick P. Brooks
Jr and Frederick P. Brooks are considered identical because
the only difference between them is the generational title.

Nicknames: We search for common nicknames from the
wold wide web to form our nickname knowledge base be-
cause some researchers prefer to use nicknames and original
names for different papers. It is worth noting that the map-
ping between original names and nicknames is not transitive.
For example, “Chris” could be a nickname of “Christian” or
“Christopher” but “Christian” will not be compatible with
“Christopher”.

Name Initials: Due to the diverse format of research pa-
pers, it is not surprising to see name initials used in title, in
the content, and/or the citation of research papers. For ex-
ample, Kevin Chen-Chuan Chang could be written as name
initials K. C.-C. Chang, Kevin C. Chang, and others. One
thing that needs to be careful with is that some initials refer
to the same name unit even they are not the same. One ex-
ample is that“B.”and“W.”is compatible sometimes because
“Bill” is the nickname of “William”.

Asian Names and Western Names: Asians have differ-
ent name structure from westerns. One significant feature is
that Asian names usually lack the middle names and their
first and last names could contain more than one name unit
where for Western names each unit represents one meaning-
ful part of the whole name. To see the differences, let us
take two names as our example: Andrew Chi-Chih Yao and



Michael I. Jordan. For Andrew Chi-Chih Yao, the first name
is “Andrew Chi-chih” or “Chi-Chih” and last name is “Yao”.
But for Michael I. Jordan, the first name is “Michael”, the
middle name is “I.” and the last name is “Jordan”. Thus,
we cannot use the same approach for names from different
regions. In order to differentiate Asian names and West-
ern names, we utilize a list of common Asian names as a
knowledge base to detect them first. Then for Asian names,
we define some rules to extract first/last names, and for
Western names, we define another set of rules to extract
first/middle/last names. Additionally, Asian and western
names usually have totally different settings for the above
mentioned ideas. For instance, the thresholds for two name
strings to be viewed as similar in terms of edit distance are
different. Mike Leqwis can be safely assumed to be a noisy
variant of Mike Lewis by an extra “q”, while this is not
the case for Chinese names Wei Wan and Wei Wang, as
both “Wan” and “Wang” are valid last names. Besides this,
Soundex distance is designed for English only and cannot
even be applied to Asian names.

3.2.3 Practical Considerations in RankMatch
The ideal way to make use of the ideas discussed above is
to process any pairs of author IDs in the dataset which is of
time complexity O(n2). One can use map-reduce to handle
this data scale, but due to the limited resources, we resort
to explore efficient implementation on a single machine even
though we must sacrifice some performance.

One obvious operation is to compare among author names
instead of author IDs by building the one-to-many mapping
between author names and IDs. Later, our idea for decreas-
ing time complexity is to reduce the search space of potential
duplicates for each name string. Generally, we borrow the
idea from SimHash[1] that potential similar strings can be
mapped to the same hash bin with a large probability. How-
ever, we do not use SimHash directly because it is originally
designed for long texts and our name strings are too short to
be hashed in order to achieve good performance. Therefore
we design our own hashing method by projecting each au-
thor name in two kinds of bins: name initials and individual
name unit. We assume that potential duplicates could share
the same initials or at leat one name unit in most cases.

Of course this way of mapping from names into initials and
name units for finding potential duplicates is “lossy” and we
may miss some real duplicates. Thus we incorporate the
transitive rule, i.e., if name string a is similar to b and b is
similar to c, then the name pair a and c needs to be checked
to see whether they are similar or not.

3.3 The p-Step: Improving the Precision
Once finding potential duplicates for each candidate author
name, a critical task is to infer the real author entity shared
by one or more author IDs. Consider the following toy exam-
ple as in Table 1: Simply based on the string-based name
matching, it is clear that authors 2 and 3 cannot be the
same person. However, it is impossible to infer the accurate
matching between them and their shared author IDs, i.e.,
1, 4 and 5. As we can see authors 2 and 3 co-occur in the
matched author lists of authors 1, 4 and 5, we call this phe-
nomenon conflict because they themselves are clearly not
the same author.

Table 1: Lists of matched author IDs.
Name Author ID Matched Author IDs
Michael Lewis 1 2, 3, 4, 5
Michael J. Lewis 2 1, 4, 5
Michael P. Lewis 3 1, 4, 5
Michael Lewis 4 1, 2, 3, 5
M. Lewis 5 1, 2, 3, 4

Additionally, it is questionable for considering two author
IDs to be the duplicates even though they share the same or
similar names. It is quite possible that authors 1 and 4 in
the above case point to different researchers, reflecting the
uncertainty lying in the data set.

Now we propose a ranking-based method in cascaded stages
to solve these two problems simultaneously.

3.3.1 Meta-Path-based Similarity
In the network schema extracted from the data set depicted
in Figure 2, two authors can be connected via different paths.
For example, two authors can be connected via “author-
paper-author”path,“author-paper-venue-paper-author”path,
and so on. Intuitively, the semantics underneath different
paths imply different similarities. Formally, these paths are
called meta-paths[9], defined as follows.

Keyword

 Paper

Author

Venue

 Org.

Title

Year

Figure 2: Schema of the Microsoft Academic Search
data set. Circles in grey and dashed lines represent
attributes belonging to the object.

Definition 1. Meta-path. A meta-path P is a path de-
fined on the graph of a network schema (A,R), and is de-

noted in the form of A1
R1,2−→ A2

R2,3−→ · · ·
Rl−1,l−→ Al+1, which

defines a composite relation R = R1,2 ◦R2,3 ◦ · · · ◦Rl−1,l be-
tween types A1 and Al+1, where ◦ denotes the composition
operator on relations.

For simplicity, we also use type names denoting the meta-
path if there exist no multiple relations between the same
pair of types: P = (A1A2...Al+1). For example, in this com-
petition data set, the co-author relation can be described us-

ing the length-2 meta-path Author
writing−→ Paper

written−by−→
Author, or short as APA if there is no ambiguity. Other
types in this data set include K for keyword, Y for year,
T for titles, V for venues (conferences/journals) and O for
organizations/affilications.

Once the topologies defined by meta-paths are determined,
the next stage is to propose measures on these meta-paths to
compute similarities for paired authors. The reason for com-
puting these meta-path-based similarities is to obtain knowl-



edge beyond string-based name matching and guide us later
to distinguish name entities among the candidate pool. In
terms of similarity measures, we use the normalized count of
the path instances due to its efficiency. Other possible mea-
sures between any two objects given the meta-path include
random walk-based measures, SimRank[5], PathSim[9] and
so on.

For a single relation in R ∈ R, the measure matrix is an adja-
cency matrix M of the sub-network extracted by R. Given a
composite relation in a meta-path, the measure matrix can
be calculated by the matrix multiplication combined with
normalization of the partial relations.

a1 p1 v1 p4 a2

p2 v2

p3 v3 p5 a3

Figure 3: Illustration for computing meta-path-
based similarity.

Assume we are given a tiny sub-network as shown in Fig-
ure 3 composing three authors, five papers and three venues.
It is easy to check the adjacency matrix MA,P and MP,V de-
picting the relations for Author-Paper and Paper-Venue are:


MA,P p1 p2 p3 p4 p5

a1 1 1 1 0 0
a2 0 0 0 1 1
a3 0 0 0 0 1




MP,V v1 v2 v3

p1 1 0 0
p2 0 1 0
p3 1 0 0
p4 1 0 0
p5 0 0 1


Then, the measure matrix between Author and Venue is

MA,V = Normalize(MA,P ×MP,V )

Here normalize(·) is applied to make the input matrix `2-
normalized such that the self-maximum property1 can be
achieved.

Now the measure matrix between authors based on meta-
path APV PA is

MA,A = MA,V ×MA,V
T

=


a1 a2 a3

a1 1.0000 0.6325 0
a2 0.6325 1.0000 0.7071
a3 0 0.7071 1.0000


(1)

From now on, the similarity scores for any pairs of authors
can be simply referred to by looking up the corresponding
matrix values.

To support multiple meta-paths, we adopt the linear com-
bination strategy:

Sim(ai, aj) =
∑

WpathSimpath(ai, aj)

where Wpath is a positive weight for the specific path. The
larger the weight is, the more dominant the path will be.

1Self-maximum: Sim(ai, aj) ∈ [0, 1], and Sim(ai, ai) = 1.

Until now, we obtain the similarity score for all pairs of
authors in the data set independent of the string-based sim-
ilarity and we are ready to combine it with the previous
results generated by the r-step.

3.3.2 Ranking-based Merging
To start with, recall that for each author ID we have gener-
ated a list of matched author IDs in the r-step. Examples
can be seen in Table 1. We now reorganize them as a set
of author ID pairs. For simplicity we only consider IDs 1,
2 and 3. Thus, the set generated from Table 1 should be
((1, 2), (2, 3), (1, 3)). By looking up the similarity score of
all the ID pairs from Eq. 1 in the set, sorting is applied to
them as demonstrated in Table 2.

Table 2: Rank of author ID pairs.
Author ID Pair Similarity Rank

(1, 2) 0.6325 2
(1, 3) 0 3
(2, 3) 0.7071 1

Then we do a scan from the top ranked ID pair to the lower
ranked ones to help infer the author entity. Let us show this
for the example we have. The highest similarity is from pair
(2, 3). Because the names of these two IDs are in conflict,
we skip this candidate. Now the next pair is (1, 2). As
this is the first pair we encounter which not only has high
similarity but also passes the name matching comparison, we
believe these two IDs having high probability to be the real
duplicate. Here comes the interesting part for the last pair
(1, 3). Although its similarity is 0 which makes it no sense
for us to consider ID 1 and ID 3 to be the same person, they
are still viewed as possible duplicate and let us see how our
algorithm responses: When pair (1, 3) comes, our algorithm
will check the existing duplicates from those higher ranked
pairs, i.e., (1, 2) from the last operation. By testing whether
there is conflict within the merged ID group (1, 2, 3) of (1, 2)
and (1, 3), the algorithm is able to reject (1, 3) because ID 2
and ID 3 are in conflict. As a result, sets (1, 2) and (3) are
returned as two duplicate author ID groups.

Conflict and uncertainty are two main problems for the au-
thor disambiguation task as introduced at the beginning
of this subsection. However, the above algorithm is still
not able to solve them perfectly especially for uncertainty.
Specifically, it is not able to differentiate compatible names
when they have low similarity. One simple patch is to define
a threshold such that once both of the two IDs have multiple
publications and low meta-path-based similarity score, the
algorithm can reject their merging request.

Another important strategy is to expand the author names
corresponding to the IDs once we are confident about two
IDs to be the duplicate. For example, as authors 1 and 2 are
highly possible to be the same person and the name of author
2 has better quality than that of author 1, we can replace
the name of author 1 to be Michael J. Lewis. This idea
is useful because it can help avoid the mistakenly detected
conflicts. Suppose the full name of author 2 to be Michael
James Lewis and we have a new author with name James
Lewis. If we do not adopt this name expanding mechanism,
obviously author 1 and this new author are in conflict and



Table 3: Test cases for name matching.
Author Name A Author Name B Expected Result
Jiawei Han Jia Han In Conflict
Xiang Li Xiang Lin In Conflict
Gordon D. Moskowitz Gordon Blaine Moskowitz In Conflict
H. Murray-Rust D. M. Murray-Rustt In Conflict
Deliang L. Wang Liang Wang In Conflict
S. J. Thomas Schwarz Thomas J. E. Schwarz In Conflict
Takeshi Mori Taketoshi Mori In Conflict
Tadashi Suzuki Takashi Suzuki In Conflict
Hong-Hu Zhu H. H. Zhu Compatible
Ralph Mac Nally RalphMac Nally Compatible
V. Scott Gordont V. Scott Gordon Compatible
Jeff W. Hughes Jeffrey W. Hughes Compatible
William Hughes Bill Hughes Compatible
William Hughes B. Hughes Compatible
Valli Kumari Vatsavayi V. Valli Kumari Compatible
Mercedes Femandez-Redondo Mercedes Fernandez Redondo Compatible
Aliaa Abdel-Haleim Abdel-Razik Youssif Aliaa A. A. Youssif Compatible

the recall will be affected2.

3.3.3 Practical Considerations in RankMatch
As there is no validation set provided by the host, we selected
meta-paths and corresponding weights simply based on our
prior knowledge. The selected meta-paths are APA, AOA,
APAPA, APV PA, APKPA, APTPA and APY PA. The
weights for them are decreasing progressively.

As measure matrices such as MA,A are decided by the data
set itself, they are computed offline in consideration of effi-
ciency. For titles of papers as well as organizations, we view
them as bags of words and compute the similarity based
on the number of overlapped single words between two au-
thors. The TF-IDF idea is applied to organizations and
titles to remove the top frequent words appearing in most
of the phrases.

3.4 Post-processing
Unconfident duplicate author IDs should be removed even
though their names are compatible and their meta-path-
based similarity scores are acceptable. This step is crucial in
that the later iterative framework requires highly confident
output to gradually refine the results. It is also tricky since
through empirical study we realize it is difficult to define
“unconfident”.

As a result, we only introduce our heuristics and try to leave
the flexibility of the strategy to be tunable. In this way, one
can be as aggressive as possible if highly confident output
is needed in the case of iterative refinement. Meanwhile,
one can also be conservative to remove the most unconfi-
dent duplicates to achieve the best performance in the last
iteration3. To begin with, we only focus on small dupli-
cate groups. The reason underneath is that within the large
group, the information usually is rich and most unconfident

2Though this strategy is closely related to the recall, we
consider it to be appropriate to appear in this subsection
due to the context.
3The details of the iterative framework will be discussed in
Section 3.5.

duplicates have already been removed in the p-step. Next
we define “unconfident” to have two factors: the difference
between name strings in terms of unmatched name units
to be large and the meta-path-based similarity score to be
small. This is relying on both measures: string-based and
meta-path-based, different from the previous r-step and p-
step which treat the problem in individual pipelines.

3.5 Iterative Framework
Assume we are able to find highly confident duplicate author
IDs using aggressive strategy introduced in the last subsec-
tion, what can we do with this to further improve the perfor-
mance? The answer is clear: An iterative framework which
takes the detected duplicates of the last iteration as part of
the input. There are two reasons to do this:

First, we are able to generate much better meta-path-based
similarity scores by adding up the elements of the duplicate
author IDs in the adjacency matrices describing different
relations. This definitely can help the p-step to increase the
precision.

Second, the other useful aspect led by this framework is
related to the r-step. Recall the name expansion module in-
troduced at the end of the p-step. One shortcoming of that
module is the irreversibility of the conflict detection. That
is, once we detect conflicts within a group of author IDs,
the merge must be rolled back even though later the con-
flicted name strings are expanded to be compatible. Suppose
Michael Lewis and James Lewis are the names of the top-
ranked IDs and get skipped, even though later both of them
are expanded to Michel James Lewis, they have no chance
to get merged again. However, if we adopt this iterative
framework and expand author names at the very beginning,
it is impossible to miss this performance gain.

4. EXPERIMENTS
We implemented our algorithm in Python and the code
repository of RankMatch is on Github4. We have tested
it on a desktop with Intel Core I7 2600 and 16GB memory.

4https://github.com/remenberl/KDDCup2013



15 20 25 30 35 40 45 50 55
0

100

200

300

400

500

Days

L
in

e
s
 o

f 
c
o
d
e

 

 

Insertions

Deletions

Figure 4: The smoothed everyday code frequency within the competition period.

15 20 25 30 35 40 45 50 55
95

96

97

98

99

100

95.786

96.623

97.427

97.77

98.729

98.854
99.036 99.075 99.13 99.157

Days

F
1 S

co
re

 (
%

)

Figure 5: The performance of the submission files within the competition period.

It takes about one hour for that machine to finish one iter-
ation. For detailed experimental settings, interested readers
can refer to the code.

As no additional testing sets can be directly obtained, we
treat this competition as unsupervised. Before every sub-
mission we simply conduct manual checking of the results.
In addition, we have a name conflict test to ensure our name
matching system works reasonably well. Here we list a sub-
set of test cases in Table 3 to show how well our model can
perform.

It is also worth mentioning that the data set provided by
Microsoft Academic Search contains additional training and
validation set for the Track I competition. But unfortu-
nately we have not found an effective way to utilize them.

We also draw the histogram of code frequency extracted
from the git-commit history as in Figure 4. The correspond-
ing line chart of the performance was plotted according to
the submission log in Figure 5. Table 4 gives a brief intro-
duction of some important commits and one can relate it to
Figures 4 and 5 to have an impression about their workloads
and performance gains. Note that some important modules
such as Ranking-based Merging and Levenshtein Edit Dis-
tance are not incorporated in the table due to the fact that
we implement and refine these modules within a relative
longer time period for several times. This makes it difficult
to show statistics for the mentioned modules as we are short
of the ground truth labels. For the same reason, we cannot
ensure the statistics of the current list of modules in Table 4
to be very accurate.

5. DISCUSSION
Through thorough analysis and experiments of the data set,
we realize that the competition is really challenging not only
due to the absence of training data to help fit our model but
also because the “ground truth” based upon which contes-
tants’ submissions are evaluated is not always correct.

Moreover, we feel there are several promising directions that
can further refine the solutions and we regret not to try and
implement them. Here we hope to share the ideas with you.

To start with, we could make use of machine learning tech-
niques to train a classifier for detecting duplicate author
ID pairs. The features for this classifier can be extracted
from existing modules in our algorithm like edit distance
and meta-path-based similarity scores. The name expan-
sion and iterative ideas can also be adapted to improve this
classifier. However, this classifier may need a large number
of labels and is impracticable for us to implement within the
time limit of this competition.

Another direction could be to support multiple name strings
for an author ID. Again due to the time limit of this com-
petition, our implementation only allows one author ID to
be mapped to one name string. This is because we expect
to expand every author ID’s corresponding name string to
have high quality and to build a powerful name matching
function by using any kinds of ideas introduced in previous
sections. Now it seems to us that if time allows, a one-to-
many mapping between author ID and name strings could
achieve better recall and is easier for development.



Table 4: Module descriptions and corresponding performance gains.
Performance Gain New Module(s) Days

95.376 - Same Author Name Benchmark -
95.786 0.410 + Meta-path: Coauthor 19
96.623 0.837 + Name Initials, Omitted Middle Name 21
97.427 0.804 + Meta-path: Covenue 27
97.770 0.343 + Nicknames + Asian names handling 33
98.729 0.959 + Accepting name-compatible author pair even with zero meta-path-based similarity 36
99.020 0.291 + Name reordering + noisy last/first name pre-processing 37
99.036 0.016 + Rough post-processing 42
99.075 0.039 + SoundEx distance 45
99.130 0.055 + Name units breaking/merging pre-process, + name expansion 49
99.157 0.027 + Iterative framework + more aggressive post-processing 54

The last direction is to stick with improving the current
modules. For example, the SoundEx algorithm only sup-
ports English name and we should find algorithms with
similar functions to support all kinds of world languages.
Secondly, more language specific settings could be designed.
Currently we only support Mandarin, Taiwanese, Cantonese
and Korean as discussed in Section 3.2. The similar ideas
can be extended to Indian, Japanese, Arabic and some west-
ern languages like French, German, Russian and so on. Thirdly,
within the iterative framework, we can model on all the au-
thors appeared in the data set instead of a subset which is
requested in the submission file for evaluation. Finally, bet-
ter models of affiliation and keywords could be designed to
replace the current bag-of-word model by TF-IDF.

6. CONCLUSION
In this paper, we have proposed our ranking-based name
matching algorithm and system RankMatch to author dis-
ambuigation task on the Microsoft Academic Search data
set. We have developed an iterative framework mainly com-
posing two steps. The first step consists of a set of string-
based name matching mechanisms for increasing recall and
the second step constains a ranking-based merging technique
based on meta-paths for the sake of precision. Experimen-
tal results on the data sets demonstrated the effectiveness
of the various techniques proposed by this paper.

Acknowledgement
We would like to acknowledge SIGKDD for organizing this
exciting and inspiring competition. We also thank Microsoft
Academic Search and Kaggle for their generous supports
with data, platform and all kinds of resources. We benefited
a lot from the discussions with the data mining group at
UIUC and Jing Gao from University at Buffalo.

This work was supported in part by U.S. National Science
Foundation grants CNS-0931975 and IIS-1017362, the U.S.
Army Research Laboratory under Cooperative Agreement
No. W911NF-09-2-0053 (NS-CTA) and W911NF-11-2-0086,
DTRA, MIAS, a DHS-IDS Center for Multimodal Informa-
tion Access and Synthesis at UIUC, and a Microsoft Gradu-
ate Fellowship. The views and conclusions contained in this
paper are those of the authors and should not be interpreted
as representing any funding agencies.

7. REFERENCES
[1] M. S. Charikar. Similarity estimation techniques from

rounding algorithms. In Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing,
pages 380–388, 2002.

[2] A. Culotta, P. Kanani, R. Hall, M. Wick, and
A. McCallum. Author disambiguation using
error-driven machine learning with a ranking loss
function. In Sixth International Workshop on
Information Integration on the Web (IIWeb-07),
Vancouver, Canada, 2007.

[3] G. J. A. Guth. Surname spellings and computerised
record linkage. Historical Methods. Newsletter,
10(1):10–19, 1976.

[4] D. O. Holmes and M. C. Mccabe. Improving precision
and recall for soundex retrieval, insertions and
reversals. In Proceedings of International Symposium
on Information Technology, pages 22–26, 1995.

[5] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In Proceedings of eighth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
538–543, 2002.

[6] P. Lawrence. The double metaphone search algorithm.
C/C++ Users Journal, 18(6):38–43, 2000.

[7] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Cybernetics and
Control Theory, 10(8):707–710, 1966.

[8] S. Roy, M. De Cock, V. Mandava, B. Dalessandro,
C. Perlich, W. Cukierski, and H. B. The microsoft
academic search dataset and kdd cup 2013. In
KDD-Cup Workshop, 2013.

[9] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. Proceedings of
the VLDB Endowment, 4(11):992–1003, 2011.

[10] P. Treeratpituk and C. L. Giles. Disambiguating
authors in academic publications using random
forests. In Proceedings of the 9th ACM/IEEE-CS joint
conference on Digital libraries, pages 39–48, 2009.

[11] X. Yin, J. Han, and P. Yu. Object distinction:
Distinguishing objects with identical names. In
Proceedings of 2007 IEEE International Conference on
Data Engineering, pages 1242–1246, 2007.


