
Deep Belief Network based Semantic Taggers for Spoken Language
Understanding

Anoop Deoras, Ruhi Sarikaya

Microsoft Corporation, 1065 La Avenida, Mountain View, CA
Anoop.Deoras@microsoft.com, Ruhi.Sarikaya@microsoft.com

Abstract
This paper investigates the use of deep belief networks (DBN)
for semantic tagging, a sequence classification task, in spoken
language understanding (SLU). We evaluate the performance of
the DBN based sequence tagger on the well-studied ATIS task
and compare our technique to conditional random fields (CRF),
a state-of-the-art classifier for sequence classification. In con-
junction with lexical and named entity features, we also use
dependency parser based syntactic features and part of speech
(POS) tags [1]. Under both noisy conditions (output of auto-
matic speech recognition system) and clean conditions (manual
transcriptions), our deep belief network based sequence tagger
outperforms the best CRF based system described in [1] by an
absolute 2% and 1% F-measure, respectively.Upon carrying out
an analysis of cases where CRF and DBN models made differ-
ent predictions, we observed that when discrete features are pro-
jected onto a continuous space during neural network training,
the model learns to cluster these features leading to its improved
generalization capability, relative to a CRF model, especially in
cases where some features are either missing or noisy.
Index Terms: SLU, DBN, CRF, ASR

1. Introduction
Spoken language understanding (SLU) systems aim to automat-
ically identify the intent of the user as expressed in natural lan-
guage, extract associated arguments or slots, and take actions
accordingly to satisfy the user’s requests [2]. The SLU task
is mostly coined by the DARPA (Defense Advanced Research
Program Agency) Airline Travel Information System (ATIS)
project during 80s [3]. The ATIS task consisted of spoken
queries on flight-related information. An example utterance is
I want to fly to Boston from New York next week. Understand-
ing was reduced to the problem of extracting task-specific ar-
guments (usually referred to as ‘slots’ in SLU literature), such
as Destination (tag for ‘Boston’) and Departure Date (tag for
‘next week’). Participating systems employed either a data-
driven statistical approach [4, 5] or a knowledge-based ap-
proach [6, 7, 8].

The state-of-the-art approaches for slot filling [9, 10,
among others] use discriminative statistical models, such as
conditional random fields, (CRFs) [11], for modeling. Slot fill-
ing is framed as a sequence classification problem to obtain the
most probable slot sequence given some word sequence.

Traditional spoken language understanding systems follow
a cascade architecture where an Automatic Speech Recognition
engine (ASR) is connected to understanding modules such as
slot sequence classifiers and intent detectors. In this paper, we
focus on the slot sequence modeling task alone. More formally,
given an acoustic signal, A, ASR outputs most likely word

sequence, W∗ given by: W∗ = argmaxW∈W P (A|W) ×
P (W) [12]. Typically in cascade systems, this ASR 1-best hy-
pothesis, W∗, is then fed into SLU system (say targeting slot
sequence classification) to output most likely sequence of slots,
C∗ given by: C∗ = argmaxC∈C P (C|W∗) where W =
w1, ..., wT is the input word sequence and C = c1, ..., cT , ct ∈
C is the sequence of associated slot labels in C. CRFs are global
models maximizing the likelihood of the entire slot sequence
given the sequence of words. They decompose the conditional
probability of slot sequence into product of local potential func-
tions: ψ(ct, ct−1, γt(W)), each capturing feature for the con-
text at time instant t, here represented by γt(W). More for-
mally:

P (C|W) =
1

Z(W)

T∏
t=1

ψ(ct, c
t−1
1 ,W)

≈ 1

Z(W)

T∏
t=1

ψ
(
ct, ct−1, γt(W)

)
, (1)

where Z(W) is the partition function [11]. Typical features
that are extracted at every time step include current word to-
ken, lexical word tokens from left and right n-gram context,
named entity features for the corresponding local context, syn-
tactic features such as part of speech tags (POS) etc. Apart from
the features that are specific to the observation sequence – W,
slot label, ct−1, assigned to the word at the previous time in-
stant is used as a feature too. CRF assigns weight to each fea-
ture whose value is dependent upon the frequency with which
that particular feature is observed in the training data. Models
trained with such large number of discrete feature combinations
are often susceptible to data sparsity problem. Neural networks,
however, project input features onto a continuous space where
inherently these features cluster together leading to model’s rel-
atively better generalization capability. This is very motivating
especially in cases such as semantic tagging where traditionally
quite a large number of features (individually or jointly with
other features) have been used. It has been shown that with
more features, the semantic tagging model learns to do a better
job at predicting semantic tags, however, when some of the fea-
tures provided during test time are noisy or missing, the CRF
model fails to assign reliable probabilities to correct tags [13].
If, however, neural network based architecture is used for this
problem, we believe, the model may be able to generalize well
and it may improve its prediction power.

To investigate this hypothesis, in this paper, we use deep
belief networks, a class of neural networks, to solve semantic
tagging task for spoken language understanding using a variety
of features. The name ‘deep belief network’ is given to the class
of those neural networks which have many (more than 1) hidden



layers and also involve a pre-training initialization step (much
more principled than random initialization) before the standard
back propagation learning phase. Thus deep belief networks
– DBNs, are those deep neural networks – DNNs, which are
initialized using a pair wise unsupervised local learning of re-
stricted Boltzman machines (RBM) [14, 15]. Recent advances
in DBNs for acoustic modeling [16], image classification [15]
and more recently in utterance classification [17] motivated us
to investigate the use of DBNs as the neural network models for
semantic tagging, a task, to our best knowledge, has never been
tried before using neural networks.

We use DBNs as discriminative models to model posterior
distribution of the slot sequence given the sequence of words,
similar to CRFs. However, unlike CRFs, in DBN based ap-
proach, we decompose the conditional probability of slot se-
quence into product of local probability functions, each model-
ing the distribution of a particular slot tag given the context at
that time instant. More formally, we decompose P (C|W) as
shown below:

P (C|W) =

T∏
t=1

P (ct|ct−1
1 ,W) ≈

T∏
t=1

P
(
ct|ct−1, γt(W)

)
(2)

where γt(W)) captures local features (lexical, named entities
(NE), part of speech (POS) etc.) at time t, similar to CRFs.
However, unlike CRFs, where each local model is an unnor-
malized potential function ψ

(
ct, ct−1, γt(W)

)
(see 1), we use

a probability distribution function, P
(
ct|ct−1, γt(W)

)
, thus

removing the necessity to normalize the product over the entire
sequence. Once the individual local models are trained, Viterbi
decoding is carried out to find the best slot sequence given the
sequence of words.

Unlike tasks such as acoustic modeling and digit recogni-
tion, where the input feature vector presented to DBNs is dense
and real valued, classification tasks in natural language process-
ing have input features which are often sparse and at-least as
long as the size of the lexical vocabulary (in thousands). Huge
input feature vector is a bottleneck for the pre-training phase of
DBN training as each step of it involves reconstructing (through
Gibbs sampling from an exponential distribution) all the ele-
ments on the input feature vector. To overcome this limitation,
in this paper, we propose discriminative embedding technique
which projects the sparse and large input layer onto a small,
dense and real valued feature vector, which is then subsequently
used for pre-training the network and then to do discriminative
classification. In the past, researchers have used latent Dirich-
let analysis (LDA) or neural network language modeling (LM)
based technique to obtain word embeddings (see [18] for a com-
prehensive survey of various word embedding techniques) to
overcome similar limitations. In our work, we found that if the
embedding procedure is carried out in a discriminative fashion
(i.e. by minimizing the tagging errors) rather than in an unsu-
pervised fashion (LDA and LM like methods aim to maximize
the likelihood of observations – W, without taking into account
the tags associated with them), it results in a much better feature
representation as it is more suited to the task at hand. Moreover,
in our approach, we project the totality of all features onto the
continuous space resulting into an even better embedding. LDA
and LM based embedding techniques have a limited scope as
they can robustly provide embeddings of lexical features only.

The rest of the paper is organized as follows: In Sec. 2
we describe, in brief, the model structure of a deep belief net-
work. In subsection Sec. 2.1, we describe the proposed modifi-

cation to the DBN architecture to obtain discriminative embed-
ding features for the purpose of pre-training and discriminative
classification via back propagation training. We present experi-
mental results in Sec. 3, analysis of some results in Sec. 4 and
then finally conclude in Sec. 5.

2. Deep Belief Network Model Description
Deep Belief Network (DBN) is built up with a stack of prob-
abilistic model called Restricted Boltzmann Machine (RBM)
[14, 15]. RBMs are trained using the contrastive divergence
(CD) [14] learning procedure. Each RBM layer is trained by
using the previous layer’s hidden units (h) as input/visible units
(v). Deep networks have higher modeling capacity than shallow
networks but are also much harder to train, because the objec-
tive function of a deep network is highly non-convex function of
the parameters, with many distinct local minimum in parameter
space. Contrastive divergence based pre-training of these RBM
layers is carried out to initialize the weights of DBN. After the
deep network is initialized, back-propagation [19] algorithm is
used to fine tune the weights of deep networks in a discrimina-
tive fashion. We refer interested readers to [14] for a detailed
description about RBM based pre-training technique.

As described above, a DBN is formed by stacking multiple
RBMs on top of each other. Thus input to ith RBM is output
of i− 1th RBM. We will represent ith stacked RBM by RBMi

and denote the weight parameters for this layer by Θi. Thus
once RBM1 is constructed and pre-trained, we obtain the pos-
terior distribution over hidden vectors P (h|v; Θi) and sample
h, which then becomes input for second RBM layer: RBM2.
Continuing in this fashion, we form a multi layer deep belief
network with weights initialized by the pre-training procedure.

The topmost layer of the neural network uses a soft max
function to compute the probability distribution over class la-
bels. A back-propagation algorithm is then used to fine tune
weights of the neural network. In our work, we use sigmoid ac-
tivation function to obtain values at various hidden and output
units given the corresponding inputs.

2.1. Discriminative Embedding Techniques

For natural language processing applications, n-gram lexical
features are represented as a concatenation of n “1 of N coded”
binary vectors, where N is the size of the lexical vocabulary.
With a lexical vocabulary running in thousands, this feature rep-
resentation becomes really huge. This is not so much of a prob-
lem for back-propagation because in it, one needs to update only
those weights which are connected to non-zero input units (at
most n). It is, however, the pre-training phase, for which large
input layer causes a bottleneck, as it has to be reconstructed in
each epoch.1 To solve this problem, we propose to divide our
training procedure in 3 phases:

1. Obtain Embeddings: For a network with sparse input
layer, 1 hidden layer and output label layer, randomly
initialize the weights and run back-propagation train-
ing to minimize the classification error and obtain set of
weights between input and hidden layer: Θ1. For every
input feature, we obtain the values at the hidden layer by
forward propagating the units through the trained net-
work. The hidden units act as the feature embeddings
for the corresponding inputs.

1In our experience, sub-sampling input features for the purpose of
reconstruction led us to sub-optimal results. However, recent work [20]
show promise and as part of our future work, we may explore this idea.



2. Do Pre-training with embedded features: Obtain em-
bedding features for each input sample. With this as the
input, form a DBN by stacking RBMs on top of each
other. We will refer to this as RBM stack. With random
initialization of weights, do pre-training of this network
and obtain set of weights: Θ2,Θ3, . . ..

3. Fine tune the weights with back-propagation: Attach
the original sparse binary input layer, the above RBM
stack and also the output label layer. Randomly initial-
ize the weights between top most RBM layer and output
label layer. Initialize the weights between input layer
and first RBM layer with Θ1. Initialize the weights of
RBM stack with Θ2,Θ3, . . .. Fine tune all these weights
except Θ1 with back-propagation to minimize the classi-
fication error rate (one could re-tune Θ1 although in our
work, we did not find it necessary). This final network is
then used during decoding.

2.2. Learning Techniques

We divide our training data into several mini batches and learn
neural network weights (parameters of the model) using on-
line version of conjugate gradient (CG) optimization. Unlike
stochastic gradient descent (SGD) optimization, conjugate gra-
dient does not require tuning of the learning parameter and is
generally believed to converge faster. However, rather than us-
ing conjugate gradient optimization in batch mode (which can
be impractical for large training corpus), we use it under on-
line (or stochastic) setting. For each mini batch, we update the
parameters by running CG for a finite number of steps. Thus
rather than learning the local optimum solution for each mini
batch, we truncate the search after a small number of steps (typ-
ically 3). The weights, however, have to be regularized to avoid
over-fitting of the model on the training data. Typically L2 reg-
ularization of the entire weight vector is carried out as a way to
penalize very large values.

Recently Hinton et.al.[21] proposed a weight constraining
process for regularizing the neural network model training. In-
stead of penalizing the L2 norm of the whole weight vector, an
upper bound is set on the L2 norm of the incoming weight vec-
tor for each hidden unit. Whenever a weight update violates
this constraint, the incoming weights are scaled down until the
constraint is satisfied.

In our work, we used a variation of the above proposed
weight constraining technique for regularization. Instead of
continually scaling down the L2 norm of the incoming weight
vector until the constraint is satisfied, we constrain each indi-
vidual weight only once at every update. Thus if the weight
update increases the absolute value of a weight above a thresh-
old we scale it down by dividing it with some constant. Value
of this constant and the threshold has to be chosen by doing a
cross validation experiment on some held out set.

In order to find the effect of pre-training on final trained
weights, we ran an experiment in which we compared the L2
norms of incoming weights at each hidden unit with and with-
out pre-training initialization. From Figure 1, it can be seen
that when weights are randomly initialized followed by back-
propagation training (‘×’ in Fig. 1), the final weights tend to
have a lot of variance (µ = 292, σ = 283). Pre-training based
initialization followed by back-propagation fine tuning (with-
out weight constraining at hidden unit level) (‘�’) reduces this
variance to a great extent (µ = 178, σ = 117). When mod-
els are randomly initialized followed by back-propagation train-
ing (without any pre-training) and weight constraining is done

during training (‘•’), the individual weights get regularized ex-
tremely well (µ = 93, σ = 27). For all the 3 settings above, the
starting initial weights were exactly the same, suggesting that
the differences in the final weights were only due to the effects
of weight constraining and pre-training. In our experience, we
find pre-training as an implicit way to regularize network’s pa-
rameters. Explicit regularization by way of weight constraining
regularizes the model further. Looking at the L2 norm distri-
bution of weights trained with pre-training based initialization,
gives us a range of values within which search for an explicit
threshold to cap the individual weights can be carried out.

Figure 1: Distribution of L2 norms of incoming weights to in-
dividual hidden units obtained after back-propagation training
with and without pre-training and/or weight constraining.

3. Experiments and Results
We evaluate the deep belief network based sequence taggers
on the most commonly used data set for SLU research – ATIS
corpus [3]. In this paper, we used the ATIS corpus as used in
[13, 1, 22, 10]. The training set contains 4978 utterances (67k
word tokens and 21k tags), while the test set contains 893 ut-
terances (11k word tokens and 3.7k tags). Named entities are
further marked via table lookup, including domain specific en-
tities such as city, airline, airport names and dates. The ATIS
utterances are represented using semantic frames, where each
sentence has a goal or goals and slots filled with phrases. The
values of the slots are not normalized or interpreted. An exam-
ple utterance & annotation in In-Out-Begin (IOB) representa-
tion is shown in Fig. 2.

Tur et.al.[1] trained an automatic speech recognizer us-
ing generic dictation models using the Microsoft’s commercial
speech recognition system. We used the ASR output from their
setup. The WER for the transcribed ATIS test data was 13.76%.

We trained the deep neural network (using the steps 1
through 3 in Sec.2.1) with 2 hidden layers of sizes 100 and 200
units respectively.2 The threshold for weight constraining was
2. CRF models were trained using CRF++ [23] toolkit with
L2 regularization. Both classifiers were fed with exact same
feature set. For DBN, we trained local probabilistic models at
every time instant t: P (ct|ct−1, γt(W)) (see Eqn. 2), where
ct is the current tag, ct−1 is one of the hypothesized tags from
immediate past and γt(W) are the features extracted at time
instant t. In all, we used 4 classes of features:

1. Lexical (Lex): At every time instant, we used 2 words
from left, 2 words from right and the current word as lex-

2We thank Xin Wu for implementing initial version of the DBN soft-
ware program.



Words
.. from tacoma to san jose ..
↓ ↓ ↓ ↓ ↓ ↓ ↓
.. O B-from.city O B-to.city I-to.city ..

Slot-Tags

Figure 2: An example utterance semantically annotated in In-
Out-Begin (IOB) format.

ical features. The lexical vocabulary for ATIS corpus is
895 words, so the lexical features resulted in a vector of
size 4475 bits (= 5×895), with only 5 bits (correspond-
ing to 5 words) switched on, while all the other off. Out
of vocabulary (OOV) words were represented with a ‘0
of N’ coded vector.

2. Named Entities (NE): Each word in the ATIS corpus is
marked with a named entity. So for every word in the 5
word window used in lexical features, we form a similar
binary vector of size equal to the size of the named entity
gazetteer. The total number of named entity tags that
came with ATIS corpus were 134, so we formed a vector
of size 670 bits (= 5× 134) again with a maximum of 5
bits on.

3. Syntactic Features (Sntc): In a study carried out by
Tur et.al. [13], authors showed that in-spite of using 5
word window and named entities, some of the errors in
the ATIS domain were caused due to model’s inability
to capture cues occurring far beyond the n-gram win-
dow. They proposed to solve this problem by using part
of speech tags and some long span features obtained via
dependency parsers [1]. We used head words for the cur-
rent word only while part of speech tags were extracted
for the 5 word window.3 The total number of POS tags
were 41 resulting in the feature vector of size 205 bits
(= 5 × 41). Feature vector for head words (immediate
head word and predicate head word) were of size equal
to lexical vocabulary, hence resulting in a vector of size
1790 (= 2× 895).

4. Slot-Tag: We used hypothesized slot-tag from the im-
mediate past as an additional feature. The total number
of slot-tags for the ATIS corpus is 128. Thus for the fi-
nal model, the size of the input layer was 7268 bits with
a maximum of 18 bits on (corresponding to 5 words, 2
head words, 5 POS, 5 NE and 1 hypothesized slot-tag).
For both CRF and DBN, this feature was always used
irrespective of whether syntactic features and/or named
entities were used or not.

There are 128 slot-tags in the ATIS domain and thus the
output layer of the deep belief network has these many units.
Each unit corresponds to a particular slot-tag. Value obtained
at each output unit (after applying soft-max) corresponds to the
likelihood of seeing the associated slot-tag given the context
represented by a 7268 bit long input vector.

Following the literature [10], F-measure for evaluating the
model performance was used. Slot sequence was represented in
the conventional IOB representation (see Fig. 2) and CoNLL
evaluation script4 was used to compute F-measure. From Table
1, we can clearly see that DBN model outperforms CRF based

3We thank Tur et.al.[1] for sharing with us these features.
4http://www.cnts.ua.ac.be/conll2000/chunking/output.html

Manual ASR
Setup CRF DBN CRF DBN
Lex 91.0 93.2 86.7 86.4
+ NE 94.4 95.3 91.9 92.8
+ Sntc 94.6 96.0 91.6 93.5

Table 1: Performance comparison (using F-measure) of CRF
and DBN classifiers on ATIS test set under clean (manual tran-
scriptions) and noisy (ASR output) conditions.

sequence taggers significantly.5 With a full gamut of features,
we achieve 96.0% F-measure on manual transcriptions, which
is 1.4% better than that by CRF. Compared to the previous best
results (95%) reported in [1], we achieve a 1.0% absolute im-
provement.6 The results under noisy conditions are even more
encouraging. On ASR output, DBN based model outperforms
CRF by as much as 1.9% absolute. Such improvements are
both quantitatively as well as qualitatively significant. Output
of an ASR is usually far from perfect and hence if we are able
to do significantly better sequence tagging on such noisy text,
it is a very favorable setting for any real life spoken language
understanding system.

4. Analysis
Upon further analysis, we observed that DBN was able to pro-
duce correct tags even in those cases for which ‘observation-
tag’ did not occur in training data. An example sentence is:
’Does tacoma airport offer transportation’. In the training
data, the word tacoma never occurs together with airport and
is always labeled as B-city-name rather than as B-airport-name.
However, the word airport is tagged as I-airport-name many
times in the training data. DBN model tags tacoma airport with
airport-name slots, while CRF fails to tag it at all (due to incon-
sistency of B-city-name tag and I-airport-name tag going side
by side). Since tacoma airport bi-gram feature was unknown
to CRF, it defaulted to the unigram based features resulting into
no tags due to inconsistent predicted tag combination for the
word tacoma and airport. DBN models, however, were able to
generalize much better. By projecting the context onto a contin-
uous space, the models learned the fact that the word preceding
airport is likely to be an airport name rather than anything else.

5. Conclusion and Future Work
In this paper, we demonstrated a deep belief network based slot
sequence classifier. We applied it on the well studied spoken
language understanding task of ATIS and obtained new state-
of-the-art performances, outperforming the best CRF based sys-
tem [1]. As part of the future work, we plan to use these DBN
models for sequence tagging on word graphs extending our pre-
vious research work [24, 25]. In our companion paper [26], we
used word confusions to improve various spoken language un-
derstanding tasks in a CRF framework. Use of DBNs would
only be a natural extension of this work.

We also plan to investigate some model adaptation tech-
niques to benefit from the huge amounts of unsupervised data
available in the form of search queries.

5The results are statistically significant with a p<0.01.
6The difference between our CRF performance versus that reported

in [1] can be attributed to different CRF toolkits and/or regularization
techniques.



6. References
[1] G. Tur, D. Hakkani-Tur, L. Heck, and S. Parthasarathy, “Sentence

Simplification for Spoken Language Understanding,” in Proc. of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2011, pp. 5628 –5631.

[2] G. Tur and R. D. Mori, Eds., Spoken Language Understanding:
Systems for Extracting Semantic Information from Speech. New
York, NY: John Wiley and Sons, 2011.

[3] P. J. Price, “Evaluation of spoken language systems: The ATIS
domain,” in Proceedings of the DARPA Workshop on Speech and
Natural Language, Hidden Valley, PA, June 1990.

[4] R. Pieraccini, E. Tzoukermann, Z. Gorelov, J.-L. Gauvain,
E. Levin, C.-H. Lee, and J. G. Wilpon, “A speech understanding
system based on statistical representation of semantics,” in Pro-
ceedings of the ICASSP, San Francisco, CA, March 1992.

[5] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz, “Hidden under-
standing models of natural language,” in Proceedings of the ACL,
Las Cruces, NM, June 1994.

[6] W. Ward and S.Issar, “Recent improvements in the CMU spoken
language understanding system,” in Proceedings of the ARPA HLT
Workshop, March 1994, pp. 213–216.

[7] S. Seneff, “TINA: A natural language system for spoken language
applications,” Computational Linguistics, vol. 18, no. 1, pp. 61–
86, 1992.

[8] J. Dowding, J. M. Gawron, D. Appelt, J. Bear, L. Cherny,
R. Moore, and D. Moran, “Gemini: A natural language system
for spoken language understanding,” in Proceedings of the ARPA
Workshop on Human Language Technology, Princeton, NJ, March
1993.

[9] Y.-Y. Wang and A. Acero, “Discriminative models for spoken lan-
guage understanding,” in Proceedings of the ICSLP, Pittsburgh,
PA, September 2006.

[10] C. Raymond and G. Riccardi, “Generative and discriminative al-
gorithms for spoken language understanding,” in Proceedings of
the Interspeech, Antwerp, Belgium, 2007.

[11] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” in Proceedings of the ICML, Williamstown, MA, 2001.

[12] F. Jelinek, Statistical methods for speech recognition. Cam-
bridge, MA, USA: MIT Press, 1997.

[13] G. Tur, D. Hakkani-Tur, and L. Heck, “What is left to be under-
stood in ATIS?” in Proc. of IEEE Spoken Language Technology
Workshop (SLT), Dec 2010, pp. 19 –24.

[14] G.E.Hinton, “Training Products of Experts by Minimizing Con-
trastive Divergence,” Neural Computation, vol. 14, pp. 1771–
1800, 2002.

[15] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning al-
gorithm for deep belief nets,” Advances in Neural Computation,
vol. 18, no. 7, pp. 1527–1554, 2006.

[16] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained dnns for large vocabulary speech recognition,” IEEE
Trans. Audio, Speech, and Lang. Proc., Jan. 2012.

[17] R. Sarikaya, G. E. Hinton, and B. Ramabhadran, “Deep belief nets
for natural language call-routing,” in Proceedings of the ICASSP,
Prague, Czech Republic, 2011.

[18] J. Turian, L. Ratinov, and Y. Bengio, “Word representation: A
simple and general method for semi-supervised learning,” in Pro-
ceedings of the ACL, Uppsala, Sweden, July 2010.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” MIT Press Compu-
tational Models of Cognition And Perception Series, pp. 318–362,
1986.

[20] Y. Dauphin, X. Glorot, and Y. Bengio, “Large-scale learning of
embeddings with reconstruction sampling,” in Proc. of IEEE Intl.
Conf. on Acoustics, Speech, and Signal Processing, Kyoto, Japan,
2012.

[21] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” ArXiv e-prints, July 2012.

[22] Y. He and S. Young, “A data-driven spoken language understand-
ing system,” in Proceedings of the IEEE ASRU Workshop, U.S.
Virgin Islands, December 2003, pp. 583–588.

[23] T. Kudo, “CRF++: Yet Another CRF toolkit,”
http://crfpp.googlecode.com/svn/trunk/doc/index.html, 2009.

[24] A. Deoras, R. Sarikaya, G. Tur, and D. Hakkani-Tür, “Joint De-
coding for Speech Recognition and Semantic Tagging,” in Proc.
of ISCA INTERSPEECH, Portland, Oregon, US, 2012.

[25] A. Deoras, G. Tur, R. Sarikaya, and D. Hakkani-Tur, “Joint Dis-
criminative Decoding of Words and Semantic Tags for Spoken
Language Understanding,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 21, no. 8, pp. 1612–1621, 2013.

[26] G. Tur, A. Deoras, and D. Hakkani-Tur, “Semantic Parsing Using
Word Confusion Networks With Conditional Random Fields,” in
Proc. of the INTERSPEECH, 2013.


