MSR Identity Toolbox

Version 1.0

Seyed Omid Sadjadi
Malcolm Slaney
Larry Heck

Microsoft Research Technical Report
MSR-TR-2013-133

s.omid.sadjadi@gmail.com

{mslaney, larry.heck}@microsoft.com



MSR ldentity Toolbox:

A MATLAB Toolbox for Speaker Recognition Research

Version 1.0
Seyed Omid Sadjadi, Malcolm Slaney, and Larry Heck
Microsoft Research
s.omid.sadjadil@gmail.com, {mslaney,larry.heck}@microsoft.com

This report serves as a user manual for the tools available in the Microsoft Research (MSR) Identity
Toolbox. This toolbox contains a collection of MATLAB tools and routines that can be used for
research and development in speaker recognition. It provides researchers with a test bed for
developing new front-end and back-end techniques, allowing replicable evaluation of new
advancements. It will also help newcomers in the field by lowering the “barrier to entry”, enabling
them to quickly build baseline systems for their experiments. Although the focus of this toolbox
is on speaker recognition, it can also be used for other speech related applications such as language,
dialect and accent identification.

In recent years, the design of robust and effective speaker recognition algorithms has attracted
significant research effort from academic and commercial institutions. Speaker recognition has
evolved substantially over the past 40 years; from discrete vector quantization (VQ) based systems
to adapted Gaussian mixture model (GMM) solutions, and more recently to factor analysis based
Eigenvoice (i-vector) frameworks. The Identity Toolbox provides tools that implement both the
conventional GMM-UBM and state-of-the-art i-vector based speaker recognition strategies.

Adaptation impostor

w ’ rget

A speaker recognition system includes two primary components: a front-end and a back-end. The
front-end transforms acoustic waveforms into more compact and less redundant representations
called acoustic features. Cepstral features are most often used for speaker recognition. It is practical

Feature Extraction

Identity Toolbox 1



to only retain the high signal-to-noise ratio (SNR) regions of the waveform, therefore there is also
a need for a speech activity detector (SAD) in the front-end. After dropping the low SNR frames,
acoustic features are further post-processed to remove the linear channel effects. Cepstral mean
and variance normalization (CMVN) is commonly used for the post-processing. The CMVN can
be applied globally over the entire recording or locally over a sliding window. Feature warping,
which is also applied over a sliding window, is another popular feature normalization technique
that has been successfully applied for speaker recognition. This toolbox provides support for these
normalization techniques, although no tool for feature extraction or SAD is provided. The Auditory
Toolbox (Malcolm Slaney) and VOICEBOX (Mike Brooks) which are both written in MATLAB
can be used for feature extraction and SAD purposes.

The main component of every speaker recognition system is the back-end where speakers are
modelled (enrolled) and verification trials are scored. The enrollment phase includes estimating a
model that represents (summarizes) the acoustic (and often phonetic) space of each speaker. This
is usually accomplished with the help of a statistical background model from which the speaker-
specific models are adapted. In the conventional GMM-UBM framework the universal background
model (UBM) is a Gaussian mixture model (GMM) that is trained on a pool of data (known as the
background or development data) from a large number of speakers. The speaker-specific models
are then adapted from the UBM using the maximum a posteriori (MAP) estimation. During the
evaluation phase, each test segment is scored either against all enrolled speaker models to
determine who is speaking (speaker identification), or against the background model and a given
speaker model to accept/reject an identity claim (speaker verification). On the other hand, in the
i-vector framework the speaker models are estimated through a procedure called Eigenvoice
adaptation. A total variability subspace is learned from the development set and is used to estimate
a low (and fixed) dimensional latent factor called the identity vector (i-vector) from adapted mean
supervectors (the term “i-vector” sometimes also refers to a vector of “intermediate” size, bigger
than the underlying cepstral feature vector but much smaller than the GMM supervector). Unlike
the GMM-UBM framework, which uses acoustic feature vectors to represent the test segments, in
the i-vector paradigm both the model and test segments are represented as i-vectors. The
dimensionality of the i-vectors are normally reduced through linear discriminant analysis (with
Fisher criterion) to annihilate the non-speaker related directions (e.g., the channel subspace),
thereby increasing the discrimination between speaker subspaces. Before modelling the
dimensionality reduced i-vectors via a generative factor analysis approach called the probabilistic
LDA (PLDA), they are mean and length normalized. In addition, a whitening transformation that
is learned from i-vectors in the development set is applied. Finally, a fast and linear strategy, which
computes the log-likelihood ratio (LLR) between same versus different speakers hypotheses,
scores the verification trials. The Identity toolbox provides tools for speaker recognition using both
the GMM-UBM and i-vector paradigms.



This report does not provide a detailed description of each speaker recognition tool available. The
function descriptions include references to more detailed descriptions of corresponding
components. We have attempted to maintain consistency with the naming convention in the code
to follow the formulation and symbolization used in the literature. This will make it easier for the
users to compare the theory with the implementation and help them better understand the concept
behind each algorithm.

Identity Toolbox 3



Usage

In order to better support interactive or batch usage, most of the tools in the Identity
Toolbox accept either floating point or string arguments. String arguments, either
for a file name or a numerical value, are useful when these tools are compiled and
called from a shell command line. This makes it easy to use the tools on machines
with limited memory (but enough disk space) as well as computer clusters (from a
terminal). In addition, the interactive tools can optionally write the output products
(models or matrices) to the disk if an output file name is specified.

This toolbox makes extensive use of parfor loops (as opposed to for loops) so that
parallel processing can speed up the computations. However, if the Distributed
Computing Toolbox is not installed, MATLAB automatically considers all parfor
loops as for loops and there is no need to modify the tools. MATLAB by default sets
the number of parallel workers to the number of physical CPU cores (not logical
threads!) available on a computer. At the time of writing this report, MATLAB
supports a maximum of 12 workers on a local machine.

The Identity toolbox has been tested on Windows 8 as well as Ubuntu Linux
computers running MATLAB R2013a. The toolbox is portable and is expected to
work on any machine that runs MATLAB.

Compilation

In case MATLAB is not installed or MATLAB license is not available (for instance on
a computer cluster), we provide standalone executables that can be used in
conjunction with the MATLAB Compiler Runtime (MCR). The MCR is a standalone
set of shared libraries that enables the execution of compiled MATLAB applications
or components on computers that do not have MATLAB installed. The MCR installer
can be obtained free of charge from the web address:

http://www.mathworks.com/products/compiler/mcr/

The binaries supplied with this version of the toolkit need version 8.1 (R2013a) of
the MCR.

The MCR installer is easy to use and provides users with an installation wizard.
Assuming that the MCR s installed, a MATLAB code can be compiled from either
the command window or a DOS/bash terminal as:



Identity Toolbox

mcc -m -R -singleCompThread -R -nodisplay -R -nojvm foo.m -I libs/ -o foo -d
bin/

for a standalone single-threaded executable. Single-threaded executables are useful
when running the tools on clusters that only allow a single CPU process per
scheduled job. To generate multithreaded executables (this is important when using
parfor) the mcc can be used as following:

mcc -m -R -nodisplay foo.m -1 libs/ -o foo -d bin/

For more details on the “mcc” command see the MATLAB documentation.



Flow Charts

The Identity toolbox provides researchers with tools that implement both the conventional
GMM-UBM and state-of-the-art i-vector based systems. The block diagrams below show
the overall signal flow and the routines (page numbers in parenthesis) used by each system.

GMM-UBM
( )
Features UBM
Development gmm-em (12)
. i J
Features ( \ )
Adaptation
Enroliment mapAdapt (14)
. J

\ 4

@ Scoring
score gmm trials(15)

i-vector-PLDA

UBM
Development gmm-em (12)

| Statistics
compute bw stats(16)

TV subspace
train tv space(1l7)

v

i-vectors
extract ivector (19)

v

LDA-GPLDA
lda(18)and gplda em(21)

v

Scoring
score gplda trials(23)




cmvn

Purpose
Global cepstral mean and variance normalization (CMVN)

Synopsis
Fea = cmvn(fea, varnorm)

Description

This function implements global cepstral mean and variance normalization
(CMVN) on input feature matrix fea to remove the linear channel effects. The code
assumes that there is one observation per column. The CMVN should be applied

after dropping the low SNR frames.

The logical switch varnorm (false | true) is used to instruct the code to perform

variance normalization in addition to mean normalization.

Examples

Identity Toolbox

In an example we plot the distribution (histogram) of C; (first cepstral coefficient)

in sample feature file, before and after global CMVN:
>> load('mfcc')
>> size (mfcc)

ans =

39

24252

>> hist (mfcc(2,:), 30)

>> hist (cmvn (mfc(2,:), true),

2000

Before

1800
1600
1400
1200
1000
800
600
400
200

0
-15

As expected there is no change in overall shape of the distribution, and only the

-10 -5 0

5

30)

2000
1800
1600
1400
1200
1000

After

dynamic range of the feature stream is modified.



wcmvn

Purpose

Cepstral mean and variance normalization (CMVN) over a sliding window

Synopsis

Fea = wemvn(fea, win, varnorm)

Description

This function implements cepstral mean and variance normalization (CMVN) on
input feature matrix fea to remove the (locally) linear channel effects. The code
assumes that there is one observation per column.

The normalization is performed over a sliding window that typically spans 301
frames (that is 3 seconds at a typical 100 Hz frame rate). The middle frame in the
window is normalized based on the mean and variance computed over the specified
time interval. The length of the sliding window can be specified through the scalar
input win which must be an odd number. The CMVN should be applied after
dropping the low SNR frames.

The logical scalar varnorm (false | true) is used to instruct the code to perform
variance normalization in addition to mean normalization. The normalized feature
streams are return in Fea.

Examples

In this example we plot the distribution (histogram) of C; (first cepstral coefficient)
in a sample feature file, before and after windowed CMVN:

>> Joad('mfcc')
>> gsize (mfcc)

ans =
39 24252

>> hist (mfcc(2,:), 30)
>> hist (wemvn (mfc(2,:), 301, true), 30)



Before After

2000 2500

1800
1600 - 2000
1400
1200 1500
1000
800 1000
600
400 500

200

0
-15

Unlike with the global CMVN, for this sample feature stream the overall shape of
the feature stream distribution is approximately mapped to a standard normal
distribution.

Identity Toolbox 9



fea warping

10

Purpose

Short-term Gaussianization over a sliding window (a.k.a feature warping)

Synopsis

Fea = fea_warping(fea, win)

Description

This routine warps the distribution of the cepstral feature streams in fea to the
standard normal distribution (i.e., ' (0, 1)) to mitigate the effects of (locally) linear
channel mismatch. This is specifically useful because the distribution of cepstral
feature streams is often modeled by Gaussians. The code assumes that there is one
observation per column.

The normalization is performed over a sliding window that typically spans 301
frames (that is 3 seconds at a typical 100 Hz frame rate). The middle frame in the
window is normalized based on its rank in a array of sorted feature values over the
specified time interval. The length of the sliding window is specified through the
scalar input win which must be an odd number.

Fea contains the normalized feature streams. Note that the feature warping should
be applied after dropping the low SNR frames.

Examples

In this example we plot the distribution (histogram) of C; (first cepstral coefficient)
in a sample feature file, before and after feature warping:

>> load('mfcc')
>> size (mfcc)

ans =
39 24252

>> hist (mfcc(2,:), 30)
>> hist (fea warping(mfc(2,:), 301), 30)



Before After

2000
1800
1600
1400
1200
1000
800
600
4001
2001

-15

Notice that the overall distribution of the feature stream is warped to the standard
normal distribution.

See Also

[1] J. Pelecanos and S. Sridharan, “Feature warping for robust speaker verification,”
in Proc. ISCA Odyssey, Crete, Greece, Jun. 2001.

Identity Toolbox 11



gmm_em

Purpose

Fit a Gaussian mixture model (GMM) to observations

Synopsis

gmm = gmm_em(dataList, nmix, final_niter, ds_factor, nworkers, gmmFilename)

Description

12

This function fits a GMM to acoustic feature vectors using binary splitting and
expectation-maximization (EM). The input argument dataList can be either the
name of an ASCII list containing feature file names (assuming one file per line), or
a cell array containing features (assuming one feature matrix per cell). In case a list
of files (the former option) is provided, the features must be saved in uncompressed
HTK format. In case a cell array of features is provided, the function assumes one
observation per column.

The scalar nmix specifies the number of desired components in the GMM, and must
be a power of 2. A binary splitting procedure is used to boot up the GMM from a
single component to nmix components. After each split the model is re-estimated
several times using the EM algorithm. The number of EM iterations at each split is
gradually increased from 1 to final_niter (scalar) for the nmix component GMM.

While booting up a GMM (from one to nmix components) on a large number of
observations, it is practical to down-sample (sub-sample) the acoustic features. It is
usually not necessary to re-estimate the model parameters at each split using all
feature frames. This is due to the redundancy of speech frames and the fact that the
analysis frames are overlapping. The scalar argument ds_factor specifies the down-
sampling factor. The value assigned to the ds_factor is reset to one in the last two
splits.

The scalar argument nworkers specifies the number of MATLAB parallel workers
in the parfor loop. MATLAB by default sets the number of workers to the number
of Cores (not virtual processors!) available on a computer. At the time of writing
this report, MATLAB only supports a maximum of 12 workers on a local machine.

The optional argument gmmFilename (string) specifies the file name of GMM
model to be saved. If this is specified, the GMM hyper-parameters (as structure
fields, see below) are saved in a .mat file on disk.



The model hyper-parameters are returned in gmm which is a structure with three

fields:

- gmm.mu component means

- gmm.sigma component covariance matrices
- gmm.w component weights

The code reports the accumulated likelihood of observations given the model in
each EM iteration. It also reports the elapsed time for each iteration.

Identity Toolbox 13



mapAdapt

Purpose

Adapt a speaker specific GMM from a universal background model (UBM)

Synopsis

gmm = mapAdapt(dataList, ubm, tau, config, gmmFilename)

Description

This routine adapts a speaker specific GMM from a UBM using maximum a
posteriori (MAP) estimation. The adaptation data is specified input via dataList,
which should be either the name of an ASCII list containing feature file names
(assuming one file per line), or a cell array containing features (assuming one
feature matrix per cell). In case a list of files is provided, the features must be saved
in uncompressed HTK format.

The input argument ubm can be either a file name (string) or a structure with UBM
hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see also
gmm_em). The UBM file should be a .mat file with the same structure as above.

The code supports adaptation of all model hyper-parameters (i.e., means,
covariance matrices, and weights). The input string parameter config is used to
specify which parameters should be adapted. Any sensible combination of ‘m’, ‘v’,
and ‘w’ is accepted (default is mean ‘m’). The MAP adaptation relevance factor is

set via the scalar input tau.

The optional argument gmmFilename (string) specifies the file name of the adapted
GMM model to be saved. If this is specified, the GMM hyper-parameters (as
structure fields, see below) are saved in a .mat file on disk.

The model hyper-parameters are returned in gmm, which is a structure with three
fields (i.e., gmm.mu, gmm.sigma, gmm.w).

See Also

14

[1] D.A. Reynolds, T.F. Quatieri, R.B. Dunn, “Speaker verification using adapted
Gaussian mixture models”, Digital Signal Processing, vol. 10, pp. 19-41, Jan. 2000.



score gmm trials

Purpose

Compute verification scores for GMM trials

Synopsis

scores = score_gmm_trials(models, tests, trials, ubmFilename)

Description

This function computes the verification scores for trials specified in the input
argument trials. The scores are computed as the log-likelihood ratio between the
given speaker models and the UBM given the test observations.

The input argument models is a cell array containing the speaker models. The
speaker models are GMM structures with fields described before (see also
gmm_em).

The input argument tests is also cell array that should either contain the feature
matrices or the feature file names.

The input argument trials is a 2-dimensional array with 2 columns. The first column
contains the numerical model IDs (1 ... N, assuming N models), while the second
column contains the numerical test IDs (1 ... M, assuming M test files). Each row
of the two-column array specifies a model-test trial (e.g., [3 10] means model
number 3 should be tested against test segment 10).

The input argument ubmFilename can be either a file name (string) or a structure
with UBM hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see
also gmm_em). The UBM file should be a .mat file with the same structure as
above.

The verification likelihood ratios are returned in scores (one score per trial).

See Also

Identity Toolbox

[1] D.A. Reynolds, T.F. Quatieri, R.B. Dunn, “Speaker verification using adapted
Gaussian mixture models,” Digital Signal Processing, vol. 10, pp. 19-41, Jan. 2000.

15



compute bw stats

Purpose
Compute the sufficient statistics for observations given the UBM

Synopsis
[N, F] = compute_bw_stats(fea, ubm, statFilename)

Description
This function computes the zero™ (N) and first (F) order sufficient statistics (Baum-
Welch statistics) for observations given a UBM:

Ny = > p(g106 Auom)
t

Fy= ) 00 p(gl0p Ausm) — My - N,
t

where p(g|0¢, Aupm) denotes the posterior probability of the UBM mixture
component g given the observations O;.

The input argument fea can be either a feature file name (string) or a feature matrix
with one observation per column. In case a file name is provided, the features must
be saved in uncompressed HTK format.

The input argument ubm can be either a file name (string) or a structure with UBM
hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see also
gmm_em). The UBM file should be a .mat file with the same structure as above.

The optional argument statFilename (string) specifies the stat file name to be saved.
If this is specified, the statistics are saved in a .mat file on disk. The zero™ order
statistic, N, is a one-dimensional array with nmix elements (i.e., the number of
Gaussian components from the UBM). The first order statistic, F, is also a one-
dimensional array with nmix x ndim components (i.e., the supervector dimension).
The first order statistic is centered.

See Also
[1] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor
analysis for speaker verification,” IEEE TASLP, vol. 19, pp. 788-798, May 2011.

[2] P. Kenny, "A small footprint i-vector extractor,” in Proc. ISCA Odyssey, The
Speaker and Language Recognition Workshop, Singapore, Jun. 2012.

16



train tv space

Purpose

Learn a total variability subspace from the observations

Synopsis

T = train_tv_space(dataList, ubm, tv_dim, niter, nworkers, tvFilename)

Description

Identity Toolbox

This routine uses EM to learn a total variability subspace from the observations.
Technically, assuming a factor analysis (FA) model of the form:

M=m+T-x

for mean supervectors, M, the code computes the maximum likelihood estimate
(MLE) of the factor loading matrix T (a.k.a. the total variability subspace). Here,
M is the adapted mean supervector, m is the UBM mean supervector, and
x~NV(0,1) is a vector of total factors (a.k.a. the i-vector).

The observations are assumed to be in form of sufficient statistics computed with
the background model (UBM). The input argument dataList is either the name
(string) of an ASCII list containing statistics file names (one file per line), or a cell
array of concatenated stats that is the zero™ order stats, N, appended with the first
order stats, F, in a column vector.

The input argument ubm can be either a file name (string) or a structure with UBM
hyper-parameters (in form of gmm.mu, gmm.sigma, and gmm.w, see also
gmm_em). The UBM file should be a .mat file with the same structure as described
above.

The scalar input tv_dim specifies the dimensionality of the total subspace. The
tv_dim values typically range from 400 to 800. The total subspace is learned in an
EM framework. The number of EM iterations can be set using the scalar niter
argument. The accumulation of statistics in each EM iteration can be sped up using
a parfor loop. The scalar argument nworkers specifies the number of MATLAB
parallel workers in the parfor loop.

The optional argument tvFilename (string) specifies the output file name. If this is
specified, the total subspace matrix is saved in a .mat file on disk.

17



18

See Also
[1] D. Matrouf, N. Scheffer, B. Fauve, J.-F. Bonastre, “A straightforward and
efficient implementation of the factor analysis model for speaker verification,” in
Proc. INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 1242-1245.

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor
analysis for speaker verification,” IEEE TASLP, vol. 19, pp. 788-798, May 2011.

[3] P. Kenny, “A small footprint i-vector extractor,” in Proc. ISCA Odyssey, The
Speaker and Language Recognition Workshop, Singapore, Jun. 2012.

[4] “Joint Factor Analysis Matlab Demo,” 2008. [Online]. Available:
http://speech.fit.vutbr.cz/software/joint-factor-analysis-matlab-demo/.



extract ivector

Purpose

Compute the identity vector (i-vector) for observations

Synopsis

X = extract_ivector(stat, ubm, tv_matrix, ivFilename)

Description

This function computes the i-vector for observations as the mean (conditional
expectation) of the posterior distribution of the latent variable x. The observations
are assumed to be in form of sufficient statistics computed with the background
model (UBM). The input argument stat is either the name (string) of .mat file
containing the statistics or a one-dimensional array of concatenated stats, that is the
zeroth order stats, N, appended with the first order stats, F, in a column vector.

The input argument ubm can be either a file name (string) or a structure with UBM
hyper-parameters (specifying gmm.mu, gmm.sigma, and gmm.w, see also
gmm_em). The UBM file should be a .mat file with this same structure.

The i-vector extractor tv_matrix can be specified either with a file name (string) or
a matrix.

The code can optionally save the i-vectors into a .mat file. The input argument
ivFilename specifies the output file name. The i-vector is returned in x, a column
vector of size tv_dim (see also train_tv_space).

See Also

Identity Toolbox

[1] D. Matrouf, N. Scheffer, B. Fauve, J.-F. Bonastre, “A straightforward and
efficient implementation of the factor analysis model for speaker verification,” in
Proc. INTERSPEECH, Antwerp, Belgium, Aug. 2007, pp. 1242-1245.

[2] P. Kenny, “A small footprint i-vector extractor,” in Proc. ISCA Odyssey, The
Speaker and Language Recognition Workshop, Singapore, Jun. 2012.

[3] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor
analysis for speaker verification,” IEEE TASLP, vol. 19, pp. 788-798, May 2011.

19



lda

Purpose
Linear discriminant analysis (LDA) using Fisher criterion

Synopsis
[V, D] = Ida(data, labels)

Description
This routine computes a linear transformation that maximizes the between class
variation while minimizing the within class variances. It uses the Fisher criterion
for this purpose.

Technically, the Fisher criterion to be maximized is in the form:

VTRV
JV) = VIT,V
where X, and X,, are between- and within-class covariance matrices, respectively.
The above relationship is a Rayleigh quotient, therefore the solution, V, is the
generalized eigenvectors of

L,V =Dz, V.

The input argument data is a two-dimensional array that specifies the data matrix,
assuming one observation per column. Class labels for observations in the data
matrix can be specified via labels which is a one dimensional array (or cell array)
with one numerical (or string) element per class.

The LDA transformation matrix (generalized eigenvectors stored in columns) is
returned in V. Note that the maximum number of columns in V is the minimum of
dimensionality of observations and the number of unique class minus 1. The
generalized eigenvalues are returned in D.

See Also

[1] K. Fukunaga, Introduction to Statistical Pattern Recognition. 2nd ed. New
York: Academic Press, 1990, ch. 10.

20



gplda em

Purpose

Learn a Gaussian probabilistic LDA (PLDA) from observations

Synopsis

plda = gplda_em(data, spk_labs, nphi, niter)

Description

Identity Toolbox

This function uses EM to learn a Gaussian PLDA model from observations. The
observations are i-vectors computed from the development set. The input argument
data contains the i-vectors (one observation per column). The development i-
vectors are internally centered (mean is removed), length-normalized, and whitened
before modeling.

Technically, assuming a factor analysis (FA) model of the i-vectors of the form:
X=m+®P- y+e,

this routine computes the maximum likelihood estimate (MLE) of the factor
loading matrix & (a.k.a. the Eigenvoice subspace). Here, x is the i-vector, m is the
mean of training i-vectors, and y~N'(0,I) is a vector of latent factors. The full
covariance residual noise term € explains the variability not captured through the
latent variables.

The input argument spk_labs determines the class (i.e., speaker) labels for
observations in the data matrix. spk_labs is a one-dimensional array (or cell array)
with one numerical (or string) element per class.

The dimensionality of the Eigenvoice subspace is specified using scalar argument
nphi. The scalar input niter determines the number of EM iteration for learning the
PLDA model.

The Gaussian PLDA model is returned in plda, which is a structure with fields:
- plda.Phi Eigenvoice matrix

- plda.Sigma covariance matrix of the residual noise (full)
- plda.M mean of the development i-vectors
- pldaw whitening transformation

21



22

See Also
[1] S.J.D. Prince and J.H. Elder, “Probabilistic linear discriminant analysis for
inferences about identity,” in Proc. IEEE ICCV, Rio de Janeiro, Brazil, Oct. 2007.

[2] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in Proc. INTERSPEECH, Florence,
Italy, Aug. 2011, pp. 249-252.

[3] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in Proc.
Odyssey, The Speaker and Language Recognition Workshop, Brno, Czech
Republic, Jun. 2010.



score gplda trials

Purpose

Compute verification scores for i-vector trials using the PLDA model

Synopsis

scores = score_gplda_trials(plda, model_iv, test_iv)

Description

This function computes the verification scores for all possible model-test i-vector
trials. The scores are computed as the “batch” log-likelihood ratio between the same
(H,) versus different (H,) speaker models hypotheses:

p(X1,Xz|H,)

llr =1n
p(x1|Hp) - p(x2|H,)

The i-vectors, x, are modeled with a Gaussian PLDA provided via plda. The input
plda model is a structure with PLDA hyperparameters (i.e., plda.Phi, plda.Sigma,
plda.M, and plda.W).

Before computing the verification scores, the enrollment and test i-vectors are
internally mean- and length-normalized and whitened. The input arguments
model_iv and test_iv are two-dimensional arrays (one observation per column)
containing unprocessed enrollment and test i-vectors, respectively.

The likelihood ratio test has a linear and closed form solution. Therefore, it is
practical to compute the verification scores at once for all possible combination of
model-test i-vectors, and then select a subset of scores according to a trial list. The
output argument scores is a matrix that contains the verification scores for all
possible trials.

See Also

Identity Toolbox

[1] D. Garcia-Romero and C.Y. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in Proc. INTERSPEECH, Florence,
Italy, Aug. 2011, pp. 249-252.

[2] P. Kenny, “Bayesian speaker verification with heavy-tailed priors,” in Proc.
Odyssey, The Speaker and Language Recognition Workshop, Brno, Czech
Republic, Jun. 2010.

23



compute eer

24

Purpose

Compute the equal error rate (EER) performance measure

Synopsis

[eer, dcf08, dcf10] = compute_eer(scores, labels, showfig)

Description

This routine computes the EER given the verification scores for target and impostor
trials. The EER is calculated as the operating point on the detection error tradeoff
(DET) curve where the false-alarm and missed-detection rates are equal.

The input argument scores is a one-dimensional array containing the verification
scores for all target and impostor trials. The trial labels are specified via the
argument labels which can be a one-dimensional binary array (0’s and 1’s for
impostor and target), or a cell array with “target” and “impostor” string labels.

The logical switch showfig (false | true) is used to instruct the code as to whether
the DET curve should be plotted.

The EER is returned in eer (in percent). Additionally, the minimum detection cost
functions (DCF) are computed and returned if the optional output arguments dcfO8
and dcf10 are specified. The dcf08 (x100) is computed according to the NIST SRE
2008 cost parameters, while the dcf10 (x100) is calculated based on the NIST SRE
2010 parameters.

See Also

[1] “The NIST year 2008 speaker recognition evaluation plan,” 2008. [Online].
Available: http://www.nist.gov/speech/tests/sre/2008/sre08_evalplan_release4.pdf

[2] “The NIST year 2010 speaker recognition evaluation plan,” 2010. [Online].
Available: http://www.itl.nist.gov/iad/mig/tests/sre/2010/NIST_SRE10_evalplan.r6.pdf



Demos

Introduction

We demonstrate the use of this toolbox with two different kinds of demonstrations.
The first example demonstrates that this toolbox can achieve state-of-the-art
performance on a standard identity task, using the TIMIT corpus. The second
demonstration uses artificial data to show the simplest usage cases for the toolbox.

TIMIT Task

Identity Toolbox

In order to demonstrate how the tools in the Identity Toolbox work individually and
when combined together, we provide two sample demos using the TIMIT corpus:
1) demo_gmm_ubm and 2) demo_ivector_plda. The first and the second demo
show how to use the tools to run speaker recognition experiments ina GMM-UBM
and i-vector frameworks, respectively.

A relatively small scale speaker verification task has been designed using speech
material from the TIMIT corpus. There are a total of 630 (192 female and 438 male)
speakers in TIMIT, from which 530 speakers have been selected for background
model training and the remaining 100 (30 female and 70 male) speakers are used
for tests. There are 10 short sentences per speaker in TIMIT. For background model
training all sentences from all 530 speakers (i.e., 5300 speech recordings in total)
are used. For speaker-specific model training 9 out of 10 sentences per speaker are
selected and the remaining 1 sentence is kept for tests. Verification trials consist of
all possible model-test combinations, resulting in a total of 10,000 trials (100 target
versus 9900 impostor trials).

The figure below shows the detection error tradeoff (DET) curves for the two
systems: GMM-UBM (solid) and i-vector-PLDA (dashed). Also shown in the
figure are the system performances on the TIMIT task in terms of the EER. The
EER operating points are circled as the intersection of a diagonal line with the DET
curves.

25



26

False Negative Rate (FNR) [%]

401

20

10

0.1

050
02t -/

T T T T 1
GMM-UBM: EER=1.01%
i-vector-PLDA: EER=0.48%

0102 05 1 2

5 10 20 40

False Positive Rate (FPR) [%]




Demos

Artificial Task
A small-scale task generates artificial features for 20 speakers. Each speaker has 10
sessions (channels) and each session is 1000 frames long (which translates to 10
seconds assuming a frame rate of 100 Hz).

The following script (demo_create_data.m) generates the features used in the
following demonstrations:

nSpeakers = 20;

nDims = 13; % dimensionality of feature vectors

nMixtures = 32; % How many mixtures used to generate data
nChannels = 10; % Number of channels (sessions) per speaker
nFrames = 1000; % Frames per speaker (10 seconds assuming 100 Hz)
nWorkers = 1; % Number of parfor workers, if available

rng ('default'); To promote reproducibility.

)

% Pick random centers for all the mixtures.

mixtureVariance = .10;

channelVariance = .05;

mixtureCenters = randn(nDims, nMixtures, nSpeakers);
channelCenters = randn(nDims, nMixtures, nSpeakers, nChannels)*.1l;
trainSpeakerData = cell (nSpeakers, nChannels);

testSpeakerData = cell (nSpeakers, nChannels);

speakerID = zeros (nSpeakers, nChannels);

Create the random data. Both training and testing data have the same

o
°
o
°

layout.
for s=1l:nSpeakers
trainSpeechData = zeros (nDims, nMixtures);
testSpeechData = zeros (nDims, nMixtures);

for c=1l:nChannels
for m=1:nMixtures
% Create data from mixture m for speaker s
frameIndices = m:nMixtures:nFrames;
nMixFrames = length (framelIndices);
trainSpeechData (:, frameIndices) =
randn (nDims, nMixFrames) *sqrt (mixtureVariance) +
repmat (mixtureCenters(:,m,s),l,nMixFrames) +
repmat (channelCenters(:,m,s,c),l,nMixFrames) ;
testSpeechData (:, frameIndices) =
randn (nDims, nMixFrames) *sqgrt (mixtureVariance) +
repmat (mixtureCenters(:,m,s),1l,nMixFrames) +
repmat (channelCenters(:,m,s,c),1l,nMixFrames);

end
trainSpeakerData{s, c} = trainSpeechData;
testSpeakerData{s, c} = testSpeechData;
speakerID(s,c) = s; % Keep track of who this is
end
end

Identity Toolbox 27



28

After generating the features are generated we can use them to train and test GMM-
UBM and i-vector speaker recognition systems.

GMM-UBM Demo

There are four steps involved in training and testing a GMM-UBM speaker
recognition system:

Training a UBM from the background data

MAP adapting speaker models from the UBM using enrollment data
Scoring verification trials

Computing the performance measures (e.g., confusion matrix and EER)

P owbhpRE

The following MATLAB script (demo_gmm_ubm_artificial.m) generates a UBM
speaker-recognition model and tests it:

oe
oe

rng ('default")
% Stepl: Create the universal background model from all the

)

% training speaker data

nmix = nMixtures; % In this case, we know the # of mixtures needed
final niter = 10;

ds factor = 1;

ubm = gmm em(trainSpeakerData(:), nmix, final niter, ds factor,
nWorkers) ;

o
oe

% Step2: Now adapt the UBM to each speaker to create GMM speaker model.
map_tau = 10.0;
config = 'mwv';
gmm = cell (nSpeakers, 1);
for s=1l:nSpeakers

gmm{s} = mapAdapt (trainSpeakerData(s, :), ubm, map tau, config);
end

oe
oe

oo

Step3: Now calculate the score for each model versus each speaker's
data.

Generate a list that tests each model (first column) against all the
testSpeakerData.

o0 oP

oe

trials = zeros (nSpeakers*nChannels*nSpeakers, 2);
answers = zeros (nSpeakers*nChannels*nSpeakers, 1);
for ix = 1 : nSpeakers,

b = (ix-1)*nSpeakers*nChannels + 1;

e = b + nSpeakers*nChannels - 1;

trials(b:e, :) = [ix * ones (nSpeakers*nChannels, 1),
(1:nSpeakers*nChannels)'];

answers ( (ix-1) *nChannels+b : (ix-1)*nChannels+b+nChannels-1) = 1;



Identity Toolbox

end

gmmScores = score gmm trials(gmm, reshape(testSpeakerData',
nSpeakers*nChannels, 1), trials, ubm);

o
oe

% Step4: Now compute the EER and plot the DET curve and confusion matrix
imagesc (reshape (gmmScores, nSpeakers*nChannels, nSpeakers))
title('Speaker Verification Likelihood (GMM Model)');

ylabel ('Test # (Channel x Speaker)'); xlabel('Model #');

colorbar; drawnow; axis xy

figure

eer = compute eer (gmmScores, answers, false);

This generates the confusion matrix (image) shown below. (The EER curve is
blank because recognition is perfect at these noise levels.)

Speaker Verification Likelihood (GMM Model)
200

180

160

140

120

100

80

Test # (Channel x Speaker)

60

40

20

Model #

29



30

i-vector Demo

There are five steps involved in training and testing an i-vector speaker recognition
system:

Training a UBM from the background data

Learning a total variability subspace from background statistics
Training a Gaussian PLDA model with development i-vectors

Scoring verification trials with model and test i-vectors

Computing the performance measures (e.g., EER and confusion matrix)

Ok 0N E

The following MATLAB script (demo_ivector_plda_artificial.m) demonstrates the
use of the i-vector code and shows simple results:

rng ('default');
Stepl: Create the universal background model from all the
training speaker data

nmix = nMixtures;% In this case, we know the # of mixtures needed
final niter = 10;

ds_factor = 1;

ubm = gmm em(trainSpeakerData(:), nmix, final niter,

ds_factor, nWorkers);

Step2.1: Calculate the statistics needed for the iVector model.
stats = cell (nSpeakers, nChannels);
for s=1l:nSpeakers
for c=1:nChannels
[N,F] = compute bw stats(trainSpeakerData{s,c}, ubm);
stats{s,c} = [N; FI;
end
end
% Step2.2: Learn the total variability subspace from all the
speaker data.
tvDim = 100;
niter = 5;

—

= train tv space(stats(:), ubm, tvDim, niter, nWorkers);

Now compute the ivectors for each speaker and channel.
The result is size

od° o© oo oe

tvDim x nSpeakers x nChannels

devIVs = zeros (tvDim, nSpeakers, nChannels);
for s=1l:nSpeakers

for c=1l:nChannels



Identity Toolbox

devIVs(:, s, c) = extract ivector(stats{s, c}, ubm, T);
end

)
o]
(o}

o

Step3.1l: Now do LDA on the iVectors to find the dimensions that
matter.

ldaDim = min (100, nSpeakers-1);

devIVbySpeaker = reshape (devIVs, tvDim, nSpeakers*nChannels);
[V,D] = lda(devIVbySpeaker, speakerID(:));

finalDevIVs = V(:, l:1daDim)' * devIVbySpeaker;

o0 oo oe

Step3.2: Now train a Gaussian PLDA model with development
i-vectors

nphi = ldaDim; % should be <= 1ldaDim
niter = 10;

PLDA = gplda _em(finalDevIVs, speakerID(:), nphi, niter);

o©°

Step4.l: OK now we have the channel and LDA models. Let's build
actual speaker

models. Normally we do that with new enrollment data, but now
we'll just reuse the development set.

o° o od° oo oe

[

averagelIVs = mean (devIVs, 3); % Average IVs across channels.
modellIVs = V(:, l:1daDim)' * averagelVs;

% Step4.2: Now compute the ivectors for the test set
% and score the utterances against the models
testIVs = zeros(tvDim, nSpeakers, nChannels);
for s=1l:nSpeakers
for c=1l:nChannels
[N, F] = compute bw stats(testSpeakerData{s, c}, ubm);
testIVs(:, s, c) = extract ivector ([N; F], ubm, T);
end
end
testIVbySpeaker = reshape (permute(testIVs, [1 3 2]),
tvDim, nSpeakers*nChannels);
finalTestIVs = V(:, 1l:1daDim)' * testIVbySpeaker;

% Step5: Now score the models with all the test data.
ivScores = score gplda trials(pLDA, modellVs, finalTestIVs);
imagesc (ivScores)

title ('Speaker Verification Likelihood (iVector Model) ') ;
xlabel ('Test # (Channel x Speaker)'); ylabel ('Model #');
colorbar; axis xy; drawnow;

answers = zeros (nSpeakers*nChannels*nSpeakers, 1);

31



32

for ix = 1 : nSpeakers,
b = (ix-1)*nSpeakers*nChannels + 1;

answers ( (ix-1) *nChannels+b : (ix-1)*nChannels+b+nChannels-1)

ivScores = reshape (ivScores', nSpeakers*nChannels* nSpeakers,
figure;
eer = compute eer (ivScores, answers, false);

This generates the confusion matrix (image) shown below:

Speaker Verification Likelihood (iVector Model)

Model #

Test # (Channel x Speaker)

1);



