
1

Transactions with Consistency Choices
on Geo-Replicated Cloud Storage

Douglas Terry, Vijayan Prabhakaran, Ramakrishna Kotla,
Mahesh Balakrishnan, Marcos K. Aguilera

Microsoft Research Silicon Valley

ABSTRACT

Pileus is a replicated and scalable key-value storage

system that features geo-replicated transactions with

varying degrees of consistency chosen by applica-

tions. Each transaction reads from a snapshot selected

based on its requested consistency, from strong to

eventual consistency or intermediate guarantees such

as read-my-writes, monotonic, bounded, and causal.

1. INTRODUCTION
Cloud storage systems need to support the needs of a

broad class of applications with differing perfor-

mance, consistency, fault-tolerance, and scalability

requirements. Our Pileus system was designed to

support four desirable features:

Geo-replication. To achieve high availability and

provide low latency access, data is stored in multiple

servers not only within a datacenter but also across

datacenters in different parts of the world. Replicas

are updated lazily, thereby avoiding multiple rounds

of high latency communication for write operations.

Data sharding. For scalability, large data sets are

partitioned into fragments of manageable size that

have their own primary and secondary replicas. The

data partitioning scheme can change over time; for

example, a growing fragment can be split dynamically

into two smaller fragments unbeknownst to clients.

Consistency choices. Clients can read data with dif-

ferent consistency guarantees ranging from strong

consistency to eventual consistency. Strong con-

sistency ensures that clients see the latest data but

offers the worse performance, whereas eventual con-

sistency allows client to read stale data with optimal

performance. Other intermediate consistency choices

include monotonic, read-my-writes, causal, and

bounded staleness. The chosen consistency can vary

for each transaction and for different clients that are

sharing the same data.

Transactions. Sequences of reads and writes are

grouped into transactions; the read operations within a

transaction access a consistent snapshot while write

operations are performed atomically upon commit.

The snapshot being read is determined by the choice

of consistency, with strongly consistency transactions

accessing the latest data while transactions with re-

laxed consistency accessing potentially stale snap-

shots.

While these features individually have been widely

used and proven effective in other cloud storage ser-

vices, as we discuss in more detail in the next section,

we are not aware of any system that offers this com-

bination. The challenges we faced in providing these

features include defining consistency choices for

transactions, selecting suitable snapshots for a given

consistency while taking into account the staleness of

nearby replicas, and committing transactions that

write data in multiple partitions. Our key insight is

that the chosen consistency determines a minimum

read timestamp that constrains but does not dictate the

replicas from which data can be read and that decou-

ples consistency guarantees from transaction execu-

tion.

A large e-commerce Web application is an example of

a system that could benefit from Pileus. Geo-

replication provides low latency access from around

the world, while data sharding enables the required

scalability. Transactions simplify the application log-

ic for handling shopping carts, user accounts, and or-

ders. Consistency choices improve efficiency: the

application could utilize read-my-write transactions to

manage a user's shopping cart, strongly-consistent

transactions to finalize orders, and eventually-

consistent read-only transactions for data analytics of

past purchases.

This paper is organized as follows. Section 2 discuss-

es prior related work. Section 3 presents the system

model and API that is visible to Pileus applications.

Sections 4, 5, and 6 describe the implementation and

technical challenges, starting with the system archi-

tecture then discussing consistency guarantees and

finally transaction commit. Section 7 touches on ad-

ditional implementation issues. Section 8 presents

some performance experiments, and Section 9 con-

cludes.

2

2. RELATED WORK
The design of the Pileus system borrows features from

many other systems.

Key-value stores. Key-value stores with a simple

Get/Put interface are quite popular as the underlying

storage systems of many cloud services. These in-

clude Cassandra [31], BigTable [16], SimpleDB [3],

Dynamo [24], Windows Azure Storage [14], Oracle

NoSQL Database [37], and PNUTS [17][41]. Often

these system provide key-range partitioning for scala-

bility [15], where a large table can be sharded into

one or more tablets as in Pileus.

Geo-distributed storage. Geo-replication is a com-

mon technique for surviving complete datacenter out-

ages. Windows Azure Storage replicates data within a

primary datacenter and lazily propagates updates to a

secondary datacenter in a nearby region [14]. Pileus

uses a similar architecture but allows any number of

secondary datacenters in all parts of the world, and it

permits clients to read from secondary servers with

selectable consistency guarantees.

Megastore synchronously replicates data in a few dat-

acenters within a region, incurring the cost of running

Paxos for every write but allowing strongly consistent

reads from any replica [5]. Spanner [19] similarly

replicates data across regionally close datacenters.

Relaxed consistency. Relaxed consistency models for

replicated data have been explored for many years

[39] and have been used in a wide variety of applica-

tions including social networking, e-mail, news, rec-

ommendations, and analytics [8][44][50][28][40][46].

These include eventual consistency [45][50], bounded

inconsistency [2][7], causal consistency [34][35], con-

tinuous consistency [54], and probabilistic quorums

[6]. Some work has been done on expressing relaxed

consistency guarantees in SQL [28]. Within the cloud,

early commercial storage services, like Amazon’s S3,

offered only eventual consistency [10][50][4][52].

More recently, systems have added strong consistency

as an option. DynamoDB and SimpleDB from Ama-

zon [51] as well as systems from Google [27], Oracle

[37], and Yahoo! [17] provide a choice of strongly or

eventually consistent reads.

Influenced by prior work on session guarantees [44],

Pileus broadens the set of choices to include interme-

diate guarantees, like monotonic and read-my-writes

consistency. A companion publication describes how

Pileus supports consistency-based service level

agreements which permit applications to specify their

consistency-performance needs in a declarative man-

ner [47]. In this paper, we describe how Pileus de-

fines a range of consistency choices for distributed

transactions and focus on techniques for implementing

transactional consistency guarantees on geo-replicated

data.

Distributed Transactions. Transactions, which are

widely used in the database community [12][43], have

also found recent adoption in cloud storage systems,

though often with limitations. Many systems, like

ElasTraS [21], BigTable [16], SimpleDB [3], PNUTS

[17], and Windows Azure [14], allow transactions

only on individual rows of a table or on data objects

that reside in the same partition on a single server.

Some, like G-Store [22], limit the scope of a transac-

tion to explicit groups. Deuteronomy [33] provides

better modularity and scalability by separating trans-

actional and data storage components, but does not

allow transactions to span multiple transactional com-

ponents. Some systems, like Sinfonia [1] and Granola

[20], support only one-shot minitransactions. Some

systems just support read-only transactions or write-

only transactions. Others have proposed new transac-

tional semantics for geo-replicated systems, such as

parallel snapshot isolation in Walter [42].

Distributed read-write transactions on partitioned data

with the traditional semantics of serializability [12] or

snapshot isolation [9] are now supported in a number

of cloud systems besides Pileus. Megastore uses a

conventional two-phase commit protocol for transac-

tions that span entity groups [5]. Percolator, like

Megastore, stores its data in BigTable, but adds multi -

row transactions with snapshot isolation using prima-

ry update and locking [38]. Calvin supports distribut-

ed transactions on replicated data using a determinis-

tic locking mechanism along with a decentralized se-

quencer and transaction shipping [48]. MDCC uses a

protocol based on variants of Paxos for optimistic

transactions on geo-replicated partitioned data;

MDCC offers only strong consistency, and it incurs a

large network latency across data centers to commit

each transaction [30]. In contrast, Pileus transactions

provide a way to trade-off consistency for latency.

CloudTPS [53] is a distributed key-value store with

distributed transactions built over a cloud storage sys-

tem. CloudTPS provides two types of transactions:

strongly consistent static transactions and weakly

consistent non-static read-only transactions. Com-

pared to Pileus, the consistency choices are limited in

number and scope (e.g., weak consistency is available

only for read-only transactions).

Snapshot isolation. Snapshot isolation [9] has been

shown to fit nicely with lazy replication. Elnikety et

al. introduced the notion of prefix-consistent snapshot

isolation [25]. This is one of the options supported by

Pileus when clients choose read-my-writes consisten-

cy, but Pileus offers broader choices of generalized

3

snapshots. Daudjee and Salem defined strong session

snapshot isolation which avoids transaction inver-

sions for a sequence of transactions within a session

[23]. Similar guarantees are provided in Pileus by

choosing both monotonic and read-my-writes con-

sistency.

Timestamps and multiversion systems. Pileus uses

timestamp-based and multi-version concurrency con-

trol techniques that were first explored in the 1970s.

SDD-1 was the first distributed database that assigned

timestamps to transactions and used these to achieve

lock-free synchronization [11]. As in Pileus, SDD-1

allowed concurrent read and write transactions with-

out requiring locking but, unlike Pileus, it preana-

lyzed transactions and grouped them into conflict

classes.

Relaxed currency serializability has been previously

proposed and evaluated as a model that allows appli-

cations to read stale data controlled by freshness con-

straints [13]. The target setting has a single master

database and asynchronously updated caches. Alt-

hough the ideal system suggested in that paper uses

multi-version concurrency control, the described im-

plementation uses traditional locking. Pileus adopts

this serializability model and shows how it can be

implemented in a cloud setting with geo-replication,

multiple partitions, and broad consistency choices

while using multi-version concurrency control.

Granola [20] uses timestamps to order its independent

distributed transactions and assigns commit

timestamps using a distributed protocol similar to that

used in Pileus. Granola executes transactions in

timestamp order, and a transaction may need to wait

for an earlier transaction to complete, which is prob-

lematic when participants fail. Moreover, Granola’s

use of timestamps does not guarantee external con-

sistency.

Recently, multiversioning has been used in Megastore

[5] and Percolator [38], which exploit Bigtable’s abil-

ity to store multiple rows with the same key but dif-

ferent timestamps. This idea is also used in Spanner,

which supports read-write, read-only, and single-read

transactions on old snapshots [19]. As in Pileus,

Spanner’s read-write transactions are assigned read

times and commit timestamps make use of multiver-

sion concurrency control, but Spanner only offers se-

rializability with external consistency and relies on

synchronized clocks.

In summary, Pileus differs from previous systems in

that it supports traditional read-write transactions in a

geo-replicated environment with either snapshot isola-

tion or serializability while offering a choice of con-

sistency guarantees ranging from eventual consistency

to strong external consistency. Snapshots specified

by read timestamps are selected automatically to meet

the desired consistency. Pileus does not need syn-

chronized clocks; it does not force clients to read

from a single server; and it does not require synchro-

nous replication.

3. APPLICATION MODEL
Application developers see Pileus as a traditional key-

value store with high availability (through geo-

replication), selectable consistency, and atomic trans-

actions. Conceptually, a snapshot is a copy of the

store comprising all of the data versions that existed

at some point in time. Read operations (Gets) and

write operations (Puts) are performed within transac-

tions. Transactions, in turn, are associated with ses-

sions which provide the context for certain consisten-

cy guarantees. For each transaction, the application

developer chooses the desired consistency from a

fixed set of options. The chosen consistency indirect-

ly selects the snapshot that is read throughout the

transaction.

3.1 Operations
The API provided to applications includes the follow-

ing operations.

Put (key, value): Creates or updates a data object.

Each data object consists of a unique string-valued

key and a value that is an opaque byte-sequence.

Get (key): Returns the data object with the given key.

BeginSession (): Defines the start of a session. Each

session can contain one or more transactions. A ses-

sion denotes the scope for consistency guarantees

such as read-my-writes and monotonic reads.

EndSession (): Terminates a session.

BeginTx (consistency, key-set): Starts a new transac-

tion. All subsequent Get and Put operations that oc-

cur before the end of the transaction are included.

The requested consistency (or set of consistency

choices) governs the snapshot used for each Get oper-

ation. The caller also hints at the set of keys that will

be read within the transaction; providing an empty or

inaccurate key-set does not invalidate the consistency

guarantees but could have performance consequences.

EndTx (): Ends the current transaction and attempts

to commit its Puts. It returns an indication of whether

the transaction committed or aborted due to conflicts

with concurrent transactions. Note that transactions

cannot be nested.

3.2 Transaction semantics
Get and Put methods are grouped into transactions

with the following key properties:

4

Read isolation. All Gets within a transaction access

the same snapshot of the data store (with the excep-

tion that Gets always read the results of any previous

Puts within the same transaction). The freshness of

this snapshot depends on the requested consistency

guarantee. For example, if the transaction asks for

strong consistency, then its snapshot will include all

Puts that were committed before the start of the trans-

action, whereas an eventually consistent transaction

may get a snapshot that is arbitrarily out-of-date.

Atomicity. Either all Puts within a transaction suc-

ceed at updating their data objects or none of them do.

Clients never see the results of partially executed

transactions; that is, if a client Gets a version pro-

duced by a Put in a previous transaction then it will

also observe other Puts in that transaction.

Strict order. Each transaction is committed at a spe-

cific point in time. If one transaction commits suc-

cessfully before another starts, then the results of

these transactions are observed in that order.

Write isolation. If concurrent transactions update the

same data object(s), then at most one of them will

succeed and others will abort. Application developers

must deal with aborted transactions, such as by re-

starting them.

3.3 Consistency guarantees
Each Get operation sees the results of some, but not

necessarily all, of the prior transactions that Put the

key being read. Consistency choices guarantee that

certain previously committed transactions are includ-

ed in the snapshot that is accessed by the current

transaction. Pileus offers the following consistencies:

 strong: The snapshot contains the results of all

transactions that were successfully committed be-

fore the start of the current transaction. This en-

sures that a Get returns the value of the latest

committed Put to the same key.

 eventual: The snapshot is produced by an arbitrary

prefix of the sequence of previously committed

transactions. Thus, a Get can return the value

written by any previously committed Put. Pileus

actually provides a stronger form of eventual con-

sistency than many systems, a guarantee that has

been called prefix consistency [45].

 read-my-writes: The snapshot reflects all previous

write transactions in the same session, as well as

previous Puts in the same transaction.

 monotonic: The prefix of transactions defining the

current snapshot is a superset of those in snapshots

that were accessed by earlier transactions in the

same session. Simply stated, the current snapshot

is as up-to-date as any previously read snapshots

in this session.

 bounded(t): The snapshot includes the results of

all transactions that were committed more than t

seconds before the start of the current transaction.

From the application’s perspective, a transaction is

committed at the time that the EndTx call returns

with a success indication.

 causal: The snapshot includes the results of all

causally preceding transactions. Specifically, con-

sider a graph in which the nodes are transactions

and a directed edge from T1 to T2 indicates that

either (a) transaction T2 read a value written by

transaction T1 or (b) transaction T2 was executed

after transaction T1 in the same session or (c)

transactions T2 and T1 performed a Put on the

same key and T2 was committed after T1. The

causally consistent snapshot reflects all transac-

tions for which this graph contains a directed path

to the current transaction.

Different consistency choices will likely, but not al-

ways, result in different performance for transactions.

In particular, since consistency guarantees place re-

strictions on the acceptable snapshots that are ac-

cessed by a transaction, they limit the set of servers

that can process a Get operation. Limiting the set of

suitable servers indirectly increases the expected read

latency since nearby servers may need to be bypassed

in favor of more distant, but more up-to-date replicas.

Choosing weaker consistency guarantees can improve

the performance not only of read-only transactions but

also of read-write transactions. But, an interesting

interplay exists between a read-write transaction’s

consistency and its ability to commit. Applications

that tolerate staleness can read from snapshots that are

farther in the past, thereby improving the availability

and performance of Gets but also extending the time

interval over which transactions can conflict. That is,

older snapshots increase the likelihood of concurrent

Puts and subsequent aborts, though this effect can be

offsetby reduced execution times due to faster read

operations (as shown in Section 8). When data ob-

jects are infrequently updated, aborts may be rare

even for transactions that choose eventual consisten-

cy. Application developers should choose a con-

sistency based on both the correct operation of their

application and the cost of aborted transactions.

4. SYSTEM ARCHITECTURE
To provide consistency-aware transactions on data

that is partitioned and geo-replicated, Pileus uses a

client-server architecture. Servers manage multiver-

sioned data, implement Get and Put operations, partic-

ipate in transactions, and replicate data among them-

selves. Clients maintain state for active sessions and

transactions, they track the staleness of various serv-

5

ers, they decide where to send each Get operation, and

they measure and record the roundtrip latencies be-

tween clients and servers.

4.1 Replication and partitioning
Each data object is replicated on multiple servers

within a datacenter and across geographically distrib-

uted datacenters. To ensure elastic scalability, no

server stores the complete set of data objects. Objects

are horizontally partitioned according to key ranges.

Objects within the same key-range are replicated on

the same sets of servers.

Applications access servers through a client library

that routes Get and Put operations to appropriate serv-

ers based on the chosen consistency. The client library

is aware of which servers store which partitions, but

this information is hidden from applications so that

data can be moved or repartitioned transparently. For

example, clients may get information on how keys are

partitioned from a cloud directory server.

4.2 Primary update
One datacenter is chosen as the primary site for each

data partition. For simplicity, the rest of this paper

refers to a single primary server for each data ob-

ject/partition, though in practice a set of primary

servers could form a highly-available primary cluster

using a protocol like chain replication [49]. A prima-

ry server participates in transactions that perform Put

operations for keys in its partition’s key-range.

After a write transaction has been committed, each

primary involved in the transaction asynchronously

propagates new data object versions to secondary rep-

licas. The actual details of the replication protocol

are unimportant. The only assumption is that updates

are transmitted and received in timestamp order. Sec-

ondary servers eventually receive all updated objects

along with their commit timestamps (described in

Section 6). No assumptions are made about the time

required to fully propagate an update to all replicas,

though more rapid dissemination increases a client’s

chance of being able to read from a nearby server.

4.3 Multiversion storage
Servers, whether primary or secondary replicas, man-

age multiple timestamped versions of data objects.

The Put operation creates an immutable version with a

given timestamp, while the Get operation returns the

latest version before a given time. As discussed later,

this allows snapshot isolation using multiversion con-

currency control without requiring locking [36].

Each server stores the following basic information:

 key-range = the range of keys managed by the

server.

 store = set of <key, value, commit timestamp>

tuples for all keys in the range.

 high timestamp = the commit timestamp of the lat-

est transaction that has been received and pro-

cessed by this server.

 low timestamp = the time of the server’s most re-

cent pruning operation.

Additionally, primary servers store:

 clock = a logical clock used to assign timestamps

to transactions when they commit.

 pending = a set of <put-set, proposed timestamp>

pairs for transactions that are in the process of be-

ing committed.

 propagating = a queue of <put-set, commit

timestamp> tuples for recently committed transac-

tions that need to be sent to secondary replicas.

Since primary servers assign increasing commit

timestamps to transactions and the replication proto-

col transfers updated objects in timestamp order, a

single high timestamp per server is sufficient to rec-

ord the set of updates that it has received. When a

server receives and stores new versions of the data

objects that were updated by a transaction, it updates

its high timestamp to the transaction’s commit

timestamp and records this same timestamp with each

object. If no write transactions have committed re-

cently, the primary server sends out periodic “null”

transactions with its current time causing secondary

servers to advance their high timestamps.

Servers are allowed to discard old versions after some

time to free up storage space. Each server periodical-

ly, and independently, prunes its data store by delet-

ing any versions that were not the latest version as of

a selected time (as discussed in more detail in Section

7.2). The last pruning time is recorded as the server’s

low timestamp.

The client-server protocol includes a Get operation

that takes a read timestamp in addition to a key. Up-

on receiving a Get(key, timestamp) request, a server

checks that it manages the given key and that the re-

quested timestamp is between its high timestamp and

low timestamp. Essentially, the interval from low

timestamp to high timestamp indicates the set of snap-

shots that can be accessed at this server. If the re-

quested read timestamp does not fall in this interval,

then the Get request is rejected by a secondary server;

a primary server always accepts Get operations as

long as the timestamp exceeds its low timestamp

(though the request may need to wait for in-progress

transactions to be assigned commit timestamps). If

the check succeeds, the server replies with the most

recent version of the object with the requested key

whose timestamp is no later than the requested time.

6

Included in the response is the object’s timestamp, the

timestamp of the next highest version of this object (if

known to the responding server), and the server’s high

timestamp.

5. READING SNAPSHOTS
To ensure that each Get operation within a transaction

accesses data from the same snapshot, the client se-

lects a read timestamp for the transaction. All Gets

are then performed using this timestamp. The mini-

mum acceptable read timestamp is determined by the

transaction’s requested consistency guarantee, the

previous object versions that have been read or writ-

ten in the client’s current session, and the set of keys

used in the transaction’s Gets (as passed to the BeginTx

method).

Although we have defined and implemented a set of

consistency guarantees that have been proven to be

useful in practice, this set could easily be extended.

To add a new consistency guarantee, one simply needs

to write a method that returns the minimum acceptable

read timestamp. This minimum timestamp serves as a

narrow interface between the components of the Pile-

us system that understand consistency choices and the

components that implement transactions.

The following sections describe how the minimum

acceptable read timestamp is determined for each of

our consistency guarantees and then how clients select

a particular read timestamp for a transaction. For any

consistency guarantee (except strong), there’s a trade-

off in selecting a read timestamp: choosing more re-

cent times produces more accurate data, which appli-

cations desire, but choosing older times results in a

broader set of servers that can potentially answer each

Get, thereby reducing average response times.

5.1 Strong consistency
To ensure strong consistency, the minimum accepta-

ble read timestamp is the maximum timestamp of all

versions stored at primary servers for the set of keys

that are expected to be read in the current transaction.

This timestamp guarantees that each Get accesses the

latest version of the object that existed at the s tart of

the transaction. Although an initial round of messag-

es is generally required to determine the minimum

acceptable read timestamp for a strongly consistent

transaction, optimizations are possible in some cases.

If the transaction involves a single key, as hinted in

the key-set that was passed to BeginTx, then the read

timestamp can be set to a special value indicating that

the primary server should simply return its latest ver-

sion. This case efficiently handles single-Get transac-

tions as well as simple read-modify-write transactions

executed at the primary. Similarly, if all of the keys

involved in the transaction belong to the same parti-

tion, and hence have the same primary, then the first

Get operation can be sent to the primary requesting its

latest version. The primary will respond with its cur-

rent high timestamp (i.e. the timestamp of its last

committed transaction), and this is used as the read

timestamp for subsequent Gets.

Once a client establishes the minimum acceptable

read timestamp for a strongly consistent transaction,

the transaction’s Gets might be performed at servers

other than the primary. For example, suppose that a

data object is updated once per day. At the start of a

strong consistency transaction, the client contacts the

primary server for this object and determines that the

object was last updated 14 hours ago. The actual Get

operation could then be sent to any secondary server

that is no more than 14 hours out-of-date, such as one

that’s nearby, is more lightly loaded, or has a higher

bandwidth connection.

Computing the minimum acceptable timestamp for

strong consistency requires knowing, at the start of

the transaction, the set of Gets that it will perform. In

some cases, predicting the set of keys being accessed

may be impractical, such as when the key for a Get

depends on user input or data retrieved by some prior

Get within the same transaction. If a key-set is not

provided, then the client assumes pessimistically that

all primaries are involved in the transaction and re-

trieves high timestamps from each primary. Another

option, however, is to assume optimistically that the

transaction involves a single partition (the one ac-

cessed by the first Get) and then abort the transaction

if this assumption turns out to be false. The client can

easily restart the aborted transaction with the newly

discovered key-set.

What if the provided key-set is wrong? If the key-set

contains keys that are not actually read, that will not

violate correctness; it will perhaps unnecessarily re-

duce the choice of servers. But if the key-set is miss-

ing some key used in a Get operation, this could be a

problem. For strong consistency, it is only a problem

if the key has a different primary than any of the keys

in the presented key-set. In this case, the minimum

acceptable read timestamp may have been set lower

than the latest committed transactions for this key,

and the transaction must be aborted.

5.2 Relaxed consistency
Other consistency guarantees have the advantage over

strong consistency that the minimum acceptable read

timestamp can be determined based solely on infor-

mation maintained by the client. No client-server

communication is required at the start of a transac-

tion.

7

The read-my-writes, monotonic reads, and causal con-

sistency guarantees requires the client to maintain

per-session state that records the commit timestamp of

previous Puts in the session as well as the timestamps

of versions returned by previous Gets. For the read-

my-writes guarantee, the minimum acceptable read

timestamp is the maximum timestamp of any previ-

ously committed Puts in the current session that up-

dated objects being accessed in the current transac-

tion. For monotonic reads, the read timestamp must be

at least as large as the maximum recorded timestamp

for previous Gets in this session.

If the key-set is unknown at the start of the transac-

tion, then, for monotonic reads, every previously read

version is considered when choosing the minimum

acceptable read timestamp. For read-my-writes, every

previously written version is relevant. Clearly, this

has performance and availability consequences since

it may set the read timestamp higher than needed, and

hence rule out servers that might otherwise be ac-

cessed; but there are no correctness concerns.

Even if the key-set is missing keys that are used in

Get operations, the transaction may be allowed to

continue in some cases. For monotonic reads, the

transaction need not abort as long as the read

timestamp exceeds previously read versions for the

missing key. Similarly, for read-my-writes, the cho-

sen read timestamp must be later than the previously

written version of the missing key.

Pileus ensures that if one version causally precedes

another then the first version will be assigned a lower

commit timestamp (as explained in Section 6.2).

Thus, causal consistency can be guaranteed conserva-

tively by ensuring that the read timestamp is at least

as large as the timestamp of any object that was pre-

viously read or written in the session.

If an application chooses bounded staleness, the min-

imum acceptable read timestamp is selected at the

start of the transaction (or when it issues its first Get).

Gets that are performed later in the transaction may

return data that is older than the staleness bound since

they need to read from the same snapshot. In theory,

implementing bounded staleness is easy; the smallest

acceptable read timestamp is simply the current time

minus the desired time bound (plus the maximum pos-

sible clock error), assuming that clients and servers

have approximately synchronized clocks, as in the

Spanner system [19].

In Pileus, providing staleness bounds is a bit more

challenging because the timestamps assigned to trans-

actions, and hence to object versions, are obtained

from logical clocks. Our solution is to have clients

maintain a mapping from real time to each primary

server’s logical clock. Whenever a client accesses a

primary server to perform a Get or Put operation, the

server returns its current high timestamp. The client

records its current time (taken from the local real-time

clock) along with the server’s high timestamp (which

indicates the server’s current logical clock). This

mapping table need not be large since it does not need

to contain a record for every interaction with the pri-

mary. One entry per minute, for instance, is probably

sufficient. To determine the minimum acceptable

read timestamp for a given staleness bound, the client

simply subtracts that bound from its current clock and

then uses its mapping table to find the closest logical

clock value. A key advantage of this scheme is that it

does not require any form of clock synchronization.

For eventual consistency, any read timestamp is ac-

ceptable. This also holds for the first transaction in a

session when monotonic, read-my-writes, or causal

consistency is requested. However, reading from time

zero, while technically not a violation of the con-

sistency guarantee, would be ineffective for applica-

tions and their users. Choosing the current time also

would not be wise since it has the same effect as

choosing strong consistency with the same limitations

on performance and availability. The next section

discusses how clients pick read timestamps that cause

low response times, when possible, while reading data

that is not overly stale.

5.3 Selecting the read timestamp
From the target consistency guarantee, the client ob-

tains the minimum acceptable read timestamp. Any

read timestamp that exceeds this minimum could be

selected. In our current implementation, the client

selects the largest read timestamp that allows it to

read from the closest servers that are sufficiently up-

to-date. This provides the freshest data that can be

Figure 1. Selecting read timestamp for transac-

tion that accesses keys A, B, and C residing in

different partitions on different servers.

time

key A

low high

key B

low high

key C

low high

Read timestamp

8

obtained without compromising performance or con-

sistency.

For each key in the transaction’s key-set, the client

selects the closest server (according to its own round-

trip latency measurements) whose last known high

timestamp is greater than the minimum acceptable

read timestamp. It then sets the read timestamp to the

lowest known high timestamp for any of these servers.

This read timestamp should both fall within the inter-

val of snapshots that are accessible at this set of serv-

ers and also comply with the minimum acceptable

timestamp for the desired consistency. Figure 1 de-

picts an example in which a transaction performs Gets

on keys A, B, and C, and each of these keys belongs

to different partitions with different closest servers.

Note that the client’s cached information about the

high timestamps of various servers is almost certainly

outdated since it was obtained from previous Get and

Put operations. However, a server’s high timestamp

is strictly increasing, and so even stale information

can be used to make conservative decisions about the

server’s suitability.

If servers aggressively discard old versions of data

objects (as discussed in Section 7.2), one server’s low

timestamp may exceed another server’s high

timestamp. Thus, the set of nearby servers for a

transaction’s key-set may have no suitable read

timestamp in common. In this case, the client must

try more distant servers. One strategy is to select the

set of servers with overlapping high-to-low timestamp

ranges that minimizes the average round-trip latency.

An acceptable read timestamp can always be found

since, at the very least, clients can choose to read

from primary servers using the current time as the

read timestamp.

During execution of the transaction, the chosen read

timestamp is used for all Get operations, and such

operations are sent to servers based on the client’s

current information about the state of the system.

Several relevant events can happen during the lifetime

of a transaction: secondary servers can receive new

updates from the primary, servers can prune old ver-

sions, servers may fail and become unavailable, net-

work loads may change causing variations in the cli-

ent-server latencies, and clients can update their local

state based on information obtained through normal

operations or periodic pings. All of these may cause

the client to direct Gets to servers other than those

used to select the transaction’s read timestamp. For

example, a nearby server that initially was unable to

satisfy a bounded staleness guarantee may have re-

cently replicated data from the primary, and hence can

now be used for future Gets.

The selected read timestamp can be adjusted during

the course of a transaction while still preserving snap-

shot isolation. This timestamp could be set as low as

the maximum timestamp of any object that has been

read (as long as it remains above the minimum ac-

ceptable read timestamp) or set just below the mini-

mum next version timestamp returned by all prior

Gets. Moving the read timestamp within this interval

would not affect the Gets that have already been per-

formed in the transaction but could possibly alter the

selection of servers for future Gets.

If the BeginTx call has an empty or incomplete key-

set, then the client can still select a read timestamp,

but may make a less desirable selection. As an exam-

ple, suppose that the transaction’s key-set includes

key A but not key B, and that the application request-

ed eventual consistency. The closest server for key A

has a recent high timestamp, and the client selects this

as the transaction’s read timestamp. The client Gets

the latest value for the object with key A. Now sup-

pose a Get for key B is performed. For this key, there

may be few servers that store the selected snapshot,

perhaps just the primary, although any of key B’s

servers could meet the eventual consistency guaran-

tee.

It is possible that the selection of the read timestamp

for the current transaction affects later transactions in

the same session. For example, suppose that the cur-

rent transaction only performs one Get for key A and

that the closest server for this key’s partition is the

primary. The client will choose to read the latest ver-

sion from the primary. Now, suppose the next trans-

action performs Gets on keys A and B and requests

monotonic consistency. This transaction is forced to

use a read timestamp at least as great as that of the

previous transaction. But the only server for key B

that is sufficiently up-to-date may be far away. If the

first transaction knew that about the second, it could

have made a more globally optimal selection of its

read timestamp. To avoid this problem, applications

can include keys read by later transactions in the key-

set presented for the current transaction.

6. COMMITTING TRANSACTIONS
Read-only transactions automatically commit with no

extra processing, while read-write and write-only

transactions require extra processing when EndTx is

called. Commit coordinators assign timestamps to

transactions, validate transactions at commit time, and

manage the participation of all of the primary servers

holding data being updated. In our current system,

the commit coordinator is one of the primary servers

involved in the transaction, though any machine, in-

cluding the client, could play this role.

9

6.1 Sending buffered Puts
While the Gets within a transaction are performed as

they are issued and may be sent to different servers,

each Put operation is simply buffered at the client .

Puts, therefore, involve no communication with pri-

mary servers until the end of the transaction. The new

objects are visible to Gets within the transaction, but

not to others until the transaction commits. If a trans-

action aborts, its Puts are simply discarded; no up-

dates need to be undone at any servers.

When a transaction begins, neither clients nor coordi-

nators need to know whether the transaction is read-

only, write-only, or read-write. The client makes this

determination when EndTx is called and then invokes

a commit coordinator if any Puts were buffered.

At the end of a transaction, the client sends the set of

Puts as an atomic batch to a commit coordinator along

with the read timestamp that was used by the transac-

tion. The commit coordinator splits the transaction’s

Put-set into multiple disjoint sets of Puts for each par-

tition and sends each subset to its designated primary.

Only primaries who store data objects being written

are participants in the transaction commit process.

6.2 Assigning commit timestamps
The commit coordinator assigns a commit timestamp

that orders the transaction relative to other transac-

tions. The coordinator starts by asking primaries to

propose a timestamp; this request is included with the

Put-set that is sent to each participant. Upon receiv-

ing such a request, a server proposes its current time

(taken from its local logical clock) and increments its

logical clock. The server adds the Put-set and its pro-

posed timestamp to its pending transactions list.

From the set of proposed timestamps, including its

own time, the coordinator chooses the maximum

timestamp (for reasons described below) as the com-

mit timestamp for this transaction. Note that if the

primary servers had perfectly synchronized clocks,

then the coordinator could merely use its own time

and avoid the round of proposals. But, relying on

tight synchronization of clocks among servers in dif-

ferent data centers perhaps run by different organiza-

tions can be problematic; instead, servers maintain

logical clocks from which all timestamps are obtained

[32].

When a primary server learns of the chosen commit

timestamp, it advances its logical clock to exceed this

time, if necessary, so that future transactions will be

assigned higher commit timestamps. The commit co-

ordinator might also advance its logical clock upon

receipt of a commit request from a client. In particu-

lar, clients keep track of the largest commit timestamp

for transactions that they have performed or observed.

This largest timestamp is included in the commit re-

quest, and the coordinator increases its clock, if nec-

essary, to guarantee that the commit timestamp for the

current transaction exceeds those of causally preced-

ing transactions.

One subtlety is that different coordinators may assign

the same commit timestamp to concurrent transactions

that involve overlapping primary servers. Servers

deterministically order such transactions using the

identities of their commit coordinators.

6.3 Validating transactions
Given both the read and commit timestamps for the

transaction, the coordinator must validate the transac-

tion to check whether it can commit or must be abort-

ed based on other concurrent transactions. Basically,

the read timestamp serves as the start time for the

transaction and the commit timestamp as its ending

time. To ensure snapshot isolation, the transaction

must not have updated any objects that were also up-

dated by other transactions that overlap in time [9].

Specifically, the coordinator asks each primary server

whether it holds any versions of objects in the trans-

action’s Put-set that have timestamps between the

transaction’s read timestamp and commit timestamp.

Optionally, to enforce serializability, this check could

include the transaction’s Get-set as well. Only if

these checks succeed at all participating primaries is

the transaction allowed to commit. Write-only trans-

actions, consisting solely of blind Puts, never abort.

6.4 Writing new versions
After a transaction has been validated, the commit

coordinator writes a commit record to stable storage

that includes the transaction’s commit timestamp and

set of Puts. To safeguard the durability of the trans-

action, the coordinator also writes the commit record

to one or more other servers who can inform partici-

pants of the transaction’s outcome if the coordinator

fails. At this point, the coordinator replies to the cli-

ent that the transaction has been committed.

The coordinator informs the other participating prima-

ry servers of the transaction’s assigned commit

timestamp (or that the transaction aborted). This can

be done lazily. Each primary server performs the Puts

for a committed transaction without coordinating with

other servers or waiting for pending transactions

(which might receive earlier commit timestamps). In

particular, new versions are created for each Put and

marked with the transaction’s commit timestamp.

These Puts are placed on the primary server’s propa-

gating queue and eventually propagate to secondary

servers. The primary can send Puts to a secondary

when it has no pending transactions that might be as-

10

signed earlier commit timestamps. Secondary servers

immediately apply any Puts that they receive and ad-

vance their high timestamps to the commit timestamp.

Each primary server sends the coordinator an

acknowledgement when its work is completed and

removes the transaction from its pending list. To en-

sure that the transaction is fully performed, the coor-

dinator periodically retransmits it to servers that have

not responded.

Observe that this commit protocol does not require

any locks to be held. For the most part, Gets and Puts

do not interfere with each other. That’s the beauty of

multiversion concurrency control: each transaction

writes its own timestamped versions and reads from a

snapshot.

6.5 Gets and pending transactions
If a primary server receives a Get request for a

timestamp that exceeds its current logical clock and

there are no pending transactions, the server bumps its

clock to the requested time and proceeds to answer

the Get knowing that future transactions will be as-

signed higher commit timestamps. However, there is

one situation in which Get operations (and validation

checks) may need to wait for a pending transaction.

This occurs if a primary server receives a request to

read an object with a given key and (a) some pending

transaction includes a Put for that object and (b) the

read timestamp is greater than the time that was pro-

posed for the pending transaction. In this case,

there’s a chance that the pending transaction may be

assigned a commit timestamp that is earlier than the

read timestamp and hence should be visible to the

Get. Note that pending transactions with later pro-

posed times can be ignored since the commit time for

such transactions must be at least as large at the pro-

posal (which is why coordinators choose the maxi-

mum proposal).

As an example, suppose a committed transaction in-

volving two or more partitions has been completed at

one primary, e.g. the coordinator, but not the others.

The client is informed that the transaction was com-

mitted, and this client immediately issues a strong

consistency Get request. This Get will be assigned a

read timestamp that is greater than the previous trans-

action’s commit timestamp, as desired to ensure ex-

ternal consistency. If the client attempts to read from

a server that has not yet processed the previous trans-

action, it must wait. This should not happen often,

and, when it does, the delay should be small. The

system could avoid such situations by informing a

client that its transaction has committed only after all

of the participating primary servers have performed

their updates. But that would require another round

of communication between primary servers for each

transaction and increase the time-to-commit for all

clients. Instead, we opted to accept an occasionally

delayed Get operation.

7. OTHER IMPLEMENTATION ISSUES

7.1 Client caching
Clients can freely cache any version of any data ob-

ject since versions are immutable. A client can cache

and discard versions without the servers’ knowledge.

It can even cache older versions of objects without

caching the later versions, or vice versa.

For each Get operation performed at a server, the cli-

ent receives the data along with the version’s

timestamp. Additionally, the server returns the

timestamp of the next later version (if any). This pre-

cisely tells the client the valid time interval for the

given version. If the version returned is the latest

version, the server returns its current high timestamp.

The client knows that the returned version is valid

until at least this time (and maybe longer). The client

caches the retrieved data along with its valid

timestamp interval.

When performing a Get, the client needs to determine

whether a cached version’s timestamp is less than or

equal to the read timestamp and whether it is the lat-

est such version for the given key. In short, the client

simply checks whether the read timestamp is in the

valid interval for one of its cached versions of the

desired key.

A client could consult its cached data when selecting

the read timestamp for a transaction. For example,

when reading a single object (or even multiple keys in

a key-set), the client might as well choose a read

timestamp that allows it to read from its cache (if this

meets the consistency guarantee). Essentially, the

local cache is treated as another (partial) replica.

7.2 Pruning old snapshots
Servers must prune old versions of data objects to

reduce their storage usage. But choosing the best

pruning policy is difficult. If servers are overly ag-

gressive about discarding versions, then a transaction

may be prevented from reading local data since the

nearby servers may no longer hold snapshots for the

desired read timestamp or two servers may have no

overlapping times that could be used as a common

read timestamp. If servers are overly conservative

about pruning, then they may store old versions that

are never read, wasting storage space.

Servers discard snapshots in the following manner.

When a server increases its low timestamp, it discards

any versions that are not the most recent version as of

11

the current low timestamp; that is, the server retains

exactly one version with an older timestamp. These

versions comprise the snapshot corresponding to the

server’s low timestamp.

In our current implementation, servers keep their low

timestamp a fixed distance behind their high

timestamp. This simple scheme requires no coordina-

tion between servers and, given knowledge of the up-

date rates, it bounds the amount of storage used. Al-

so, different servers advance their low timestamps at

about the same rate, and so it should be possible to

find common read timestamps. However, it may still

retain versions unnecessarily.

Observe that a read timestamp will never be chosen

that is less than the high timestamp of the most out-

of-date server (using the strategy presented in Section

5.3). So, an alternative scheme is for all servers to

exchange their high timestamps. Each server could

then independently prune versions by advancing its

low timestamp to the oldest high timestamp. We de-

cided against this approach since it requires servers to

know about each other and to exchange messages,

even servers for different keys and different parti-

tions.

One concern is that servers might prune a snapshot

that is currently in use by some long-running transac-

tion. After a read timestamp has been selected, all of

the servers for a key could advance their low

timestamp beyond the read timestamp so that no fu-

ture reads can be performed, causing the transaction

to be aborted.

To prevent this problem, servers could advance their

low timestamp based on the read timestamps they re-

ceive in Get requests. For example, they could

choose the lowest read timestamp in the past five

minutes. This requires no coordination among servers

and avoids pruning snapshots in use by transactions

that are actively reading data. Moreover, keys that

are regularly accessed in the same transaction will

have their servers naturally coordinate their pruning,

while the servers for keys that are accessed inde-

pendently will prune independently.

8. PERFORMANCE
For our experiments, we ran Pileus on a cluster of

machines in a geo-distributed system. Our setup con-

sisted of multiple sites separated by long-distance

links, with a Pileus primary server running on one site

in China and secondary servers running on other sites

in California. The measured California-to-China

round-trip latency averages 164 ms.

The key trade-off in Pileus involves transaction laten-

cy vs. commit rate: reading from an older snapshot

corresponding to a weaker consistency guarantee re-

duces the expected transaction execution time but in-

creases the probability of the transaction aborting.

Effectively, choosing an earlier read timestamp results

in a longer span between the transaction’s start and

commit, which increases the chance of conflicting

with other concurrent transactions.

Figure 2 shows the commit rate of Pileus transactions

for different consistency guarantees as we reduce con-

tention by increasing the total number of keys in the

system. Each transaction runs at a secondary; it reads

three randomly selected keys and then writes them

back. As shown in the graph, choosing a weaker con-

sistency guarantee has a negligible effect on the

commit rate for moderate to low levels of contention,

i.e. if the system has 10K or more keys. In this exper-

iment, the secondary receives updates from the prima-

ry every 500 ms.

Figure 2. Effect of contention on probability of commit

for different consistency choices.

For read-only transactions, choosing a relaxed con-

sistency model can result in a dramatic improvement

in performance. Strong consistency provides an upper

bound on transaction latency since it requires the cli-

ent to always read from the primary. Eventual con-

sistency provides a lower bound since the client can

always read from the secondary. Intermediate choic-

es, such as causal and read-my-writes, permit a client

to read from the secondary if it synchronizes frequent-

ly with the primary, but default to reading from the

primary if the secondary is not sufficiently up-to-date.

Prior work has shown that strong consistency transac-

tions can be as much as seven times the cost of even-

tual consistency within a datacenter [29]. Here, we

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1000 10000 100000

%
 o

f
C

o
m

m
it

te
d

 T
xe

s

of Keys

strong causal monotonic

eventual read-your-writes

12

explore the transaction cost with geo-replication and

observe that the difference can be two orders of mag-

nitude.

Figure 3 shows the execution time of read-only trans-

actions for two different workloads. In both work-

loads, a client at the secondary site issues strongly

consistent read-write transactions interspersed with

read-only transactions requesting various consistency

guarantees, but we only measure and report the execu-

tion times of the read-only transactions. As before, a

client at the primary site issues read-write transac-

tions in parallel. The workloads differ in the nature of

their read-write transactions. Workload #1 is a high-

contention workload: the client at the secondary site

reads and writes the same three keys in each transac-

tion, while the primary site accesses 1K keys random-

ly. Workload #2 is low-contention: both the primary

and the secondary site clients read and write randomly

selected 3-key sets from a total of 1K keys.

Figure 3. Latency for read-only transactions for a high-

contention workload (#1) and a low-contention workload

(#2).

Note in Figure 3 that all of the relaxed consistency

choices result in substantially faster read-only trans-

actions compared to strong consistency. The bars for

eventually consistent transactions are barely visible in

the figure since they execute in a few milliseconds.

For Workload #1, read-your-writes provides equal

latency to causal consistency since the keys read are

always recently modified, and hence must often be

read from the primary. For Workload #2, read-your-

writes is equivalent to eventual consistency, since the

keys read by a read-only transaction are rarely modi-

fied in the recent past. In both workloads, monotonic

consistency is slightly slower than eventual consisten-

cy since the interspersed strongly consistent transac-

tions continuously raise the last read timestamp.

9. CONCLUSIONS
Transactions consisting of a sequence of read and

write operations have proven to be valuable to appli-

cation programmers. Pileus supports transactions that

not only are performed atomically, even on parti-

tioned data, but also are governed by the relaxed con-

sistency models common in geo-replicated cloud stor-

age systems. Its design shows how to combine trans-

actions with consistency choices to provide snapshot

isolation and relaxed currency serialization through

multiversion concurrency control, consistency-driven

timestamp selection, and cross-primary commit.

10. ACKNOWLEDGEMENTS
Hussam Abu Libdeh participated in early meetings

leading to the design of the Pileus system. We thank

Phil Bernstein for his careful reading of an earlier

draft of this paper and his advice on commit proto-

cols. Discussions with Alan Fekete and David Lomet

were instrumental in prompting us to write this paper.

11. REFERENCES
[1] Marcos K. Aguilera, Arif Merchant, Mehul Shah,

Alistair Veitch, and Christos Karamanolis. Sinfo-

nia: A new paradigm for building scalable distrib-

uted systems. ACM Trans. Comput. Syst. 27 (3),

November 2009.

[2] R. Alonso, D. Barbara, and H. Garcia-Molina.

Data caching issues in an information retrieval

system. ACM Transactions on Database Systems

15(3):359-384, September 1990.

[3] Amazon SimpleDB.

http://aws.amazon.com/simpledb/

[4] E. Anderson, X. Li, M. Shah, J. Tucek, and J.

Wylie. What Consistency Does Your Key-value

Store Actually Provide? Proceedings Usenix

Workshop on Hot Topics in Systems Dependabil-

ity, 2010.

[5] Jason Baker, Chris Bond, James C. Corbett, JJ

Furman, Andrey Khorlin, James Larson, Jean-

Michel Leon, Yawei Li, Alexander Lloyd, Vadim

Yushprakh. Megastore: providing scalable, highly

available storage for interactive services. 5th Bi-

ennial Conference on Innovative Data Systems

Research (CIDR ’11), January 2011.

[6] Peter Bailis, Shivaram Venkataraman, Michael J.

Franklin, Joseph M. Hellerstein, and Ion Stoica.

Probabilistically bounded staleness for practical

partial quorums. Proceedings VLDB, August

2012.

[7] D. Barbara-Milla and H. Garcia-Molina. The de-

marcation protocol: A technique for maintaining

constraints in distributed database systems.

VLDB Journal 3(3):325-353, 1994.

[8] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A.

Venkataramani, P. Yalagandula and J. Zheng.

PRACTI replication. Proceedings USENIX Sym-

0

100

200

300

400

500

600

Workload #1 Workload #2

TX
 L

at
en

cy
 (

m
s)

strong causal monotonic read-your-writes eventual

http://aws.amazon.com/simpledb/
http://www.hpl.hp.com/techreports/2010/HPL-2010-98.pdf
http://www.hpl.hp.com/techreports/2010/HPL-2010-98.pdf

13

posium on Networked Systems Design and Imple-

mentation (NSDI), May 2006.

[9] Hal Berenson, Phil Bernstein, Jim Gray, Jim Mel-

ton, Elizabeth O'Neil, and Patrick O'Neil. A cri-

tique of ANSI SQL isolation levels. In Proceed-

ings ACM SIGMOD International Conference on

Management of Data (SIGMOD '95), 1995.

[10] David Bermbach , Stefan Tai, Eventual consisten-

cy: How soon is eventual? An evaluation of Ama-

zon S3's consistency behavior, Proceedings of the

6th Workshop on Middleware for Service Oriented

Computing, p.1-6, December 12-12, 2011, Lisbon,

Portugal.

[11] Philip A. Bernstein, David W. Shipman, and

James B. Rothnie, Jr. Concurrency Control in a

System for Distributed Databases (SDD-1). ACM

Transactions on Database Systems 5(1): 18-51,

March 1980.

[12] Philip A. Bernstein and Nathan Goodman. Con-

currency control in distributed database systems.

Computing Surveys 13(2): 185-221, June 1981.

[13] Philip A. Bernstein, Alan Fekete, Hongfei Guo,

Raghu Ramakrishnan, Pradeep Tamma. Relaxed

currency serializability for middle-tier caching

and replication. Proceedings SIGMOD, June

2006.

[14] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nil-

akantan, Arild Skjolsvold, Sam McKelvie, Yikang

Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin

Simitci, Jaidev Haridas, Chakravarthy Uddaraju,

Hemal Khatri, Andrew Edwards, Vaman Bedekar,

Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mi-

an Fahim ul Haq, Muhammad Ikram ul Haq,

Deepali Bhardwaj, Sowmya Dayanand, Anitha

Adusumilli, Marvin McNett, Sriram Sankaran,

Kavitha Manivannan, and Leonidas Rigas. Win-

dows Azure Storage: a highly available cloud

storage service with strong consistency. In Pro-

ceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles (SOSP), October

2011.

[15] R. Cattell, Scalable SQL and NoSQL data stores,

ACM SIGMOD Record, v.39 n.4, December 2010

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-

son C. Hsieh, Deborah A. Wallach, Mike Bur-

rows, Tushar Chandra, Andrew Fikes, and Robert

E. Gruber. Bigtable: A Distributed Storage Sys-

tem for Structured Data. ACM Trans. Comput.

Syst. 26, 2, Article 4 (June 2008).

[17] B. Cooper, R. Ramakrishnan, U. Srivastava, A.

Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,

D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s

Hosted Data Serving Platform. Proceedings In-

ternational Conference on Very Large Data Ba-

ses, August 2008.

[18] Brian F. Cooper, Adam Silberstein, Erwin Tam,

Raghu Ramakrishnan, and Russell Sears. 2010.

Benchmarking cloud serving systems with YCSB.

In Proceedings of the 1st ACM Symposium on

Cloud Computing (SoCC), June 2010.

[19] James C. Corbett, Jeffrey Dean, Michael Epstein,

Andrew Fikes, Christopher Frost, JJ Furman, San-

jay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, Wilson Hsieh, Sebas-

tian Kanthak, Eugene Kogan, Hongyi Li, Alexan-

der Lloyd, Sergey Melnik, David Mwaura, David

Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig,

Yasushi Saito, Michal Szymaniak, Christopher

Taylor, Ruth Wang, Dale Woodford. Spanner:

Google’s globally distributed database. Proceed-

ings Symposium on Operating System Design and

Implementation (OSDI), October 2012.

[20] James Cowling and Barbara Liskov. Granola:

Low-overhead distributed transaction coordina-

tion. Proceedings USENIX Annual Technical

Conference, 2012.

[21] Sudipto Das, Divyakant Agrawal, and Amr El

Abbadi. ElasTraS: An elastic transactional data

store in the cloud. Proceedings USENIX Work-

shop on Hot Topics in Cloud Computing , June

2009.

[22] Sudipto Das, Divyakant Agrawal, and Amr El

Abbadi. G-Store: a scalable data store for transac-

tional multi key access in the cloud. In Proceed-

ings of the 1st ACM Symposium on Cloud Compu-

ting (SoCC '10), June 2010.

[23] K. Daudjee, K. Salem: Lazy database replication

with snapshot isolation. VLDB 2006

[24] Giuseppe DeCandia, Deniz Hastorun, Madan

Jampani, Gunavardhan Kakulapati, Avinash Lak-

shman, Alex Pilchin, Swaminathan Sivasubrama-

nian, Peter Vosshall, and Werner Vogels. Dyna-

mo: amazon's highly available key-value store. In

Proceedings of twenty-first ACM SIGOPS Sympo-

sium on Operating systems Principles (SOSP '07),

2007.

[25] S. Elnikety, W. Zwaenepoel, and F. Pedone. Da-

tabase replication using generalized snapshot iso-

lation. SRDS 2005.

[26] Wojciech Golab , Xiaozhou Li , Mehul A. Shah,

Analyzing consistency properties for fun and

profit, Proceedings of the 30th annual ACM

SIGACT-SIGOPS symposium on Principles of dis-

http://research.yahoo.com/node/2304
http://research.yahoo.com/node/2304

14

tributed computing, June 06-08, 2011, San Jose,

California, USA.

[27] Google. Read consistency & deadlines: more con-

trol of your datastore. Google App Engine Blog ,

March 29, 2010.

http://googleappengine.blogspot.com/2010/03/rea

d-consistency-deadlines-more-control.html

[28] Hongfei Guo, Per-Åke Larson, Raghu Ramakrish-

nan, Jonathan Goldstein. Relaxed currency and

consistency: How to say "good enough" in SQL.

Proceedings of the 2004 ACM SIGMOD Interna-

tional Conference on Management of Data , 2004.

[29] T. Kraska, M. Hentschel, G. Alonso, and D.

Kossmann. Consistency rationing in the cloud:

pay only when it matters. Proceedings Interna-

tional Conference on Very Large Data Bases , Au-

gust 2009.

[30] Tim Kraska, Gene Pang, Michael J. Franklin, and

Samuel Madden. MDCC: Multi-data center con-

sistency. Proceedings EuroSys, April 2013.

[31] Avinash Lakshman and Prashant Malik. Cassan-

dra: a decentralized structured storage system.

SIGOPS Operating Systems Review 44, 2 (April

2010).

[32] Leslie Lamport. Time, clocks, and the ordering of

events in a distributed system. Commun. ACM 21,

7 (July 1978).

[33] Justin J. Levandoski, David B. Lomet, Mohamed

F. Mokbel, Kevin K. Zhao. Deuteronomy: Trans-

action Support for Cloud Data. Proceedings

CIDR, January 2011.

[34] Wyatt Lloyd, Michael J. Freedman, Michael Ka-

minsky, and David G. Andersen. Don't settle for

eventual: scalable causal consistency for wide-

area storage with COPS. In Proceedings of the

Twenty-Third ACM Symposium on Operating Sys-

tems Principles (SOSP '11), October 2011.

[35] Wyatt Lloyd, Michael J. Freedman, Michael Ka-

minsky, and David G. Andersen. Stronger seman-

tics for low-latency geo-replicated storage. Pro-

ceedings Symposium on Networked System Design

and Implementation (NSDI), April 2013.

[36] David Lomet, Alan Fekete, Rui Wang, and Peter

Ward. Multi-version concurrency via timestamp

range conflict management. Proceedings IEEE

International Conference on Data Engineering

(ICDE), April 2012.

[37] Oracle. Oracle NoSQL Database. An Oracle

White Paper, September 2011.

http://www.oracle.com/technetwork/database/nosq

ldb/learnmore/nosql-database-498041.pdf

[38] Daniel Peng and Frank Dabek, Large-scale incre-

mental processing using distributed transactions

and notifications. Proceedings of the 9th USENIX

Symposium on Operating Systems Design and Im-

plementation, 2010.

[39] Y. Saito and M. Shapiro. Optimistic Replication.

ACM Computing Surveys, March 2005.

[40] Marco Serafini and Flavio Junqueira. Weak con-

sistency as a last resort. LADIS, 2010.

[41] Adam E. Silberstein , Russell Sears , Wenchao

Zhou , Brian Frank Cooper, A batch of PNUTS:

experiences connecting cloud batch and serving

systems, Proceedings of the 2011 international

conference on Management of data , June 12-16,

2011, Athens, Greece.

[42] Yair Sovran, Russell Power, Marcos K. Aguilera,

and Jinyang Li. Transactional storage for geo-

replicated systems. In Proceedings of the Twenty-

Third ACM Symposium on Operating Systems

Principles (SOSP '11), October 2011.

[43] Michael Stonebraker. Concurrency control and

consistency of multiple copies of data in distrib-

uted INGRES. IEEE Transaction of Software En-

gineering SE-5(3): 203-215, May 1979.

[44] D. Terry, A. Demers, K. Petersen, M. Spreitzer,

M. Theimer, and B. Welch. Session guarantees

for weakly consistent replicated data. Proceed-

ings IEEE International Conference on Parallel

and Distributed Information Systems , 1994.

[45] D. B. Terry, M. M. Theimer, Karin Petersen, A. J.

Demers, M. J. Spreitzer, and C. H. Hauser. Man-

aging update conflicts in Bayou, a weakly con-

nected replicated storage system. Proceedings of

the Fifteenth ACM Symposium on Operating Sys-

tems Principles (December 1995).

[46] Doug Terry, Replicated data consistency ex-

plained through baseball, Microsoft Technical Re-

port MSR-TR-2011-137, October 2011. To appear

in Communications of the ACM.

[47] Douglas Terry, Vijayan Prabhakaran, Rama Kotla,

Mahesh Balakrishnan, Marcos K. Aguilera, and

Hussam Abu-Libdeh. Consistency-based service

level agreements for cloud storage. To appear in

Proceedings of the 24th ACM Symposium on Op-

erating Systems Principles (SOSP), November

2013.

[48] Alexander Thomson, Thaddeus Diamond, Shu-

Chun Weng, Kun Ren, Philip Shao, and Daniel J.

Abadi. Calvin: Fast distributed transactions for

partitioned database systems. Proceedings ACM

http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html
http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html
http://dl.acm.org/citation.cfm?id=1687627.1687657
http://dl.acm.org/citation.cfm?id=1687627.1687657
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=331722
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=331722

15

SIGMOD International Conference on Manage-

ment of Data, May 2012.

[49] Robbert van Renesse and Fred B. Schneider.

Chain replication for supporting high throughput

and availability. Proceedings Symposium on Op-

erating System Design and Implementation

(OSDI), December 2004.

[50] W. Vogels. Eventually consistent. Communica-

tions of the ACM, January 2009.

[51] W. Vogels. Choosing consistency. All Things

Distributed, February 24, 2010.

http://www.allthingsdistributed.com/2010/02/stro

ng_consistency_simpledb.html

[52] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu.

Data consistency properties and the trade-offs in

commercial cloud storages: the consumers’ per-

spective. Proceedings CIDR, January 2011.

[53] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi.

CloudTPS: scalable transactions for web applica-

tions in the cloud. IEEE Transactions on Services

Computing, 2011.

[54] Haifeng Yu and Amin Vahdat. Design and evalua-

tion of a conit-based continuous consistency mod-

el for replicated services. ACM Transactions on

Computer Systems 20(3):239-282, August 2002.

http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://dl.acm.org/citation.cfm?doid=1435417.1435432
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.allthingsdistributed.com/2010/02/strong_consistency_simpledb.html
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper15.pdf

