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ABSTRACT 

Pileus is a replicated and scalable key-value storage 

system that features geo-replicated transactions with 

varying degrees of consistency chosen by applica-

tions.  Each transaction reads from a snapshot selected 

based on its requested consistency, from strong to 

eventual consistency or intermediate guarantees such 

as read-my-writes, monotonic, bounded, and causal.       

1. INTRODUCTION 
Cloud storage systems need to support the needs of a 

broad class of applications with differing perfor-

mance, consistency, fault-tolerance, and scalability 

requirements.  Our Pileus system was designed to 

support four desirable features: 

Geo-replication.  To achieve high availability and 

provide low latency access, data is stored in multiple 

servers not only within a datacenter but also across 

datacenters in different parts of the world.  Replicas 

are updated lazily, thereby avoiding multiple rounds 

of high latency communication for write operations. 

Data sharding.  For scalability, large data sets are 

partitioned into fragments of manageable size that 

have their own primary and secondary replicas.  The 

data partitioning scheme can change over time; for 

example, a growing fragment can be split dynamically 

into two smaller fragments unbeknownst to clients.  

Consistency choices.  Clients can read data with dif-

ferent consistency guarantees ranging from strong 

consistency to eventual consistency.  Strong con-

sistency ensures that clients see the latest data but 

offers the worse performance, whereas eventual con-

sistency allows client to read stale data with optimal 

performance.  Other intermediate consistency choices 

include monotonic, read-my-writes, causal, and 

bounded staleness.  The chosen consistency can vary 

for each transaction and for different clients that are 

sharing the same data.   

Transactions.  Sequences of reads and writes are 

grouped into transactions; the read operations within a 

transaction access a consistent snapshot while write 

operations are performed atomically upon commit.  

The snapshot being read is determined by the choice 

of consistency, with strongly consistency transactions 

accessing the latest data while transactions with re-

laxed consistency accessing potentially stale snap-

shots. 

While these features individually have been widely 

used and proven effective in other cloud storage ser-

vices, as we discuss in more detail in the next section, 

we are not aware of any system that offers this com-

bination. The challenges we faced in providing these 

features include defining consistency choices for 

transactions, selecting suitable snapshots for a given 

consistency while taking into account the staleness of 

nearby replicas, and committing transactions that 

write data in multiple partitions.  Our key insight is 

that the chosen consistency determines a minimum 

read timestamp that constrains but does not dictate the 

replicas from which data can be read and that decou-

ples consistency guarantees from transaction execu-

tion.  

A large e-commerce Web application is an example of 

a system that could benefit from Pileus. Geo-

replication provides low latency access from around 

the world, while data sharding enables the required 

scalability.  Transactions simplify the application log-

ic for handling shopping carts, user accounts, and or-

ders.  Consistency choices improve efficiency: the 

application could utilize read-my-write transactions to 

manage a user's shopping cart, strongly-consistent 

transactions to finalize orders, and eventually-

consistent read-only transactions for data analytics of 

past purchases.  

This paper is organized as follows.  Section 2 discuss-

es prior related work.  Section 3 presents the system 

model and API that is visible to Pileus applications.  

Sections 4, 5, and 6 describe the implementation and 

technical challenges, starting with the system archi-

tecture then discussing consistency guarantees and 

finally transaction commit.  Section 7 touches on ad-

ditional implementation issues.  Section 8 presents 

some performance experiments, and Section 9 con-

cludes. 
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2. RELATED WORK 
The design of the Pileus system borrows features from 

many other systems.   

Key-value stores. Key-value stores with a simple 

Get/Put interface are quite popular as the underlying 

storage systems of many cloud services.  These in-

clude Cassandra [31], BigTable [16], SimpleDB [3], 

Dynamo [24], Windows Azure Storage [14], Oracle 

NoSQL Database [37], and PNUTS [17][41].  Often 

these system provide key-range partitioning for scala-

bility [15], where a large table can be sharded into 

one or more tablets as in Pileus.  

Geo-distributed storage. Geo-replication is a com-

mon technique for surviving complete datacenter out-

ages.  Windows Azure Storage replicates data within a 

primary datacenter and lazily propagates updates to a 

secondary datacenter in a nearby region [14].  Pileus 

uses a similar architecture but allows any number of 

secondary datacenters in all parts of the world, and it 

permits clients to read from secondary servers with 

selectable consistency guarantees.   

Megastore synchronously replicates data in a few dat-

acenters within a region, incurring the cost of running 

Paxos for every write but allowing strongly consistent 

reads from any replica [5].  Spanner [19] similarly 

replicates data across regionally close datacenters. 

Relaxed consistency. Relaxed consistency models for 

replicated data have been explored for many years 

[39] and have been used in a wide variety of applica-

tions including social networking, e-mail, news, rec-

ommendations, and analytics [8][44][50][28][40][46].  

These include eventual consistency [45][50], bounded 

inconsistency [2][7], causal consistency [34][35], con-

tinuous consistency [54], and probabilistic quorums 

[6].  Some work has been done on expressing relaxed 

consistency guarantees in SQL [28]. Within the cloud, 

early commercial storage services, like Amazon’s S3, 

offered only eventual consistency [10][50][4][52].  

More recently, systems have added strong consistency 

as an option.  DynamoDB and SimpleDB from Ama-

zon [51] as well as systems from Google [27], Oracle 

[37], and Yahoo! [17]  provide a choice of strongly or 

eventually consistent reads.   

Influenced by prior work on session guarantees [44],   

Pileus broadens the set of choices to include interme-

diate guarantees, like monotonic and read-my-writes 

consistency.  A companion publication describes how 

Pileus supports consistency-based service level 

agreements which permit applications to specify their 

consistency-performance needs in a declarative man-

ner [47].  In this paper, we describe how Pileus de-

fines a range of consistency choices for distributed 

transactions and focus on techniques for implementing 

transactional consistency guarantees on geo-replicated 

data. 

Distributed Transactions.  Transactions, which are 

widely used in the database community [12][43], have 

also found recent adoption in cloud storage systems, 

though often with limitations.  Many systems, like 

ElasTraS [21], BigTable [16], SimpleDB [3], PNUTS 

[17], and Windows Azure [14], allow transactions 

only on individual rows of a table or on data objects 

that reside in the same partition on a single server.  

Some, like G-Store [22], limit the scope of a transac-

tion to explicit groups.  Deuteronomy [33] provides 

better modularity and scalability by separating trans-

actional and data storage components, but does not 

allow transactions to span multiple transactional com-

ponents.  Some systems, like Sinfonia [1] and Granola 

[20], support only one-shot minitransactions.  Some 

systems just support read-only transactions or write-

only transactions.  Others have proposed new transac-

tional semantics for geo-replicated systems, such as 

parallel snapshot isolation in Walter [42].   

Distributed read-write transactions on partitioned data 

with the traditional semantics of serializability [12] or 

snapshot isolation [9] are now supported in a number 

of cloud systems besides Pileus.  Megastore uses a 

conventional two-phase commit protocol for transac-

tions that span entity groups [5].  Percolator, like 

Megastore, stores its data in BigTable, but adds multi -

row transactions with snapshot isolation using prima-

ry update and locking [38].  Calvin supports distribut-

ed transactions on replicated data using a determinis-

tic locking mechanism along with a decentralized se-

quencer and transaction shipping [48].  MDCC uses a 

protocol based on variants of Paxos for optimistic 

transactions on geo-replicated partitioned data; 

MDCC offers only strong consistency, and it incurs a 

large network latency across data centers to commit 

each transaction [30].  In contrast, Pileus transactions 

provide a way to trade-off consistency for latency.  

CloudTPS [53] is a distributed key-value store with 

distributed transactions built over a cloud storage sys-

tem. CloudTPS provides two types of transactions: 

strongly consistent static transactions and weakly 

consistent non-static read-only transactions. Com-

pared to Pileus, the consistency choices are limited in 

number and scope (e.g., weak consistency is available 

only for read-only transactions). 

Snapshot isolation.  Snapshot isolation [9] has been 

shown to fit nicely with lazy replication.  Elnikety et 

al. introduced the notion of prefix-consistent snapshot 

isolation [25].  This is one of the options supported by 

Pileus when clients choose read-my-writes consisten-

cy, but Pileus offers broader choices of generalized 
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snapshots.  Daudjee and Salem defined strong session 

snapshot isolation which avoids transaction inver-

sions for a sequence of transactions within a session 

[23].  Similar guarantees are provided in Pileus by 

choosing both monotonic and read-my-writes con-

sistency. 

Timestamps and multiversion systems. Pileus uses 

timestamp-based and multi-version concurrency con-

trol techniques that were first explored in the 1970s.  

SDD-1 was the first distributed database that assigned 

timestamps to transactions and used these to achieve 

lock-free synchronization [11]. As in Pileus, SDD-1 

allowed concurrent read and write transactions with-

out requiring locking but, unlike Pileus, it preana-

lyzed transactions and grouped them into conflict 

classes.  

Relaxed currency serializability has been previously 

proposed and evaluated as a model that allows appli-

cations to read stale data controlled by freshness con-

straints [13].  The target setting has a single master 

database and asynchronously updated caches.  Alt-

hough the ideal system suggested in that paper uses 

multi-version concurrency control, the described im-

plementation uses traditional locking.  Pileus adopts 

this serializability model and shows how it can be 

implemented in a cloud setting with geo-replication, 

multiple partitions, and broad consistency choices 

while using multi-version concurrency control. 

Granola [20] uses timestamps to order its independent 

distributed transactions and assigns commit 

timestamps using a distributed protocol similar to that 

used in Pileus.  Granola executes transactions in 

timestamp order, and a transaction may need to wait 

for an earlier transaction to complete, which is prob-

lematic when participants fail.  Moreover, Granola’s 

use of timestamps does not guarantee external con-

sistency.     

Recently, multiversioning has been used in Megastore 

[5] and Percolator [38], which exploit Bigtable’s abil-

ity to store multiple rows with the same key but dif-

ferent timestamps. This idea is also used in Spanner, 

which supports read-write, read-only, and single-read 

transactions on old snapshots [19].  As in Pileus, 

Spanner’s read-write transactions are assigned read 

times and commit timestamps make use of multiver-

sion concurrency control, but Spanner only offers se-

rializability with external consistency and relies on 

synchronized clocks. 

In summary, Pileus differs from previous systems in 

that it supports traditional read-write transactions in a 

geo-replicated environment with either snapshot isola-

tion or serializability while offering a choice of con-

sistency guarantees ranging from eventual consistency 

to strong external consistency.  Snapshots specified 

by read timestamps are selected automatically to meet 

the desired consistency. Pileus does not need syn-

chronized clocks; it does not force clients to read 

from a single server; and it does not require synchro-

nous replication. 

3. APPLICATION MODEL 
Application developers see Pileus as a traditional key-

value store with high availability (through geo-

replication), selectable consistency, and atomic trans-

actions.  Conceptually, a snapshot is a copy of the 

store comprising all of the data versions that existed 

at some point in time.    Read operations (Gets) and 

write operations (Puts) are performed within transac-

tions.  Transactions, in turn, are associated with ses-

sions which provide the context for certain consisten-

cy guarantees.  For each transaction, the application 

developer chooses the desired consistency from a 

fixed set of options.  The chosen consistency indirect-

ly selects the snapshot that is read throughout the 

transaction. 

3.1 Operations 
The API provided to applications includes the follow-

ing operations. 

Put (key, value):  Creates or updates a data object.  

Each data object consists of a unique string-valued 

key and a value that is an opaque byte-sequence.   

Get (key):  Returns the data object with the given key.  

BeginSession ():  Defines the start of a session.  Each 

session can contain one or more transactions.  A ses-

sion denotes the scope for consistency guarantees 

such as read-my-writes and monotonic reads.   

EndSession ():  Terminates a session. 

BeginTx (consistency, key-set):  Starts a new transac-

tion.  All subsequent Get and Put operations that oc-

cur before the end of the transaction are included.  

The requested consistency (or set of consistency 

choices) governs the snapshot used for each Get oper-

ation.  The caller also hints at the set of keys that will 

be read within the transaction; providing an empty or 

inaccurate key-set does not invalidate the consistency 

guarantees but could have performance consequences.    

EndTx ():  Ends the current transaction and attempts 

to commit its Puts.  It returns an indication of whether 

the transaction committed or aborted due to conflicts 

with concurrent transactions.  Note that transactions 

cannot be nested. 

3.2 Transaction semantics 
Get and Put methods are grouped into transactions 

with the following key properties:  
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Read isolation.  All Gets within a transaction access 

the same snapshot of the data store (with the excep-

tion that Gets always read the results of any previous 

Puts within the same transaction).  The freshness of 

this snapshot depends on the requested consistency 

guarantee.  For example, if the transaction asks for 

strong consistency, then its snapshot will include all 

Puts that were committed before the start of the trans-

action, whereas an eventually consistent transaction 

may get a snapshot that is arbitrarily out-of-date.   

Atomicity.  Either all Puts within a transaction suc-

ceed at updating their data objects or none of them do.  

Clients never see the results of partially executed 

transactions; that is, if a client Gets a version pro-

duced by a Put in a previous transaction then it will 

also observe other Puts in that transaction.    

Strict order.  Each transaction is committed at a spe-

cific point in time.  If one transaction commits suc-

cessfully before another starts, then the results of 

these transactions are observed in that order.     

Write isolation.  If concurrent transactions update the 

same data object(s), then at most one of them will 

succeed and others will abort.  Application developers 

must deal with aborted transactions, such as by re-

starting them.   

3.3 Consistency guarantees 
Each Get operation sees the results of some, but not 

necessarily all, of the prior transactions that Put the 

key being read.  Consistency choices guarantee that 

certain previously committed transactions are includ-

ed in the snapshot that is accessed by the current 

transaction.  Pileus offers the following consistencies: 

 strong:  The snapshot contains the results of all 

transactions that were successfully committed be-

fore the start of the current transaction.  This en-

sures that a Get returns the value of the latest 

committed Put to the same key. 

 eventual:  The snapshot is produced by an arbitrary 

prefix of the sequence of previously committed 

transactions.  Thus, a Get can return the value 

written by any previously committed Put.  Pileus 

actually provides a stronger form of eventual con-

sistency than many systems, a guarantee that has 

been called prefix consistency [45].   

 read-my-writes:  The snapshot reflects all previous 

write transactions in the same session, as well as 

previous Puts in the same transaction.  

 monotonic:  The prefix of transactions defining the 

current snapshot is a superset of those in snapshots 

that were accessed by earlier transactions in the 

same session.  Simply stated, the current snapshot 

is as up-to-date as any previously read snapshots 

in this session. 

 bounded(t):  The snapshot includes the results of 

all transactions  that were committed more than t 

seconds before the start of the current transaction.  

From the application’s perspective, a transaction is 

committed at the time that the EndTx call returns 

with a success indication. 

 causal:  The snapshot includes the results of all 

causally preceding transactions.  Specifically, con-

sider a graph in which the nodes are transactions 

and a directed edge from T1 to T2 indicates that 

either (a) transaction T2 read a value written by 

transaction T1 or (b) transaction T2 was executed 

after transaction T1 in the same session or (c) 

transactions T2 and T1 performed a Put on the 

same key and T2 was committed after T1.  The 

causally consistent snapshot reflects all transac-

tions for which this graph contains a directed path 

to the current transaction. 

Different consistency choices will likely, but not al-

ways, result in different performance for transactions.   

In particular, since consistency guarantees place re-

strictions on the acceptable snapshots that are ac-

cessed by a transaction, they limit the set of servers 

that can process a Get operation.  Limiting the set of 

suitable servers indirectly increases the expected read 

latency since nearby servers may need to be bypassed 

in favor of more distant, but more up-to-date replicas.     

Choosing weaker consistency guarantees can improve 

the performance not only of read-only transactions but 

also of read-write transactions.  But, an interesting 

interplay exists between a read-write transaction’s 

consistency and its ability to commit.  Applications 

that tolerate staleness can read from snapshots that are 

farther in the past, thereby improving the availability  

and performance of Gets but also extending the time 

interval over which transactions can conflict.  That is, 

older snapshots increase the likelihood of concurrent 

Puts and subsequent aborts, though this effect can be 

offsetby reduced execution times due to faster read 

operations (as shown in Section 8).  When data ob-

jects are infrequently updated, aborts may be rare 

even for transactions that choose eventual consisten-

cy.  Application developers should choose a con-

sistency based on both the correct operation of their 

application and the cost of aborted transactions.   

4. SYSTEM ARCHITECTURE 
To provide consistency-aware transactions on data 

that is partitioned and geo-replicated, Pileus uses a 

client-server architecture.  Servers manage multiver-

sioned data, implement Get and Put operations, partic-

ipate in transactions, and replicate data among them-

selves.  Clients maintain state for active sessions and 

transactions, they track the staleness of various serv-



5 

 

ers, they decide where to send each Get operation, and 

they measure and record the roundtrip latencies be-

tween clients and servers. 

4.1 Replication and partitioning 
Each data object is replicated on multiple servers 

within a datacenter and across geographically distrib-

uted datacenters. To ensure elastic scalability, no 

server stores the complete set of data objects.  Objects 

are horizontally partitioned according to key ranges.   

Objects within the same key-range are replicated on 

the same sets of servers.    

Applications access servers through a client library 

that routes Get and Put operations to appropriate serv-

ers based on the chosen consistency. The client library 

is aware of which servers store which partitions, but 

this information is hidden from applications so that 

data can be moved or repartitioned transparently.  For 

example, clients may get information on how keys are 

partitioned from a cloud directory server.    

4.2 Primary update 
One datacenter is chosen as the primary site for each 

data partition.  For simplicity, the rest of this paper 

refers to a single primary server for each data ob-

ject/partition, though in practice a set of primary 

servers could form a highly-available primary cluster 

using a protocol like chain replication [49].   A prima-

ry server participates in transactions that perform Put 

operations for keys in its partition’s key-range.   

After a write transaction has been committed, each 

primary involved in the transaction asynchronously 

propagates new data object versions to secondary rep-

licas.  The actual details of the replication protocol 

are unimportant.  The only assumption is that updates 

are transmitted and received in timestamp order.  Sec-

ondary servers eventually receive all updated objects 

along with their commit timestamps (described in 

Section 6).  No assumptions are made about the time 

required to fully propagate an update to all replicas, 

though more rapid dissemination increases a client’s 

chance of being able to read from a nearby server. 

4.3 Multiversion storage 
Servers, whether primary or secondary replicas, man-

age multiple timestamped versions of data objects.  

The Put operation creates an immutable version with a 

given timestamp, while the Get operation returns the 

latest version before a given time.  As discussed later, 

this allows snapshot isolation using multiversion con-

currency control without requiring locking [36].   

Each server stores the following basic information: 

 key-range = the range of keys managed by the 

server.  

 store = set of <key, value, commit timestamp> 

tuples for all keys in the range. 

 high timestamp = the commit timestamp of the lat-

est transaction that has been received and pro-

cessed by this server. 

 low timestamp = the time of the server’s most re-

cent pruning operation. 

Additionally, primary servers store:  

 clock = a logical clock used to assign timestamps 

to transactions when they commit.  

 pending = a set of <put-set, proposed timestamp> 

pairs for transactions that are in the process of be-

ing committed.  

 propagating = a queue of <put-set, commit 

timestamp> tuples for recently committed transac-

tions that need to be sent to secondary replicas.  

Since primary servers assign increasing commit 

timestamps to transactions and the replication proto-

col transfers updated objects in timestamp order, a 

single high timestamp per server is sufficient to rec-

ord the set of updates that it has received.  When a 

server receives and stores new versions of the data 

objects that were updated by a transaction, it updates 

its high timestamp to the transaction’s commit 

timestamp and records this same timestamp with each 

object.  If no write transactions have committed re-

cently, the primary server sends out periodic “null” 

transactions with its current time causing secondary 

servers to advance their high timestamps.  

Servers are allowed to discard old versions after some 

time to free up storage space.  Each server periodical-

ly, and independently, prunes its data store by delet-

ing any versions that were not the latest version as of 

a selected time (as discussed in more detail in Section 

7.2).  The last pruning time is recorded as the server’s 

low timestamp. 

The client-server protocol includes a Get operation 

that takes a read timestamp in addition to a key.  Up-

on receiving a Get(key, timestamp) request, a server 

checks that it manages the given key and that the re-

quested timestamp is between its high timestamp and 

low timestamp.  Essentially, the interval from low 

timestamp to high timestamp indicates the set of snap-

shots that can be accessed at this server.  If the re-

quested read timestamp does not fall in this interval, 

then the Get request is rejected by a secondary server; 

a primary server always accepts Get operations as 

long as the timestamp exceeds its low timestamp 

(though the request may need to wait for in-progress 

transactions to be assigned commit timestamps).  If 

the check succeeds, the server replies with the most 

recent version of the object with the requested key 

whose timestamp is no later than the requested time.  
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Included in the response is the object’s timestamp, the 

timestamp of the next highest version of this object (if 

known to the responding server), and the server’s high 

timestamp. 

5. READING SNAPSHOTS 
To ensure that each Get operation within a transaction 

accesses data from the same snapshot, the client se-

lects a read timestamp for the transaction.  All Gets 

are then performed using this timestamp.  The mini-

mum acceptable read timestamp is determined by the 

transaction’s requested consistency guarantee, the 

previous object versions that have been read or writ-

ten in the client’s current session, and the set of keys 

used in the transaction’s Gets (as passed to the BeginTx 

method). 

Although we have defined and implemented a set of 

consistency guarantees that have been proven to be 

useful in practice, this set could easily be extended.  

To add a new consistency guarantee, one simply needs 

to write a method that returns the minimum acceptable 

read timestamp.  This minimum timestamp serves as a 

narrow interface between the components of the Pile-

us system that understand consistency choices and the 

components that implement transactions. 

The following sections describe how the minimum 

acceptable read timestamp is determined for each of 

our consistency guarantees and then how clients select 

a particular read timestamp for a transaction.   For any 

consistency guarantee (except strong), there’s a trade-

off in selecting a read timestamp: choosing more re-

cent times produces more accurate data, which appli-

cations desire, but choosing older times results in a 

broader set of servers that can potentially answer each 

Get, thereby reducing average response times.  

5.1  Strong consistency 
To ensure strong consistency, the minimum accepta-

ble read timestamp is the maximum timestamp of all 

versions stored at primary servers for the set of keys 

that are expected to be read in the current transaction.  

This timestamp guarantees that each Get accesses the 

latest version of the object that existed at the s tart of 

the transaction.  Although an initial round of messag-

es is generally required to determine the minimum 

acceptable read timestamp for a strongly consistent 

transaction, optimizations are possible in some cases. 

If the transaction involves a single key, as hinted in 

the key-set that was passed to BeginTx, then the read 

timestamp can be set to a special value indicating that 

the primary server should simply return its latest ver-

sion. This case efficiently handles single-Get transac-

tions as well as simple read-modify-write transactions 

executed at the primary.  Similarly, if all of the keys 

involved in the transaction belong to the same parti-

tion, and hence have the same primary, then the first 

Get operation can be sent to the primary requesting its 

latest version.  The primary will respond with its cur-

rent high timestamp (i.e. the timestamp of its last 

committed transaction), and this is used as the read 

timestamp for subsequent Gets.   

Once a client establishes the minimum acceptable 

read timestamp for a strongly consistent transaction, 

the transaction’s Gets might be performed at servers 

other than the primary.  For example, suppose that a 

data object is updated once per day.  At the start of a 

strong consistency transaction, the client contacts the 

primary server for this object and determines that the 

object was last updated 14 hours ago.  The actual Get 

operation could then be sent to any secondary server 

that is no more than 14 hours out-of-date, such as one 

that’s nearby, is more lightly loaded, or has a higher 

bandwidth connection. 

Computing the minimum acceptable timestamp for 

strong consistency requires knowing, at the start of 

the transaction, the set of Gets that it will perform.  In 

some cases, predicting the set of keys being accessed 

may be impractical, such as when the key for a Get 

depends on user input or data retrieved by some prior 

Get within the same transaction.  If a key-set is not 

provided, then the client assumes pessimistically that 

all primaries are involved in the transaction and re-

trieves high timestamps from each primary.  Another 

option, however, is to assume optimistically that the 

transaction involves a single partition (the one ac-

cessed by the first Get) and then abort the transaction 

if this assumption turns out to be false.  The client can 

easily restart the aborted transaction with the newly 

discovered key-set. 

What if the provided key-set is wrong?  If the key-set 

contains keys that are not actually read, that will not 

violate correctness; it will perhaps unnecessarily re-

duce the choice of servers.  But if the key-set is miss-

ing some key used in a Get operation, this could be a 

problem.  For strong consistency, it is only a problem 

if the key has a different primary than any of the keys 

in the presented key-set.  In this case, the minimum 

acceptable read timestamp may have been set lower 

than the latest committed transactions for this key, 

and the transaction must be aborted.   

5.2 Relaxed consistency  
Other consistency guarantees have the advantage over 

strong consistency that the minimum acceptable read 

timestamp can be determined based solely on infor-

mation maintained by the client.  No client-server 

communication is required at the start of a transac-

tion.      
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The read-my-writes, monotonic reads, and causal con-

sistency guarantees requires the client to maintain 

per-session state that records the commit timestamp of 

previous Puts in the session as well as the timestamps 

of versions returned by previous Gets.  For the read-

my-writes guarantee, the minimum acceptable read 

timestamp is the maximum timestamp of any previ-

ously committed Puts in the current session that up-

dated objects being accessed in the current transac-

tion. For monotonic reads, the read timestamp must be 

at least as large as the maximum recorded timestamp 

for previous Gets in this session.  

If the key-set is unknown at the start of the transac-

tion, then, for monotonic reads, every previously read 

version is considered when choosing the minimum 

acceptable read timestamp.  For read-my-writes, every 

previously written version is relevant.  Clearly, this 

has performance and availability consequences since 

it may set the read timestamp higher than needed, and 

hence rule out servers that might otherwise be ac-

cessed; but there are no correctness concerns.    

Even if the key-set is missing keys that are used in 

Get operations, the transaction may be allowed to 

continue in some cases.  For monotonic reads, the 

transaction need not abort as long as the read 

timestamp exceeds previously read versions for the 

missing key.  Similarly, for read-my-writes, the cho-

sen read timestamp must be later than the previously 

written version of the missing key. 

Pileus ensures that if one version causally precedes 

another then the first version will be assigned a lower 

commit timestamp (as explained in Section 6.2).  

Thus, causal consistency can be guaranteed conserva-

tively by ensuring that the read timestamp is at least 

as large as the timestamp of any object that was pre-

viously read or written in the session. 

If an application chooses bounded staleness, the min-

imum acceptable read timestamp is selected at the 

start of the transaction (or when it issues its first Get).  

Gets that are performed later in the transaction may 

return data that is older than the staleness bound since 

they need to read from the same snapshot.  In theory, 

implementing bounded staleness is easy; the smallest 

acceptable read timestamp is simply the current time 

minus the desired time bound (plus the maximum pos-

sible clock error), assuming that clients and servers 

have approximately synchronized clocks, as in the 

Spanner system [19].   

In Pileus, providing staleness bounds is a bit more 

challenging because the timestamps assigned to trans-

actions, and hence to object versions, are obtained 

from logical clocks.  Our solution is to have clients 

maintain a mapping from real time to each primary 

server’s logical clock.  Whenever a client accesses a 

primary server to perform a Get or Put operation, the 

server returns its current high timestamp.  The client 

records its current time (taken from the local real-time 

clock) along with the server’s high timestamp (which 

indicates the server’s current logical clock).  This 

mapping table need not be large since it does not need 

to contain a record for every interaction with the pri-

mary.  One entry per minute, for instance, is probably 

sufficient.  To determine the minimum acceptable 

read timestamp for a given staleness bound, the client 

simply subtracts that bound from its current clock and 

then uses its mapping table to find the closest  logical 

clock value. A key advantage of this scheme is that it 

does not require any form of clock synchronization.  

For eventual consistency, any read timestamp is ac-

ceptable.  This also holds for the first transaction in a 

session when monotonic, read-my-writes, or causal 

consistency is requested.  However, reading from time 

zero, while technically not a violation of the con-

sistency guarantee, would be ineffective for applica-

tions and their users.  Choosing the current time also 

would not be wise since it has the same effect as 

choosing strong consistency with the same limitations 

on performance and availability.  The next section 

discusses how clients pick read timestamps that cause 

low response times, when possible, while reading data 

that is not overly stale. 

5.3 Selecting the read timestamp 
From the target consistency guarantee, the client ob-

tains the minimum acceptable read timestamp.  Any 

read timestamp that exceeds this minimum could be 

selected.  In our current implementation, the client 

selects the largest read timestamp that allows it to 

read from the closest servers that are sufficiently up-

to-date.  This provides the freshest data that can be 

 

Figure 1. Selecting read timestamp for transac-

tion that accesses keys A, B, and C residing in 

different partitions on different servers. 
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obtained without compromising performance or con-

sistency.    

For each key in the transaction’s key-set, the client 

selects the closest server (according to its own round-

trip latency measurements) whose last known high 

timestamp is greater than the minimum acceptable 

read timestamp.  It then sets the read timestamp to the 

lowest known high timestamp for any of these servers.  

This read timestamp should both fall within the inter-

val of snapshots that are accessible at this set of serv-

ers and also comply with the minimum acceptable 

timestamp for the desired consistency.  Figure 1 de-

picts an example in which a transaction performs Gets 

on keys A, B, and C, and each of these keys belongs 

to different partitions with different closest servers.   

Note that the client’s cached information about the 

high timestamps of various servers is almost certainly 

outdated since it was obtained from previous Get and 

Put operations.  However, a server’s high timestamp 

is strictly increasing, and so even stale information 

can be used to make conservative decisions about the 

server’s suitability.   

If servers aggressively discard old versions of data 

objects (as discussed in Section 7.2), one server’s low 

timestamp may exceed another server’s high 

timestamp.  Thus, the set of nearby servers for a 

transaction’s key-set may have no suitable read 

timestamp in common.  In this case, the client must 

try more distant servers.  One strategy is to select the 

set of servers with overlapping high-to-low timestamp 

ranges that minimizes the average round-trip latency.  

An acceptable read timestamp can always be found 

since, at the very least, clients can choose to read 

from primary servers using the current time as the 

read timestamp. 

During execution of the transaction, the chosen read 

timestamp is used for all Get operations, and such 

operations are sent to servers based on the client’s 

current information about the state of the system.  

Several relevant events can happen during the lifetime 

of a transaction: secondary servers can receive new 

updates from the primary, servers can prune old ver-

sions, servers may fail and become unavailable, net-

work loads may change causing variations in the cli-

ent-server latencies, and clients can update their local 

state based on information obtained through normal 

operations or periodic pings.  All of these may cause 

the client to direct Gets to servers other than those 

used to select the transaction’s read timestamp.  For 

example, a nearby server that initially was unable to 

satisfy a bounded staleness guarantee may have re-

cently replicated data from the primary, and hence can 

now be used for future Gets. 

The selected read timestamp can be adjusted during 

the course of a transaction while still preserving snap-

shot isolation.  This timestamp could be set as low as 

the maximum timestamp of any object that has been 

read (as long as it remains above the minimum ac-

ceptable read timestamp) or set just below the mini-

mum next version timestamp returned by all prior 

Gets.  Moving the read timestamp within this interval 

would not affect the Gets that have already been per-

formed in the transaction but could possibly alter the 

selection of servers for future Gets.   

If the BeginTx call has an empty or incomplete key-

set, then the client can still select a read timestamp, 

but may make a less desirable selection.  As an exam-

ple, suppose that the transaction’s key-set includes 

key A but not key B, and that the application request-

ed eventual consistency.  The closest server for key A 

has a recent high timestamp, and the client selects this 

as the transaction’s read timestamp.  The client Gets 

the latest value for the object with key A.  Now sup-

pose a Get for key B is performed.  For this key, there 

may be few servers that store the selected snapshot, 

perhaps just the primary, although any of key B’s 

servers could meet the eventual consistency guaran-

tee.     

It is possible that the selection of the read timestamp 

for the current transaction affects later transactions in 

the same session.  For example, suppose that the cur-

rent transaction only performs one Get for key A and 

that the closest server for this key’s partition is the 

primary.  The client will choose to read the latest ver-

sion from the primary.  Now, suppose the next trans-

action performs Gets on keys A and B and requests 

monotonic consistency.  This transaction is forced to 

use a read timestamp at least as great as that of the 

previous transaction.  But the only server for key B 

that is sufficiently up-to-date may be far away.  If the 

first transaction knew that about the second, it could 

have made a more globally optimal selection of its 

read timestamp.  To avoid this problem, applications 

can include keys read by later transactions in the key-

set presented for the current transaction.  

6. COMMITTING TRANSACTIONS 
Read-only transactions automatically commit with no 

extra processing, while read-write and write-only 

transactions require extra processing when EndTx is 

called.  Commit coordinators assign timestamps to 

transactions, validate transactions at commit time, and 

manage the participation of all of the primary servers 

holding data being updated.  In our current system, 

the commit coordinator is one of the primary servers 

involved in the transaction, though any machine, in-

cluding the client, could play this role.    
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6.1 Sending buffered Puts 
While the Gets within a transaction are performed as 

they are issued and may be sent to different servers, 

each Put operation is simply buffered at the client .  

Puts, therefore, involve no communication with pri-

mary servers until the end of the transaction.  The new 

objects are visible to Gets within the transaction, but 

not to others until the transaction commits.  If a trans-

action aborts, its Puts are simply discarded; no up-

dates need to be undone at any servers.   

When a transaction begins, neither clients nor coordi-

nators need to know whether the transaction is read-

only, write-only, or read-write.  The client makes this 

determination when EndTx is called and then invokes 

a commit coordinator if any Puts were buffered.  

At the end of a transaction, the client sends the set of 

Puts as an atomic batch to a commit coordinator along 

with the read timestamp that was used by the transac-

tion.  The commit coordinator splits the transaction’s 

Put-set into multiple disjoint sets of Puts for each par-

tition and sends each subset to its designated primary.  

Only primaries who store data objects being written 

are participants in the transaction commit process.  

6.2 Assigning commit timestamps 
The commit coordinator assigns a commit timestamp 

that orders the transaction relative to other transac-

tions.   The coordinator starts by asking primaries to 

propose a timestamp; this request is included with the 

Put-set that is sent to each participant.  Upon receiv-

ing such a request, a server proposes its current time 

(taken from its local logical clock) and increments its 

logical clock.  The server adds the Put-set and its pro-

posed timestamp to its pending transactions list.   

From the set of proposed timestamps, including its 

own time, the coordinator chooses the maximum 

timestamp (for reasons described below) as the com-

mit timestamp for this transaction.  Note that if the 

primary servers had perfectly synchronized clocks, 

then the coordinator could merely use its own time 

and avoid the round of proposals.  But, relying on 

tight synchronization of clocks among servers in dif-

ferent data centers perhaps run by different organiza-

tions can be problematic; instead, servers maintain 

logical clocks from which all timestamps are obtained 

[32]. 

When a primary server learns of the chosen commit 

timestamp, it advances its logical clock to exceed this 

time, if necessary, so that future transactions will be 

assigned higher commit timestamps.  The commit co-

ordinator might also advance its logical clock upon 

receipt of a commit request from a client.  In particu-

lar, clients keep track of the largest commit timestamp 

for transactions that they have performed or observed.  

This largest timestamp is included in the commit re-

quest, and the coordinator increases its clock, if nec-

essary, to guarantee that the commit timestamp for the 

current transaction exceeds those of causally preced-

ing transactions.  

One subtlety is that different coordinators may assign 

the same commit timestamp to concurrent transactions 

that involve overlapping primary servers.  Servers 

deterministically order such transactions using the 

identities of their commit coordinators.  

6.3 Validating transactions 
Given both the read and commit timestamps for the 

transaction, the coordinator must validate the transac-

tion to check whether it can commit or must be abort-

ed based on other concurrent transactions.  Basically, 

the read timestamp serves as the start time for the 

transaction and the commit timestamp as its ending 

time.  To ensure snapshot isolation, the transaction 

must not have updated any objects that were also up-

dated by other transactions that overlap in time [9].   

Specifically, the coordinator asks each primary server 

whether it holds any versions of objects in the trans-

action’s Put-set that have timestamps between the 

transaction’s read timestamp and commit timestamp.  

Optionally, to enforce serializability, this check could 

include the transaction’s Get-set as well.  Only if 

these checks succeed at all participating primaries is 

the transaction allowed to commit.  Write-only trans-

actions, consisting solely of blind Puts, never abort.  

6.4 Writing new versions 
After a transaction has been validated, the commit 

coordinator writes a commit record to stable storage 

that includes the transaction’s commit timestamp and 

set of Puts.  To safeguard the durability of the trans-

action, the coordinator also writes the commit record 

to one or more other servers who can inform partici-

pants of the transaction’s outcome if the coordinator 

fails.  At this point, the coordinator replies to the cli-

ent that the transaction has been committed.   

The coordinator informs the other participating prima-

ry servers of the transaction’s assigned commit 

timestamp (or that the transaction aborted).  This can 

be done lazily.  Each primary server performs the Puts 

for a committed transaction without coordinating with 

other servers or waiting for pending transactions 

(which might receive earlier commit timestamps).  In 

particular, new versions are created for each Put and 

marked with the transaction’s commit timestamp.   

These Puts are placed on the primary server’s propa-

gating queue and eventually propagate to secondary 

servers.  The primary can send Puts to a secondary 

when it has no pending transactions that might be as-
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signed earlier commit timestamps.  Secondary servers 

immediately apply any Puts that they receive and ad-

vance their high timestamps to the commit timestamp.       

Each primary server sends the coordinator an 

acknowledgement when its work is completed and 

removes the transaction from its pending list.  To en-

sure that the transaction is fully performed, the coor-

dinator periodically retransmits it to servers that have 

not responded. 

Observe that this commit protocol does not require 

any locks to be held.  For the most part, Gets and Puts 

do not interfere with each other.  That’s the beauty of 

multiversion concurrency control: each transaction 

writes its own timestamped versions and reads from a 

snapshot.   

6.5 Gets and pending transactions 
If a primary server receives a Get request for a 

timestamp that exceeds its current logical clock and 

there are no pending transactions, the server bumps its 

clock to the requested time and proceeds to answer 

the Get knowing that future transactions will be as-

signed higher commit timestamps.  However, there is 

one situation in which Get operations (and validation 

checks) may need to wait for a pending transaction.  

This occurs if a primary server receives a request to 

read an object with a given key and (a) some pending 

transaction includes a Put for that object and (b) the 

read timestamp is greater than the time that was pro-

posed for the pending transaction.  In this case, 

there’s a chance that the pending transaction may be 

assigned a commit timestamp that is earlier than the 

read timestamp and hence should be visible to the 

Get.  Note that pending transactions with later pro-

posed times can be ignored since the commit time for 

such transactions must be at least as large at the pro-

posal (which is why coordinators choose the maxi-

mum proposal). 

As an example, suppose a committed transaction in-

volving two or more partitions has been completed at 

one primary, e.g. the coordinator, but not the others.  

The client is informed that the transaction was com-

mitted, and this client immediately issues a strong 

consistency Get request.  This Get will be assigned a 

read timestamp that is greater than the previous trans-

action’s commit timestamp, as desired to ensure ex-

ternal consistency.  If the client attempts to read from 

a server that has not yet processed the previous trans-

action, it must wait.  This should not happen often, 

and, when it does, the delay should be small.  The 

system could avoid such situations by informing a 

client that its transaction has committed only after all 

of the participating primary servers have performed 

their updates.  But that would require another round 

of communication between primary servers for each 

transaction and increase the time-to-commit for all 

clients.  Instead, we opted to accept an occasionally 

delayed Get operation.  

7. OTHER IMPLEMENTATION ISSUES 

7.1 Client caching 
Clients can freely cache any version of any data ob-

ject since versions are immutable. A client can cache 

and discard versions without the servers’ knowledge.  

It can even cache older versions of objects without 

caching the later versions, or vice versa.  

For each Get operation performed at a server, the cli-

ent receives the data along with the version’s 

timestamp.  Additionally, the server returns the 

timestamp of the next later version (if any).  This pre-

cisely tells the client the valid time interval for the 

given version.  If the version returned is the latest 

version, the server returns its current high timestamp.  

The client knows that the returned version is valid 

until at least this time (and maybe longer).  The client 

caches the retrieved data along with its valid 

timestamp interval. 

When performing a Get, the client needs to determine 

whether a cached version’s timestamp is less than or 

equal to the read timestamp and whether it is the lat-

est such version for the given key. In short, the client 

simply checks whether the read timestamp is in the 

valid interval for one of its cached versions of the 

desired key.   

A client could consult its cached data when selecting 

the read timestamp for a transaction.  For example, 

when reading a single object (or even multiple keys in 

a key-set), the client might as well choose a read 

timestamp that allows it to read from its cache (if this 

meets the consistency guarantee).  Essentially, the 

local cache is treated as another (partial) replica.  

7.2 Pruning old snapshots 
Servers must prune old versions of data objects to 

reduce their storage usage.  But choosing the best 

pruning policy is difficult.  If servers are overly ag-

gressive about discarding versions, then a transaction 

may be prevented from reading local data since the 

nearby servers may no longer hold snapshots for the 

desired read timestamp or two servers may have no 

overlapping times that could be used as a common 

read timestamp.  If servers are overly conservative 

about pruning, then they may store old versions that 

are never read, wasting storage space.  

Servers discard snapshots in the following manner.    

When a server increases its low timestamp, it discards 

any versions that are not the most recent version as of 
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the current low timestamp; that is, the server retains 

exactly one version with an older timestamp.  These 

versions comprise the snapshot corresponding to the 

server’s low timestamp. 

In our current implementation, servers keep their low 

timestamp a fixed distance behind their high 

timestamp.  This simple scheme requires no coordina-

tion between servers and, given knowledge of the up-

date rates, it bounds the amount of storage used.  Al-

so, different servers advance their low timestamps at 

about the same rate, and so it should be possible to 

find common read timestamps.  However, it may still 

retain versions unnecessarily. 

Observe that a read timestamp will never be chosen 

that is less than the high timestamp of the most out-

of-date server (using the strategy presented in Section 

5.3).  So, an alternative scheme is for all servers to 

exchange their high timestamps.  Each server could 

then independently prune versions by advancing its 

low timestamp to the oldest high timestamp.  We de-

cided against this approach since it requires servers to 

know about each other and to exchange messages, 

even servers for different keys and different parti-

tions.   

One concern is that servers might prune a snapshot 

that is currently in use by some long-running transac-

tion.  After a read timestamp has been selected, all of 

the servers for a key could advance their low 

timestamp beyond the read timestamp so that no fu-

ture reads can be performed, causing the transaction 

to be aborted. 

To prevent this problem, servers could advance their 

low timestamp based on the read timestamps they re-

ceive in Get requests.  For example, they could 

choose the lowest read timestamp in the past five 

minutes.  This requires no coordination among servers 

and avoids pruning snapshots in use by transactions 

that are actively reading data.  Moreover, keys that 

are regularly accessed in the same transaction will 

have their servers naturally coordinate their pruning, 

while the servers for keys that are accessed inde-

pendently will prune independently.  

8. PERFORMANCE 
For our experiments, we ran Pileus on a cluster of 

machines in a geo-distributed system. Our setup con-

sisted of multiple sites separated by long-distance 

links, with a Pileus primary server running on one site 

in China and secondary servers running on other sites 

in California.  The measured California-to-China 

round-trip latency averages 164 ms. 

The key trade-off in Pileus involves transaction laten-

cy vs. commit rate: reading from an older snapshot 

corresponding to a weaker consistency guarantee re-

duces the expected transaction execution time but in-

creases the probability of the transaction aborting. 

Effectively, choosing an earlier read timestamp results 

in a longer span between the transaction’s start and 

commit, which increases the chance of conflicting 

with other concurrent transactions.  

Figure 2 shows the commit rate of Pileus transactions 

for different consistency guarantees as we reduce con-

tention by increasing the total number of keys in the 

system. Each transaction runs at a secondary; it reads 

three randomly selected keys and then writes them 

back. As shown in the graph, choosing a weaker con-

sistency guarantee has a negligible effect on the 

commit rate for moderate to low levels of contention,  

i.e. if the system has 10K or more keys.  In this exper-

iment, the secondary receives updates from the prima-

ry every 500 ms.  

 

Figure 2.  Effect of contention on probability of commit 

for different consistency choices.  

For read-only transactions, choosing a relaxed con-

sistency model can result in a dramatic improvement 

in performance.  Strong consistency provides an upper 

bound on transaction latency since it requires the cli-

ent to always read from the primary.  Eventual con-

sistency provides a lower bound since the client can 

always read from the secondary.  Intermediate choic-

es, such as causal and read-my-writes, permit a client 

to read from the secondary if it synchronizes frequent-

ly with the primary, but default to reading from the 

primary if the secondary is not sufficiently up-to-date.  

Prior work has shown that strong consistency transac-

tions can be as much as seven times the cost of even-

tual consistency within a datacenter [29].  Here, we 
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explore the transaction cost with geo-replication and 

observe that the difference can be two orders of mag-

nitude.   

Figure 3 shows the execution time of read-only trans-

actions for two different workloads.  In both work-

loads, a client at the secondary site issues strongly 

consistent read-write transactions interspersed with 

read-only transactions requesting various consistency 

guarantees, but we only measure and report the execu-

tion times of the read-only transactions. As before, a 

client at the primary site issues read-write transac-

tions in parallel. The workloads differ in the nature of 

their read-write transactions.  Workload #1 is a high-

contention workload: the client at the secondary site  

reads and writes the same three keys in each transac-

tion, while the primary site accesses 1K keys random-

ly. Workload #2 is low-contention: both the primary 

and the secondary site clients read and write randomly 

selected 3-key sets from a total of 1K keys.  

 

Figure 3.  Latency for read-only transactions for a high-

contention workload (#1) and a low-contention workload 

(#2). 

Note in Figure 3 that all of the relaxed consistency 

choices result in substantially faster read-only trans-

actions compared to strong consistency.  The bars for 

eventually consistent transactions are barely visible in 

the figure since they execute in a few milliseconds.  

For Workload #1, read-your-writes provides equal 

latency to causal consistency since the keys read are 

always recently modified, and hence must often be 

read from the primary.  For Workload #2, read-your-

writes is equivalent to eventual consistency, since the 

keys read by a read-only transaction are rarely modi-

fied in the recent past.  In both workloads, monotonic 

consistency is slightly slower than eventual consisten-

cy since the interspersed strongly consistent transac-

tions continuously raise the last read timestamp.  

9. CONCLUSIONS 
Transactions consisting of a sequence of read and 

write operations have proven to be valuable to appli-

cation programmers.  Pileus supports transactions that 

not only are performed atomically, even on parti-

tioned data, but also are governed by the relaxed con-

sistency models common in geo-replicated cloud stor-

age systems.  Its design shows how to combine trans-

actions with consistency choices to provide snapshot 

isolation and relaxed currency serialization through 

multiversion concurrency control, consistency-driven 

timestamp selection, and cross-primary commit.   
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