
A Comprehensive Field Study of End-User
Programming on Mobile Devices

Sihan Li
North Carolina State University

Raleigh NC, USA
sli20@ncsu.edu

Tao Xie
North Carolina State University

Raleigh NC, USA
xie@csc.ncsu.edu

Nikolai Tillmann
Microsoft Research
Redmond WA, USA

nikolait@microsoft.com

Abstract—TouchDevelop represents a new programming
environment that enables users to develop mobile applications
directly on mobile devices. TouchDevelop has successfully drawn
a huge number of end users, who have published thousands of
TouchDevelop scripts online. To enhance end-user programming
on mobile devices, we conduct a comprehensive field study
of 17322 TouchDevelop scripts and 4275 users. Our study
consists of an overall study on the characteristics of scripts (e.g.,
structural features, code reuse) and users (e.g., expertise), and a
longitudinal study on how they evolve over time. Our study results
show important characteristics of scripts such as dense external
method calls, high code-reuse ratio, and also reveal interesting
evolution patterns of users. The findings and implications in our
study provide valuable guidelines for improving tool support or
services for end users and increasing the popularity of end-user
programming on mobile devices.

I. INTRODUCTION

In recent years, mobile devices, especially smartphones,
have become a prevalent computing platform for most people.
A report [1] shows that there were 835 million smartphone
users in 2011, and the number will keep increasing. As the
usage of mobile devices grows, it becomes a very common
activity to create mobile applications (also known as apps).
Around one million apps have been offered by the Apple and
Android stores for download [2].

Traditionally, developers use object-oriented programming
languages (e.g., Java, Objective-C, C#) to write programs on
their separate PCs, with an emulator to simulate the device
environment, and then deploy the programs as apps to mobile
devices. Such a manner of off-device development manner
requires the installation of a Software Development Kit (SDK)
on the PCs, advanced programming languages, and complex
deployment of the apps to mobile devices. These requirements
pose high barriers to end-user programming of apps.

TouchDevelop [3], [4] developed by Microsoft Research
represents an emerging development model for mobile
applications. It lowers the end-user programming barriers by
enabling on-device app development and providing a fairly
simple (e.g., allowing only built-in types) scripting language.
With TouchDevelop, anyone can program their mobile device
directly on this device; no PC is required for developing or
deploying TouchDevelop scripts (i.e., apps). The target users
of TouchDevelop are students, hobbyists, power users, and
developers. The declared scope of TouchDevelop scripts is for
fun (e.g., games), for personalizing mobile devices, and for
creating productivity tools (e.g., arranging meetings).

Due to such a radically new programming environment,
TouchDevelop brings up numerous important questions on
end-user programming on mobile devices. For example,
from the perspective of apps, what kinds of apps can be
created with TouchDevelop? What are unique characteristics
of the apps created with TouchDevelop, compared to those
created with the traditional PC-based approach? From the
perspective of end users, how do end users learn programming
with TouchDevelop? What are their programming behaviors?
Answers to these questions may not only provide important
guidelines for enhancing end-user programming and improving
tool support or services to end users, but also reveal valuable
opportunities for drawing more end users and increasing the
popularity of on-device app development. Although there
have been some studies on the functionalities and code
changes of TouchDevelop scripts [5] and the programming
productivity with TouchDevelop [6], a lot of questions still
remain unaddressed, calling for more investigation.

In this paper, we present a comprehensive field study of
end-user programming on mobile devices. Our goal is to
provide valuable implications for different stakeholders around
mobile-device programming, e.g., the improvement of tool
support and services for end users, the increase of usage
popularity for service providers, and research opportunities for
researchers. Our study is comprehensive in that it investigates
all the TouchDevelop scripts and users in the cloud (in total,
17322 scripts and 4275 users). The study consists of two parts:
an overall study on the characteristics of scripts and users,
and a longitudinal study on their evolution over time. The first
part analyzes different aspects of both scripts (e.g., structural
features and code reuse) and users (e.g., expertise) to provide
basic understanding of them. The second part studies how
scripts and users evolve over time, and attempts to find trends
or identify patterns of their evolution. Specifically, our study
intends to answer the following research questions:

RQ1. What do TouchDevelop scripts look like?
We are interested in the structural features of TouchDevelop
scripts such as the number of lines of code, defined methods,
and method calls per script.
RQ2. What is the code-reuse ratio of TouchDevelop scripts?
It is important to understand code reuse of TouchDevelop
scripts since code reuse becomes very helpful in on-device
development for reducing programming burdens on end users
due to the virtual keyboard and limited screen size.
RQ3. What kinds of TouchDevelop users are there?
It is useful to distinguish different kinds of users based on their

TABLE I. OUR MAJOR FINDINGS OF END-USER PROGRAMMING ON MOBILE DEVICES AND THEIR IMPLICATIONS

Characteristics of scripts and users Implications
(1)-RQ1 TouchDevelop scripts are typically small; 72.6%
of them are less than 100 LOC. However, there are still
5.4% relatively large scripts with more than 500 LOC. The
largest script has 5030 LOC and is a rich-feature game.

Users usually write small scripts with TouchDevelop, but it
is possible to use TouchDevelop to create large scripts with
rich features.

(2)-RQ1 On average, a TouchDevelop script contains 106
external method calls (e.g., built-in TouchDevelop API
method calls); every two lines of code contains at least one
external method call.

TouchDevelop scripts heavily rely on external methods to
achieve functionalities. Enriching the built-in APIs might help
further increase the diversity of the scripts and the popularity
of TouchDevelop.

(3)-RQ2 TouchDevelop scripts have a high code-reuse ratio:
57.9% of them have a parent1.

Users tend to modify existing scripts instead of creating
scripts from scratch.

(4)-RQ2 In many cases (74.3%), users reuse their own
code, i.e., having their script’s parent as a script written
by themselves. Among 50 sampled parent/child pairs, most
child scripts (78.0%) are just updated versions of their
parents with small modifications.

There is lack of code reuse across different users. A
code-search engine of the code base may help users find
others’ scripts. Since there are many updates on scripts, a
version-control system might be necessary for managing a
series of scripts (different versions) for the same app.

(5)-RQ3 In terms of expertise, 74.2% of the users are
novices, 21.6% of the users are ordinary users, and 4.2%
of the users are experts.

Engaging these novices would help increase the popularity of
TouchDevelop. Since each kind of users has a considerable
population, it would be important to provide customized
services to each kind of users, e.g., different UIs.

Evolution of scripts and users over time Implications
(6)-RQ4 The number of scripts published per time period
(nearly 3 months) increases with an average rate of 58.8%.

TouchDevelop is increasingly popular.

(7)-RQ4 The average size of the scripts in each time period
stays small and stable, but the number of relatively large
scripts increases with an average rate of 153.3%.

It is important to better support users to create large scripts.
It might be helpful to make the TouchDevelop language more
powerful and expressive or enrich the built-in APIs.

(8)-RQ4 On average, the code-reuse ratio increases by
3.6%; the number of scripts created as libraries2increases
with an average rate of 63.0%.

Code reuse is becoming popular. Since more libraries are
created by users, it is necessary to provide ways to discover
them, document them, and detect duplicates.

(9)-RQ5 In terms of publishing scripts, 22.1% of the users
are very active initially and become less active later. 9.6%
of the users are not very active initially but become more
active some time later. 68.3% of the users try publishing
one or two scripts and then stop.

It would be useful to conduct user studies on why many users
try TouchDevelop and leave, why those active users become
less active, and what motivates those earlier less active users
to become more active later. Such information could be used
to design better strategies to retain users.

(10)-RQ5 16.3% of the users learn most language features
initially and learn only a few later. 12.4% of the users learn
some language features initially and also learn quite a lot at
a certain point later. 71.3% of the users learn a few initially
and then stop learning new language features.

Users have different learning behaviors. It would be important
to provide an adaptive tutoring system that recommends
tutorials to users based on their history of language-feature
usage and the kind of scripts that they are writing.

expertise so that we can provide customized supports for each
kind of users and better assess their scripts or comments.
RQ4. How are TouchDevelop scripts changing over time?
Finding the trends of how TouchDevelop scripts change in
terms of their size and code reuse could guide future tool
development to better accommodate these trends.
RQ5. What is the users’ progress of developing
TouchDevelop scripts?
We want to investigate users’ programming behaviors and
learning process by looking at their published scripts and
language-feature usage in order to design strategies for
engaging more users.

1A TouchDevelop script can inherit another script and directly modify its
code. The script being inherited is called the parent.

2A TouchDevelop script can be created as a library for other scripts to reuse
its defined methods. Without causing confusion, in this paper, we refer to such
scripts as libraries.

Our major findings and implications are summarized in
Table I. The details of our study are discussed in the later
sections. Our paper makes the following main contributions,

• We discover special characteristics of TouchDevelop
scripts: TouchDevelop scripts are typically small and
contain a lot of external method calls; the code-reuse ratio
of TouchDevelop scripts is high.

• We reveal important trends of the scripts including the
increasing number of large scripts and code-reuse ratio.

• We find some evolution patterns of TouchDevelop users.
There are consistently active users, but many initially
active users become less active later.

• We provide valuable implications for improving future
tool support or services for end users, such as building a
code-search engine and a version-control system. We also
suggest more user studies to figure out how to increase the
popularity of end-user programming on mobile devices.

Fig. 1. A ”new song” example that finds songs not played yet and posts
them to the wall.

II. BACKGROUND: TOUCHDEVELOP

A. The TouchDevelop Programming Environment

TouchDevelop [3], [4] developed by Microsoft Research,
is a novel programming environment that enables users
to program their mobile devices directly on the devices.
TouchDevelop scripts are written and run in the TouchDevelop
IDE, which can be installed on either a Windows Phone or a
web browser for other platforms such as Android and iOS.
To ease programming on mobile devices, the IDE provides a
semi-structured code editor, which presents users with a small
number of possible choices (e.g., different types of statement)
at each step. In this manner, the users build the skeleton of
the script via touching to select choices, leaving only variable
names and expressions for typing.

Besides the IDE, TouchDevelop also provides a fairly
simple scripting language that has both imperative and
object-oriented characteristics. It allows users to not only
define methods, modify local variables, but also access
properties of objects. However, for simplicity, the language
supports only built-in types: primitives and a set of types
for objects. It does not allow users to define new types
or properties. One important feature of the TouchDevelop
language is that it provides rich interfaces to access a
wide range of hardware and resources on the mobile device
including various sensors, the camera, media, etc. Such feature
facilitates the on-device programming.

A TouchDevelop script typically consists of actions, events,
and global data. An action is just like a function in C or a
method in Java or C#. It contains a sequence of statements, and
can take parameters and return computation results. An event is
a special action that is executed whenever the corresponding
event occurs (e.g., phone shaking). The global data refer to
global variables that are either persistent on a mobile device
or in the cloud. Such variables can be shared by multiple

applications. Figure 1 shows a simple TouchDevelop script
that finds songs not played yet and posts them to the screen,
also known as the wall. The script contains two actions and
one event. The main action is the entry of the script and calls
the display song action to determine whether a song has been
played. The active song changed event is executed whenever
the player changes a song. This event increases the global
variable played, the counter of songs played, by one.

TouchDevelop maintains a cloud that provides various
services to users. First, users could publish/download their
scripts to/from the cloud. All published scripts are available
with source code, and users are encouraged to share their
scripts or extend others’ scripts. Each script/user is assigned
a unique ID once published/registered. Moreover, the cloud
stores many important statistics of every published script and
its author, and provides public interfaces (cloud API) for
retrieving the information of scripts and users. Anyone could
write customized queries (e.g., retrieving IDs of all scripts
published by a certain user) in a program or directly in the
address bar of web browsers, and then the cloud responds to
these queries with either JSON objects or plain texts.

B. TouchDevelop Scripts and Users

From a database point of view, scripts and users are two
critical types of entities in the TouchDevelop ecosystem. There
is a one-to-many relation between users and scripts: one user
can publish multiple scripts while one script can have only one
user as its author. The script entity and the user entity also have
a set of attributes. We next describe some key attributes that
are investigated in our study of scripts and users, respectively.

For the script entity, we primarily investigate the attributes
related to code reuse. TouchDevelop provides four ways for
code reuse: (1) a script could inherit a parent script and directly
modify the code of the parent script; (2) a script can be created
as a library, and other scripts can reference the library script
and use the actions and events defined in it; (3) a script can
reuse the TouchDevelop built-in APIs, which are the properties
and methods of object types provided by TouchDevelop; (4) a
user can copy and paste code from one script to another. Since
we do not have a good way to keep track of which portion
of the code in the published scripts is via copy-and-paste, our
study focus on only the first three code-reuse fashions. These
three fashions respectively correspond to three attributes of a
script: whether the script has a parent, whether the script is a
library, and how many built-in API calls the script includes.

For a user, we investigate three important attributes
that reflect the expertise of the user. First, the number of
the published scripts indicates the script-publishing activity
of the user. Second, users can give positive reviews to
each other on their published scripts and posted comments.
Hence, the number of the received positive reviews indicates
the quality of the user’s scripts and comments. Third,
TouchDevelop keeps track of what TouchDevelop-language
features are used by each user. The TouchDevelop-language
features include TouchDevelop built-in APIs as well as basic
programming-language concepts and keywords such as the
concept of using parameters in an action and the if keyword for
if statement. The number of language features used by a user
indicates how much the user has learned about TouchDevelop
programming.

TABLE II. METRICS ON THE SOURCE CODE OF A TOUCHDEVELOP
SCRIPT

Metric Description
#LOC the number of lines of source code

#IM the number of internal methods defined by
users, i.e., actions and events

#EM the number of external methods invoked by
the script but defined outside the script

#IMC the number of internal method call sites
#EMC the number of external method call sites
EMC
Density

the average number of external method calls
per line of code, i.e., EMC/LOC

III. METHODOLOGY

A. Subjects

The subjects in our study are all the TouchDevelop scripts
published in the cloud and users who publish these scripts,
starting from the publish time of the first script (late July
2011) to the time of our final experiment (early February
2013). In total, there are 17322 TouchDevelop scripts and 4275
users included in our study. For each script, we download
the following resources: the source code, ID, and publish
time of the script, the ID of the script author, the parent of
the script (if any), and information on whether the script is
a library. For each user, we download the ID of the user,
the number of scripts published by the user, the number of
TouchDevelop-language features used by the user, and the
number of positive reviews given to the user’s scripts and
comments. We obtain all these data from the TouchDevelop
cloud through the cloud APIs.

B. Metrics and Approaches

To answer RQ1 on the structural features of TouchDevelop
scripts, we use a set of commonly-used metrics listed in
Table II. All these metrics are calculated on every single
TouchDevelop script. The internal methods refer to the actions
and events defined in the script by the user, while the external
methods refer to interfaces and actions that are invoked by
the script but defined outside the script. Typically, external
methods are TouchDevelop built-in APIs or actions defined in
other library scripts. Note that the number of internal/external
methods being measured here is actually the number of distinct
internal/external methods defined/invoked in the script. While
an internal/external method call is a call site of the method.
There could be multiple call sites of a single method in the
script. We construct the abstract syntax tree (AST) for each
script using the TouchDevelop script parser, and traverse the
AST to compute IM, EM, IMC, and EMC.

To answer RQ2 on the code reuse of TouchDevelop scripts,
we adopt the same definition of code-reuse ratio from the
previous work [5] for comparison purposes. The code-reuse
ratio among scripts is defined as the ratio of the number of
scripts that had a parent to the number of all scripts. To further
study how users reuse code, we first investigate where the
reused code comes from: the user herself or other users. This
reused-code ownership is determined by checking whether
the author of the parent script is the same as the author of
the child script. We then calculate the percentage of newly

modified code in the child script. To do it, we obtain the
LOC of modifications in the child script by using an internal
cloud API, which compares the code differences between two
TouchDevelop scripts, and compute the ratio of the LOC of the
modifications to the LOC of the child script. Moreover, to see
how users modify the inherited scripts, we randomly sample 50
parent/child script pairs, and manually go through the source
code of each pair to understand the code modifications.

To answer RQ3 on characteristics of TouchDevelop users,
we first classify users based on their expertise. We employ
the clustering algorithm based on the Gaussian Mixture
Model (GMM) [7] to group users with similar expertise,
and choose three important indicators of the user expertise
as the input attributes to the clustering algorithm, namely,
the number of scripts published by the user, the number
of TouchDevelop-language features used by the user, and
the number of positive reviews given to the user’s scripts
and comments. We use Bayesian Information Criteria (BIC)
to estimate the number of clusters in the input instead of
arbitrarily choosing a number. BIC has been shown to be
effective for Community Question Answering (CQA) datasets
to determine how many users should be labeled as experts [8].
After clustering, we then analyze the characteristics of the
users from each cluster and compare different clusters.

To answer RQ4 on the evolution of TouchDevelop scripts,
we first equally divide the whole time period, ranging from
the publish time of the first script to the publish time of the
last script, into 6 smaller time periods (nearly 3 months per
time period). Then we compare scripts from each time period
in different aspects to find the trends of the script evolution.
For example, we investigate how the number and the size of
the scripts in each time period change over time, and whether
the code-reuse ratio increases or not.

To answer RQ5 on the programming progress of
TouchDevelop users, we investigate how many scripts or
TouchDevelop-language features are published or used over
time by each individual user. The number of published scripts
could indicate the script-publishing activity of the user while
the number of newly used TouchDevelop-language features
could reflect how much they have learned about TouchDevelop.
Particularly, we select users who started publishing scripts
more than one year ago, and collect the published scripts
and newly used language features in each of their first 12
months (starting from the time when each user published their
first script). We use the number of published scripts or newly
used language features in each month as 12 attributes and
again employ the GMM clustering to group users with similar
behaviors. After clustering, we analyze each cluster to identify
common evolution patterns of users. We adopt this approach
from previous work by Pal et al. [9], where they successfully
used it to capture evolution patterns of experts in CQA.

IV. CHARACTERISTICS OF SCRIPTS AND USERS

A. Structural Features of TouchDevelop Scripts

Since TouchDevelop provides its own scripting language,
we want to see what TouchDevelop scripts look like and what
features they have, compared to programs written in other
languages from a structural perspective. We apply the set of
software metrics listed in Table II to the source code of all

TABLE III. RESULTS OF STRUCTURAL METRICS FOR ALL TOUCHDEVELOP SCRIPTS

#LOC Percent #IM Percent #EM Percent #IMC Percent #EMC Percent
(0, 100] 72.6% 1 23.1% [0, 10] 44.6% 0 53.1% [0, 50] 66.2%

(100, 500] 22.0% (1, 10] 60.5% (10, 50] 41.8% (0, 10] 30.3% (50, 100] 12.4%
(500, 1000] 2.8% (10, 50] 14.8% (50, 100] 10.0% (10, 50] 13.1% (100, 500] 16.6%
> 1000 2.6% > 50 1.6% > 100 3.6% > 50 3.5% > 500 4.8%

Avg. 133.1 Avg. 6.6 Avg. 23.2 Avg. 8.6 Avg. 105.5

TouchDevelop scripts, and find some special characteristics on
their structural features.

Table III shows the results of each metric for all scripts.
First, TouchDevelop scripts are typically small and simple. In
the LOC column, the majority of the scripts (72.6%) have
less than 100 LOC; the average number of LOC is only
133.1. In the IM and IMC columns, 23.1% of the scripts have
only one internal method (i.e., each of these scripts has only
the default main action); and 53.1% of the scripts have no
internal method call (i.e., only the code in the main action
is executed). These results indicate that users usually write
small scripts with TouchDevelop, and TouchDevelop might be
suitable for writing small-scale scripts. However, there are still
5.4% relatively large scripts with more than 500 LOC. The
largest TouchDevelop script has 5030 LOC and 103 actions,
and is a rich-feature game. This finding implies that it is
entirely possible to use TouchDevelop to create large scripts
with rich features.

From Table III, we can find that there are lots of external
method calls (EMCs) in TouchDevelop scripts. The average
number of EMCs in a script is 105.5, much larger than the
average number of IMCs. These EMCs are primarily built-in
API methods provided by TouchDevelop (e.g., the properties
and methods of TouchDevelop built-in object types) and also
a few actions defined in other library scripts. Furthermore, the
average EMC density of all scripts is 0.6, which is very high,
meaning that on average there is at least one EMC in every
two lines of code. In addition, we also find a strong correlation
between the number of lines of code and the number of EMCs.
On the entire dataset, the correlation coefficient is 0.9.

These results are within our expectation because in
end-user programming, users often write very few algorithms
but many high-level operations. The implementations of
these operations are usually provided by TouchDevelop
built-in APIs. These results imply that a lot of code logic
lies outside the scripts, and the scripts heavily rely on
built-in TouchDevelop APIs to achieve functionalities. Hence,
enriching the built-in APIs might help further increase the
diversity of the scripts and the popularity of TouchDevelop.

B. Code Reuse in TouchDevelop Scripts

Due to the virtual keyboard and limited screen size,
programming on a mobile device is more difficult than
programming on a PC. Thus, code reuse becomes very helpful
for reducing programming burdens on end users. Overall, the
code-reuse ratio of TouchDevelop scripts is high: 57.9% of
all the scripts have a parent script. By inheriting a parent
script, the child script can be attained by directly modifying the
code of the parent script instead of starting from scratch. Such
high code-reuse ratio is reasonable in the case of on-device

programming where users intend to save the typing efforts.
It may take less time for users to find the needed code and
understand it than to implement it by their own.

To delve deeper into where the reused code comes from,
we find that among all the parent/child pairs, there are 74.3%
of them with the parent and the child sharing the same author.
This result indicates that in many code-reuse scenarios, the user
just reuses her own code. There is a lack of code reuse across
different users. There are two inhibitors that might prevent
users from reusing others’ code: (1) there is no effective way
for users to find out others’ code that they need to reuse;
(2) there are few descriptions for published code, and users
may have a hard time in understanding others’ code without
documentation. To alleviate these problems, a code-search
engine of the entire code base might help users to effectively
find the code that they need. In addition, although typing is
relatively difficult on mobile devices, users could still add
some brief descriptions on their code to help other users to
understand it, and thus increase the chance of the code being
reused.

We then compute the percentage of the modified code in
the child script in terms of LOC. We find that on average, for
each child script, the modified code accounts for only 8.5% of
the entire code. This result indicates that the modifications on
the parent scripts are relatively small. Furthermore, from the
50 sampled parent/child pairs, there are 39 out of 50 (78.0%)
child scripts that are just updated versions of their parents with
small modifications. The average ratio of the modified code per
script among the 39 child scripts is 7.9%. Many modifications
do not implement substantial functionalities.

Since we observe that there are frequent updates on
scripts, we suggest providing a version-control system for
managing these updates. Currently, users update their scripts
in a code-reuse manner by inheriting code from the previous
script, modifying it, and publishing the updated script as an
individual app. This way might not be good to maintain code
because intuitively, these updated scripts should be treated
as different versions of the same app rather than different
individual apps. Users may get confused on whether the child
script is an updated version of its parent or a completely new
app. With a version-control system, these confusions can be
alleviated because updated scripts are grouped together for one
app. In addition, users can also have a clear overview of how
this app evolves, and then easily pick the version that they
want to modify.

C. User Classification

Figure 2 shows the results of the GMM clustering on 4275
users, with the number of published scripts, the number of used
TouchDevelop-language features, and the number of received

�
��

���
����

�
��

���
����

�

��

���

����

�

�����	
�����
���
�����
�����
�

��

�
�	
�	�
��
��
�	
��
�

���	��
���	�
��
��
���

Fig. 2. The classification of users based on their expertise. The stars
represent the experts, the dots represent the ordinary users, and the small
circles represent the novices.

positive reviews as the input attributes. The figure is plotted on
the log scale. Overall, the users are clustered into three groups.
We regard the group of users with most published scripts,
language features, and positive reviews as experts (represented
by stars), the group with least of these metric values as novices
(represented by small circles), and the remaining group as
ordinary users (represented by dots).

In particular, there are 74.2% novices, 21.6% ordinary
users, and 4.2% experts. Although the expert group is relatively
small, each group of users has a considerable population. As
shown in Figure 2, there are big differences between each kind
of users on these three metrics. For example, some experts use
hundreds of language features but many novices use only a few.
Since we have three very different kinds of users each with
a considerable population, It would be important to provide
customized services rather than uniform services to each kind
of users. For example, we may recommend tutorials very often
to novices, but much less frequently to experts. We may also
keep the UI for experts compact whereas provide a detailed
UI with more descriptions for novices. Moreover, we can see
that the novice group, which has the largest population, is
rather inactive in general: many of them publish fewer than 10
scripts. It would be very useful to investigate these users and
understand what keeps them as novices, e.g., lack of interest
in TouchDevelop or difficulties in learning TouchDevelop.
Engaging these novices would help TouchDevelop further
increase its popularity.

V. EVOLUTION OF SCRIPTS AND USERS OVER TIME

A. How Do Scripts Change Over Time?

As described in Section III, we divide the entire time period
into 6 smaller time periods, with an equal length of nearly
three months. The entire time period starts from the publish
time of the very first TouchDevelop script and ends at the
time we conducted our experiment. We apply the same set of
previous metrics separately on the scripts from each of the 6
time periods and compare the results across time periods to see
their changes. Table IV shows the results of metrics that have
an increasing trend over time periods. The first column lists
the 6 time periods. The other columns represent the number

TABLE IV. INCREASING TRENDS OF SCRIPTS OVER 6 TIME PERIODS

#Script #L. Script #Library Reuse R.
T1 939 13 0 43.9%
T2 1701 95 0 53.3%
T3 2252 150 257 57.2%
T4 3171 147 377 59.3%
T5 2586 230 175 58.2%
T6 6673 284 518 62.1%

Avg Inc. 58.8% 153.3% 63.0% 3.6%

of published scripts, the number of scripts with more than
500 LOC, the number of library scripts, and the code-reuse
ratio in each time period, respectively. The last row represents
the average increase rate of each metric over 6 periods. Note
that the rate here is not the exponential growth rate. Instead,
for each time period (except the first one), we calculate the
increase or decrease rate on its previous period, and then use
the mean value of all such rates as the average rate.

In general, the number of published scripts per time period
increases with an average rate of 58.8%. Besides the number
of published scripts, the number of new users per time period
also increases with an average rate of 65.8%. The increasing
numbers of both the scripts and the new users indicate the
growing popularity of TouchDevelop.

From the structural perspective, the average size of the
scripts in each time period stays small and does not change
much. However, there are more and more relatively large
scripts published in each time period, with an average increase
rate of 153.3% as shown in the third column. This trend
indicates the growing popularity of writing large scripts with
TouchDevelop. We suggest providing better support for writing
large scripts in the future. For example, we could make
the TouchDevelop language more powerful and expressive so
that it could allow users to create more sophisticated scripts.
Besides, enriching the built-in APIs might also be helpful.

On the aspect of code reuse, the ratio of code reuse has
an average increase of 3.6% per time period, implying the
growth of popularity of code reuse. In addition, there is an
increasing trend in the number of library scripts. In Table IV,
the number of library keeps increasing generally. Note that
there is no library script in the first two time periods because
the feature of creating library scripts was not introduced at
that time. As there are more and more library scripts being
created, we need to find an effective way to manage them. For
example, in order for users to find their desired libraries, it
is necessary to provide search support of library scripts. We
also need to provide documents for the libraries in order to
help users to better reuse them. Moreover, since any user can
create library scripts, it is important to ensure the quality of
the libraries and also detect duplicated libraries.

B. How Do Users Evolve?

To investigate how users evolve, we need users that have
been using TouchDevelop for long enough time. We select
those who started publishing scripts more than one year ago
and find 816 such users. We apply GMM to cluster these 816
users based on the number of their published scripts and the
number of their newly used language features, respectively.

1 2 3 4 5 6 7 8 9 10 11 12

0

2

4

6

8

10

12

14

month

pu

bl
is

he
d

sc
rip

ts

A
B
B1
C

Fig. 3. Evolution patterns on the number of the published scripts of the 816
selected users.

1 2 3 4 5 6 7 8 9 10 11 12

0

10

20

30

40

50

60

70

80

90

month

ne

w
ly

 u
se

d
la

ng
ua

ge
 fe

at
ur

es

D
E
E1
E2
F

Fig. 4. Evolution patterns on the number of the newly used language features
of the 816 selected users.

Figure 3 shows the mean number of users’ published
scripts in their first 12 months for different clusters. Each line
represents a cluster and each data point is the mean number of
the published scripts in a certain month by each user from a
cluster. Although there are 4 clusters found by GMM, they can
be summarized into 3 patterns because some clusters are just
variants of each other and they belong to the same pattern.
In Figure 3, Line A represents a pattern that 22.1% of the
users are very active initially, publishing many scripts, and
become less active later, publishing only a few. Lines B and
B1 represent another pattern that 9.6% of the users are not
very active initially but become more active at some time later.
Line C represents the third pattern that 68.3% of the users try
publishing one or two scripts initially and then stop publishing.
Since so many users belong to the third pattern, it is very
important to know why these users stop publishing so that
we could design better strategies or improve TouchDevelop to
retain these users. In addition, knowing what motivates those
earlier-less-active users to become more active later may also
give hints to increase popularity.

Figure 4 shows the mean number of users’ newly used
language features for different clusters. Note that the clusters
in Figures 3 and 4 are not the same because the clustering
algorithm is applied to two independent data sets. There

are also 3 patterns of the users’ learning behaviors. Line D
represents the first pattern that 16.3% of the users learn most
language features initially and learn only a few later. Lines E,
E1, and E2 represent the second pattern that 12.4% of the users
learn some language features initially and also learn quite a
lot at a certain point later. Line F represents the third pattern
that 71.3% of the users learn a few language features initially
and then stop learning. We further sample 20 users from the
second pattern and investigate why there is an increase later
in their learning curve. We find the major reason to be that
users switch their focus from writing one kind of scripts to
another so that they use many new built-in APIs related to the
new kind of scripts. Since the users have different learning
behaviors, we suggest providing an adaptive tutoring system
that recommends tutorials related to the kind of scripts that a
user is writing and also avoids tutorials that the user already
knows based on the language features used by the user.

VI. THREATS TO VALIDITY

One threat to internal validity is that we do not investigate
code reuse via copy-and-paste due to the difficulty of tracking
users’ edits. Copy-and-paste could be common in the scripts.
Hence, the actual code-reuse ratio is underestimated in this
study. Another threat is in our manual study on 50 sampled
parent/child script pairs and scripts of 20 sampled users. Due to
the inevitable human efforts, there might be subjectiveness in
understanding the code modifications between the parent and
the child. In addition, since TouchDevelop later released a web
version, some of our subject scripts may be created with the
browser on PCs. These scripts do not belong to the category
of apps that are developed on mobile devices. Fortunately, we
did our experiment shortly after the release of the web version.
So there would not be many such scripts included in our study.

The major threat to external validity is that we conduct our
study exclusively with TouchDevelop. Some of our findings
and implications are specific to the TouchDevelop platform
due to TouchDevelop’s own scripting language, and might
not be generalizable to other platforms for on-device app
development [10]. To mitigate this threat, we plan to conduct
studies on different platforms in our future work.

VII. RELATED WORK

The most related work is an earlier study conducted by
Athreya et al. [5] on TouchDevelop scripts. Both their work
and our work studied the code-reuse ratio of TouchDevelop
scripts and code modifications between parent scripts and child
scripts. We had similar results on code modifications: most of
the modifications were minor tweaks to existing functionalities.
However, our results on code-reuse ratio were quite different.
In their study, they inferred that the code-reuse ratio was
only 5% because they had to randomly sample about 2000
scripts until they found 100 scripts with a parent. However,
our results indicated that 57.9% of all scripts had a parent.
We informed Athreya et al. of this difference and together
figured out two possible reasons: the code-reuse ratio of scripts
was increasing; their sampling might be an “unlucky” one,
which sampled more scripts without a parent. Besides different
results, their study focused on functionalities of scripts and
problems posted by users, whereas our work mainly studied
the structural features of scripts and the evolution of scripts

and users. Moreover, their entire study was done manually so
that they investigated only a small portion of scripts. Our study
was more comprehensive by including all scripts and users.

There are some other studies on end-user programming
with TouchDevelop. Nguyen et al. [6] conducted a user
study to compare programming productivity of TouchDevelop
with the traditional off-device approach. They found that for
small tasks, a programmer was more productive in writing
TouchDevelop apps than writing Android apps. Tillmann
et al. [11], [12] presented their successful experience on
teaching middle and high school students programming using
TouchDevelop, and proposed to conduct future programming
teaching to mobile devices.

Besides the preceding studies, there is some other
work related to TouchDevelop on security and programming
language. Xiao et al. [13] used static-information-flow analysis
to reveal how private information was used inside apps
in order to assist users in granting permissions to apps.
Burckhardt et al. [14] designed specialized cloud types at
the programming-language level to achieve consistent data
storage for mobile devices. Our study results might serve as
motivations for future research on end-user programming on
mobile devices.

A lot of research has been done by the data-mining
community on the users in question-answering forums. Much
such research focused on developing algorithms or approaches
to either identify experts or analyze the behaviors of experts.
Bouguessa et al. [8] developed an approach leveraging the
Bayesian Information Criterion to determine experts in the
Yahoo! Answers forum. Pal et al. [9] proposed an approach to
identify the evolution patterns of experts in the Stack Overflow
forum. We borrowed their approaches in our study to classify
TouchDevelop users and analyze their evolution patterns.

There are plenty of studies on end-user programming
in other domains including web applications [15], [16],
spreadsheets [17], animations [18], and other domain-specific
visual languages [19]. Many of them [15], [17], [18], [19]
studied what kinds of programs end users create and what
challenges they face, and gave suggestions to tackle these
challenges, while others [16] conducted user studies on the
behaviors of end users during their programming process.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a comprehensive field
study of end-user programming on mobile devices. We
studied 17322 TouchDevelop scripts and 4275 TouchDevelop
users, investigating not only the characteristics of scripts and
users, but also their evolution. Our findings included (1)
TouchDevelop scripts are small and contain lots of external
method calls; (2) the code-reuse ratio of TouchDevelop scripts
is high; (3) many TouchDevelop users are novices; (4) there
are increasing trends of code-reuse ratio and the number of
large scripts; (5) TouchDevelop users have some patterns in
publishing scripts and learning language features. Based on
these findings, we have provided a list of implications for
improving tool support or services for end users and increasing
the popularity of end-user programming on mobile devices.

In future work, we plan to build the proposed code-search
engine and version-control system into the TouchDevelop

cloud. We also plan to interview some users of different kinds
on their experiences with TouchDevelop and design strategies
to engage more users. Finally, we plan to generalize our current
study to other similar platforms.

ACKNOWLEDGMENTS

This work is supported in part by NSF grants
CCF-0845272, CCF-0915400, CNS-0958235, CNS-1160603,
an NSA Science of Security Lablet grant, a NIST grant,
a Microsoft Research Software Engineering Innovation
Foundation Award, and NSF of China No. 61228203. We thank
Christopher Scaffidi for discussing with us on code reuse and
providing some of their experimental data. We also thank Yuan
Yao for his valuable feedback and help.

REFERENCES

[1] “The future of mobile,” Business Insider. [Online]. Available:
http://www.businessinsider.com/the-future-of-mobile-deck-2012-3#-1

[2] R. Minelli and M. Lanza, “Software analytics for mobile applications
- insights & lessons learned,” in CSMR, 2013, pp. 144–153.

[3] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich,
“TouchDevelop: programming cloud-connected mobile devices via
touchscreen,” in SIGPLAN, ONWARD, 2011, pp. 49–60.

[4] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and
S. Burckhardt, “TouchDevelop: app development on mobile devices,”
in FSE, Demo, 2012, pp. 39:1–39:2.

[5] B. Athreya, F. Bahmani, A. Diede, and C. Scaffidi, “End-user
programmers on the loose: A study of programming on the phone for
the phone,” in VL/HCC, 2012, pp. 75–82.

[6] T. A. Nguyen, S. T. Rumee, C. Csallner, and N. Tillmann, “An
experiment in developing small mobile phone applications comparing
on-phone to off-phone development,” in USER, 2012, pp. 9–12.

[7] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in CVPR, 1999, pp. 246–252.

[8] M. Bouguessa, B. Dumoulin, and S. Wang, “Identifying authoritative
actors in question-answering forums: the case of Yahoo! answers,” in
KDD, 2008, pp. 866–874.

[9] A. Pal, S. Chang, and J. Konstan, “Evolution of experts in question
answering communities,” in AAAI, 2012, pp. 274–281.

[10] “Appcelerator,” Titanium Studio. [Online]. Available: http://www.
appcelerator.com/

[11] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, J. Bishop,
A. Samuel, and T. Xie, “The future of teaching programming is on
mobile devices,” in ITiCSE, 2012, pp. 156–161.

[12] N. Tillmann, M. Moskal, J. de Halleux, M. Fahndrich, and T. Xie,
“Engage your students by teaching computer science using only mobile
devices with touchDevelop,” in CSEE&T, 2012, pp. 87–89.

[13] X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M. Moskal,
“User-aware privacy control via extended static-information-flow
analysis,” in ASE, 2012, pp. 80–89.

[14] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood, “Cloud types
for eventual consistency,” in ECOOP, 2012, pp. 283–307.

[15] C. Bogart, M. Burnett, A. Cypher, and C. Scaffidi, “End-user
programming in the wild: A field study of coscripter scripts,” in
VL/HCC, 2008, pp. 39–46.

[16] N. Zang and M. B. Rosson, “What’s in a mashup? and why? Studying
the perceptions of web-active end users,” in VL/HCC, 2008, pp. 31–38.

[17] C. Chambers and C. Scaffidi, “Struggling to Excel: A field study of
challenges faced by spreadsheet users,” in VL/HCC, 2010, pp. 187–194.

[18] A. Dahotre, Y. Zhang, and C. Scaffidi, “A qualitative study of animation
programming in the wild,” in ESEM, 2010, pp. 29:1–29:10.

[19] M. Jones and C. Scaffidi, “Obstacles and opportunities with using visual
and domain-specific languages in scientific programming,” in VL/HCC,
2011, pp. 9–16.

