OpenSession: SDN-based Cross-layer Multi-stream
Management Protocol for 3D Teleitmmersion

Ahsan Arefin  Raoul Rivas

Rehana Tabassum

Klara Nahrstedt

University of Illinois at Urbana-Champaign, Urbana, IL
{marefin2, trivas, tabassu2, klara}@illinois.edu

Abstract—Video conferencing applications pose fundamentally
different service requirements than traditional data traffic on
the Internet. Strong real-time interactivity is very important
among participants unlike video streaming in VoD applications.
Requirements are even more stringent in multi-stream and multi-
site teleimmersive applications due to strong dependencies across
geographically distributed streams. In this paper, we propose
OpenSession, a cross-layer session-network control protocol for
multi-stream multi-site 3D teleimmersion (3DTI) that improves
interactivity, resource utilization and scalability. OpenSession
decouples application layer data and control plane functionalities,
and partially offloads the data plane functionalities to network
layer switches. To control network layer switches during the
session run-time, OpenSession leverages support from Software
Defined Networking (e.g., OpenFlow). Through extensive evalua-
tion with multi-stream 3D teleimmersion among four distributed
sites and PlanetLab-based larger 3DTI setup, we show that
OpenSession improves 3DTI interactivity and resource usage
at the data plane. Furthermore, OpenSession keeps data plane
robust against host failures and frequent route updates.

I. INTRODUCTION

We have seen a surge of interest in telepresence video
collaborative technologies over the past few years. Though the
initial focus was on video conferencing application [9][27],
emerging is the 3D teleimmersion (3DTI) technology that
expands the horizon by supporting full-body interaction of
physical activities in virtual environments. Applications have
been found in rehabilitation, collaborative dancing, and online
gaming (e.g., [17], [39]) in addition to video conferencing [19].

3DTI consists of a real-time correlated multi-stream en-
vironment, where distributed participants interact with each
other in a shared virtual space by fusing streams from multiple
3D cameras, microphones and other sensors. Despite great
potential, today’s multi-stream 3DTI still faces significant
challenges due to the high interactivity requirement and large
demand on processing and network resources. Furthermore, it
introduces a new notion of user interaction, where participants
can frequently change their view orientations in the virtual
space. Frequent view changes require frequent updates of
multi-stream content distribution. Due to this dynamic user
behavior, even with notable improvements in application layer
[6][34], today’s 3DTI struggles with heavy temporal and
spatial overheads and multi-stream management complexities.

With the advancement of Software Defined Networking
(SDN) research over the past few years, network components
have become accessible and controllable from application
layer [32]. Applications can use this flexibility to offload
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certain data plane functionalities to the network layer for the
purpose of improving data plane complexity and efficiency.
We have seen the leverage of SDN (e.g., OpenFlow [22]) in
different applications such as selecting servers for load balanc-
ing [13], managing consistency in network migration [16], and
finding peers for video streaming [10]. The natural question
for us is “can we use OpenFlow network components to
reduce data plane complexities and improve multi-stream flow
management in 3DTI”. To address this question, we develop
OpenSession, a session-network cross-layer management con-
trol protocol for managing multi-stream flows in 3DTL

OpenSession introduces a split forwarding architecture at
the application data plane. It partially offloads stream multicast
functionality of the application to the SDN switches. If mul-
tiple participants request the same streams, the source partici-
pant sends only single copies of the local streams to the SDN
network switch, which handles multi-stream forwarding to all
remote destinations on-behalf-of the application. The splitting
of data plane reduces processing load at the application, and
network bandwidth usage at the network. Offloading multi-
stream forwarding to the SDN network component also im-
proves end-to-end delay in multicast-based streaming because
forwarding of streams is done from the network layer of the
SDN switches instead of from the application layer of the end-
hosts at each multicast hop.

However, splitting the data plane introduces several chal-
lenges. First, the application layer multi-stream semantics are
lost in the network layer data plane. Without keeping this
semantics, the SDN switches cannot forward streams according
to the overlay topology. To solve the semantic mapping prob-
lem, OpenSession develops a packet differentiation mechanism
that assists the switches to differentiate data packets across
multiple streams. Second, SDN provides a fixed interface
(OpenFlow) to configure the network layer data plane. To
work with this standard interface, OpenSession develops a
mapping algorithm to map the multi-stream overlay topology
from the application layer to the network layer. Third, 3DTI
requires frequent updates on the data plane configuration due
to frequent view changes. To allow fast and seamless view
changes, the updates on the data plane should be performed
consistently across all participants so that the view changes
do not introduce any interference on streaming. To maintain a
global consistency while updating the distributed data planes,
OpenSession develops a coordinated route update protocol.

We implement OpenSession using OpenFlow switches [22]
and Floodlight controller [12]. To prove the benefits of OpenS-
ession, we run experiments with real 3DTI application setup
among four distributed participants (within small geographical



region). To show the impact of larger scale on Internet, we
also run distributed 3DTI sessions using PlanetLab [26] nodes.
Our results show that OpenSession improves multi-stream
3D streaming performance. It reduces end-to-end delay in
proportion to the round-trip time (RTT) of local networks
(e.g., a campus network where the application host resides)
at each multicast hop. It also improves bandwidth load within
the local network and processing load inside the application
host in proportion to the number of streams in a 3DTI session.

Though we focus on interactive 3DTI throughout this
paper, OpenSession does not provide any design limitation
that bounds other multi-party tele-conferencing applications
to take advantage of it. Our key contributions are: 1) we
design and implement OpenSession, a session-network cross-
layer management control plane for multi-stream 3DTI using
SDN support (§1V, 2) we demonstrate (§VI) that OpenSession
improves 3DTI interactivity in proportion to RTT of the local
network, and reduces bandwidth load within the local network
and processing load inside the application host in proportion
to the number of streams, and 3) we show (§VI and §VII) that
OpenSession makes the data plane resilient against frequent
view changes, route updates and host failures.

II. BACKGROUND
A. 3D Teleimmersion

3DTI application model: 3DTI system is a distributed plat-
form connecting multiple remote sites containing a large
number of input and output devices (as opposed to tradi-
tional video conferencing) and creating a virtual shared space
for remote interactions as shown in Figure 1. The system
contains three architectural tiers. In capturing tier, multiple
capturing devices such as multiple 3D cameras, microphones,
and other haptic sensors capture cyber-physical multi-modal
information of each participant at his/her physical site. The
captured streams are sent to a local rendezvous point, called
gateway (A, B or C in Figure 1), which is responsible for
data dissemination. The dissemination tier consists of overlay
network of gateways multiplexing streams to and from each
site. In rendering tier, streams are synchronously played.

3DTI data model: Each 3DTI site (or participant) hosts
multiple 3D stereo cameras; each captures a local scene
from various orientations and constructs a color-plus-depth
3D stream (.5). The selection of local streams to transmit
to a remote participant is calculated based on local streams’
orientations and remote participant’s view (v) demand. For
example, if the participant is currently looking at the front
of a 3D scene, streams generated by the back cameras are
less important and can be dropped when bandwidth is limited.
Views are represented by a set of remote streams in order of
their importance in the view. A view v by the participant at
Site-C (in Figure 1) can be represented as v=[S{',5%, - - -, S4,
S5 for n streams per remote participant. The higher number
of 3D streams a site receives (within the available bandwidth),
the better quality of 3D virtual environment it creates.

Note that individual streams are not merged at the source,
rather transmitted separately, because it is hard to merge
depth maps for all possible view points and merging texture
map is computationally expensive for real-time applications
in terms of latency. Moreover, the size of the merged stream

becomes very large, which invalidates the notion of dropping
less important streams in case of bandwidth limitation [37].
In addition, 3DTI introduces a unique demand, called view
change, where participants can change their views during a
running session. A view v; is different from view vj, ie.,
Vg 7& v if 451 € v; A S € Vj such that S 75 So.

3DTI properties and assumptions: 3DTI data streams are
transmitted using UDP protocol, whereas the management
control traffic uses TCP. Mesh-based overlay multicast routing
is used for efficient resource-aware construction of multi-
stream distribution topology. However, the control traffic uses
point-to-point connectivity due to its very low bandwidth
requirement. Bandwidth adaptation (to and from 3DTI sites)
is done by dropping less important (low priority) streams. The
number of users in 3DTI is limited because 1) human attention
space is intrinsically bounded [15], and 2) the number of
participants that can be displayed in the virtual space is limited
due to the pixel space limitation of the physical display [38].

B. Software Defined Networking

In Software Defined Networking, a logically centralized
controller manages how the network switches forward pack-
ets in layer-2 and layer-3. The controller exchanges control
messages with the switches using a standard protocol, such
as OpenFlow [20]. We use the terms “SDN” and “OpenFlow”
interchangeably in this paper. The control plane installs for-
warding rules to forward packets in the switch data plane using
a flow table with match entry and action field. Incoming data
packets are matched against the match entry, and correspond-
ing actions (e.g., forwarding, header modification) in the action
field are performed on the matched packets.

III. MOTIVATION AND CHALLENGES
A. Benefits

Consider the scenario shown in Figure 2(a). Site-A gen-
erates three streams (for simplicity, we only show streams
generating from a single site) Si', S5' and S5'. S{' and S3!
are distributed to Site-B, Site-C, and Site-D during a running
3DTI session. S§ is dropped due to inbound bandwidth
limitation. The local network shown in the figure can be a
campus network, a department network, or a home network.
In OpenSession, streams are forwarded from the network
switches, connected within the local network.

Local bandwidth: OpenSession introduces a significant
reduction of 3DTI bandwidth within the local network of
participating sites. For example, in Figure 2(a), forwarding
of streams S{' and S3' to Site-C and Site-D is done from
the network switch of Site-B rather than from its application
gateway. Therefore, the gateway of Site-B does not forward
streams S' and S3' from the application host, which saves the
forwarding bandwidth of S{* and S3' within the local network
of Site-B. It eventually saves the last mile bandwidth to and
from the application host. Bandwidth saving also happens at
the streaming source. Though Site-A needs to send stream S7*
to both Site-B and Site-D, only one copy traverses the local
network to the local OpenFlow switch, which performs stream
replication and forwarding.
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Fig. 1. 3DTI application model with three sites.

End-to-end delay: Since forwarding of stream from Site-B is
done from the network layer switch (in Figure 2(a)), the end-
to-end delays (EEDs) of streams S3' from Site-A to Site-C and
Site-D are reduced by the round-trip time (RTT) of 3D frames
in the local network (d,.;) and through the protocol stack of
the gateway machine (d,),;) at Site-B. To measure the order of
improvement in EED, we monitored our campus network for
3 days from January 15, 2013 to January 17, 2013. We used
four gateway hosts (over wired and wireless links) at different
locations within the campus, and measured point-to-point RTT
among them for exchanging 3D frames. The average EED is
about 4ms to 5ms, which is a significant latency in real-time
communication considering a single multicast hop.

Processing load: Though Figure 2(a) considers only forward-
ing of two streams, multi-stream 3DTI constructs a much more
complex distribution graph. We have experienced that with the
increase of number of sites and the number of streams per
site, the forwarding load (CPU load) of 3DTT application layer
gateway increases linearly. Since, in OpenSession, the network
layer is responsible for stream replication and forwarding, the
application layer is not impacted by the increase of number of
subscribers (i.e., participants) of a stream.

System resiliency: Application hosts fail and crash more fre-
quently than underlying network components. As OpenSession
separates multicast forwarding from the application layer, the
failure of an application gateway or any crash of application
due to a software bug at one site does not interfere the real-
time collaborative experience among other participating sites.
Failure of B does not affect Sf‘ to Site-C in Figure 2(a).
However, we skip this benefit from the current scope.

B. Challenges

Per-stream packet differentiation: To forward streams from
the local OpenFlow switches according to multi-stream over-
lay distribution graphs, OpenSession must ensure application-
aware differentiation of network packets at the switches. For
example, stream 551 (in Figure 2(a)) from Site-B is forwarded
to both Site-C and Site-D, whereas stream S{x is only for-
warded to Site-C. Therefore, the OpenFlow switch at Site-
B should be able to differentiate network packets of Si* and
S3'. OpenFlow standard provides a fixed set of fields to match
against incoming packets [22]. However, organizations usually
allow limited open UDP ports for secured network. In our
setup, we use the same port for multiple streams. Traditional
source and destination address, and source and destination
port based packet differentiation fails since multiple streams
among the sites use the same network layer flow semantics.
Therefore, to use the benefit of OpenFlow-based split data
plane architecture, we need to ensure two properties in packet
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Fig. 2. (a) Example of a 3DTI session among 4 sites, (b) OpenFlow layer-3
rule insertion latency for different sizes of flow table.

differentiation: 1) overridden fields are not modified anywhere
in the transmission path, and 2) the design does not require
any changes in network components or OpenFlow protocol.

Overlay to flow table mapping: Next, we need to ensure that
flow table rules are consistently installed at all the participating
OpenFlow switches to follow the stream forwarding actions
according to the overlay. However, blind mapping of overlay
to flow tables fails since it may interrupt other running flows
in current or concurrent 3DTT sessions (e.g., via overriding or
superseding available flow table entries). We need to ensure
that the flow table size is optimized in the mapping process.

To understand the impact of switch flow table size on 3DTI
session, we have conducted an isolated experiment with IBM
G8264 OpenFlow switch.We measure a single rule insertion
latency for different number of pre-installed rules into the
switch. The result is shown in Figure 2(b). Wildcarded layer-3
rules are stored in a ‘linear’ table in the TCAM space of the
switch [3]. As TCAM is expensive and small, every wildcarded
layer-3 rule insertion performs an internal optimization of
flow tables [14], which represents significant part of the rule
insertion latency. This optimization latency increases with the
increase of flow table size, which impacts session initiation
and session update latency. Therefore, we need to ensure two
properties while mapping the multi-stream overlay topology
to switch flow tables: 1) modification of flow table does not
interrupt on-going forwarding actions, and 2) size of flow table
is as small as possible.

Seamless view change: View change introduces a new human
behavior in the multi-stream 3DTI environment. If the partic-
ipant at Site-B updates a view, which requests streams S'
and S3' instead of S{! and S3', then stream Si' is no longer
required by Site-B. However, if Site-A stops transmission of
S{* to Site-B, the streaming path of S' to Site-C is impacted
and therefore, should be reconfigured. Sites who are impacted
by remote view changes are called victim sites. Here, Site-C
is the victim site due to the view change by Site-B. To ensure
seamless streaming to Site-C due to this view change, the
update of streaming path for S f‘ to Site-C should not interfere
the immersive experience at Site-C in terms of packet loss.

Therefore, to ensure seamless view changes, the creation
of new topology and the removal of old topology for streams
should be performed concurrently. For example, if we update
the path A~»D~~C' in Figure 2(a) before removing the path
A~B~C for S{}, then Site-C may get transiently over-
loaded with redundant Sf‘. Likewise, if we remove the path
A~»B~~(C first and then update rules to create A~>D~~C), it
introduces temporal disconnectivity of S{* to Site-C. What is
required is a concurrent update of distributed flow tables that
ensures two properties: no transient 1) bandwidth overloading,
and 2) network disconnectivity.



IV. OPENSESSION FRAMEWORK

OpenSession control plane contains three-layer session
management hierarchy shown in Figure 3 and described below.
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Global session controller: GSC represents a global control
plane, which is an important design component for optimized
content distribution [18]. GSC periodically (every few sec-
onds) monitors participating sites (such as streaming rate, 3D
construction time) and their underlying infrastructure (such
as available inbound and outbound bandwidth and end-to-
end delay). During session initiation and session update (such
as view change), GSC constructs an optimized multi-stream
overlay content distribution topology using global view of the
sites (usually 5 to 10 [5]) and their underlying resources. Once
the multi-stream topology is computed, the overlay routing
related to each participating site is sent to the corresponding
LSC. The information is represented by a session routing table
or SRT (§V-Al). In Figure 3, we show an example graph
corresponding to the SRT of site-A for a multi-stream overlay
G computed at the GSC (streams from Site-A are only shown).

Local session controller: LSC is a lightweight (in terms of
processing overhead) session layer. The main responsibility
of LSC is to update session routing table ( called gSRT) at
the local gateway (i.e., at the application data plane) using
the SRT received from GSC (§V-A2). Gateways use gSRT for
the data plane forwarding of local streams. gSRT ensures that
single copies of local streams are delivered out of the gateway.
Figure 3 shows an example of gSRT at the gateway of Site-
A. LSC forwards SRT to local SWC to map it to the switch
flow table (FT). LSC is also responsible for monitoring local
devices and resources, and sends them to GSC.

Switch controller: SWC directly communicates with the
OpenFlow switches connected in the local network to install
forwarding actions defined by SRT (§V-A3). An example of
forwarding actions in FT related to the SRT and gSRT of
the previous example is shown in Figure 3. SWC is also
responsible for maintaining consistency and size optimization
in FT. We run SWC as a module of the OpenFlow controller.

Data plane: The data plane is separated from the management
control plane and divided between the application gateway and
the OpenFlow switch. The gateways schedule local streams to
multicast remotely based on the connectivity graph defined
by gSRT. The OpenFlow switches multicast local and remote
streams based on the forwarding actions defined in FT.

V. OPENSESSION PROTOCOL AND FUNCTIONALITY

A 3DTI Session is initiated by sending a session initiation
request to the GSC, which contains a list of sites, a list of
local devices (streams) at each site, and a list of desired views
for all participants. Designing an efficient content distribution
overlay that can combine different notions of quality (e.g.,
startup delay, frame rate) and user experience is an open
challenge that is outside the current scope. Here we focus
on OpenSession protocols for: (1) mappings of multi-stream
content distribution topology to application and network layer
data planes, and (2) handling of seamless changes in the
distribution topology during session run-time.

A. Multi-stream Overlay Mapping

In this section, we will discuss, how the multi-stream
overlay is mapped into SRT (§V-A1), gSRT (§V-A2) and finally
to OpenFlow FT (§V-A3).

1) Overlay Topology to SRT Mapping: Once the multi-
stream overlay topology is computed, it is mapped to a
session routing table (SRT) for each participating site. The
mapping of overlay to SRT aims to associate forwarding
actions with each stream. SRT contains three fields: 1) Match
field (SRT,,,,:cn) that contains a stream ID, a UDP destination
port and the gateway IP address of the stream originating
site, 2) Forwarding action (SRT,.;;,,) that contains a list
of gateway IP addresses to forward matching streams to, and
3) Dirty bit (SRTgy;,¢,) that indicates whether an entry has
been modified or not. An example of SRT computation from
a multi-stream overlay is shown in Figure 4. For clarity, we
only show two streams originating from Site-A and Site-B. The
overlay topology computed by GSC is shown in Figure 4(a).
Figure 4(b) shows the corresponding SRT of Site-B.

2) SRT to gSRT Mapping: The purpose of mapping SRT
to gSRT is to define the forwarding responsibility to the
application layer data plane at the gateway. Each gateway
sends only single copies of the local streams towards the local
OpenFlow switch, though multiple sites may request the same
streams. Streaming towards multiple sites are then done from
the OpenFlow switch via address modification (destination
IP and MAC addresses) in the packet header. Therefore, the
mapping from SRT to gSRT is done only for local streams to
ensure that the gateway sends only one copy. In Figure 4(b),
Site-B sends stream S?° to both Site-C and Site-D. However,
the LSC only maps the streaming path to Site-D in gSRT at
Site-B (application data plane). The streaming to Site-C is
done from the network layer data plane. Figure 4(c) shows
the entries of SRT that are mapped to gSRT.

3) SRT to FT Mapping: Finally, the mapping of SRT to
FT is performed by SWC in three steps below:

Prune SRT entry: We only map dirty SRT entries. Moreover,
we prune the SRT entries (associated to the local streams),
which are already assigned to the application layer data plane
(i.e., to gSRT). For example, in Figure 4(b), the SRT entry
to forward S£ (with Match Field 192.168.1.2 : 1 : 9876) to
Site-D is pruned and not mapped to FT at Site-B. However,
the SRT entry to forward S¥ to Site-C is not pruned.

Update match field: After pruning SRT, we map SRT match
field (SRT,,4¢cn ) to FT match field (FT,,4¢c1). The OpenFlow
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Fig. 4.

(a) Multi-stream overlay topology for S+, Sé“, SlB , and SzB , (b) the corresponding SRT of Site-B, (c) SRT entries that map to gSRT at Site-B

(application data plane), and (d) SRT entries that map to OpenFlow FT serving at Site-B (network data plane). 9876 is UDP data communication port.

protocol allows direct mapping for source IP address (gw)
and destination port (Pgs:). However, the notion of applica-
tion layer stream ID (5;4) is lost in the network layer data
plane. To keep this semantic information in the network layer,
we override the higher 5 bits of IP ToS (Type of Service)
field. Overriding of IP ToS bits is very common in Internet
applications as they are less frequently used in Internet [7].
When stream data is sent by the gateway, the 8bit IP ToS
field of the UDP packets is set based on 5 bits of stream ID
with zeros in lower 3 bits (i.e., we do not modify ECN bits
used for congestion control). For example, if S{l = 1, the
corresponding ToS field in the IP data packet is 00001000.
Therefore, SRT e = [192.168.5.6.1 : 1 : 9876] maps to
FT aten = [192.168.5.6.1 : 00001000 : 9876].

Update action list: In addition to forwarding the incoming
packets to the intended destination (based on packet header),
the OpenFlow switches need to forward the same packets to
other sites (based on SRT,ti0ns) by replacing the destination
IP and destination MAC addresses. If the destination IP is
in the remote subnet, OpenSession uses MAC address of the
gateway-router. Also, the physical port for each forwarding
action is assigned based on the destination IP. Details are
skipped due to brevity. In summary, in addition to forwarding
the packets based on their original headers, we add three
actions in FT .40y, field for each forwarding IP = in SRTyc¢i0n:
1) set destination IP to z, 2) set destination MAC address
to MAC,, and 3) forward the packets to port Port,. Here,
Port, is the physical port number at the switch that forwards
data packets to destination x, and MAC, is the MAC address
required to forward data packets to destination x.

B. Seamless Session Adaptation

Session adaption (adding or dropping streams) is triggered
when participants change views, or bandwidth resources at the
participating sites change. In this section, we only consider
view changes; other causes will naturally follow. The result of
the view change is route update for one or more streams.

1) Seamless Route Update Problem: As we show in
6III-B, a route update may cause a) overloading when re-
dundant streams are transmitted to any participating site),
and b) disconnectivity (when streaming of one or more
streams becomes temporarily unavailable). To understand the
phenomena clearly, we show a route update example with
six participating sites in Figure 5(a)-(d) for both overloading
and disconnectivity. With frequent view changes, interactive
streaming performance at the victim sites due to transient
overloading and disconnectivity becomes very poor.

2) Route Update Problem Formulation: The route update
problem can be mapped to a constraint-based graph transfor-
mation problem. Initially, we will consider only single stream.
Later (in §V-B5) we will extend our solution for multiple
streams. Let us consider an existing overlay graph (G o1q) and
a new overlay graph (G2, ) computed at GSC after a view
change request. We represent each graph by a connectivity
matrix M*>, where M®[i][j]=1 if Site-i forwards stream S
to Site-j, otherwise M*[i][j]=0 (note that for the rest of this
section we consider A as 0, B as 1 and so on while indexing
the connectivity matrix). The transformation of graphs can be
formulated by their connectivity matrices as follows:

Graph Transformation Problem Transform M35, (con-
nect1v1ty matrix of G5,) to new (connect1v1ty matrix of
G%,,) for each stream S, whereM? o 7 M, 5 s SO that the
intermediate states of the connectivity matrix (M;,) in the
transformation process do not violate following two constraints
(N= number of sites): 1) >, M7 ,[i][j] < 1, Yo<j<n—1.
. S . . S
and 2) znt[ ][ ]750 if Mold[ ][ ] Mnew[ ][ ] 1 VO<Z7J<N 1
Constraint (1) ensures that there is no transient overloading of
S, and (2) ensures that there is no transient disconnectivity.

3) Route Update Solution Overview: To solve seamless
route update in OpenSession, we consider an additional packet
header field () in the FT match entry. When we add new
rules (for the purpose of transforming M7, to My, ) with
a new value in 7, the new rules are not matched against the
incoming streams right away, because incoming streams do not
contain the new value of 7 in their packet header. In Figure 6,
we provide an example of how consideration of an additional
match entry (n) in FT can solve the route update problem for
S{* as shown in Figure 5. Below we describe.

Figure 6(a) shows the initial FT rules in Site-A before the
route update. Since Site-D does not forward S{‘, there is no
FT entry at Site-D for stream S;'. While updating the route
from Figure 5(a) to Figure 5(d), we first add a new FT rule at
Site-D (in Figure 6(b)) with match field entry [A, S, Py,
1’1 (where 7’ is the new value of 1) and an action to forward
the matched stream to Site-C. Even though Site-D receives 57!
from Site-A, the data packets are not forwarded to Site-C as
incoming packets do not contain 7’ and are not matched with
the new rule (i.e., no violation of constraints (1)).

To initiate the matching with new entries in FT (at Site-
D), the OpenFlow switch at the source site (at Site-A) needs to
update 1 with the new value 7’ in the outgoing packet header
while streaming (S{). We replace the FT rule at Site-A that
forwards Sf to Site-B by a new FT rule with two actions: 1)
forward S7* to Site-D, and 2) set n with ' in the outgoing
packet header. When this rule is inserted at Site-A, the data
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at Site-C, (c) overloading to Site-C, and (d) new overlay graph.

Problem of route update: (a) old overlay graph, (b) disconnectivity

packets of Si* towards Site-D contain 7’ in the packet header
and are redirected to Site-C from Site-D. It also terminates
the streaming to Site-B at the same time (Figure 6(c)). We
can control the instant when we want to switch streaming
paths concurrently for a stream by modifying FT rules at the
streaming source (i.e., concurrently start streaming from Site-
D to Site-C and stop streaming to Site-B and Site-C). Thus,
OpenSession ensures that the victim sites are not impacted
due to the view change (or any session adaptation) triggered
by remote sites unless the updated path creates a large jitter,
which depends on route computation algorithms.

Among other layer-3 and layer-4 fields, we consider source
port (Ps..) in the UDP header as 7, because changing UDP
source port for the outgoing packets does not violate any
routing constraints. Pj,.. is monotonically increased with every
route update and reset to 1024 (0 to 1023 are specific purpose
ports) when all running 3DTI sessions terminate. Note that
gateways do not modify Pk,. in the packet header, rather the
OpenFlow switch performs the replacement on the outgoing
packets of the local streams.

If we update P;,.. in the FTs only at the sites impacted by a
route update, soon there will be different values of P;,.. in the
FTs across all sites with the same source IP, UDP destination
port and IP ToS bits, which may create inconsistency in future
FT update. Therefore, when a route update happens for stream
S, all distributed FT rules that forward S are updated and start
matching r in the P,,. match field.

Delete obsolete rules: When incoming streams are matched
against the new rules, old rules becomes obsolete and are
deleted automatically using the OpenFlow-defined timeout
primitive. For a FT entry, if there are no matching pack-
ets for a continuous interval defined by idle_timeout,
the rule will be deleted from the switch. We specify 30sec
idle_timeout. OpenFlow also uses a hard_timeout,
which removes the rule from FT after the timeout even match-
ing flows exist. OpenSession uses infinite hard_timeout.

4) OpenSession Route Update Algorithm: Summarizing the
above discussion, 1) we need to specify a new n each time a
route update happens, and 2) FT entries in the remote sites
need to be updated first before updating the FT entries at the
source site (Figure 6(a)-(c)). Below we formally present the
distributed route update algorithm at different controller levels.

Route update at GSC: GSC is responsible for initiating the
route update. Depending on M7, and M5 ,, GSC classifies

new
Site-: into four states (a site can be in multiple states):

1) No-route Site-i not forwarding .S to any site before and

after the route update (V; M2, [i][j]=0 A M., [i][j]=0),
2) Drop-route Site-¢ drops forvégchmg S to aﬁ?"sne after

the route update (3; M3, [i][j]=1 A My, [i][7]=0),

Match Acti Match Action
A, 5,", o876] | Forward 0B | (&), ©B [A, S/, 9876] | Forward to E
Forward o E | Forward to D & n=n’|
Forward to D =
SET OB > @é —p tw©E o

to C
O (T

o= [A., 5%, 9876, w1] Forward to C]| A, S, 9876, 0]
(a) (b) ©
Fig. 6. (a)-(c) Sequence of FT updates for a seamless route update of Sf‘

for the case shown in Figure 5. 9876 is the data communication port.

3) Add-route Site-i starts receiving S from any site after
the route update (3; M ,[5][i]=0 A M., [5][i]=1), and
4) Keep-route Site-7 keeps receiving S from same site after

the route update (3; M5, [1][i]=1 A M3, [1][i]=1).

If a site is in no-route state, no updates in SRT and FT are
required and no messages are sent to the site’s LSC. If a site is
only in drop-route state, no SRT and FT updates are required
(at non-origin sites). Obsolete entries (no match for ') are
removed by the timeout. If a site is in keep-route state, though
there is no update required in SRT, an update in FT is still
required to assign Ps..=n" in the FT match entry (§V-B3). A
route update request message {2p is sent to the site’s LSC. If
a site is in add-route state, we need to update both FT and SRT
to reflect the changes in the forwarding paths at Site-:. In this
case, GSC sends a route update message (2srr_rr to the site’s
LSC. If a site is in multiple states, the route update messages
corresponding to the states are sent cumulatively to the site’s
LSC. Messages Qpr and Qgrr pr are sent concurrently to
all sites except at the source site of S. After all sites update
their tables (SRT and FT), GSC sends a route update request
message to the source site. For the source site, the selection of
route update message is also made based on its state. However,
even the source site is at drop-route state (i.e., streaming to one
or more remote sites is dropped), we still need to send Qgpr
message to update gSRT. Each route update message contains
new SRT (SRT,,.,,) with all dirty bits set to 1 (since we need
to update Py, for all entries), and n’. To ensure the ordering
of route update requests, GSC constructs a depth first traversal
(DFT) of sites from M2, and sends route update requests to
all sites concurrently except the last site in the order, which is
the source site. Once route update requests are replied by all
sites, then a route update message is sent to the source site to

perform an atomic switch from M5, to MS.,,.

Route update at LSC: When Qpr or Qsrr pr is received
at LSC for remote streams, it simply forwards the message
to SWC. However, for the local streams, LSC updates gSRT
using SRT,,.,, using the algorithm discussed in §V-A2 and
then forwards the message to SWC.

Route update at SWC: When SWC receives route update
message pr or Qsrr_pr, it maps the rules from SRT,,¢,, to
FT with P,,..=n'. Process for handling route update messages
at the source site is the same, except Ps,. is not considered
in the FT match entry field for S, and an additional action
is added in the FT action list to replace P,,.. with 1’ in the
outgoing packets of S. We modify our mapping algorithm in
§V-A3 to incorporate Ps,.., however we skip it for brevity. To
ensure that the rule has been added to the FT entry, a barrier
message is sent to the switch [22]. Reply of the barrier message
confirms that the previous command for rule insertion is com-
pleted successfully. Once FT entries are updated successfully,
a confirmation is sent to the GSC. Figure 7 shows an example
of OpenSession seamless route update process for the update
of stream Si'.
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Example of OpenSession route update process for a single stream: (a) route update due to Site-D drops stream SIA, (b) route update messages and

computed state of the sites due to the route update, and (c) route update protocol showing the order of route update messages.

5) Multi-stream Route Update: During a view change, if
routes of multiple streams are required to update in the new
overlay, OpenSession performs source-based route update as
shown in §V-B4 for all modified streaming paths in parallel.
The route update messages (in Figure 7(d)) are sent cumu-
latively for all streams. However, the parallel route updates
can be dependent if the updates of routes overlap at any site.
For example, if Site-i drops (adds) forwarding (receiving) of
Sf‘ and adds (drops) forwarding (receiving) of SlB in the new
overlay during session adaptation, the route updates for Si!
and SP become dependent as the updates overlap at Site-
1. It is challenging to guarantee seamless session adaptation
when route-update dependencies exist (though rare) among
streams from different source sites. The source-based route
update cannot guarantee atomic update of routes for S* and
SE at Site-i as streams are originating from separate sources.

To ensure seamless route update at all sites, OpenSession
considers a route update constraint at GSC for computing new
multi-stream overlay: (RUC) if a site drops (adds) forwarding
(receiving) of S%, it does not add (drop) forwarding (receiving)
of S’g in the same route update process for any z and y
where i#£j. Sites violating RUC may not experience seamless
adaptation. Note that view changes do not violate RUC since
during a view change i=j (i.e., streams come from the same
site). Also, when lower priority streams are dropped due to
network congestion, the overlay modification does not usually
violate RUC. RUC is a natural constraint, and in most of the
cases, RUC remains valid. Details are skipped due to brevity.

VI. EVALUATION WITH REAL 3DTI SETUP
A. Evaluation Setup

We setup 4 3DTI sites (in Figure 8(a)) in different types of
networks. Site-A is in a home network, where the OpenFlow
switch is placed next to the gateway. Site-B is in a campus
network, where the OpenFlow switch is placed within the
campus network. Site-C is in a company network, where the
OpenFlow switch is placed closer to the company’s network
edge. Site-D is in a department network, where OpenFlow
switch is placed closer to the department’s network edge.

Each site contains 8 video streams capturing participants
3D stereoscopic image from 45° apart and constructs a mesh-
based color-plus-depth 3D image. Instead of using physical
cameras, we read streams from stored files, which already
contain the 3D video of the participants for 1 hour session.
Streams are read at the original frame rate. Average bandwidth

s e
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Fig. 8. (a) 3DTI setup with 4 sites, and (b) priority-driven multi-stream
content distribution overlay graphs for local streams of each site.

of each 3D stream is about 1.5 to 2.1Mbps. Each application
node (site) hosts a gateway to multiplex transmission of
local streams. We place LSC on the same gateway host and
implement SWC as a module of Floodlight [12] controller
running on a separate host at each site. All control commands
use TCP and data traffic uses UDP. We use OpenFlow software
switches with 10GBps port capacity.

Initially, all sites request the same set of remote streams.
Due to the notion of stream priority, each view demands
only 4 streams from each remote participant (covering 180°
space). The initial multi-stream overlay is constructed using the
topology shown in Figure 8(b). However, during the session
run-time, the overlay is updated to meet the view change
demands. We compare the performance of OpenSession to a
“no OpenSession” case, where the gateway performs the sole
data plane functionality without using the network support.

B. Performance Metrics

To measure the application performance, we run the same
3DTI session with and without the OpenSession control plane.
No view change is requested. Each performance value is
measured, in percentage, with respect to the measurement
collected without using OpenSession (i.e., no OpenSession).

Local bandwidth: OpenSession achieves a significant reduc-
tion in bandwidth within the local network. We divide the
bandwidth usage into two parts. First, we plot how much
bandwidth we use within the local network between the
gateway and the OpenFlow switch at each site. We notice
that (in Figure 9) Site-B, Site-C and Site-D achieve about
55% reduction in bandwidth for local streams in OpenSession.
Second, we plot how much bandwidth we use within the local
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Fig. 9.

network for the remote streams. The OpenSession reduces
about 35% bandwidth for the remote streams.

Processing Load: We measure processing load of the gateway,
which includes stream receiving, scheduling and forwarding
load of the application. As shown in Figure 9, OpenSession
lowers stream scheduling and forwarding load at the appli-
cation layer data plane by offloading part of the forwarding
functionalities to the network layer data plane. On average,
the OpenSession improves CPU overheads by 42% per site.

End-to-end delay: The gain in network transmission delay
is achieved in OpenSession as streams do not traverse the
local network for multicast-based forwarding at each multicast
hop. We achieve about 45% gain (about 8ms) in the end-to-
end network delay (will be higher for wireless end host) for
transmitting 3D frames from the source to the destination site.

C. Impact of View Change

Views are changed according to the Zipf distribution of 20
pre-selected view orientations (22.5° apart). 100 view changes
are requested from one site (Site-B) within 1 hour at equal in-
terval. Routes for the impacted streams are updated considering
constraints RUC (§V-B5). Valid peers (not violating RUC) to
update streaming paths are selected randomly. No streams are
dropped after session adaptation.

View change latency: View change latency is measured as the
difference between the time when a view change is requested
by Site-B and the time when Site-B receives new streams
according to the view demand. In “no OpenSession” case, after
computing the updated overlay at the GSC, the application
data plane at the gateway is updated without considering
the impact on victim sites. In OpenSession, the view change
latency includes the steps shown in Figure 7. We plot CDF
of view change latency in Figure 10 with OpenSession and
without OpenSession. The additional overhead in view change
by OpenSession control is very small (<50ms).

View change resiliency: OpenSession achieves view change
resiliency since victim sites are not overloaded or discon-
nected during view changes. However, in “no OpenSession”,
if distributed flow tables are updated without maintaining any
particular order, packet losses occur at the victim sites. To

(a)-(d) The relative value (with respect to the measurements without OpenSession) of performance metrics in a 3DTI session at different sites.
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Fig. 10. View change latency (latency between the sites is 15-20ms).

measure the gain in view change resiliency with OpenSession,
we run the same 3DTI session with and without OpenSession.
Packets are dropped if disconnectivity occurs in streaming at
the victim sites. Table I shows the total number of packet losses
per view change for all streams at all victim sites. It is evident
that OpenSession provides higher resiliency in view change.

TABLE I.  NUMBER OF PACKET LOSSES DUE TO VIEW CHANGE
[ Approaches [ Avg | Stdev [ Max [ Min |
OpenSession 0 0 0 0
No OpenSession 20.35 9.12 45 9

VII. EVALUATION WITH PLANETLAB

We use PlanetLab to evaluate the performance of OpenSes-
sion under real Internet artifacts in real-time 3DTI streaming.

A. Evaluation Setup

To run 3DTI in PlanetLab nodes, we collect 15 nodes
from different geographical regions. For each 3DTI session,
we randomly select 10 nodes. Each node hosts one gateway,
one LSC and one SWC. As we do not have access to the
network components of the remote nodes, we develop a
switch application (keeps FT in memory) that uses f (from
Figure 2(b)) to simulate the rule insertion latency. The end-
to-end delays are less than 180ms and inbound and outbound
bandwidths are within 10Mbps and 250Mbps, respectively. We
consider three overlay construction approaches shown below
due of their close relation to multi-stream 3DTI applications.

Random: In the Random approach, a random multi-stream
topology is constructed during session initiation. It does not
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consider stream priority. During view changes, streaming
sources are selected randomly.

ViewCast: In ViewCast [37], initial multi-stream overlays
are constructed considering the stream priority. During view
changes, the higher priority streams (among the impacted
streams) are restored (randomly) first. Though ViewCast is a
distributed algorithm, we implement it in a centralized. way.

OSM: In OSM [5], the initial multi-stream overlays are con-
structed using evolutionary optimization to ensure a globally
optimized overlay considering stream priority. During view
changes, optimal streaming paths are selected for the streams.

B. Impact of View Change

View change overhead: Figure 11(a) shows CDF of view
change latency incurred in OpenSession with three different
overlay construction algorithms. Though OSM causes larger
view change latency, the overhead mainly comes from the op-
timization process for the computation of the new overlay after
a view change is requested. The average overlay computation
latencies for OSM, Random and ViewCast are 1.3sec, 870ms
and 763ms, respectively. Since the update of flow tables for a
view change occurs at all sites in parallel except at the source
site, the communication latency is proportional to the two
round-trip delays between the participating sites and the GSC.
Figure 11(b) shows the CDF of number of sites update their
flow tables over 100 view changes. Most of the cases, 70% of
the sites are required to update their FTs. The number of sites
here corresponds to the OpenSession message overhead during
a view change. The message overhead of OpenSession protocol
is very small since the size of a route update message is 400B,
which leads to about 2.8KB overhead per view change.

View change resiliency: To understand the impact of view
change resiliency in PlanetLab setup, we run 10 3DTI sessions
among the PlanetLab nodes with and without OpenSession. In
“no OpenSession”, FT rules are updated in two different order-
ings across the distributed site-gateways when view changes
are requested. In the first case (case-1), we update FT rules
allowing overloading but no disconnectivity on the streaming
path. In the second case (case-II), we update FT rules allowing
disconnectivity, but no overloading on the streaming path. Over
1 hour experiment, we modify the number of view changes
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Fig. 12. Impact of view change frequency on (a) inbound bandwidth to the
victim site, and (b) total number of packet loss for all streams during 1 hour.

to get different view change frequency. We consider Random
overlay construction.

Figure 12(a) plots the CDF of average inbound bandwidth
at the victim sites measured in 5 seconds interval during 1 hour
session for case-1. Without OpenSession, overloading creates a
sudden burst in the inbound bandwidth of the victim sites. The
number of bursts increases with the increase of view change
frequency. However, in OpenSession, the inbound bandwidth is
fairly constant even with higher view change frequency. Figure
12(b) shows the total average number of packet losses at the
victim sites for all streams for case-Il over 1 hour session.
Without OpenSession, the number of packet losses increases
linearly with the increase of view change frequency due to
the frequent disconnectivity. However, OpenSession does not
create any packet loss at the victim sites due to view changes.
Similar resiliency can be shown for site failures.

C. OpenSession Overhead

As we implement SWC inside the Floodlight OpenFlow
controller, there is an extra processing overhead in the con-
troller. To measure this overhead, we use the cbench controller
benchmarking tool [23]. We run cbench in throughput mode,
emulating 1 switch connected to one site. We are able to
process 225283 packet_in events per second as compared
to 241768 in Floodlight without OpenSession (6% overhead).

VIII. RELATED WORK

Multicast routing protocol: IP multicasting protocols (e.g.,
PIM-SM [1], MBONE [11]) do not provide any application
layer programmable interface at the routers and global control
for run-time dynamic configurations. To physically deploy
PIM-SM, a dependency across ISPs is required, which ISPs do
not allow. MBONE overcomes the ISP dependency by creating
a virtual multicast network. However, it requires a fixed
additional backbone and does not scale. Via OpenSession,
we successfully enable quality of service control over some
parts (last miles) of the Internet end-to-end data transmission
paths without inter-domain control across ISPs. OpenSession
control resides only inside the local network and only for 3DTI
application-specific traffic.

Multimedia session control protocol: SIP is a session layer
signaling protocol [29] used for session management in IP
telephony and VoIP services. SIP does not provide mechanisms



to configure data plane for streaming. Other session protocols
like RTP [31] uses in-band control functionalities over data
to assist streaming, and RTCP [31] is out-of-band control
protocol for RTP. Liu et al. [18] propose to decouple data and
control architecture for VoD streaming, however the focus is
more on the server (CDN) selection. 4D TeleCast [4] provides
a control architecture for session management in 3DTI, but it
only aims for non-immersive viewers.

Multimedia flow management: The efforts of cross-layer
multimedia flow management can be divided into three cate-
gories: resource reservation (e.g., [21], [8]), routing (e.g., [35])
and flow scheduling (e.g., [33]). Unlike RSVP, OpenSession
does not require control of network routers inside the ISPs
for the feasibility concern. OpenSession considers layer-3
control over wide-area-networking and so, MPLS [28] and
other layer-2 quality control protocols do not work. Along with
different overlay routing approaches [2], various application
layer resource reservation and scheduling techniques can still
be performed within OpenSession framework.

Application support with OpenFlow: OpenFlow is part of the
Stanford University’s clean slate project. OpenFlow switches
are controlled and modified by OpenFlow controller, enabling
flexible functions such as flow forwarding, redirection, multi-
cast, routing, and others (e.g., [20], [25], [30]). OpenFlow has
been used in data centers (e.g., [13], [36], [16]) and assisting
in scalable video streaming (e.g., [10]).

IX. DISCUSSION AND CONCLUSION

OpenSession protocol adds following features in current
real-time collaborative applications (considering Figure 9):

Simplified data plane: The separation of data and con-
trol plane in OpenSession makes application logic simpler.
Furthermore, the partial offloading of application data plane
to the network layer reduces multi-stream management and
forwarding overhead of the application host (about 42%).

Improved application performance: The splitting of data
plane comes with the benefits of lower bandwidth overhead
(over 55% for local streams and 35% for remote streams)
within the local network (i.e., last mile) and lower network
transmission delay (over 45%) in multicast-based streaming.

Seamless session adaptation: OpenSession handles victim
sites in session adaptation process and seamlessly updates the
running session without introducing any streaming interference
(packet loss or traffic burst) at the victim sites. The improve-
ment is shown by a demo video in [24].

Optimized control plane: OpenSession optimizes the flow
table size at the OpenFlow switches. The switch controller
does not keep any state, and the processing overhead at the
controller is very small (about 6%).

We have shown that in addition to the great potential of
SDN in data center, it can be used very efficiently for wide
area interactive networking applications like 3DTI. OpenSes-
sion successfully leverages the network layer functionality to
improve application performance in 3DTIL.
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