
How to Approximate A Set

Without Knowing Its Size In Advance

Rasmus Pagh∗ Gil Segev† Udi Wieder‡

Abstract

The dynamic approximate membership problem asks to represent a set S of size n, whose ele-
ments are provided in an on-line fashion, supporting membership queries without false negatives
and with a false positive rate at most ε. That is, the membership algorithm must be correct on
each x ∈ S, and may err with probability at most ε on each x /∈ S.

We study a well-motivated, yet insufficiently explored, variant of this problem where the size
n of the set is not known in advance. Existing optimal approximate membership data structures
require that the size is known in advance, but in many practical scenarios this is not a realistic
assumption. Moreover, even if the eventual size n of the set is known in advance, it is desirable
to have the smallest possible space usage also when the current number of inserted elements is
smaller than n. Our contribution consists of the following results:

• We show a super-linear gap between the space complexity when the size is known in advance
and the space complexity when the size is not known in advance. When the size is known
in advance, it is well-known that Θ(n log(1/ε)) bits of space are necessary and sufficient
(Bloom ’70, Carter et al. ’78). However, when the size is not known in advance, we prove
that at least (1− o(1))n log(1/ε) + Ω(n log log n) bits of space must be used. In particular,
the average number of bits per element must depend on the size of the set.

• We show that our space lower bound is tight, and can even be matched by a highly efficient
data structure. We present a data structure that uses (1 + o(1))n log(1/ε) +O(n log log n)
bits of space for approximating any set of any size n, without having to know n in advance.
Our data structure supports membership queries in constant time in the worst case with
high probability, and supports insertions in expected amortized constant time. Moreover,
it can be “de-amortized” to support also insertions in constant time in the worst case with
high probability by only increasing its space usage to O(n log(1/ε) + n log log n) bits.

Keywords: Data structures, approximate membership, lower bounds, upper bounds.

∗IT University of Copenhagen. Email: pagh@itu.dk.
†Stanford University, Stanford, CA 94305, USA. Email: segev@stanford.edu.
‡Microsoft Research Silicon Valley, Mountain View, CA 94043, USA. Email: uwieder@microsoft.com.

1 Introduction

Dictionaries play a fundamental role in the design and analysis of algorithms, enabling representation
of any given set S while supporting membership queries. For sets of size n that are taken from a
universe U of size u, any dictionary must clearly use at least log

(
u
n

)
= n log(u/n) + Θ(n) bits

of space1. Whereas dictionaries offer exact representations of sets, in many realistic scenarios it is
desirable to trade exact representations with approximate ones in order to reduce space consumption.
This was observed already by Bloom [Blo70], whose classical design of a Bloom Filter provides a
simple and practical alternative to dictionaries.

Bloom’s data structure solves the problem known these days as the approximate membership
problem. This problem asks to represent any given set S of size n while supporting membership
queries without false negatives, and with a false positive rate at most ε. That is, the membership
algorithm must be correct on any x ∈ S, and may err with probability at most ε on any x ∈ U \ S
(where the probability is taken over the randomness used by the data structure). The approximate
membership problem can be considered in the static setting where the set is specified in advance, or
in the dynamic setting where the elements of the set are specified one by one in an on-line fashion.

Bloom’s data structure uses only log e · n log(1/ε) bits of space (and solves the problem even
in the dynamic setting), and Carter et al. [CFG+78] proved that this is essentially optimal: Any
approximate membership data structure must use at least n log(1/ε) bits of space, even in the static
setting. Over the years a long line of research has shown how to design approximate membership
data structures that are essentially optimal in both their space utilization and efficiency of their
operations. We refer the reader to the survey of Broder and Mitzenmacher [BM03] for various
applications for approximation membership data structures, and to Section 1.2 for an overview of
the known results.

Approximating sets of unknown sizes. The vast majority of existing approximate member-
ship data structures require that the size n of the set S to be approximated will be known in
advance. In many practical scenarios, however, it is unrealistic to assume that the size is known in
advance [GWC+06]. Moreover, even if the eventual size n of the set is known in advance, it is de-
sirable to have the smallest possible space usage also when the current number of inserted elements
is smaller than n.

In this paper we study the well motivated, yet insufficiently explored, variant of the dynamic
approximate membership problem where the size n of the set is not known in advance. We refer to
this problem as approximate membership for sets of unknown sizes. This problem is parameterized by
u ∈ N and 0 < ε < 1, and asks to design a data structure offering three algorithms: Initialize, Insert,
and Membership. Upon initialization via the Initialize algorithm, the data structure is presented
with a sequence of elements that are taken from a universe U of size u. The elements are specified
in an on-line fashion, and each element is processed using the Insert algorithm that updates the
internal state of the data structure. The Membership algorithm should satisfy the following two
requirements:

• No false negatives: For any n ≤ u, S ⊆ U of size n, and x ∈ S, the Membership algorithm
always outputs Yes on x after the elements of S are processed by the Insert algorithm.

• False positive rate at most ε: For any n ≤ u, S ⊆ U of size n, and x /∈ S, the Membership
algorithm outputs Yes on x with probability at most ε after the elements of S are processed by
the Insert algorithm (where the probability is taken over the randomness of the data structure).

1Throughout this paper all logarithms are to the base 2.

1

Gradually-increasing space consumption. For the approximate membership problem when
the size n of the set is known in advance, it is well-known that Θ(n log(1/ε)) bits of space suffice
even in the dynamic setting, and are essential even in the static setting (recall that a Bloom filter
uses O(n log(1/ε)) bits which is asymptotically optimal). That is, the average number of bits for
representing each element is Θ(log(1/ε)) which is independent of the size of the set.

In this light, a natural question is whether this is also the case when the size n is not known
in advance, and the data structure is required to work for sets of any size n ≤ u. That is, we
ask the following question: Is there a dynamic approximate membership data structure that uses
space O(n log(1/ε)) for representing any set S of any size n ≤ u? Somewhat surprisingly, this
question was so far addressed only from a practical perspective, and has not been investigated from
a foundational perspective. Moreover, the data structures we could find in the literature [ABP+07,
HKL08, GWC+06, GWC+10, WJZ+11, WJZ+13] use space Ω(n log n) bits (and query time Ω(log n)
or Ω(log(1/ε))). These solution are somewhat naive from an algorithmic point of view, and provide
poor asymptotic bounds.

1.1 Our Contributions

We present a lower bound and matching upper bounds on the space complexity of approximate
membership for sets of unknown sizes. Our lower bound shows that if the size n of the size of
the sets to be approximated is not known in advance, then it is not possible to use an average
of O(log(1/ε)) bits per elements as in the standard case. Specifically, we show a super-linear gap
between the space complexity when n is known in advance and the space complexity when n is not
known in advance. We prove the following theorem:

Theorem 1.1 (Lower bound – informal). Any data structure for approximate membership for sets
of unknown sizes with false positive rate ε must use space (1 − o(1))n log(1/ε) + Ω(n log logn) bits
after some number of insertions n > uδ, for any arbitrary small constant 0 < δ < 1.

In particular, Theorem 1.1 states that the average number of bits per element must be at least
(1 − o(1)) log(1/ε) + Ω(log log n) at some point in time while processing a not-too-short sequence.
We emphasize that in many practical scenarios (see [BM03]) a typical false positive rate is a not-
too-small constant (e.g., ε = 1/10). For such a range of parameters our lower bound states that the
average number of bits per element must be Ω(log log n) as opposed to constant.

We then show that our lower bound is asymptotically tight by presenting two constructions
with a space usage that matches our lower bound up to additive lower order terms. We prove the
following theorem:

Theorem 1.2 (Upper bound – informal). There exists a data structure for approximate membership
for sets of unknown sizes with false positive rate ε that uses space (1+o(1))n log(1/ε)+O(n log log n)
bits for any sequence of n > uδ insertions, for any arbitrary small constant 0 < δ < 1.

Our first construction (which can be viewed as a warm-up) is quite natural and uses a sequence
of dynamic approximate membership data structures of geometrically-increasing sizes. It supports
insertions in expected amortized constant time, but membership queries are supported in time
O(log n). Our second construction is significantly more subtle, showing that in fact our space
lower bound can be matched by a highly efficient data structure supporting membership queries
in constant time in the worst case with high probability (while still enjoying expected amortized
constant insertion time as in our first construction). Moreover, we show that it can be “de-amortized”
to support also insertions in constant time in the worst case with high probability by increasing its
space usage from (1 + o(1))n log(1/ε) +O(n log log n) bits to O(n log(1/ε) + n log log n) bits (with a

2

rather small leading constant). We refer the reader to Section 1.3 for a high-level overview of the
main ideas underlying our lower bound and constructions.

Finally, we note that in both our lower bound and constructions we consider approximate rep-
resentation of sets whose size n is polynomially related to the universe size u (i.e., n > uδ for any
arbitrary small constant 0 < δ < 1). This is rather standard for exact or approximate represen-
tation of sets as one can always apply a universe reduction via simple universal hashing given any
polynomial upper bound on the number of elements.

1.2 Related work

Bloom filters. The elegant data structure proposed by Bloom [Blo70] naturally allows dynamic
insertions, but uses space that is a factor log e ≈ 1.44 larger than the information theoretic lower
bound of n log(1/ε) bits [CFG+78]. Another thing to notice is that Bloom filters do not allow
deletions from S, as setting any bit to 0 could result in false negatives.

Deletion queries can be supported by using counting Bloom filters [FCA+00], at the cost of
an Ω(log log n) factor increase in space usage. Deletions are supported in the sense that the data
structure will work correctly if no attempt is made to delete a false positive, but by definition it is
not possible to prevent such deletions. Cohen and Matias [CM03] present a way of decreasing the
space overhead to O(n) bits, and generalize approximate membership to approximate multiplicity
in a multiset.

Dictionary-based approximate membership. Already in 1978, Carter et al. [CFG+78] had
presented a technique that would lead to a similar result. They observed that maintaining the
multiset h(S), where h : [u] → [n/ε] is a universal hash function [CW79], yields a solution with
space n log(1/ε) + O(n) bits if the set h(S) is stored in space close to the information theoretic
bound of log

(
n/ε+n
n

)
bits. If deletions are not needed it suffices to store the set of distinct hash

values h(S). This dynamic set can be stored succinctly with all operations taking O(1) time with
high probability [ANS10]. Dynamic multisets, and thus deletions, can be supported via a reduction
to the standard membership problem [PPR05], at the cost of amortized expected update bounds.
A more practical alternative was explored in [BMP+06].

Separation of on-line and off-line space requirements. Dietzfelbinger and Pagh [DP08]
showed how to approach the n log(1/ε) space lower bound up to a o(n) term using query time
ω(log(1/ε)), in the case where ε is an integer power of 2. Independently, Porat [Por09] achieved the
same result with constant query time. Recently, Bellazougui and Venturini [BV13] showed how to
eliminate the restriction on ε, still maintaining constant query time.

Lovett and Porat [LP10] showed that these results for the static case do not extend to the
situation where dynamic updates are allowed: An overhead of Ω(n/ log(1/ε)) bits is required. The
lower bound holds even if there are no queries before the end of the insertion sequence. In other
words, this result implies that to build an approximate membership data structure for a key set
given as a data stream, it does not suffice to use space close to the static size lower bound.

Dynamic space usage. The setting where space must depend on the current size of the set is
more demanding from an upper bound perspective. In fact, the techniques for this problem that
we could find in the literature [ABP+07, HKL08, GWC+06, GWC+10, WJZ+11, WJZ+13] lead to
Ω(log n) or Ω(log(1/ε)) query time, and a space overhead of Ω(n log n) bits. These data structures
share the idea of working with a sequence of approximate membership data structures, all of which
are queried. If geometrically increasing capacity is chosen this means that there will be Ω(log n) such

3

data structures (of course, if we have some initial capacity n0 this number decreases to O(log(n/n0)),
which might be fine in practical situations – but it is not asymptotically optimal). A consequence
of working with a series of approximations is that the sum of corresponding false positive rates
ε1, ε2, . . . must converge to ε. For example, In [ABP+07] it is suggested to achieve this by letting εi
decrease geometrically with i. This implies that εi = n−Ω(i), yielding Ω(n log n) space usage.

Dynamic perfect hashing and retrieval. An approach to approximate membership in the static
case is to store a perfect hash function that maps keys injectively to {1, . . . , n}, and then store a
signature of log(1/ε) bits for each key in an array, placed according to the perfect hash function.
More generally, a dynamic data structure for retrieval (e.g. the Bloomier filters of [CKR+04]) allows
us to make a dynamic approximate membership data structure. As shown in [MPP05] both these
problems require space Θ(n log log n) in the on-line setting. However, the upper bounds have a fixed
space usage (up to constant factors), and hence do not allow the kind of result we obtain.

1.3 Overview of Our Contributions

In this section we provide a high-level overview of the main ideas underlying our lower bound and
constructions.

The lower bound: From Approximate membership to compression. When dealing with
dictionaries (i.e., with exact membership as opposed to approximate membership), it is quite simple
to deal with the fact that the size of the set S to be stored is not known in advance. Specifically,
at any point in time a dictionary stores a description of the set S of elements that were inserted
so far. Then, upon inserting a new element x ∈ U \ S this description can simply be updated to
that of S′ = S ∪ {x}. The dictionary can describe S and then S′ using the minimal, information-
theoretic, number of bits. Moreover, there are even time-efficient solutions that gradually increase
the size of the dictionary while offering constant-time operations in the worst case together with
an asymptotically-optimal space consumption at any point in time (see, for example, the work of
Dietzfelbinger and auf der Heide [DMadH90]).

When dealing with approximate membership, however, it seems significantly more challenging
when the size of the set S to be approximated is not known in advance. For simplifying the following
discussion we consider here deterministic approximate membership data structures, but note that
the exact same ideas carry over to randomized ones. Specifically, for using asymptotically optimal
space, an approximate membership data structure cannot afford to store an exact description of the
set S of elements that were inserted so far. Instead, any particular state of the data structure may
be used for many sets other than S, and the result of the Membership algorithm must be Yes on any
element that belongs to the union Ŝ of these sets. Upon inserting a new element x ∈ U \ S, the
data structure has to update the description of the current superset Ŝ to the description of some
superset Ŝ′ of S′ = S ∪ {x}. Note, however, that the data structure does not have access to the
set S, but only to the approximation Ŝ containing S. Therefore, it must hold that Ŝ ⊆ Ŝ′ as any
element of Ŝ might have been inserted, and false negatives are not allowed.

The main observation underlying our lower bound proof is that not only the new superset Ŝ′ has
to be larger than the old one Ŝ (as Ŝ ⊆ Ŝ′), but it actually has to be significantly larger. That is,
upon the insertion of an element, the data structure must update its internal state by adding many
elements to the currently stored superset. This is in contrast to the setting of exact membership
discussed above, where upon the insertion of an element, a dictionary can update its internal state
by adding only the newly added element to the currently stored set. We formalize this observation
via a compression argument showing that if Ŝ′ \ Ŝ is rather small, then we can “compress” the set S′

4

below the information-theoretic lower bound. We note that this argument takes into account only
space utilization, and does not need to make any assumptions on the efficiency of the data structure
in terms of the time complexity of its Insert and Membership algorithms. We refer the reader to
Section 3 for the proof of our lower bound.

Construction 1 (warm-up): Geometrically-increasing data structures. Our first con-
struction is quite natural and uses a sequence of dynamic approximate membership data structures
of geometrically-increasing sizes. When viewing the sequence of inserted elements as consecutive
subsequences, where the ith subsequence consists of 2i elements, at the beginning of the ith sub-
sequence we allocate a dynamic approximate membership data structure Bi with a false positive
rate εi = Θ(ε/i2). The elements of the ith subsequence are processed by Bi. A membership query
for an element x ∈ U is performed by invoking the membership algorithm of each of the existing
data structures Bi, and reporting Yes if any of them does. Clearly, the construction has no false
negatives, and its false positive rate is at most

∑∞
i=1 εi ≤ ε.

By carefully instantiating the underlying Bi’s with existing dynamic approximate membership
data structures, for any sequence of n insertions the data structure uses only (1 + o(1))n log(1/ε) +
O(n log log n) bits of space, and insertions are performed in expected amortized constant time.
However, membership queries require time Θ(log n) after n insertions, as a separate membership
query is needed for each of the existing Bi’s.2 We refer the reader to Section 4 for more details.

Construction 2: Constant-time operations. Whereas our first construction is somewhat
naive, our second construction is significantly more subtle, supporting membership queries in con-
stant time in the worst case with high probability (while still enjoying expected amortized constant
insertion time as in our first construction). Moreover, we show that it can be “de-amortized”
to support also insertions in constant time in the worst case by increasing its space usage from
(1 + o(1))n log(1/ε) + O(n log logn) bits to O(n log(1/ε) + n log logn) bits (with a rather small
leading constant).

Unlike our first construction, this construction consists of only one data structure at any point
in time. This data structure is a dynamic dictionary (i.e., an exact representation of a set) that is
used for storing a carefully chosen superset of the elements that were inserted so far. For describing
the main ideas underlying this construction, we again view the sequence of inserted elements as
consecutive subsequences, where the ith subsequence consists of 2i elements. The construction is
initialized by sampling a function h : U → {0, 1}` from a pairwise independent collection of functions,
where ` ≥ dlog(1/ε)e+ log u+ 2 (recall that ε is the required false positive rate, and that u is that
size of the universe of elements).

The basic idea is that for inserting an element x as part of the ith subsequence, we store in the
current dictionary Di the value hi(x) that is defined as the leftmost `i = dlog(1/ε)e+i+2 bits of h(x).
At the end of the ith subsequence, we transition from the current dictionary Di to a newly allocated
dictionary Di+1, and de-allocate the space used by Di. The transition is performed as follows: As
Di is a dictionary, we can enumerate all of its stored values, and for each such value y ∈ {0, 1}`i we
insert both y0 ∈ {0, 1}`i+1 and y1 ∈ {0, 1}`i+1 to the new dictionary Di+1. Note that Di stores `i-bit
values, and Di+1 stores `i+1-bit values. The key point is that at any point in time there is only one
dictionary Di, and therefore any membership query requires executing only one such query: Given
an element x and given that the current dictionary is Di, we execute a membership query for hi(x)
in Di. Therefore, the time for supporting membership queries is identical to that of the underlying
dictionaries.

2We note that these Θ(logn) membership queries can be executed in parallel.

5

This approach, however, needs to be refined as the number of stored values increases too fast.
To match our lower bound, we would like to argue that each dictionary Di stores O(2i) values. This
is not the case: Each of the 2j elements that are inserted as part of the jth subsequence, for any
j < i, “contributes” 2i−j values to Di, and therefore the number of values stored by Dlogn would be
O(n log n) instead of O(n).

We resolve this difficulty as follows. For inserting an element x as part of the ith subsequence,
we store in Di the pair (hi(x), gi(x)), where hi(x) is defined as the leftmost `i = dlog(1/ε)e+i+2 bits
of h(x) (as before), and gi(x) is defined as the next r = dlog log ue output bits of h(x) (padded with
the symbol ⊥ when less than r such bits are available)3. The transitioning from Di to Di+1 is now
performed as follows: For each pair (y, α1 · · ·αr) ∈ {0, 1}`i ×{0, 1,⊥}r that is stored in Di we insert
to Di+1 either the pair (yα1, α2 · · ·αr⊥) if α1 6= ⊥ (using yα1 as its key), or the two pairs (y0, α) and
(y1, α) if α1 = ⊥ (using y0 and y1 as the respective keys). This way, each of the 2j elements that
are inserted as part of the jth subsequence, for any j < i, “contributes” only 2i−j−r values to Di,
which guarantees that each Di stores only O(2i) values. This, combined with a standard bucketing
argument, enables us to match our space lower bound of using (1 + o(1))n log(1/ε) +O(n log log n)
bits for any sequence of n insertions. Note that this method has no false negatives, and we show
that our choice of parameters guarantees that the false positive rate is at most ε. Moreover, the
time for supporting membership queries is identical to that of the underlying dictionaries.

The construction enjoys a good amortized insertion time: Most insertions correspond to stan-
dard insertions for the current Di, while only a small number of insertions require transitioning from
Di to Di+1. Specifically, we show that if the underlying dictionaries support insertions in expected
amortize constant time, then so does our construction. Moreover, we also show that if the under-
lying dictionaries offer a constant insertion time in the worst case with high probability, then our
construction can be modified to offer constant time insertions in the worst case with high probability.
This follows the de-amortization technique of Arbitman, Naor and Segev [ANS09, ANS10], and only
increases the space usage from (1 +o(1))n log(1/ε) +O(n log logn) bits to O(n log(1/ε) +n log logn)
bits (with a rather small leading constant).

Finally, we also show that our construction can even support deletions, as long as no false
positives are deleted. We refer the reader to Section 5 for more details.

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we present some essential prelim-
inaries. In Section 3 we prove our lower bound. In Sections 4 and 5 we present our constructions.
Finally, in Section 6 we discuss various directions for future research.

2 Preliminaries

Notation. For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a random variable X we
denote by x ← X the process of sampling a value x according to the distribution of X. Similarly,
for a finite set S we denote by x ← S the process of sampling a value x according to the uniform
distribution over S.

Computational model. We consider the unit cost RAM model in which the elements are taken
from a universe of size u, and each element can be stored in a single word of length w = dlog ue
bits. Any operation in the standard instruction set can be executed in constant time on w-bit

3Such a pair (hi(x), gi(x)) is inserted using hi(x) as its key, for enabling constant-time membership queries.

6

operands. This includes addition, subtraction, bitwise Boolean operations, left and right bit shifts
by an arbitrary number of positions, and multiplication. The unit cost RAM model has been the
subject of much research, and is considered the standard model for analyzing the efficiency of data
structures (see, for example, [DP08, Hag98, HMP01, Mil99, PP08, RR03] and the references therein).

k-Wise independent functions. A collection H of functions h : U → V is k-wise independent
if for any distinct x1, . . . , xk ∈ U and for any y1, . . . , yk ∈ V it holds that

Pr
h←H

[h(x1) = y1 ∧ · · · ∧ h(xk) = yk] =
1

|V |k
.

More generally, a collection H is k-wise δ-dependent if for any distinct x1, . . . , xk ∈ U the distribu-
tion (h(x1), . . . , h(xk)) where h is sampled from H is δ-close in statistical distance to the uniform
distribution over Uk.

3 The Lower Bound: From Approximate Membership to Compression

Let D be an approximate membership data structure for sets of unknown size, for a universe U of
size u with a false positive rate 0 < ε < 1. Our lower bound holds for any such data structure
that supports insertions and membership queries. We assume D has access to a read-only array of
random bits at no cost in space, allowing randomized data structures. Since we do not limit the
time complexity of the Membership algorithm, and all possible histories of the data structure can be
computed using the random bits array, we may without loss of generality assume that D answers
Yes on input x exactly when the current state of the data structure is consistent with some history
in which x was inserted using the current array of random bits.

In this section we prove a lower bound on the space usage of D even if the size of the sets
to be approximated is known to be in a certain interval (this only strengthens the lower bound).
Specifically, we prove the following theorem:

Theorem 3.1. Let D, U , and ε be as above, and let n ≤ εu be sufficiently large and 1/
√
n ≤ α < 1.

If for any sequence of insertions of any length m such that αn < m < n, the data structure D uses
at most βm bits of space, then for any integer γ ≥ 2 it holds that

β ≥
(

1− 1

γ

)
·
(
log(1/ε) + (1− 9ε) log logγ(1/α)−Θ(1)

)
.

In particular, by setting α = 1/
√
n and γ = 2(logn)η , for some constant 0 < η < 1, we obtain the

lower bound of (1− o(1))n log(1/ε) + Ω(n log logn) bits that is stated in Theorem 1.1. We note that
asking that the data structure is space efficient only for sequences of at least αn elements can be
viewed as allowing the data structure to process the first αn elements in an off-line manner using
arbitrary space (which, again, only strengthens the lower bound). We also note that setting α = 1
corresponds to the case where the size n of the set is known in advance.

The proof of Theorem 3.1 consists of two parts. In the first part (see Section 3.1) we show
that it suffices to prove the lower bound for deterministic data structures, where the probability of
false positives is taken over the choice of a uniformly sampled element (instead of over the internal
randomness of the data structure). This is a standard averaging argument showing that one can fix
the randomness of any randomized data structure, without significantly increasing the false positive
rate. In the second part (see Section 3.2), we then follow the overview discussed in Section 1.3 for
proving the lower bound for deterministic data structures.

7

3.1 From Randomized to Deterministic Approximate Membership

For any (sufficiently long) string r ∈ {0, 1}∗, we denote by Br the deterministic data structure
obtained by fixing r as B’s internal randomness. In addition, for any sequence S ∈ Un of n insertions
we denote by Ŝr ⊆ U the set of all elements on which the Membership algorithm of Br outputs Yes
after processing the sequence S. We note that S ∈ Un is an ordered sequence of (not necessarily
distinct) elements, while Ŝr is a set. When we refer to the elements of S we may abuse notation
and treat S as a set. Note that the fact that there are no false negatives guarantees that S ⊆ Ŝr for
any r ∈ {0, 1}∗. Finally, for each such r and S define µ(Ŝr) = |Ŝr|/u, and define

Sr,ε =
{
S ∈ Un : µ(Ŝr) ≤ 4ε

}
.

The following lemma uses an averaging argument and states that there exists a choice of r ∈
{0, 1}∗ such that µ(Ŝr) is rather small for many sequences S (i.e., that the set Sr,ε consists of many
sequences).

Lemma 3.2. Let B, u, ε and n be as above. Then, there exists a string r∗ ∈ {0, 1}∗ such that
|Sr∗,ε| ≥ un/2.

Proof. The randomized data structure B has false positive rate at most ε, and therefore for any
sequence S ∈ Un it holds that

Er←{0,1}∗
[
µ(|Ŝr|)

]
≤ ε+ n/u ≤ 2ε.

By Markov’s inequality it holds that

Pr
r←{0,1}∗

[
µ(|Ŝr|) ≥ 4ε

]
≤ 1

2
.

In particular, there exists an r∗ ∈ {0, 1}∗ for which for at least 1/2 of all the sequences S ∈ Un it
holds that µ(|Ŝr|) < 4ε.

3.2 A Compression Argument for Deterministic Approximate Membership

Form this point on focus on the deterministic data structure Br∗ , where r∗ ∈ {0, 1}∗ is the internal
random string r∗ provided by Lemma 3.2. In this part of the proof we show that the data structure
Br∗ can be used to encode the sequences in a large subset of S = Sr∗,ε. Since Lemma 3.2 provides
a lower bound on the cardinality of S, it also provides a lower bound on the length of such an
encoding.

Let S be a sequence in S and partition it into consecutive subsequences S = C1, C2, ... such that
each Ci consists of γi elements, where γ ≥ 2 is an integer. We define Si to be the concatenation
of the first i subsequences, and ni to be its length. In other words Si is the prefix of S of length
ni =

∑
j≤i γ

j . Observe that since there are no false negatives, then Ŝi ⊆ Ŝi+1,4 and therefore

µ(Ŝi) ≤ µ(Ŝi+1) ≤ 4ε for every integer i.

Lemma 3.3. For any sequence S ∈ S of length n, there exists an integer i such that |Si| ∈ [αn, n]
and

µ(Ŝi)− µ(Ŝi−1) ≤ 4ε

logγ(1/α)− 2
.

4Recall that, as stated above, we may without loss of generality assume that D answers Yes on input x exactly
when the current state of the data structure is consistent with some history in which x was inserted using the current
array of random bits.

8

Proof. Let j1 = plogγ(αn(γ − 1) + 1)q and j2 = xlogγ(n(γ − 1))y. For every j1 ≤ i ≤ j2 it holds

that ni ∈ [αn, n]. Since µ(Ŝj1) ≥ 0 and µ(Ŝj2) ≤ 4ε, and since for all i it holds that µ(Ŝi) ≤ µ(Ŝi+1),
there must be an i ∈ [j1, j2] such that

µ(Ŝi)− µ(Ŝi−1) ≤ 4ε

j2 − j1
≤ 4ε

logγ(1/α)− 2
.

Fix a sequence S of length n, let i be the smallest integer that satisfies the condition in Lemma 3.3,
and let k = |Ci ∩ Ŝi−1|. That is, k is the number of elements from the subsequence Ci for which
the Membership algorithm already answers Yes right before the ith subsequence Ci is processed by
the Insert algorithm. Observe that since the data structure is deterministic, k = k(S) is completely
determined by the sequence S. We are interested in the case k ≤ 9ε|Ci|. In the next lemma we show
that for most sequences in S this is indeed the case.

Lemma 3.4. It holds that

|{S ∈ S : k(S) ≤ 9ε|Ci|}| ≥
un

3
. (3.1)

Proof. Consider a sequence S which is uniformly sampled in Un one subsequence after the other.
We emphasize that we sample from Un in order to avoid the dependencies associated with sampling
from S. Assume that each prefix Sj is associated with an arbitrary set Ŝj with measure at most 4ε.
If it happens that Sj is a prefix of some sequence in S, then Ŝj is indeed defined as before to be the
set of positive replies. Otherwise Ŝj can be any set in U of measure at most 4ε.

Now, since the subsequence Cj is sampled uniformly and independently from Sj−1, it holds
that E[|Cj ∩ Ŝj−1| ≤ 4ε|Cj |], and by a Chernoff bound it holds that Pr[|Cj ∩ Ŝj−1| ≥ 9ε|Cj |] ≤
exp(−|Cj |). Under our assumptions |Cj | ≥ nΩ(1) so by the union bound, with probability at least
1− logγ n ·exp(−nΩ(1)) ≥ 1−1/n all the j for which |Cj | is large enough satisfy |Cj ∩ Ŝj−1| ≥ 9ε|Cj |.
Again, by the union bound we have

|{S ∈ S : k(S) ≤ 9ε|Ci|}| ≥
(

1

2
− 1

n

)
un,

from which the lemma follows for all n sufficiently large.

Assume that after the insertion of Ci the data structure uses space bi bits. We now describe the
encoding itself for a given sequence S.

First write the number i from Lemma 3.3, followed by an explicit uncompressed representation
of all items in the sequence S, except those of Ci. This requires at most (n − ci) log u + log log n
bits, where ci = |Ci|. We will use the data structure in order to encode Ci in a more compact form
as follows. Recall that k items out of ci are in Ŝi−1. We need at most ci bits to denote where in the
sequence these items are located. Next, we store the data structure itself using bi bits. We observe
that since the data structure is deterministic and we write all the elements other than Ci explicitly,
the encoding thus far characterizes the set Ŝi−1. Also, since the data structure itself is written,
the encoding so far characterizes the sets Ŝi. The remaining part of the encoding consists of the
elements of Ci encoded relative to these two sets: We encode the ci − k elements in Ŝi\Ŝi−1 using
(ci−k) log((µ(Ŝi)−µ(Ŝi−1))u) +O(1) bits and the remaining k elements using k log(µ(Ŝi)u) +O(1)
bits. All in all the length of this part of the encoding is:

(ci − k) log((µ(Ŝi)− µ(Ŝi−1))u) + k log(µ(Ŝi)u) +O(1). (3.2)

9

By our choice of i we have

log(µ(Ŝi)− µ(Ŝi−1)) ≤ log(ε)− log logγ(1/α) +O(1).

Plugging in (3.2) and using the fact that µ(Ŝi) ≤ ε, the length is at most

(ci − k)(log u+ log(ε)− log logγ(1/α)) + k log(εu) +O(ci)

≤ ci
(
log u+ log ε− (1− 9ε) log logγ(1/α) +O(1)

)
,

and the length of the remaining part of the encoding is at most

bi + log log n+ (n− ci) log u+ ci.

By (3.1), the total length of the encoding has to be greater than log(un/3) so we have:

bi + log log n+ (n− ci) log u+ ni
(
log u+ log ε− (1− 9ε) log logγ(1/α) +O(1)

)
≥ n log u−O(1).

which implies that

bi ≥ ci(log(1/ε) + (1− 9ε) log logγ(1/α)−O(1)).

Finally, since ci = γi we have that ci = (ni+
1

γ−1) · γ−1
γ which, together with the assumption βni ≥ bi

in the statement of Theorem 3.1, completes the proof of Theorem 3.1.

4 Construction 1 (Warm-Up): Geometrically-Increasing Data Structures

Our first construction is quite simple and natural and uses a sequence of dynamic approximate
membership data structures of geometrically-increasing sizes. When viewing the sequence of inserted
elements as consecutive subsequences, where the ith subsequence consists of 2i elements, at the
beginning of the ith subsequence we allocate and initialize a dynamic approximate membership
data structure Bi with a false positive rate εi = Θ(ε/i2). The elements of the ith subsequence are
processed by the insertion algorithm of the data structure Bi. A membership query for an element
x ∈ U is performed by invoking the membership algorithm of each of the existing data structures
Bi, and reporting Yes if any of them does. Clearly, as the underlying data structures have no false
negatives, then our construction has no false negatives. In addition, a union bound guarantees that
the false positive rate is at most

∑∞
i=1 εi = Θ(επ2/6) ≤ ε by appropriately adjusting the constants

in the choices of the εi.
We can instantiate the Bis, for example, with the dynamic approximate membership data struc-

ture resulting from the dynamic dictionary of Raman and Rao [RR03] (via the general dictionary-
based methodology described in Section 1.2). This dynamic approximate data structure supports
insertions in constant expected amortized time, membership queries in constant time in the worst
case, and its space consumption is (1 + o(1))2i log(1/εi) bits for any set of known size 2i with a false
positive rate εi. This guarantees that, for any number n of elements, the number of bits used by
our construction after inserting any n elements is at most

(1 + o(1))n ·
(

max
1≤i≤dlogne

{log(1/εi) +O(1)}
)

= (1 + o(1))n ·
(

max
1≤i≤dlogne

{log(1/ε) + log
(
i2
)

+O(1)}
)

= (1 + o(1))n log(1/ε) +O(n log log n).

10

Note, however, that membership queries require time Θ(log n), since given an element x we do
not know to which of the Bi it might have been inserted in. Therefore we need a separate membership
query for each of the Bi. This yields the following theorem:

Theorem 4.1. For any 0 < ε < 1 there exists a data structure for approximate membership for sets
of unknown sizes with the following properties:

1. The false positive rate is at most ε.

2. For any integer n, the data structure uses at most (1 + o(1))n log(1/ε) +O(n log logn) bits of
space after n insertions.

3. Insertions take expected amortized constant time, and for any integer n membership queries
are supported in O(log n) time after n insertions.

5 Construction 2: Constant-Time Operations

As in our first construction, when processing a sequence of elements we partition it into consecutive
subsequences, where the ith subsequence consists of 2i elements. For every integer i we denote the
ith subsequence by si = x2i−1 · · ·x2i−1, and denote by Si the set {x2i−1 , . . . , x2i−1}.

Let H be a pairwise independent collection of functions h : U → {0, 1}`, where ` ≥ dlog(1/ε)e+
log u + 2 and |U | = u. For each h ∈ H and integer i ∈ [`] we let hi : U → {0, 1}`i be the leftmost
`i = dlog(1/ε)e+ i+ 2 output bits of h, and let gi : U → {0, 1}r be the next r = dlog log ue output
bits of h (padded with the symbol ⊥ when less than r such bits are available).

The basic construction. The data structure is initialized by sampling a function h ∈ H. At
any point in time, when the ith subsequence si is being processed, the data structure consists of a
dynamic dictionary Di. As discussed in Section 1.3, the insertion procedure operates in one out of
two possible modes, depending on whether or not the element that is currently being inserted is the
first element of its subsequence. We describe each of these modes separately.

• Mode 1. When the inserted element x ∈ Si is not the first of its subsequence, we store the
pair (hi(x), gi(x)) in the current dictionary Di using hi(x) as its key.

• Mode 2. When the inserted element x ∈ Si is the first of its subsequence (i.e., x = x2i−1), we
transition from the current dictionary Di−1 to a new dictionary Di, deallocate the space used
by Di−1, and then proceed as in mode 1 above.

Specifically, the dictionary Di is initialized for storing at most 2i+2 elements, each of length
`i + r bits. If i > 1 we initialize Di by enumerating all pairs currently stored by Di−1, and
processing each such pair (y, α1 · · ·αr) ∈ {0, 1}`i−1 ×{0, 1,⊥}r as follows: If α1 6= ⊥, we insert
to Di the pair (yα1, α2 · · ·αr⊥) using yα1 as its key. Otherwise, we insert to Di the two pairs
(y0, α) and (y1, α) using y0 and y1 as their keys, respectively.

Membership queries are naturally defined: Given an element x ∈ U and that the currently
dictionary is Di for some i, we query Di with the key hi(x) to retrieve a pair of the form (hi(x), α)
for some α. If such a pair is found we output Yes, and otherwise we output No.

11

Dealing with failures. We note that a subtle point in the construction is that each of the
dictionaries D1,D2, . . . may have a certain failure probability. Using existing dictionaries, the failure
probability for each Di can be made as small as any polynomial in 2−i. This means that whenever
i = Ω(log u), the failure probability can be made polynomially small in u, but when i = o(log u) the
failure probability is rather large.

There are two standard methods for dealing with such large failure probabilities. The first is
to simply rebuild each Di that fails. Even for small values of i, the expected number of failures is
typically a small constant, and thus we will be able to guarantee good expected performance. The
second is to group together into one dictionary the first uδ elements, for an arbitrary small constant
0 < δ < 1. This way, a union bound shows that no dictionary fails except with probability u−c

for any pre-determined constant c > 1. For simplicity, in what follows we analyze our construction
assuming that at least n > uδ elements are inserted, and that we group together the first uδ elements.

Optimal space via bucketing. Note that the transitioning from each dictionary Di to Di+1

requires storing both until all elements of Di have been transitioned into Di+1 (as explained above).
This increases the space used by the data structure by a multiplicative constant factor. Using a
standard bucketing technique (see, for example, [DMadH90, DR09]) we reduce the space usage of the
construction when at least n > uδ elements are inserted, for an arbitrary small constant 0 < δ < 1.

Specifically, we first hash the elements into uδ/2 buckets, and then apply our basic construction
in each bucket. For enabling the data structure to gradually allocate more space, the data structures
in the buckets are interleaved word-wise: For every i ∈ [uδ/2], the data structure of the ith bucket
resides in memory words whose location is equal to i modulo uδ/2. This guarantees that if the
maximum space usage of the data structures in the buckets is smax words, then the total space
required for the construction is uδ/2 · smax words (and additional space can be easily allocated).

For any uδ < n ≤ u the hash functions of [DMadH90, DR09] split the elements quite evenly: each
bucket contains at most (1 + o(1))n/uδ/2 elements, except with a probability that is polynomially
small in u. Moreover, these functions can be evaluated in constant time. Applying our basic
construction in each bucket guarantees that the transitioning operation occurs in at most one bucket
at any point in time, and therefore the additional space that is required is proportional to the number
of elements in each bucket and not to total number of elements.

Performance analysis. The following theorem is obtained by instantiating our construction with
a sufficiently good construction of a dynamic dictionary. For example, the dynamic dictionary of
Raman and Rao [RR03] is space optimal (up to additive lower-order terms), supports insertions in
constant expected amortized time, and membership queries in constant time in the worst case.

Theorem 5.1. For any 0 < ε < 1, integer u, and constant c > 1, there exists a data structure
for approximate membership for sets of unknown sizes from a universe of size u with the following
properties:

1. The false positive rate is ε+ u−c.

2. For any constant 0 < δ < 1 and n > uδ, the data structure uses at most (1 + o(1))n log(1/ε) +
O(n log log n) bits of space after n insertions.

3. Insertions take expected amortized constant time, and membership queries take constant time
in the worst case.

Proof. As discussed above, hashing the inserted elements into uδ/2 buckets results in a balanced
allocation up to additive lower order terms with all but a polynomially small probability in u.

12

Therefore, for simplicity, from this point on we focus on n elements that are inserted into a single
bucket. We first prove that for every i, at most 2i+2 elements are inserted into the dictionary Di. Fix
an i, and partition the elements that are inserted to Di to two disjoint sets: elements that correspond
to elements from S1, . . . , Si−r, and elements that correspond to elements from Si−r+1, . . . , Si. For
each element x that belongs to some Sj , we observe that it contributes 2i−j−r elements if 1 ≤ j ≤ i−r,
and exactly one element if i − r + 1 ≤ j ≤ i. Therefore, the number of elements that are inserted
into Di is

i−r∑
j=1

|Sj | · 2i−j−r +
i∑

j=i−r+1

|Sj | =
i−r∑
j=1

2i−r−1 +
i∑

j=i−r+1

2j

≤ 2i+2.

Now, for bounding the false positive rate, fix a sequence x1 · · ·xj of inserted elements, an element
x /∈ {x1, . . . , xj}, and let i be such that 2i−1 ≤ j ≤ 2i − 1. Then, the current state of the data
structure consists of a dictionary Di, and a query for x initiates a membership query for the key hi(x).
Since at most 2i+2 keys were inserted so far to the dictionary Di, the pairwise independence of H
guarantees that x forms a collision with some existing element with probability at most 2i+2·2−`i ≤ ε.
In addition, we assume that the constructions of all the Di are successful except with probability
u−c, and therefore the false positive rate is at most ε+ u−c.

We now bound the space overhead. Assume that 2i−1 ≤ n ≤ 2i − 1 elements were inserted, and
that the current dictionary Di is constructed using a dictionary that can store n elements from a
universe of size u′ = poly(n′) with r bits of satellite data using space (1 + o(1))n(log(u′/n) + r) bits
(e.g., [RR03] as discussed above). Then, the space utilized by Di is at most

(1 + o(1))n(log(2`i/2i) + r) ≤ (1 + o(1))n log(1/ε) +O(n log log u)

= (1 + o(1))n log(1/ε) +O(n log logn)

Finally, note that membership queries are supported in constant time, and that the expected amor-
tized insertion time is also constant (as in the underlying dictionary).

In the remainder of this section we describe two extensions of our construction. The first exten-
sion shows how to enjoy constant-time insertions in the worst case by increasing the space usage
from (1 + o(1))n log(1/ε) +O(n log logn) to O(n log(1/ε) +n log log n). The second extension shows
how to support deletions (which have to be carefully defined).

Constant-time insertions in the worst case via de-amortization. As presented above using
the two different insertion modes, the construction enjoys a good amortized insertion time: Most
insertions correspond to mode 1 and are processed very fast, while only a small number of insertions
correspond to case 2. The main observation is that if the underlying Di offers a constant insertion
time in the worst case with high probability (e.g., as in [ANS10]), then our construction without
the bucketing can be de-amortized: Instead of initializing each Di only when inserting x2i−1 , then
the total amount of work required for initializing Di can be equally split among the insertions of
x2i−1 , . . . , x2i−1. Specifically, on each such insertion, devote a constant number of additional steps
for the initialization of Di. As shown in the proof of Theorem 5.1, for every i at most 2i+1 elements
are inserted into the dictionary Di−1. Therefore, the total amount of work (in the worst case)
required for initializing Di is O(2i). We note that the idea of bucketing the elements that we used
above does not seem useful here. The reason is that it is no longer the case that a transition between
dictionaries occurs in at most one bucket at any point in time. Therefore, the space usage (even with

13

bucketing) would be O(n log(1/ε) + n log logn) bits (with a rather small leading constant) instead
of (1 + o(1))n log(1/ε) +O(n log log n) bits as in Theorem 5.1.

Supporting deletions. Note that for any approximate membership data structure it is impossible
to detect if an attempt is made to delete a false positive. Thus, the data structure must put the
burden on its user to ensure that deletions are applied only to elements that are in fact in the set
(if this contract is broken, false negatives may arise). In the space analysis we will also assume that
insertions are proper, i.e., an element may be inserted at most once.

A well-known approach to supporting deletions [PPR05] is to store the multiset of signatures
rather than just the set of distinct signatures. A deletion of an element with signature h(x) is
implemented by decreasing the multiplicity of h(x) in the multiset by 1. However, there are compli-
cations when trying to make this technique work in our setting. For example, in Construction 1, the
element to be deleted may be a false positive in one of the data structures Bi and a “true positive”
in another data structure Bj . The problem is that there is no way to tell which is the false positive,
and if we remove h(x) from Bi a false negative will occur. A similar problem occurs in Construction
2, where it may not be possible to determine which signatures are to be deleted.

Our way around this problem is to abandon the idea of storing a multiset of signatures, but
rather use a secondary dictionary data structure whenever we encounter identical signatures. In the
following we describe how to augment Construction 2 with deletions. When inserting an element x
we first check if it is a false positive of the existing set. Every false positive is inserted in the secondary
data structure, while remaining elements are inserted in the primary data structure. Membership
queries are extended to also look up the element in the secondary data structure, which has zero false
positive rate. The deletion algorithm first checks if the element can be deleted from the secondary
data structure. If not, its signature(s) need to be deleted from the primary structure. However,
elements that were inserted when the set was smaller may be associated with a large number of
signatures, formed by extending an original signature with all possible bit strings to form a set of
possible signatures matching the current signature length. To allow efficient deletion, we extend
the information that is stored with each key with the length of the original signature, and with a
bit that can be used to indicate deletion. Deletion is performed by marking the lexicographically
smallest signature in the set (i.e., the one extended with only zeros) as deleted. The membership
procedure is then modified to compute this signature, and check whether it has been marked as
deleted. To ensure that we do not use significant space for signatures of deleted keys, we run a
background process that periodically checks if each signature can be removed from the set, spending
constant time per update. In a similar way, we periodically check keys in the secondary structure
to see if they remain false positives, or can be moved to the primary structure.

It is easy to see that the data structure will work correctly (under the assumption of proper
deletions and insertions). What is less obvious is how much extra space is needed for the secondary
structure. Observe that we may without loss of generality assume that the false positive rate is
at most 1/ log u, since we allow a space overhead of O(n log logn) bits, and n > uδ. This means
that the expected number of false positives in a set of n elements is O(n/ log u), so storing this set
requires just O(n) bits in expectation. To ensure a high probability bound on the space usage, we
need a stronger hash function to compute the signatures. In particular, from [DGM+92] it follows
that using constant-degree polynomial hash functions we can ensure that the number of signature
collisions, corresponding to false positives, will be within a constant factor of the expectation with
probability 1− u−c, for any desired constant c.

14

6 Directions for Future Research

Our work raises several fundamental directions for future research both from a theoretical perspective
and from a practical perspective. From a theoretical perspective, an interesting problem is to tighten
our lower bound by identifying the leading constant in the additive Ω(n log logn) factor. In addition,
it would be interesting to explore whether our constructions can be improved by a data structure
that simultaneously enjoys the best of both worlds: space consumption of (1 + o(1))n log(1/ε) +
O(n log log n) bits and constant-time operations in the worst case with high probability.

From a more practical perspective, while Bloom filters [Blo70] provide a practical solution in the
setting where an upper bound n is known in advance, our cosntruction do not seem to enjoy the
same level of practicality in the setting where such an upper is not known in advance. Specifically,
our first construction supports membership queries in time O(log n), which may be too slow in
some applications, and our second construction suffers from non-trivial hidden constants due to our
de-amortization technique. It would be very interesting to design a practical solution that matches
our space lower bound.

References

[ABP+07] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison. Scalable Bloom filters.
Information Processing Letters, 101(6):255–261, 2007.

[ANS09] Y. Arbitman, M. Naor, and G. Segev. De-amortized cuckoo hashing: Provable worst-
case performance and experimental results. In Proceedings of the 36th International
Colloquium on Automata, Languages and Programming, pages 107–118, 2009.

[ANS10] Y. Arbitman, M. Naor, and G. Segev. Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In Proceedings of the 51th Annual IEEE
Symposium on Foundations of Computer Science, pages 787–796, 2010.

[Blo70] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communica-
tions of the ACM, 13(7):422–426, 1970.

[BM03] A. Z. Broder and M. Mitzenmacher. Network applications of Bloom filters: A survey.
Internet Mathematics, 1(4), 2003.

[BMP+06] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An improved
construction for counting Bloom filters. In Proceedings of the 14th Annual European
Symposium on Algorithms, pages 684–695, 2006.

[BV13] D. Belazzougui and R. Venturini. Compressed static functions with applications to
other dictionary problems. In Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2013.

[CFG+78] L. Carter, R. W. Floyd, J. Gill, G. Markowsky, and M. N. Wegman. Exact and ap-
proximate membership testers. In Proceedings of the 10th Annual ACM Symposium on
Theory of Computing, pages 59–65, 1978.

[CKR+04] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier filter: An efficient
data structure for static support lookup tables. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 30–39, 2004.

15

[CM03] S. Cohen and Y. Matias. Spectral Bloom filters. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pages 241–252, 2003.

[CW79] L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18(2):143–154, 1979.

[DGM+92] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are
reliable. In Proceedings of the 19th International Colloquium on Automata, Languages
and Programming, pages 235–246, 1992.

[DMadH90] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions
and dynamic hashing in real time. In Proceedings of the 17th International Colloquium
on Automata, Languages and Programming, pages 6–19, 1990.

[DP08] M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and approxi-
mate membership. In Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, pages 385–396, 2008.

[DR09] M. Dietzfelbinger and M. Rink. Applications of a splitting trick. In Proceedings of
the 36th International Colloquium on Automata, Languages and Programming, pages
354–365, 2009.

[FCA+00] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: A scalable wide-area
web cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[GWC+06] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and network applications of dynamic
bloom filters. In INFOCOM 2006. 25th IEEE International Conference on Computer
Communications. Proceedings, pages 1–12, 2006.

[GWC+10] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The dynamic Bloom filters. IEEE
Transactions on Knowledge and Data Engineering, 22(1):120–133, 2010.

[Hag98] T. Hagerup. Sorting and searching on the word RAM. In Proceedings of the 15th
Annual Symposium on Theoretical Aspects of Computer Science, pages 366–398, 1998.

[HKL08] F. Hao, M. S. Kodialam, and T. V. Lakshman. Incremental Bloom filters. In Proceedings
of the 27th IEEE International Conference on Computer Communications, pages 1067–
1075, 2008.

[HMP01] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal of
Algorithms, 41(1):69–85, 2001.

[LP10] S. Lovett and E. Porat. A lower bound for dynamic approximate membership data
structures. In Proceedings of the 51th Annual IEEE Symposium on Foundations of
Computer Science, pages 797–804, 2010.

[Mil99] P. B. Miltersen. Cell probe complexity – A survey. In Proceedings of the 19th Con-
ference on the Foundations of Software Technology and Theoretical Computer Science,
Advances in Data Structures Workshop, 1999.

[MPP05] C. W. Mortensen, R. Pagh, and M. Pătraşcu. On dynamic range reporting in one
dimension. In Proceedings of 37th Annual ACM Symposium on Theory of Computing,
pages 104–111, 2005.

16

[Por09] E. Porat. An optimal Bloom filter replacement based on matrix solving. In Proceedings
of the 4th International Computer Science Symposium in Russia, pages 263–273, 2009.

[PP08] A. Pagh and R. Pagh. Uniform hashing in constant time and optimal space. SIAM
Journal on Computing, 38(1):85–96, 2008.

[PPR05] A. Pagh, R. Pagh, and S. S. Rao. An optimal Bloom filter replacement. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 823–829,
2005.

[RR03] R. Raman and S. S. Rao. Succinct dynamic dictionaries and trees. In Proceedings of
the 30th International Colloquium on Automata, Languages and Programming, pages
357–368, 2003.

[WJZ+11] J. Wei, H. Jiang, K. Zhou, and D. Feng. DBA: A dynamic Bloom filter array for scal-
able membership representation of variable large data sets. In Proceedings of the 19th
Annual IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, pages 466–468, 2011.

[WJZ+13] J. Wei, H. Jiang, K. Zhou, and D. Feng. Efficiently representing membership for variable
large data sets. To appear in IEEE Transactions on Parallel and Distributed Systems,
2013.

17

	Introduction
	Our Contributions
	Related work
	Overview of Our Contributions
	Paper Organization

	Preliminaries
	The Lower Bound: From Approximate Membership to Compression
	From Randomized to Deterministic Approximate Membership
	A Compression Argument for Deterministic Approximate Membership

	Construction 1 (Warm-Up): Geometrically-Increasing Data Structures
	Construction 2: Constant-Time Operations
	Directions for Future Research

