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ABSTRACT
The continuous shift towards data-driven approaches to busi-
ness, and a growing attention to improving return on in-
vestments (ROI) for cluster infrastructures is generating new
challenges for big-data frameworks. Systems, originally de-
signed for big batch jobs, now handle an increasingly com-
plex mix of computations. Moreover, they are expected to
guarantee stringent SLAs for production jobs and minimize
latency for best-effort jobs.

In this paper, we introduce reservation-based schedul-
ing, a new approach to this problem. We develop our solu-
tion around four key contributions: 1) we propose a reserva-
tion definition language (RDL) that allows users to declar-
atively reserve access to cluster resources, 2) we formalize
planning of current and future cluster resources as a Mixed-
Integer Linear Programming (MILP) problem, and propose
scalable heuristics, 3) we adaptively distribute resources be-
tween production jobs and best-effort jobs, and 4) we in-
tegrate all of this in a scalable system named Rayon, that
builds upon Hadoop / YARN.

We evaluate Rayon on a 256-node cluster, against work-
loads derived from Microsoft, Yahoo!, Facebook, and Cloud-
era’s clusters. To enable practical use of Rayon, we hard-
ened our system and open-sourced it as part of Apache Hadoop.

1. INTRODUCTION
Scale-out computing has enjoyed a surge in interest

and adoption following its success at large web com-
panies such as Facebook, Google, LinkedIn, Microsoft,
Quantcast, and Yahoo! [31]. These architectures are
purpose-built to generate insights from massive volumes
of data using clusters of commodity hardware. Despite
dramatic drops in hardware costs in the last decade,
datacenters housing these clusters cost millions of dol-
lars to build and operate. As these architectures and
tools become ubiquitous, maximizing cluster utilization
and, thus, the return on investment (ROI) is increas-
ingly important.

Characterizing a “typical” workload is nuanced, but
the hundreds of thousands of daily jobs run at these
sites [37, 41] can be coarsely classifed in two groups:

1. Production jobs: These are workflows submitted
periodically by automated systems [26, 39] to pro-
cess data feeds, refresh models, and publish in-
sights. Production jobs are often large and long-
running, consuming tens of TBs of data and run-
ning for hours. These (DAGs of) jobs are central
to the business, and come with strict service level
agreements (SLA) (i.e., completion deadlines).

2. Best-effort jobs: These are ad-hoc, exploratory
computations submitted by data scientists and en-
gineers engaged in testing/debugging ideas. They
are typically numerous, but smaller in size. Due
to their interactive nature, best-effort jobs do not
have explicit SLAs, but are sensitive to completion
latency.

The mix of jobs from these categories is cluster de-
pendent. Production jobs can be as few as 5% of all
jobs. However, in all but dedicated test clusters [41,
13, 10, 11], they consume over 90% of the resources.
While numerically few, these jobs are business-critical,
and missing SLAs can have substantial financial impact.

Currently deployed big-data systems [41, 23, 2] fo-
cus on maximizing cluster throughput, while providing
sharing policies based on instantaneous notions of prior-
ity, fairness, and capacity. Prioritizing production jobs
improves their chances to meet SLAs, at the expense
of best-effort jobs’ latency. Symmetrically, prioritiz-
ing best-effort jobs can improve their latency, but it
endangers production jobs’ SLAs. In either case, un-
necessary head-of-line blocking prevents all such time-
agnostic mechanisms from simultaneously satisfying the
demands of both types of jobs. In particular, no promises
can be made on jobs’ allocations over time.

Interviewing cluster operators, we gather that the
above limitations are coped with today by over-provisioning
their clusters (detrimental to ROI), or by means of labor-
intensive workarounds. These include manually timing
job submissions, and ensuring production jobs’ SLAs
by dedicating personnel to monitor and kill best-effort
jobs if resources become too scarce. This state of af-
fairs is taxing for large organizations, and unaffordable
for smaller ones. It is also highly unsatisfactory for use
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Figure 1: Effectiveness of reservation-based
scheduling (A production job P with time-
varying resource needs, and four best-effort jobs
B1..4)

in a public-cloud, shared service [35, 24], where scale
and the contractual relationship between users and op-
erators exacerbate these problems.

To make matters worse, the days of siloed clusters
running a single application framework, such as MapRe-
duce [15], are long gone. Modern big-data clusters typ-
ically run a diverse mix of applications [41, 23, 2, 37].
This introduces new scheduling challenges such as sup-
porting gang semantics, (e.g., MPI computations that
require all their task to be scheduled concurrently), and
inter-job dependencies (e.g., DAGs of jobs in production
workflows).

In this paper we propose reservation-based schedul-
ing, a novel approach that delivers time-predictable re-
source allocations to: 1) meet production job SLAs, 2)
minimize best-effort job latency, and 3) achieve high-
cluster utilization.

Contributions. Our effort builds upon ideas from ex-
tensive prior work on big-data frameworks, HPC in-
frastructures, and scheduling theory, [41, 23, 37, 2, 40,
3, 38, 42, 18, 17, 29, 27, 43], but provides a unique
combination of features including support for a rich
constraint language, scalable planning algorithms, and
adaptive scheduling mechanisms. We integrated all of
this in a complete architecture and robust implementa-
tion that is released as part of Apache Hadoop. To the
best of our knowledge, our system, Rayon, is the first
big-data framework to support completion SLAs, low la-
tency, and high-cluster utilization for diverse workloads
at scale.

Our effort is organized around four key contributions
(visualized in Figure 2):

1. Reservation: this is the process of determining a
job’s resource needs and temporal requirements,
and translating the job’s completion SLA into a
service level objective (SLO) over predictable re-
source allocations. This is done ahead of job’s exe-
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Figure 2: Overview of our approach.

cution and it is akin to a reservation of resources,
aimed at ensuring a predictable and timely execu-
tion. To this end, we propose a Reservation Defini-
tion Language (RDL), that can express in a declar-
atively fashion a rich class of constraints, including
deadlines, malleable and gang parallelism require-
ments, and inter-job dependencies. In Section 3,
we present RDL in details, discuss its compiler/op-
timizer infrastructure, and summarize how users
(or tools on their behalf) derive RDL expressions
for their jobs.

2. Planning : RDL provides a uniform and abstract
representation of all the jobs’ needs. Such reser-
vation requests are received by the system ahead
of a job’s submission. We leverage this informa-
tion to perform online admission control, accept-
ing all jobs that can fit in the cluster agenda, aka
the Plan, and rejecting the ones we cannot satisfy.
In Section 4, we formalize Planning as a Mixed-
Integer Linear Programming (MILP) problem, and
propose robust and scalable greedy algorithms.

3. Adaptive Scheduling : this is the process of dynam-
ically assigning cluster resources to: 1) production
jobs, based on their allocation in the plan, and
2) best-effort jobs submitted on the fly to min-
imize their latency. In this phase, we dynami-
cally adapt to the evolving conditions of a highly-
utilized, large cluster, compensating for faults, mis-
predictions, and other system imperfections. The
goal of this stage is to deliver upon the commit-
ments we did during Planning, and minimize the
latency of best-effort jobs—see Section 5.

4. Rayon: Our final contribution is to integrate the
above ideas in a complete architecture. We in-
stantiate our design in a YARN-based system [41].
Over the past year we have hardened our system
and open-sourced1 it as part of Apache Hadoop—
Section 5.2. We validate Rayon on a 256-node clus-
ter, running jobs derived from Microsoft clusters,

1Our contributions are being code reviewed, and are likely
to be committed to Hadoop 3.0 soon.
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Figure 3: Two Microsoft production workflows.
and workloads derived from clusters of Cloudera
customers, Facebook, and Yahoo!—Section 6.

By introducing the notion of reservation, we arm Rayon
with substantially more information to handle jobs with
SLAs. We illustrate this pictorially in Figure 1, where
we delay P , meet its SLA, and improve B1, B3, B3’s
latencies. Our experimental evaluation confirms that
this extra information, combined with effective plan-
ning, and adaptive scheduling delivers an advantage
over existing approaches.

In the rest of this paper, we further characterize the
state of affairs in Section 2, and discuss the above con-
tributions respectively in Section 3, 4, 5. We evaluate
the effectiveness of our design in Section 6, and discuss
related work in Section 7. We track our open-sourcing
effort at https://issues.apache.org/jira/browse/

YARN-1051.

2. STATE OF AFFAIRS
In this section, we summarize some salient charac-

teristics of modern big-data workloads, by combining
public information that appeared in recent reports [13,
10, 11, 18, 8] and direct experience of Yahoo!, Microsoft,
and Quantcast clusters. We use this to derive high-level
requirements.

As we mentioned in the introduction, the jobs run-
ning in most cluster can be classified in a coarse but
useful way as: Production and Best-Effort jobs. While
their mixture is very cluster dependent the invariant
of Production jobs consuming most of resources is re-
spected in almost every cluster we analyzed (with the
exception of few purely test clusters). It is also very
common for big-data clusters to run complex pipelines,
and jobs with gang requirements, i.e., jobs that require
all of their tasks to run simultaneously. Talking with
several cluster operators, we gather that consolidating
these workloads is very appealing to increase ROI, but
it is quite challenging given the available scheduling in-
frastructures.

Resource Managers.
On the other end, all popular big-data systems today

[23, 37, 41, 2], provide only time-oblivious mechanisms
(queues/pools/priorities) to share cluster resources. Con-
sequently, mapping time-varying phenomenon in terms
of static notions of capacity, fairness, or priority, im-
poses an uncomfortable trade-off between consistency

in satisfying user expectations (latency and deadlines)
and cluster utilization. For instance, peak-provisioning
and static partitioning of resources will satisfy the users
by delivering very predictable executions but at a very
high cost, while high-utilization and soft-boundaries can
lower costs, by hoping for acceptable average behaviors.

For completely malleable jobs such as MapReduce the
situation is dire but bearable, as the job’s natural flex-
ibility and fault-tolerance can be leveraged to find us-
able compromises. Things get unsustainable when try-
ing to consolidate workloads that include big production
pipelines or jobs with gang-requirements—an unfortu-
nately common scenario. We show why this is prob-
lematic by: 1) analyzing the over-provisioning needs of
two Microsoft production workflows, and 2) running Gi-
raph (gang requirements) with and without dedicated
resources.

Production workflows.
Production workflows are characterized by extreme

peak-to-average ratios [18, 8], which combine poorly
with the static resource allocations mechanisms. To
guarantee that SLAs will be met cluster operators are
forced to peak-provision. This means that vast amount
of resources are dedicated to a pipeline, even though
they are not needed most of the time. This is shown in
Figure 3 for two very large production pipelines from
Microsoft clusters, which show high peaks separated by
long periods of low utilization. The unused resources
can be tentatively allocated to run other jobs, but with
very little promises in terms of predictability. The only
alternative is to leave resources fallow. Neither is satis-
factory for large production pipelines.

Gang semantics.
To further investigate some of the difficulties of con-

solidating modern workloads, we run a simple PageR-
ank computation using Apache Giraph [1] on top of
YARN. Figure 4 shows that when resources are stat-
ically provisioned for this job, their acquisition by the
job happens quickly and execution runtime is low and
predictable (dashed-line on left). The same figure also
shows the results of a Giraph without dedicated re-
sources and in the presence of another job. When these
jobs are run concurrently, since Giraph does not have
dedicated allocation, it is forced to “hoard” resources to
fulfill its gang requirement, only at this point the actual
computation can start. The hoarding is due to the fact
that the scheduler assigns resources to the job as they
become available (e.g., are released by other jobs), and
has no understanding of the gang nature of the request.
This leads to: 1) increased and unpredictable runtimes,
2) wasted resources during hoarding (grayed-out area),
and 3) risk of deadlocks among multiple gang jobs (not
shown). The magnitude of these effects increases as
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clusters get busier.
Handling such mixed workloads today requires signif-

icant over-provisioning and frequent manual interven-
tion. This is already problematic for on-premise clus-
ters and will be exacerbated by public-cloud, big-data-
as-a-service environments, where small groups of inter-
nal users are replaced by a crowd of paying customers,
and informal expectations evolve into contractual obli-
gations.

All of the above points to the need for a framework
capable of supporting:

1. complex workloads: handling flexible and gang
jobs, and arbitrary pipelines with inter-stage de-
pendencies;

2. production SLAs: predictable execution and com-
pletion times for production jobs;

3. best-effort jobs latency: optimized scheduling
to lower latency for interactive, ad-hoc jobs;

4. cluster throughput: dense packing of jobs to
increase utilization, and thus ROI.

In Section 7, we discuss how the extensive prior work
[41, 23, 37, 2, 40, 3, 38, 42, 18, 17, 29, 27, 43] has
tackled different subsets of this problem, and how many
practical workaround have been attempted. To the best
of our knowledge, Rayon is the first system to provide
a practical infrastructure designed to address all of the
above.

Next we introduce the notion of reservation, and our
reservation language.

3. RESERVATION
As mentioned above, the types of computations that

are run on modern big-data clusters have diversified
from MapReduce jobs to interactive analytics, stream
and graph processing, iterative machine learning, MPI-
style computations [13, 10, 11], and complex workflows
(DAGs of jobs) leveraging multiple frameworks [8, 39].
Moreover, the consolidation of clusters means that pro-
duction jobs with strict deadlines will be run together
with latency critical best-effort jobs. In this section,
we focus on designing a reservation definition language
(RDL) capable of expressing the above.

We distill the following key requirements:

R1 malleability for batch jobs (e.g., MapReduce)

R2 strict parallelism and continuity for gang jobs (e.g.,
MPI)

R3 explicit temporal requirements (i.e., SLAs).

R4 precedence constraints (dependencies) among jobs
that comprise a pipeline (e.g., Hive, Oozie, Azka-
ban)

R5 expose all of the placement flexibility.

This set of requirements captures most of the practi-
cal scenarios we encountered. We formalize RDL next.

3.1 Reservation Definition Language (RDL)
An RDL expression can be:

1. An atomic expression of the form atom(b,g,h,l,w),
where: b is a multi-dimensional bundle of resources2

(e.g., <2GB RAM, 1 core>) representing the“unit”
of allocation, h is the maximum number of bun-
dles the job can leverage in parallel, g is the min-
imum number of parallel bundles required by the
job; a valid allocation of capacity at a time quanta
is either 0 bundles or a number of bundles in the
range [g, h]. l is the minimum lease duration of
each allocation; each allocation must persist for at
least l time steps, and w is the threshold of work
necessary to complete the reservation (expressed
as bundle hours); the expression is satisfied iff the
sum of all its allocations is equal to w. In Fig-
ure 5a, we show an example of atomic expression.

2. A choice expression of the form any(e1, . . . , en).
It is satisfied if any one of the expressions ei is
satisfied.

3. A union expression of the form all(e1, . . . en). It
is satisfied if all the expressions ei are satisfied.

4. A dependency expression of the form order(e1, . . . , en).
It is satisfied if for all i the expression ei is satis-
fied with allocations that strictly precede all allo-
cations of ei+1.

5. A window expression of the form window(e,s,f),
where e is an expression and [s, f) is a time inter-
val. This bounds the time range for valid alloca-
tions of e.

It is easy to see that RDL allows users to express
completely malleable jobs such as MapReduce (by set-
ting g = 1 and l = 1) and very rigid jobs such as
MPI computations requiring uninterrupted and concur-
rent execution of all their tasks (by setting g = h and

2This match closely YARN containers [41], and multi-
resource demands of [21].
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l = w/h)—requirements R1, R2. The window operator
allows to constrain the interval of validity of any sub-
expression, its natural application is to express comple-
tion deadlines—requirement R3. Users can represent
complex pipelines and DAGs of jobs in RDL using the
order,all—requirement R4. The any operator allows
to express alternative options to satisfy a single reser-
vation.

Note that RDL expressions typically admit multiple
solutions for a given plan—requirement R5. Choosing
between equivalently valid allocations is a prerogative
of the Planning phase (discussed in Section 4), which
leverages this flexibility to optimize system-wide prop-
erties such as efficiency of resource utilization, fault re-
silience, etc.

Finally, while best-effort jobs do not participate in the
reservation process they could be formally represented
by a void atomic expression atom(b,1,h,1,0), which
is trivially satisfied; Such void expression provides no
“guaranteed” access to resources, as w = 0, but only
best-effort access to idle resources.

Example: A production workflow.
We illustrate the use of RDL with the hypothetical

production workflow of Figure 5 (b). This workflow is
composed of three jobs, two malleable batch jobs {A,B}
(e.g., MapReduce), and one {C} with a gang require-
ment (e.g., Giraph [1]). C execution depends on the A
and B.

The input data become available at time s and the
production workflow has a completion deadline of f . In
this example C depends on the output of both A and
B. Working top-down, we start by imposing the overall
temporal constraints, by means of an outermost win-

dow expression such as: window(e,s,f), where e will be
the sub-expression capturing the three jobs work and
dependencies. Note that: 1) A and B can run con-
currently, and 2) C can start only after A,B complete
their execution (i.e., after their entire allocations). This
is expressed in RDL as e = order(all(eA,eB),eC).
Figure 5 (b) shows the expression that describes all the
temporal constraints and dependencies for this pipeline.

Next we turn our attention to defining the atomic ex-

pression for each job: {eA, eb, eC}. The first two jobs
are malleable so gA and gB are set to 1, and hA and
hB to the maximum number of tasks that can be run
in parallel (e.g., max of number of maps and reduces).
C has gang requirements so gC = hC and it is set to
the exact number of tasks that the job needs to run.
Similarly lA and lB are set to the expected run-time of
each task (e.g., 99th percentile of expected maps/reduce
duration) to guarantee that most tasks can complete
within their guaranteed allocation, while tC correspond
to the overall duration of the job (gang semantics over
time). The values of wA, wB , wC are set to the over-
all expected computation time required by each job.
Section 3.1 provides insight on the resource definition
problem, i.e., on how to derive RDL expressions for job-
s/workflows.

RDL completeness and limitations.
We do not make completeness claims about the RDL

language, but we find it sufficient to naturally capture
all common practical scenarios we encountered. We
broadly validated this claim by socializing our language
design with the Apache Hadoop community (a large
group of users of big-data systems), as part of Rayon’s
open-sourcing. In general, we found strong support for
using RDL as the reservation language for Hadoop. An
existing limitation of RDL is the lack of support for rel-
ative time constraints, and periodic expressions. We are
considering to extend RDL based on user feedback.

That is, RDL has no native support to express: “I
want to run 5 min after the end of this job”, or “I want
to run this job once every exactly 24h, whenever dur-
ing the day”. These can be encoded (in cumbersome
ways) by leveraging several any, and (absolute time)
window operators, unrolling the periodicity where nec-
essary. While we are aware of this limitation, we plan to
extend RDL only in response to a clear demand from
users for this feature. Note that extending RDL can
be done by introducing new expression keywords, and
define their semantics.

Deriving RDL from user jobs. We conclude this section
by discussing how users (or tools on their behalf) can
derive RDL expressions for their jobs. Most production
jobs naturally fall into one of the following well behaved
categories:

1. High-level frameworks: Despite the diversity of
workloads a significant fraction of production jobs
are generated by a handful of frameworks such as
Hive, Pig, Giraph [13, 10, 11]. This gives us an
opportunity to build profilers and optimizers ca-
pable of automatically producing precise resource
demands for queries/jobs by leveraging the appli-
cation semantics [42, 18, 16, 27, 17, 34]. In par-
ticular, we extended [16] to generate RDL expres-
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sions from Hive and MapReduce jobs, and we are
currently collaborating with the authors of [34] to
port their Giraph-centric solution to Rayon. We
plan to report on this in follow up work.

2. Carefully analyzed jobs: An important class of jobs
are machine learning computations (e.g., for spam
filtering, advertisement, or user modeling). We
gather anectodically that data scientists routinely
perform careful analysis of their data and iterative
algorithms to secure sufficient resources to meet
their deadlines. This happens today by means
of painfully negotiations with cluster operators to
tune schedulers and carefully timing job submis-
sions. We test experimentally with a group of
practitioners, the feasibility of this analysis—Section 6.2.

3. Periodic jobs: Production jobs are often canned
computations, submitted periodically [18, 13]. This
makes them amenable to history-based resource
prediction [36]. We informally validate this by run-
ning seasonality detection and building predictors
for workflows from internal Microsoft clusters. We
report on this in Section 6.2.

4. Services and time-evolving manual provisioning :
Finally a special case of periodic reservations are
services. These are conceptually long-running jobs
with resource needs that fluctuate based on the ex-
ternal traffic they are serving. One such example
is Linkedin’s stream-processing system Samza 3.
We gathered that these systems are typically peak-
provisioned today, but that their predictable ebbs
and flows could be translated naturally in time-
evolving RDL requests. Socializing RDL with the
OSS community we gathered interest in using it
as a dynamic provisioning tool to provide time-
evolving allocations to different groups of users
(e.g., data scientists get unrestricted access to the
cluster during the day, but batch jobs have exclu-
sive rights at night). All of above amounts to an
informal but promising validation of RDL practi-
cality.

Compiling RDL: normalization and optimization. RDL
expressions are processed by a compiler/optimization
layer we purpose built. Our compiler automatically
verifies simple satisfiability, and validity of the RDL ex-
pressions, and can detect infeasibility at the single RDL
expression level (e.g., if the time, parallelism constraints
admit no solution). Moreover, we leverage this compiler
infrastructure to normalize and optimizes the input ex-
pressions, by applying a series of semantics-preserving

3See http://incubator.apache.org/projects/samza.
html.
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transformations such as: 1) redundant operators re-
moval (e.g., order(order(a1,a2),order(a3,a4)) is sim-
plified to order(a1,a2,a3,a4)), 2) unification of com-
patible atomic expressions (e.g., all(atom(b,1,1,1,1),
atom(b,1,1,1,1)) can be turn into atom(b,1,2,1,2)),
and 3) operators re-ordering (push-down of window op-
erators. (by intersecting time ranges), and leveraging
the distributive nature of any. This process gives users
complete freedom in expressing their requirements with
RDL, but simplifies and accelerates our placement al-
gorithms. , and can reduce their runtime by providing
more compact/linear RDL expressions. The compiler
produces an internal AST representation, that is used
to generate the MILP formulation we discuss next, as
well as, structured and normalized input formats to the
heuristics of Section 4.2.

4. PLANNING
The RDL expressions define the temporal resource

needs of jobs. Planning the cluster’s agenda involves
constructing a temporal assignment of cluster resources
to jobs such that each job’s RDL expression is satisfied.
Given the expressivity of RDL this planning problem
has inherent bad complexity. Formally:

Theorem 4.1. The problem of determining whether
N RDL expressions can be accepted in a given size clus-
ter is NP-complete.

This is proven by polynomially reducing RDL planning
to the known NP-Complete problem of Job-Shop [20].

Sketch of Proof. Given a job-shop problem with
N jobs and M machines, we represent each job as an
atomic RDL expressions < 1, 1, w, w >, where w is the
job duration, and try to assign all jobs in an inventory of
capacity M and time-horizon t. If an allocation is (not)
found we (increase) decrease t until we find the smallest
inventory that fits all the jobs. This is the solution of
the original NP-problem. Since it took us polynomially
many applications of our problem to solve a known NP
problem, our problem must also be NP.

We formalize such planning as a combinatorial opti-
mization problem (Section 4.1). The resulting formu-
lation is a Mixed-Integer Linear Program (MILP) that
covers all features of RDL (and can be generated by our
compiler).
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4.1 Formalizing planning as an optimization
problem

For the sake of presentation we omit the nesting prop-
erties of RDL and introduce the model progressively.

Basic formulation. We use variables xjt to represent
the resources allocated to job j during time step t. Us-
ing these variables, we can formulate linear inequalities
to assert packing and covering constraints on feasible
allocations, and define a objective function as follows:

minimize
∑
j,t

cjt ∗ xjt

subject to:

∀t :
∑
j

xjt ≤ Capt (1)

∀j∀t : xjt ≤ hj (2)

∀j :
∑

sj≤t<fj

xjt = wj (3)

∀j, t : xjt ∈ R+ (4)

where, the allocation of xjt are positive real variables
(4) subject to the following constraints:

(1) capacity constraint : at every time t the sum of
allocations must be within the physical cluster ca-
pacity4,

(2) parallelism constraint : the resources allocated to a
job are bounded by the job’s maximum parallelism
hj , and

(3) demand constraint : the resources allocated between
a job’s start and completion time satisfy its de-
mand wj .

This formulation covers atom expression in RDL (ex-
cept gang semantics discussed next), and window oper-
ators. In this basic formulation, the model is infeasible
if all jobs cannot be fit. We address this issue in Sec-
tion 4.1.1. Subject to these constraints we minimize the
cost of the overall allocation, expressed as a weighted
sum over all allocations. cjt captures the cost of assign-
ing capacity to job j at time t. Therefore, controlling
the assignments of cjt allows us to: 1) prioritize allo-
cations of jobs, and 2) make certain time periods more
expensive. To cover the full semantics of RDL’s atom

operator we extend our basic formulation as follows.

Supporting gang semantics g. We support gang seman-
tics by changing (4) for the set of jobs with gang seman-
tics as:

∀j /∈ Gang, ∀t : xjt ∈ R+ (5)

∀j ∈ Gang, ∀t : xjt ∈ {0, gj , 2gj , 3gj , . . . , hj} (6)

4We simplify our multi-resource formulation for the sake of
presentation.
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Figure 7: Preemption of our allocations.

where Gang is the set of jobs with gang semantics,
i.e., j ∈ Gang ⇐⇒ gj > 1. Assuming hj is an ex-
act multiple of gj (6) above forces allocations to respect
the gang requirements. Supporting gangs, as well as
order, any, forces our problem in Mixed-Integer Linear
Programming (MILP) territory. We quantify the com-
putational cost of dealing with integrality in Section 6.3.

Supporting minimum lease duration l. The minimum
lease duration requirement expresses the need for al-
locations that last at least l time steps. We start by
assuming full rigidity, i.e., gj = hj and lj =

wj

hj
. Un-

der this assumption every valid allocation must have
exactly one transition up from 0 to gj and after l time
steps exactly one transition down from gj to 0. We
can force allocations to assume this shape, by intro-
ducing a set of support variables yjt bound to assume
the absolute value of the discrete derivative of xjt, i.e.,
yjt = |xjt − xj(t−1)|, and then constrain their sum to
allow only one transition up and one down:

∀j∈Gang

∑
t

yjt ≤ 2 ∗ gj (7)

This combined with (3) and (6) forces each allocation
to last precisely l time steps. Note that the absolute
values can be linearized , by expressing them as:

∀j∀t : yjt ≥ xjt − xj(t−1) (8)

∀j∀t : yjt ≥ xj(t−1) − xjt (9)

This works because we are minimizing yjt, and only
one of the constraints (8) or (9) will be active for any
given assignment of xjt and xj(t−1). The full rigidity
assumption we made on the atom expressions (gj = hj
and lj =

wj

hj
) can be lifted by means of RDL rewriting.

Our compiler automatically rewrites each atom expres-
sion that requires gangs but is not fully rigid in a more
complex all(order(..., ai, ...)

∗) expression where each
of the ai atoms is fully rigid.

Note that even ignoring the integrality of (6), the con-
straints (8) and (9) have negative coefficients, therefore
we cannot use the fast solver techniques applicable to
classical packing and covering constraints [44].
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Supporting any and all. The RDL any operator allows
us to express that two (or more) sub-expressions are al-
ternatives, where the system is free to pick one. We
capture each sub-expression as a separate job in the
formulation, and then constrain their placement. To
support this we employ a classical trick in optimiza-
tion, which is to introduce a slack/overflow variable xjo
for each job in constraint (2). We then introduce an
integral variable oj that is set to 1 if xjo is greater than
zero, as follows:

∀j : xjo +
∑

bj≤t<ej

xjt = wj (10)

∀j : oj >
xjo
wj

(11)

Intuitively, if oj is equal to 1 the corresponding job
j (one of the any alternatives) is not placed. We then
impose that for k jobs tied by a single any expression
all but one of the oj to be 1. This forces the solver to
pick exactly one of the any alternatives. The same can
be done for all, simply forcing the sum to zero (i.e.,
all the jobs must be placed)—the need for this will be
apparent later.

Supporting order. RDL allows us to express tempo-
ral dependencies among allocations: order(e1, . . . , en).
The intuition behind supporting this in our MILP for-
mulation is to define, a set of support variables sjt and
fjt, that represent the “start” and “finish” of each sub-
expression j′, j′′, and then impose that allocations of
j′′ start after allocations of j′ finish. This is achieved
by constraining the relative values of sj′′t and fj′t.

This newly introduced variables must be integral, with
sjt transitioning from 0 to 1 at the first non-zero alloca-
tion of xjt, and fjt transitioning from 1 to 0 at the last
non-zero allocation for xjt. This is shown pictorially in
Figure 6, and defined formally as:

∀j∀t : sjt ≥ sj(t−1) (12)

∀j∀t : sjt ≥
xjt
hj

(13)

∀j∀t : fjt ≥ fj(t+1) (14)

∀j∀t : fjt ≥
xjt
hj

(15)

∀(j′, j′′) ∈ D ∀t : sj′′t ≤ 1− fj′t (16)

∀j∀t : sjt, fjt ∈ {0, 1} (17)

where D is the set of dependencies. Note that to
express ordering among jobs with different max paral-
lelism hj , we normalize constraint (13) and (15), and
impose integrality (17) for sjt and fjt. Finally, con-
straint (16) imposes that the first non-zero allocation

of j′′ must happen after the last non-zero allocation for
j′. Supporting order substantially increases the num-
ber of integral variables and constraints, and we will see
is a key limiting factor for the practical use of our MILP
formulation.

For the sake of presentation we omitted the nesting
features of RDL, but we describe intuitively what our
compiler does as follows: after flattening our expression
as much as possible, via rewritings, the compilers gen-
erates support variables summarizing the allocations of
each sub-expression. These used at the higher level of
nesting to express dependencies among allocations of
the sub-expressions. This is akin to the use of support
variables for any, all and order.

4.1.1 Improving our formulation
What we discussed so far covers the semantics of

RDL, now we turn to improving the quality of our solu-
tions by capturing important practical considerations.

Minimizing preemption. We focus on improving the qual-
ity of the allocations, by extending our objective func-
tion. To this purpose we look at the effect on the un-
derlying systems of different allocations. When the plan
allocations change drastically from one time step to the
next, the underlying system must quickly redistribute
the physical resources among jobs. This requires the
use of preemption [12, 41], and incurs overhead. We
minimize abrupt vertical transitions by introducing a
term

∑
jt yjt in our objective function, i.e., minimiz-

ing the absolute value of derivatives. Figure 7 shows
the improvement delivered by this addition by running
a commercial solver on a 3-job instance of this MILP
formulation. As expected, the resulting allocations are
“smoother”, and thus less prone to preemption.

Avoiding infeasible models. The formulation we described
so far requires that every job is assigned by its dead-
line. This can be troubling, as an MILP solver would
return an infeasible model error if it cannot place all of
the jobs. Pragmatically we expect this to happen fre-
quently, and prefer a more graceful degradation, where
as many jobs as possible are placed, and only few re-
jected. We leverage the notion of overflow variables we
introduced to support the any and all semantics, but
instead of imposing a hard constraint on the sum of the
oj we modify the objective function. We make it very
expensive to use the overflow variables by adding the
following term to our objective function:

∑
j αj ∗ oj ,

with αj being a weighting factor that describe how bad
it is to reject job j—this could be proportional to job
size, or a notion priority if such information is available.
Any αj > wj guarantees that all jobs that can fit will
be allocated. This prevents the problem from becoming
infeasible, and we experimentally observed a more pre-
dictable solver runtime. To properly count any or all
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Figure 8: Visualizing GREE and GREE-L allo-
cations.

violations we introduce support variables to properly
count violations.

4.1.2 Discussion
Rayon makes use of planning in two ways: online,

to commit to accept/reject jobs on arrival (i.e., as soon
as their reservation requests are received), and offline,
to reorganize sets of (already accepted) jobs, optimiz-
ing their allocations, possibly in response to changing
cluster conditions.

The MILP formulation discussed so far is a useful for-
mal tool, and by leveraging powerful commercial solvers
(such as Gurobi [33]) we use it to study the solution
space. However, it is not practical for online scenar-
ios, and cannot scale to large problem sizes. This is
due to the corresponding explosion of the number of
variables and constraints. The practical limit, even for
offline uses, is hundreds of atom expressions, or tens
of complex order,any,all expressions. Furthermore,
there are prior impossibility results on designing opti-
mal algorithms for commitment on arrival scheduling
problems [29]. For these reasons, we focus on greedy
heuristics next.

4.2 Greedy Heuristics
The algorithms we present are greedy in two dimen-

sions. First, they place one job at a time, and never re-
consider placement decisions for previously placed jobs.
Second, as they traverse an RDL expression, sub-expressions
are placed with no backtracking. This has some impact
on the number of jobs these policies can accept, but
placement is scalable and fast. We study this trade-off
experimentally in Section 6.3.

Procrastinating heuristic (GREE). Our first placement
heuristic places a job as close to its deadline as it can,
as shown in Figure 8. This is done by traversing the

Algorithm 1: GREE-L (low preemption greedy)

Input: Plan p, RDL e, TimeInterval ti
Result: An assignment of e in p
switch e.type do

case (window)
GREE-L (p,e, ti ∩ e.window);

case (all,any,order)
foreach (RDL subExpr : reverseChild(e)) do

TimeInterval lti = guessInterval(subExpr);
GREE-L (p,subExpr,lti);

return p.curAlloc;
case (atom)

foreach Time t:ti do
p.assign(e,ti,e.w/ti.length);

return p.currAlloc;

AST representation of the RDL expression of each in-
put job in a one-pass, right-deep, depth-first fashion.
Each sub-expression e is placed (compatibly with its
constraints and space availability) as late as possible.
To place an atomic allocation we scan the plan right to
left and track the maximum available height (up to h)
and the most constrained point in time tlim. When we
reach l consecutive instants in time where the height
of the allocation exceeds g, we allocate this portion of
work. If work remains to be allocated, we restart the
search at tlim−1. Intuitively, this finds the tallest, right-
most allocation for this plan that is compatible with the
expression constraints. We enforce order constraints
by updating the time range in which we place preced-
ing atomic expressions. For any expressions we behave
greedily and accept the first alternative that fits (and
never backtrack).

Allocating “late” may appear counter-intuitive (why
would one allocate late when the job might fit in earlier
parts of the plan? ). In practice, this policy improves
the chances of jobs that show up late but have an early
deadline to be placed, and works surprisingly well in
coordination with the underlying adaptive scheduling
mechanisms that we discuss in Section 5. In fact, the
allocations produced by the planner prescribe the guar-
anteed access to resources for a job, while the underlying
adaptive scheduler allows jobs to exceed their guaran-
teed allocations if there are idle resources (redistribut-
ing resources based on weighted fairness). We show in
Figure 9, by placing an three stages order RDL ex-
pression, and running it in a cluster with lots of idle
resources.

window(
order(
atom(b,1,10,240,2400),
atom(b,1,20,120,2400),
atom(b,1,15,120,1800)
),0,800)

When running many best-effort and SLA jobs in a
cluster the effect of this lazy planning and eager schedul-
ing is to give good latency to best-effort jobs, while still
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Figure 9: Allocating late and running early.

meeting all SLAs—we evaluate these claims experimen-
tally in Section 6.4.

Lower preemption heuristics (GREE-L). As we show in
Figure 7(b), smoother allocations are preferable as they
incur less preemption. GREE is rather bad from this
point of view, as it tends to produce“tall and skinny”al-
locations. We thus propose GREE-L a variant of GREE
that trades jobs’ acceptance in exchange for reduced
preemption. The pseudo-code for the GREE-L algo-
rithm is shown in Algorithm 1.

The guessIntervals function divides the valid time for
each expression into K time intervals (one for each child
expression). Like GREE, the traversal proceeds right
to left (reverseChild), but assignment is done for the
atom expressions such that the allocation is as “flat” as
possible throughout the heuristically selected interval.
We show this in Figure 8. Each time an expression is
placed, the sub-intervals are recomputed (redistributing
the left-over space).

For presentation sake we do not show rejections in Al-
gorithm 1. They match the obvious semantics of opera-
tors described in Section 3.1. GREE-L rejects more jobs
than GREE because it does not backtrack when allocat-
ing flatter reservations in the plan; its subsequent place-
ment of early stages may be infeasible, due to sparser
use of the area closer to the deadline.

Note that both GREE and GREE-L might reject jobs
that the MILP formulation accepts, as they do not con-
sider moving previously accepted jobs or stages. On the
other hand, they are very fast and scalable and accept
a competitive fraction of production jobs, as illustrated
in Section 6.3.

5. ADAPTIVE SCHEDULING / RAYON AR-
CHITECTURE

In this section, we describe an architecture for a fully
functional big-data system that leverages RDL and the
Planning algorithms of Section 4. We also present a
form of Adaptive Scheduling designed to cope with prac-
tical concerns that emerge from real-world scenarios, in-
cluding: scaling to thousands of machines and hundreds
of thousands of daily jobs, supporting user quotas, and
handling of failures, mispredictions, and systematic bi-
ases. We describe the architecture in general terms
(Section 5.1), but the reader familiar with any mod-

ern big-data system (YARN, Mesos, Omega, or Corona)
should notice obvious similarities to those architectures.
We make them explicit in Section 5.2 where we cast our
design as an extension of YARN [41].

5.1 Design
With reference to Figure 10, the architecture we pro-

pose contains the following components: 1) a central
resource manager arbitrating the allocation of physical
resources to jobs, 2) node managers running on each
worker node, reporting to the resource manager liveness
information and enforcing access to local resources, and
3) per-job job managers negotiating with the resource
manager to access resources on the worker nodes, and
orchestrate the job’s execution flow5.

Following Figure 10, we present the next level of de-
tail by discussing the steps involved in running produc-
tion (and best-effort) jobs:

Step 1 The job manager estimates the demand generated
by a production job (see Section 3.1) and encodes
its constraints as an RDL expression, submitted to
the resource manager at reservation time.

Step 2 The Planning component of the resource manager
maintains a Plan of the commitments made on
cluster resources by tracking all admitted reser-
vations. This component leverages a set of plug-
gable placement policies (i.e., the MILP, GREE
and GREE-L algorithms of Section 4), to deter-
mine whether and how the RDL expression can fit
in the current Plan.

Step 3 The resulting allocation is validated both against
physical resource constraints and sharing policies.
Sharing policies enforce time-extended notions of
user quotas.

Step 4 The user receives immediate feedback on whether
the RDL request is accepted. Requests accepted
by Rayon receive a reservation ID, which is a han-
dle to the allocation in the Plan. Accepted RDL
expressions are tracked by the Plan, and define
a contract between users and the system. The
system will fulfill this contract by providing pre-
dictable resource allocations that match the reser-
vation, absent unforseen changes in cluster capac-
ity.

Step 5 The Scheduler is in charge of dispatching resources
to jobs, tracking detailed locality preferences, and
enforcing instantaneous invariants such as fairness,
capacity and priorities. A component called Plan-
Follower, monitors cluster conditions and trans-
lates the absolute promises we made in the Plan

5Note that the architecture, like any modern big-data
system, allows for arbitrary application frameworks (e.g.,
MapReduce, Giraph, Spark, REEF).
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to the relative terms of the underlying Scheduler
(e.g., increasing a jobs’ priority).

Step 6 When a job starts its execution, the runtime com-
ponent of the job manager requests resources based
on instantaneous needs from the job. Production
jobs specify their reservation ID, and the Sched-
uler guarantees that they will receive at least the
resources reserved for that contract. Idle resources
are redistributed according to fairness/capacity se-
mantics [21, 41] among both production and best-
effort jobs. More precisely, resources are given to
best-effort jobs as quickly as possible, to improve
their latency, and to currently allocated produc-
tion jobs. If further resources are idle, work from
later reservation can be anticipated, thus easing
pressure on resources at later times and keeping
the cluster highly utilized.

Step 7 The job manager receives access to resources and
proceeds to spawn the tasks of the job as processes
running on the worker nodes controlled by the node
managers.

Step 8 The adapter and the PlanFollower of Step 5 are
a key component of our adaptive scheduling ap-
proach. The adapter dynamically rearranges the
Plan in response to changes in cluster capacity
(node failures or additions). This runs the Plan-
ning algorithms in an offline mode, where all ac-
cepted jobs are placed in the Plan anew. The
adapter is also in charge of correcting for imper-
fections of the scheduling stage (e.g., a bias against
large processes, leading to worse scheduling latency)—
see Section 5.2.

Repeat During job execution job managers might detect
that the application-level progress is happening
faster/slower than foreseen at reservation time, and
wish to change its reservation. The API we expose
to the job manager allows for dynamic renegotia-
tion of reservations, subject to the same validation

process—this means repeating steps 1-5 to update
an existing reservation.

In the preceding, every RDL expression is associated
with a single job. More generally, each RDL reservation
can support a session accepting an arbitrary number of
jobs while it is active in the Plan (i.e., multiple rounds
of steps 6-7 coming from different job managers sharing
the same reservation ID). Next, we discuss how this ar-
chitecture is implemented in the YARN codebase and
provide details on the PlanFollower, Adapter, and Shar-
ing policies.

5.2 YARN-based implementation
The structure of our architecture is largely compat-

ible with each of the recent big-data systems [41, 23,
2, 37]. We chose YARN [41] as the starting point for
our implementation due to its popularity, availability
as an open-source project, and our familiarity with the
platform6.

Background. YARN is structured similarly to what we
propose, with a central ResourceManager, NodeMan-
agers on each node, and Client and ApplicationMasters
(collectively achieving what we describe as a job man-
ager). The YARN’s ResourceManager provides to alter-
native implementations of a Scheduler, the FairSched-
uler and CapacityScheduler. They provide instanta-
neous allocation of resources among jobs, enforce fair-
ness and capacity invariants, and thrive to maximize
cluster throughput and locality affinity for tasks. Both
provide the notion of queues as a way to partition re-
sources among different groups of users. We extend and
leverage this to implement adaptive scheduling.

Protocol and architectural changes. In order to sup-
port Step 1 and Step 4 we modify YARN’s application
submission protocol, by introducing four new APIs for
reservation:

YARN Protocol Extension
API call return value
createRes(ResDefinition rdl) ResID

updateRes(ResID curRes, ResDefinition rdl) boolean

deleteRes(ResID curRes) boolean

listRes(UserID userResID) List<ResID>

This allow users and tools to reserve resources ahead
of execution, and to dynamically update this reservation
(i.e., the renegotiation steps discussed above). In or-
der to support this new API, we extended YARN’s Re-
sourceManager substantially, by introducing the Plan-
ning layer of Figure 10 a new component to the YARN’s
architecture. This includes a scalable representation of
a Plan (capturing allocations in a compact run-length
6We leverage our experience with the codebase and the prior
work on preemption [41] that we integrated and contributed
to Apache.
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encoded form), and fast implementations of GREE and
GREE-L for online acceptance of RDL expressions (Step
2 ).

Sharing Policies. The notion of sharing policy is de-
rived from conversations with professional cluster ad-
ministrators that expressed the need to govern and bound
the freedom given to users by RDL. Without a shar-
ing policy (such as user quotas), Rayon would allow a
user to ask for arbitrary allocations of resources, sub-
ject only to physical constraints. These policies are
pluggable, and we provide a first implementation that
extends the classical notion of capacity to express con-
straints over the both integral and instantaneous re-
sources. Such policy allows the cluster administrator to
cap the amount of resources a user can ask both instan-
taneously (e.g., no user can exceed 20% cluster capac-
ity) and as an integral (e.g., the sum of all resources
allocated to a user over any 24h period of time should
not exceed an average of 5%). By tuning the policy the
administrator can range from unconstrained sharing to
a strict static allocation of capacity to users.

PlanFollower. Both Planning and Scheduling track re-
source availability and job demand, but they do so in
substantially different ways. Planning provides an ex-
plicit notion of time, manages demands at the job level,
and resources as an undiversified continuum. In con-
trast, Scheduling focuses only on the current slice of
time, but handles demands at a task level and resources
at a node level. This two-level view is a fundamen-
tal design point to limit the complexity of each compo-
nent. On a large cluster we would otherwise explicitly
plan the allocations of millions of tasks on thousands
of nodes over thousands of time instants. The PlanFol-
lower (Step 5) is the key to translate between these two
worlds. Mechanically the PlanFollower runs on a timer,
reads the Plan current state and updates the Sched-
uler configuration to affect the resources that will be
given to each job during Step 6 and Step 7. In YARN
this required us to modify the CapacityScheduler and
FairScheduler to allow for dynamic creation/destruc-
tion/resizing of queues—YARN’s mechanism to parti-
tion resources among user groups [41].

Adapter. Planning the use of future resources is at odds
with the reality of fast-evolving conditions in large clus-
ters (frequent node failures), errors in the user supplied
reservation requests, and imperfections in the underly-
ing infrastructure. In our implementation, we cope with
this by implementing the Adapter component of Step
8. This consists of a software module actively moni-
toring the cluster conditions, comparing them with the
expectations we have on future resources, and triggering
re-planning actions as required. A common scenarios is

one in which we committed all the resources of a 100 ma-
chine cluster over the next few hours, but an unplanned
rack failure has reduced the available capacity to 80 ma-
chines. The adapter triggers a replanning (e.g., a run
of the MILP formulation) that tries to redistributed the
same load over a longer period of time given the reduced
capacity, and might a-posteriori reject reservations that
cannot be fit anymore.

The adapter is also in charge to cope with system-
atic biases, such as scheduling delays for large tasks (a
known limitation of the CapacityScheduler [41]). For
example it is well known that the schedulers of YARN
incur higher delays in scheduling large tasks than small
ones (harder to find a large amount of contiguous re-
sources). The adapter continuously monitors this schedul-
ing delay for all task sizes, and adjust for it, by antici-
pating and increasing the allocations of jobs that require
large tasks.

6. EXPERIMENTAL EVALUATION
In this experimental evaluation we validate our hunches

on RDL expressivity and usability (Section 6.2), ana-
lyze the quality and complexity of Planning, compar-
ing our MILP formulation and greedy algorithms (Sec-
tion 6.3), and test our end-to-end design on a large and
busy 256 machines cluster, comparing it against stock
YARN on previously published workloads [10, 11] and
production jobs from Microsoft clusters (Section 6.4).

The key insight we obtain can be summarized as fol-
lows:

1. RDL naturally is a practical and reasonably easy
to use language;

2. for large clusters, our greedy algorithm GREE-
L matches the quality of solutions of MILP (i.e.,
high job acceptance rates, and low preemption).
GREE-L is up to 5 orders of magnitude faster than
MILP while placing complex workloads.

3. Adaptive scheduling allows us to achieve cluster
utilizations approaching 100%.

4. Rayon reliably meets the SLAs of 100% of accepted
jobs, improves throughput by 15% and delivers
better latency to 40% of best-effort jobs.

These results are due to two main factors: 1) by in-
troducing the notion of reservation-based scheduling, we
arm Rayon with inherently more information about the
jobs it runs, and 2) our algorithms and system imple-
mentation leverage this advantage effectively.

Therefore we conclude that: Introducing an explicit
representation of time, reservation-based scheduling sig-
nificantly improves predictability in running a mix of
production and best-effort jobs, enabling cluster opera-
tors to make promises on jobs’ allocation over time.
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Figure 11: Job distribution for duration, total
slot time, parallel capacity, and deadline slack.

6.1 Experimental setup
Our experimental setup comprises of (1) cluster con-

figuration and the software we deployed and (2) work-
loads used for the evaluation.

6.1.1 Cluster setup
Our large experimental cluster has approximately 256

machines grouped in 7 racks with up to 40 machines/rack.
Each machine has 2 X 8-core Intel Xeon E5-2660 pro-
cessors with hyper-threading enabled (32 virtual cores),
128GB RAM, 10Gbps network interface card, and 10 X
3-TB data drives configured as a JBOD. The connectiv-
ity between any two machines within a rack is 10Gbps
while across racks is 6Gbps.

We run Hadoop YARN version 2.x with our modi-
fications for implementing Rayon. We use HDFS for
storing job input/output with the default 3x replica-
tion. We use a Gurobi 5.6 parallel solver [33] running
on a 128GB RAM, 32 cores server, whenever a MILP
solver is needed.

6.1.2 Workloads
To evaluate our system we construct synthetic work-

loads that include 1) jobs with malleable resource needs
(e.g., MapReduce jobs), 2) jobs with gang-scheduling re-
source needs (e.g., Giraph graph computations), and 3)
workflows with time-varying resource needs (e.g., Oozie,
Azkaban, Pig, and Hive). These are respectively derived
from:

Workload A: distribution-based Map-Reduce Work-
load The SWIM project [10, 11] provides detailed char-
acteristics of workloads from five Cloudera customers
clusters, two Facebook clusters, and a Yahoo! cluster.
The cluster sizes range from 100’s of nodes up to 1000’s
of nodes. We devised a synthetic generator based on
Gridmix 3.0, producing jobs that respect the original
distributions of: submission time, job counts, sizes, I/O
patterns, and task runtimes. Figure 11 reports distri-
butions for some of the key parameters of the jobs in
Workload A. Workload A is derived from 8 difference
clusters, each of which has a mixture of SLA and Best-
Effort Jobs.

Workload B: Giraph jobs with gang semantics We

0 0.5 1
0

0.2

0.4

0.6

0.8

1

normalized time

no
rm

al
iz

ed
 c

ap
ac

ity

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

normalized time

 

 

actual
prediction

actual
prediction

Figure 13: Predicting recurring pipelines.

use Apache Giraph to perform page-rank computations
on synthetically generated graphs consisting of up to 50
million vertices and approximately 25 billion edges. We
base this on graphs that are routinely used for testing
purposes at LinkedIn. Recall that Giraph computations
require gang-scheduling for their tasks.

Workload C: Traces of production workflows We
construct synthetic jobs using the resource profiles col-
lected from a set of production pipelines from Microsoft’s
Bing clusters. We describe the overall profile of the
workflow as an RDL expression, and generate corre-
sponding load with a synthetic time-varying job.

Deriving SLAs Information about SLAs are gener-
ally not available as today’s system do not provide this
feature. We approach this problem as in [18]. Based on
conversations with cluster operators we settle for a con-
servative 5% of jobs with deadlines, and a 10% “slack”
(i.e., over-estimation) over the actual job resource re-
quirements, which were known since we control job er-
gonomics. Deadlines are inferred as estimates from the
available trace/workload information, and from conver-
sations with job owners whenever possible. This is not
ideal, but is the best we can do.

All workloads have also been scaled (by limiting max
size and submission rates) to match our cluster capa-
bilities. In the evaluation, we use a modified version of
GridMix 3.0 for job submission.

6.2 Evaluating RDL
In this section, we provide an initial assessment of

RDL expressivity and usability.

6.2.1 Community feedback
We socialized RDL with over 50 practitioners from

the Apache community, and extensively discussed the
trade-offs between richness and usability of the lan-
guage. The key ask was to keep the first iteration of the
language as simple as possible. In response, we simpli-
fied the first version of RDL we released, to only allow a
single-level of all,any,order operators in each expres-
sion (i.e., removing nesting). This limits expressivity of
the language but it is likely to foster initial adoption.

6.2.2 Coverage of Hive, MapReduce and Giraph
Through collaborations with the authors of [16] and
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Figure 12: Comparing MILP, GREE, and GREE-L, for increasing number of jobs and increasing
cluster size.

[34], and several months of internal use on research
clusters, we validated RDL expressivity against thou-
sands of jobs derived from Hive, MapReduce and Gi-
raph frameworks. Our current prototype of [16] has
been shown to generate RDL expressions for a 3k Hive-
queries production workload with estimation error within
10% of actual job utilization. RDL was sufficiently ex-
pressive to capture all these jobs with sufficient resolu-
tion of details.

6.2.3 RDL for machine learning
In Section 3.1 we reported anecdotal evidence re-

garding ML practitioners ability to predict the resource
needs of their algorithms. While validating this broadly
is beyond the scope of this paper, we challenged a group
of ML practitioners in our organization to derive RDL
expressions for several runs of their MPI-based algo-
rithms [32]. The runs were performed on previously
unseen data, and the only available inputs were their
knowledge of the algorithms and performance measure-
ment for small sample datasets. We compare their man-
ual estimates against actual runs. Given the MPI na-
ture of their algorithm, bundle sizes b, min and max
parallelism g and h were known, and they incurred
only a limited 5% errors in determining w and l by
estimating the maximum runtime of the job, i.e., the
time to execute if convergence is not achieved until the
algorithm’s iteration limit. They confirm these results
matched their expectations and prior experiences.

6.2.4 History-based prediction

We conclude with an initial validation of the hypoth-
esis that one can build good predictors from historical
runs of periodic jobs.

In Figure 13, we show the results of applying a state
of the art prediction algorithm7 to two very large and
complex production workflows from Bing clusters. The
precise matching which is visually obvious in Figure 13,
can be quantified by measuring the capacity actually
required versus allocated. The predictor’s average over-
estimation across the various stages of the workflow is
8.25%. To put this in perspective, the existing allo-
cation mechanisms (static capacity) only allows peak
provisioning. Given the large gap between peaks and
average in these workflows, the baseline produces allo-
cations equivalent to a 1470% over-estimation.

These spot results are encouraging, though we refrain
from any generalization as RDL practical relevance can
only be judged by real-world adoption, and production
usage.

6.3 Evaluating Planning
In Section 4 we introduced a complete MILP formu-

lation of our problem, and to address the MILP scala-
bility limits we proposed two greedy algorithms GREE
and GREE-L. We evaluate the quality of the solutions
produced by MILP, GREE and GREE-L, using the fol-
lowing four metrics:

1. runtime: measured in milliseconds to place a given

7Microsoft internal at the time of this writing.
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Figure 14: Comparing MILP, GREE, and GREE-L, for increasing fraction of jobs with gang and
dependencies requirements (tot number of jobs fixed to 100).

set of jobs. This dictates whether a solution can
be used online or offline, and how well it handles
large scale problems.

2. acceptance: measured as a weighted8 count of
accepted jobs. Higher degrees of acceptance are
desirable as they represent higher value delivered
by a cluster in terms of more guaranteed resources
offered to users.

3. preemption: measured as the sum of vertical
(down) transitions in the plan. Lower values of
this metrics correspond to plans that are less likely
to force the underlying system to make use of pre-
emption (an undesirable overhead) to vacate jobs
when their allocations shrink in size.

4. uniformity: measured as stddev
average of the overall

plan utilization. Lower values of this metric cor-
responds to uniform headroom in the plan. This
is correlated to lower impact of failures, and more
consistent availability of resources for best-effort
jobs.

6.3.1 Comparing MILP and Greedy heuristics
We test MILP, GREE, and GREE-L in an offline set-

ting (where all jobs are known in advance), focusing
only on the placement aspects of our system. This al-
lows us to perform parameter sweeps well beyond our
physical cluster capacity. Our first experiment consists
of placing an increasing number of atomic jobs (100-1k)
randomly generated from Workload A, on a simulated
cluster of progressively growing size (400 to 4k nodes),
while collecting measures for the metrics above. Note
that the larger scenarios tested in this experiment, are
the target zone for Rayon, i.e., large consolidated clus-
ters. We repeat each run with several initializations
and report the average of the results—all results are
expressed as relative improvements over GREE.

8Weights are proportional to job size.

Figure 12a, shows that the runtime of GREE and
GREE-L range from 35 to 130ms, while the MILP run-
time ranges from 80 to 3200 seconds (i.e., up to 5 or-
ders of magnitude slower). The solver performance is
nonetheless impressive given that the problem size ex-
ceed 250k variables and constraints. This makes MILP
viable as a reference to develop heuristics but it is still
not practical for online or large scale uses.

Figure 12a, shows that MILP is capable of placing
more jobs than GREE, and GREE-L for small problem
sizes (20 to 40% better acceptance), but the gap asymp-
totically disappears. We can explain this intuitively by
observing that larger problem sizes, correspond to sce-
narios in which each job’s contribution to the overall
problem is relatively small, hence the regret of a (poten-
tially wrong) greedy decision is low. GREE-L performs
close to GREE, with slightly lower acceptance rates due
to its focus on lowering preemption.

Figure 12b shows that despite accepting a larger num-
ber of jobs, MILP is capable of finding allocations with
substantially less need for preemption, when compared
to GREE. GREE-L on the other hand is capable of
closely matching MILP preemption performance through-
out the entire range. Figure 12d shows similar results
in terms of uniformity, with MILP and GREE-L out-
perform by roughly 20% GREE in terms of uniformity
of the overall plan utilization.

Comparing GREE-L and MILP on all these metrics
we conclude that: for large consolidated clusters
GREE-L matches MILP solution quality, while
reducing runtime by up to 5 orders of magni-
tude. We started investigating hybrid strategies, that
leverage MILP for the large (hard to place) jobs, and
GREE-L for the bulk of small jobs. The results are
inconclusive at the time of this writing.

6.3.2 Impact of RDL complexity
Next we study the impact of complex RDL expres-

sions on our placement strategies. We fix the job count
to 100 but progressively change the mixture of jobs be-
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Figure 16: Visualization of the queue configura-
tion.

tween Workload A, B, and C. Complexity of placement
becomes higher, as the percentage of jobs from B and C
increases. We visualize this in the graphs of Figure 14,
showing a sweep going from 100% of A to 100% of B,
and from 100% of A to 100% of C respectively.

As expected, GREE and GREE-L runtimes are mostly
unaffected. MILP runtimes grow sharply and hit 1 hour
(an ad-hoc time bound we impose on the solver run-
time) for 20% or more jobs with gang (Workload B)
or 10% or more jobs with dependencies (Workload C).
This is due to a drastic increase in the number of inte-
gral variables required to model the set of RDL expres-
sions (from O(numJobs) to O(numJobs ∗ timeSteps)).
Upon reaching this time limit the solver returns the
best solution found so far (which is not optimal). For
complex workloads MILP solution quality drops below
GREE and GREE-L. Very complex workloads and a
fixed time bound means that the MILP solution is arbi-
trarily far from optimum, to the point that its solution
quality falls below GREE and GREE-L. This confirms
that MILP is a useful formal tool, but cannot scale to
large or complex problems. For these reasons we use a
conservatively tuned GREE-L for all of our end-to-end
experiments.

6.4 End-to-end evaluation
We now turn our attention to evaluating the com-

plete end-to-end Rayon architecture, running on a 256
machines cluster.

To generate a baseline, we compare Rayon versus the
stock YARN CapacityScheduler (CS). We picked this
scheduler because it is the most popular in production
environments, and because we are deeply familiar with
its tunables and internals [41]. Note that the relative
performance we will demonstrate against YARN, would
likely translate to Mesos if we were to port our ideas
to that infrastructure, as Mesos also has no notion of
time/deadlines, and provides instantaneous scheduling
invariants very similar to YARN’s ones.

In the experiment, we generated jobs at the rate of
5,400 jobs per hour from Workload A (and later add
B,C). We tuned the baseline CapacityScheduler (CS)
assuming perfect workload knowledge, and manually
tuning all queue parameters following industry best prac-
tices (confirmed with professional hadoop cluster op-
erators). These means that we leverage a-posteriori
knowledge on what jobs will be submitted to which

queue, and assign capacity to queues optimally. What
is really tested here is the best static tuning we could
find, against the dynamic adaptability of Rayon. More
precisely, Workload A is comprised of 8 sub-workloads,
each derived from a separate cluster (e.g., akin to a ten-
ant if we were to consolidate those cluster in a big shared
one). Recall that each workload has a mix of SLA and
best-effort jobs. Our best bet leveraging the mecha-
nisms provided to the CapacityScheduler is to create
16 queues (one for SLA and one for best-effort jobs of
each tenant), and assign them capacity based on the
known workload we will impose. This is visualized in
Figure 16. The CapacityScheduler, beside assigning the
guaranteed capacity of a queue, allows us to set how
much over-capacity a queue can go. Based on conver-
sation with cluster operators at Yahoo!, we configure a
maximum-capacity that is about 2X the guaranteed ca-
pacity (from their experience this achieve a reasonable
balance of cluster utilization and guarantees to jobs).

In contrast, Rayon configuration is basically tuning-
free. We assign a maximum of 70% of the resources
to production jobs, and let Rayon’s dynamic allocation
redistribute that as needed (shown in Figure 16 as a
set of colorful nodes). Best-effort jobs are assigned to
queues as in the baseline. Rayon redistributes all un-
used resources among production and best-effort jobs
(key to high utilization), and leverages preemption [41]
to rebalance allocations.

We measure the systems under test according to the
following metrics, defined over a window of time:

1. SLA acceptance: % of production jobs accepted;

2. SLA fulfillment : % of accepted jobs meeting SLAs;

3. best-effort jobs completion: the number of best-
effort jobs processed to completion by the system;

4. best-effort jobs latency : completion latency for best-
effort jobs;

5. cluster utilization: the overall resource occupancy.

Figure 15 shows the results of our experiments com-
paring Rayon, the CS, and CS running on half of the
load CS(cold) according to the above metrics. CS ac-
cepts all jobs (no knowledge of deadlines) but fails to
fulfill the SLA for over 15% of jobs (still non-zero when
running on a fraction of the load). In contrast, Rayon
fulfills 100% of the SLAs it accepts (more on rejection
later). In the meantime, best-effort jobs throughput is
increased by more than 15% and latency is improved for
almost 40% of jobs. To understand why Rayon outper-
forms CS we look at rejection rates, cluster utilization,
and latency for SLA jobs. Rayon correctly detects that
not all jobs with SLA can be accepted9, and rejects
9These rejections, albeit negative, happen at reservation
time, which is much better than unannounced violation of
the job’s deadline.
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Figure 15: End-to-end experiment showing: 1) SLA acceptance and fullfillment, 2)Best-effort job
throughput, 3) Best-effort job latency (as delta between approaches), and 4) cluster utilization.

Figure 17: Percentage of job violations vs time
allowed below nominal SLA.

about 4% of the jobs (too large to fit by their deadline).
This frees up considerable resources that are leveraged
to improve upon the other metrics. Moreover, Rayon
leverages our prior work on preemption [41], and thus
achieves overall higher cluster utilizations 10. Finally
Rayon leverages the fact that SLA jobs do not care
about latency to prioritize best-effort jobs when pro-
duction jobs’ deadline are not imminent. This priority
inversion leads to a by-design larger latency for 60% of
SLA jobs, and allows best-effort jobs to be run earlier/
faster, thus improving their latency.

6.4.1 Consistency in SLA delivery
We conclude this experiment by measuring how con-

sistently the lower layers of Rayon deliver upon the
reservation decisions made by the planner. We quan-
tify this by measuring the time when a SLA job has
pending, unsatisfied demand within its reservation.

Figure 17 shows that no jobs are below their reserved
allocation with pending demand for more than five sec-
onds. Since job runtimes are orders of magnitude larger
than that, we consider this behavior satisfactory.

6.4.2 Impact of Over-reservation
In Section 3.1, we discussed how users can define their

RDL expressions. A reasonable question is “what hap-
pens to Rayon’s performance if users make mistakes
while requesting resources?”. In case of under-reservation

10In separate tests, we confirmed that preemption alone is not
sufficient to fix the SLA violations of the CapacityScheduler,
though it helps to increase utilization–again extra resources
that we can dedicate to improve on key metrics.

the answer is simple, the production job will run with
guaranteed resources up to a point, and then continue
as a best-effort job until completion (thus, subject to
uncertainty).

Over-reservation, on the other hand, affects job ac-
ceptance. To measure this we repeat the above exper-
iment (visualized in Figure 18), but we systematically
over-reserve by 50% (i.e., each jobs specify in its RDL
expression an amount of work w that is 50% above its
true needs). Analyzing this results we observe the fol-
lowing key effects: 1) job acceptance is reduced (11%
of jobs are rejected), 2) SLAs are met for all accepted
jobs, 3) cluster throughput for best-effort jobs grows
by 20% (as Rayon backfills with best-effort jobs), and
4) both SLA and best-effort jobs see improved run-
times. Provided we have enough best-effort jobs wait-
ing for resources, cluster utilization remains close to
100%. Note that the drop in acceptance is less than
the over-reservation. This is due to the online nature
of our acceptance, and made possible by the adaptive
scheduler, anticipating job and removing reservations
for completed jobs.

6.4.3 Handling Mixed Workloads
We validate Rayon’s ability to handle mix workloads,

by repeating the experiments of the previous section
with a mixture of 80% of Workload A, 10% of Workload
B, and 10% of Workload C (our best guess of a likely
mixture in consolidated clusters). This introduces jobs
with gang semantics, and inter-job dependencies.

We pick a small sample of jobs from these runs, and
visualized the resources they receive11 in Figure 19. We
single out a MapReduce job from Workload A, a Giraph
job from Workload B and a workflow (aka a pipeline)
from Workload C.

Analyzing these runs, we confirm two key hypothe-
sis: 1) Giraph jobs from Workload B, gets access to all
resources nearly instantaneously, instead of trickling of
resources (as it happens with CS), and 2) Rayon man-
ages to achieve high cluster utilization (near 100% after
a warm-up phase) even when tasked with mix work-

11The normalization is due to the proprietary nature of un-
derlying data
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7. RELATED WORK
While Rayon draws from a large body of existing

work in system, and scheduling literature, the decompo-
sition of the problem and its practical implementation
are novel. To the best of our knowledge, no system
handles this consolidated workload of production and
best-effort jobs at high cluster utilization by explicitly
managing allocations over time.

Big-data resource management. YARN [41], Corona [2],
Omega [37] and Mesos [23] invite direct comparisons to
Rayon. As of this writing, none allocate resources in
time. Reservation-time planning creates opportunities
for Rayon unavailable to online schedulers, particularly
for gang requirements, workflow allocations, and admis-
sion control for time-based SLAs. Rayon can provide a
substrate to extend invariants— such as fairness and lo-
cality [45, 25]— and techniques— such as multi-resource
sharing [21, 9]— over time.

HPC resource management. HPC schedulers [40, 3, 38]
cover a complementary space, particularly for gang al-
locations of MPI frameworks. Where available, Rayon
leverages fault and preemption tolerance of application
frameworks to place, anticipate, and replan allocations.
Parallel efforts in the big-data space make the same as-
sumption [12, 5, 41]. Fault-tolerance is currently under
review for the forthcoming 4.0 MPI standard,[4] but
it cannot be assumed by HPC platforms. As a con-
sequence, the isolation guarantees in HPC clusters are
stronger, but at the expense of utilization. Grid systems

like GARA [19] also use reservations to defer allocation,
but Rayon adds support for dependencies and supports
a more abstract language.

Deadlines and predictability. Predicting execution times
and deadlines of batch frameworks [42, 17, 18] is largely
complementary to Rayon. These systems netiher pro-
vide a declarative language like RDL, nor support gangs,
inter-stage dependencies, and multiple frameworks. Bazaar [27]
does not consider preemption in its allocation of VMs
and network resources. Lucier [29] assumes work-preserving
preemption in its allocations, but dependencies are not
explicitly modeled.

Resource definition languages. Many declarative lan-
guages for resource definition are input to resource man-
agers. One early example is IBM JCL. SLURM [43]
supports a rich set of algorithms for inferring job prior-
ity and mechanisms to evict, suspend, and checkpoint
jobs based on operator-configured policies. In contrast,
RDL is abstract, its allocations are fungible, and are
not bound to a host until a tenant generates demand.
As used in GARA [19], RSVP [46] and RSL [14] specify
particular resources rather than nested reservations of
abstract requirements.

Packing and Covering. Prior applications of optimiza-
tion techniques to resource allocation inspired our MILP
formulation. In particular, work minimizing workload
makespan, [22, 30, 6], satisfing deadlines and SLAs [7,
28], and guaranteeing latency in mixed workloads [28].
These formulations explore the theoretical aspects of
the problem, but do not cover all the properties of our
workloads.

8. CONCLUDING REMARKS
Modern big-data clusters run a diverse mix of pro-

duction workflows and best-effort jobs. These have in-
herently different scheduling needs. In this paper, we
make the case for reservation-based scheduling, an ap-
proach that leverages explicit information about job’s
time-varying resource needs, and completion SLAs, to
plan the cluster’s agenda. We make four key contribu-
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tions: 1) a declarative reservation definition language
(RDL) to capture such information, 2) a framework for
planning where we characterize the scheduling problem
using an MILP formulation and develop fast, greedy
heuristics, 3) adaptive scheduling of cluster resources
that follows the plan while adapting to changing con-
ditions, and 4) a system, named Rayon, that integrates
the above ideas in a complete architecture. We have
implemented Rayon as an extension to Apache YARN
and have released it as open-source. Our experimental
results confirm that temporal planning of the cluster’s
agenda enables Rayon to meet production SLAs, while
providing low-latency to best-effort jobs, and maintain-
ing high-cluster utilization.

Rayon is our first step towards addressing this prob-
lem. Ongoing work in collaboration with the authors of
[16], and [34], is geared towards addressing Rayon’s us-
ability. We are also exploring more sophisticated plan-
ning algorithms, and economy-based models for resource
reservation.
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