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Abstract—Dynamic Symbolic Execution (DSE) is a state-of-
the-art test-generation approach that systematically explores
program paths to generate high-covering tests. In DSE, the
presence of loops (especially unbound loops) can cause an
enormous or even infinite number of paths to be explored.
There exist techniques (such as bounded iteration, heuristics,
and summarization) that assist DSE in addressing loop problems.
However, there exists no literature-survey or empirical work that
shows the pervasiveness of loop problems or identifies challenges
faced by these techniques on real-world open-source applications.
To fill this gap, we provide characteristic studies to guide future
research on addressing loop problems for DSE. Our proposed
study methodology starts with conducting a literature-survey
study to investigate how technical problems such as loop problems
compromise automated software-engineering tasks such as test
generation, and which existing techniques are proposed to deal
with such technical problems. Then the study methodology con-
tinues with conducting an empirical study of applying the existing
techniques on real-world software applications sampled based
on the literature-survey results and major open-source project
hostings. This empirical study investigates the pervasiveness of
the technical problems and how well existing techniques can
address such problems among real-world software applications.
Based on such study methodology, our two-phase characteristic
studies identify that bounded iteration and heuristics are effective
in addressing loop problems when used properly. Our studies
further identify challenges faced by these techniques and provide
guidelines for effectively addressing these challenges.

I. INTRODUCTION

Software testing is one of the most commonly used tech-
niques for improving software quality, but it is typically a
labor-intensive process that accounts for high cost in soft-
ware development and maintenance. To address the issue,
Dynamic Symbolic Execution (DSE) [18]], [34], [41]], recently
made popular with the advent of powerful constraint-solving
tools [[7], [14]], [19], can be used to automatically generate
high-covering tests by systematically exploring program paths.

DSE executes the program under test symbolically with
arbitrary or default inputs and collects path conditions as the
constraints on inputs from the executed branch statements.
DSE then systematically negates part of these constraints to
form new path conditions, and leverages a constraint solver to
solve these path conditions for obtaining new test inputs. These
new test inputs steer the future explorations towards different
paths of the program, iteratively collecting new constraints
and achieving new structural coverage, such as statement
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and branch coverages [3]]. With the advances of research on
constraint solvers, e.g., Z3 and CVC3 [7], DSE-based
tools, such as SAGE and Pex [48], become promising
in generating test inputs for unit testing and (security) system
testing [10], [T11, [19], [41], [48]]. Since 2008, SAGE has been
continually running on more than 100 machines in a security
testing lab, and Pex found serious faults from an already-well-
tested component of the .NET runtime.

A significant challenge for DSE is how to handle loops,
which may compromise DSE’s effectiveness in terms of
structural coverage and fault detection. As a special type
of branches, loops can cause the number of paths to be
explored to grow exponentially. Even worse, the number of
paths becomes infinite due to the presence of input-dependent
loops (IDLsﬂ causing DSE to run out of resources (e.g., the
allocated time or number of explored paths) before achieving
satisfactory coverage. For example, a recent study shows
that DSE may keep unfolding an IDL without achieving
coverage of any new branches. Recent research has tried to
address this challenge by using bounded iteration to constrain
loop unrolling [19], using search-guiding heuristics to guide
path exploration [11]], [48], [54], or using loop summarization
to summarize loops based on inferred loop invariants [20],
(40, (referred to as loop summarization).

Although loops whose iteration counts are statically
bounded may still pose problems to DSE, IDLs are considered
as much more severe problems since IDLs may cause the
search space to become infinite. Some previous work [20],
(28], proposes effective techniques to assist DSE in
dealing with IDLs (referred to as loop techniques), but these
techniques have their limitations in handling different kinds
of IDLs. For example, bounded iteration and search-guiding
heuristics effectively prune the search space, but they may
prevent DSE from covering subsequent branches that require
loops to iterate more than a certain number of times [20].
Inferring loop invariants as conducted by loop summarization
requires some abstractions to be performed on the symbolic
states, and may lose precision on summarizing the loops 28],
[29]. Moreover, loop summarization requires detection of in-
duction variables whose values are modified by a constant

!Input-dependent loops are loops whose iteration numbers depend on some
unbounded input.



value or constant times for each loop iteration. However, only
a few IDLs can be summarized by induction variables. Gode-
froid et al. report that their technique can summarize only
33% (6 out of 19) of the detected IDLs in their evaluations.

Unfortunately, there exists no literature-survey or empirical
work that shows the pervasiveness of loop problems, or
identifies challenges faced when these techniques are applied
on real-world applications. To fill such a significant gap, we
provide two-phase characteristic studies on loop problems for
structural test generation, with the focus on test-generation
tools based on DSE. Our proposed study methodology starts
with conducting a literature-survey study to investigate how
technical problems such as loop problems compromise au-
tomated software-engineering tasks such as test generation,
and which existing techniques are proposed to deal with such
technical problems. Then the study methodology continues
with conducting an empirical study of applying the existing
techniques on real-world applications sampled based on the
literature-survey results and major open-source project host-
ings. This empirical study investigates the pervasiveness of
the technical problems and how well existing techniques can
address such problems among real-world applications.

In our literature-survey study, we survey the literature
from a comprehensive bibliography of papers on symbolic
execution and tasks assisted by symbolic execution [1]. DSE
is a symbolic-execution-based technique, and thus faces the
same path-explosion problem as symbolic execution. The
analysis results of loop problems and loop techniques from
the surveyed articles of symbolic execution are applicable and
beneficial to loop problems for DSE. In particular, we seek to
answer the following questions:

RQ1.1: Are loop problems a kind of major problems
to compromise the effectiveness of symbolic execution
in various tasks? Symbolic execution has been applied for
various tasks, such as test generation [18]], [23]], [38], [41l,
(431, [46], (47, (510, [33], debugging [31l, security analy-
sis [O], [12]], [49], verification [21]], [27]. The answer to this
question can help understand which of these tasks would need
to specifically address loop problems.

RQ1.2: What kinds of techniques are proposed to deal
with loops, and how widely are the techniques used across
various tasks assisted by symbolic execution? In addition,
we study the advantages and disadvantages of different kinds
of techniques, providing guidelines on choosing techniques for
various tasks.

In our empirical study, we choose certain representative
techniques (found from our literature-survey study) to apply on
real-world applications. We sample subject applications from
certain categories (data structures and parsers) that are found
to typically have loop problems from the surveyed articles, and
select subject applications randomly from major open-source
project hostings including CodePlex [2]] and GitHub [3]]. In
particular, we seek to answer the following questions:

RQ2.1: How pervasive are IDLs in open-source ap-
plications? What are the distribution of nested loops?
We classify loops as Fixed-Iteration Loops (FILs) or Input-

Dependent Loops (IDLs), and identify nested loops that pose
challenges for various techniques, such as loop summarization.
The classification results of FILs and IDLs can show the per-
vasiveness of IDLs, and help understand the causes of IDLs.
Since nested loops pose extra challenges, the distributions of
nested loops provide insights on what kinds of applications
may need manual assistance in dealing with nested loops.

RQ2.2: How well can existing techniques, such as

bounded iteration and search-guiding heuristics, address
the loop problems posed by IDLs on real-world appli-
cations? As our literature-survey study identifies bounded
iteration and search-guiding heuristics as the most widely used
techniques across various tasks, we apply Pex, the state-of-the-
art DSE-based tool, with the mixed search strategy [@E and
Pex with bounded iteration (referred to as Pex-bounded) on the
sampled software applications to explore IDLs. The results can
show how well these techniques handle loop problems on real-
world applications. Moreover, our studies identify challenges
faced by existing techniques and propose guidelines on how
to address these challenges.

Our paper makes the following main contributions:

o« We present the first characteristic studies to guide re-
search on addressing loop problems for structural test
generation.

o We propose a two-phase methodology on studying tech-
nical problems in automated software-engineering tasks:
(1) a literature-survey study that investigates how tech-
nical problems may compromise automated software-
engineering tasks such as test generation, and which ex-
isting techniques are proposed to deal with such technical
problems; (2) an empirical study that investigates the
pervasiveness of the technical problems and how well
existing techniques can address such problems among
real-world software applications.

o« We find out that bounded iteration and search-guiding
heuristics are two most widely used techniques across
various tasks assisted by symbolic execution, and both
techniques are effective in addressing loop problems on
real-world applications when used properly.

o We identify various challenges that compromise the effec-
tiveness of existing loop techniques and provide valuable
guidelines for addressing these challenges.

II. LITERATURE-SURVEY STUDY

In this section, we present the details of the literature-
survey study and its implications. Our literature-survey study
investigates how loop problems compromise various tasks
assisted by symbolic execution, such as testing and security
analysis, and what techniques are proposed to deal with loop
problems.

A. Study Setup
In our literature-survey study, we survey the literature from a
comprehensive bibliography of articles on symbolic execution

2A search strategy that combines different search strategies in a fair round-
robin scheme.



TABLE I
RESEARCH AREAS OF SURVEYED ARTICLES

Area # Articles
Software Engineering 74 (46.5%)
Security 22 (13.8%)
Systems 15 (9.4%)
Programming Languages 17 (10.7%)
Verification 29 (18.2%)
Database 2 (1.3%)
Total 159

and its applications [T]]. The articles are published in a wide
range of venues, including conferences in software engineering
(e.g., ICSE, FSE, ISSTA), systems (e.g., ASPLOS, OSDI),
security (e.g., CCS, Oakland, USENIX Security), software
verification (e.g., CAV, TACAS, VMCAI), programming lan-
guages (e.g., POPL, PLDI, SAS, CC), and database (e.g.,
SIGMOD). Since the bibliography includes only a few articles
published in 2012, we manually collect more articles in 2012
for the study. The details of the study and results can be found
on our project website [4].

Study Design. We first classify the articles into different
tasks assisted by symbolic execution. We then investigate the
percentage of the articles that propose techniques to deal with
loops (referred to as loop articles) in each task. Such data can
help draw conclusions on how loops may compromise tasks
assisted by symbolic execution.

We then categorize the techniques proposed by the studied
articles to address loop problems. This categorization can
indicate not only which technique is frequently used in which
tasks, but can also identify which technique is widely used
across different tasks.

Statistics of Literature-Survey Study. In our literature-
survey study, we survey 159 articles in total. Table [l shows
the number of articles that we survey in each research area. We
next describe the detailed results for answering the questions.

B. RQI.1: Loop Problems in Various Tasks

Table [ shows the task categories of our literature-survey
study. Column “Total” shows the number of articles that be-
long to various tasks assisted by symbolic execution, and Col-
umn “Loop” shows the number of loop articles. We categorize
the articles into five major types of tasks: (1) software testing:
running a program with generated test inputs and dynamically
checking its behavior (Row “Testing”); (2) formal verification:
checking the correctness of a program by verifying that the
program meets requirements or given properties, often in the
form of static analysis (Row “Verification”); (3) security anal-
ysis: identifying security vulnerabilities of a program (Row
“Security”) (4) debugging: locating and removing faults in a
program (Row “Debugging”) (5) other: other applications such
as language transformation [26] and program synthesis
(Row “Other”). Note that some techniques proposed in some
articles may fall into more than one categories.

Results and Implications. In recent years, with the ad-
vances of computing powers and research on constraint solvers
and theorem provers, symbolic execution has been developed

TABLE II

TASKS ASSISTED BY SYMBOLIC EXECUTION
Type Total Loop
Testing 84 (52.8%) | 36 (22.6%)
Verification | 42 (26.4%) | 26 (16.4%)
Security 25 (15.7%) | 12 ( 7.5%)
Debugging 11 ( 6.9%) 3 (1.9%)
Other 5(3.1%) 1 (0.6%)

a lot and been used in various research areas. As shown in
Table [l more than 150 articles (151 = 84 + 42 + 25, 95.0%)
have been published on applying symbolic execution for
software testing, program verification, and security analysis.
Given the popularity of symbolic execution, improving it in
terms of precision, effectiveness, or scalability would bring
substantial benefits to various software engineering or security
tasks.

As described in Section [ IDLs may compromise the
effectiveness of the proposed techniques using symbolic exe-
cution. However, based on the results of our literature-survey
study, we find that to what extent loops may compromise the
effectiveness of applying symbolic execution depends on the
tasks. For example, for program verification, more than 60% of
the articles provide various techniques to deal with loops; the
remaining articles focus on other aspects of symbolic execu-
tion, such as improving constraint solvers to deal with floating-
point computation or solving string constraints. The main
reason is that verification tasks often require high precision
for achieving their objectives, such as proving reachabilities
of certain program locations.

Using symbolic execution to enumerate all feasible paths
would fail the tasks due to the not only large but infinite
search space induced by IDLs. But for some tasks, such
as debugging or vulnerability detection in security analysis,
loops may not be a major obstacle for two major reasons. (1)
When debugging a discovered failure or exploit, a particular
failure-inducing path is already known, and bounded iteration
can produce satisfactory approximations of loops [22]. The
main reason is that paths closer to the failure-triggering path
are more likely to be related to the same fault and more
error-prone. (2) Abstractions used by some static-analysis ap-
proaches abstract away the complexities of unbounded loops,
and the analysis always reaches a fixed point to produce a
conservative result, such as safe or unsafe in proving memory
safety for loops [17].

Among the articles that apply symbolic execution for soft-
ware testing, nearly half of them (32/84, 42.9%) propose tech-
niques to deal with loops, indicating that loops indeed are also
concerns when conducting symbolic execution for software
testing. Moreover, research on symbolic execution for software
testing can benefit from research on symbolic execution for
other research tasks. For example, certain articles on software
testing adapt techniques from articles on program verification,
such as loop summarization and abstraction [33].

Summary. These results show that loop problems are one of
the major kinds of problems that compromise the effectiveness
of symbolic execution for tasks that require high precision for



TABLE III
TECHNIQUES TO DEAL WITH LOOPS
Type Total Testing
Bounded Iteration 38 (23.9%) | 24 (15.1%)
Search-Guiding Heuristics | 16 (10.1%) 8 (5.0%)
Loop Summarization 8 (5.0%) 3(1.9%)
Abstraction 7 ( 4.4%) 3(1.9%)
Loop Invariant 4 (2.5%) 0 (0.0%)
Other 3 (1.9%) 0 ( 0.0%)

achieving their objectives, such as verification and testing; for
tasks whose objectives focus on a small set of specific paths,
such as debugging or vulnerability detection, loop problems
may be alleviated with bounded iteration and abstraction.

C. RQ1.2: Techniques to Deal With Loops

Table [ shows loop techniques in our literature-survey
study. Column “Total” shows the number of articles that apply
symbolic execution for any purpose, and Column “Testing”
shows the number of articles that apply symbolic execution
for software testing. Each row shows the number of articles
that provide certain techniques to deal with loops.

As shown in Table[ITIl most of these techniques fall into four
categories: (1) bounded iteration, (2) search-guiding heuristics,
(3) loop summarization, and (4) abstraction. Bounded iteration
bounds either loop iteration or input range to make the whole
search space finite, thus addressing the infinite-loop problem
with the loss of completeness. Search-guiding heuristics at-
tempt to guide symbolic execution to focus on exploring paths
that are more likely to achieve certain objectives faster (such
as structural coverage), thus preventing symbolic execution
from being stuck in loops. Loop summarization summarizes a
loop into a set of formulas for addressing infinite loops in a
program. These formulas can be solved by using constraint
solvers to determine whether the objective can be achieved,
such as reachability of certain program locations. Abstraction
uses an abstracted model of program states. Although this
model loses some information, the model is more compact
and easier to manipulate. To maintain soundness, the analysis
must produce a result that would be true regardless of the
information in the abstracted-away state components. Such
techniques can be used to model the states of loop iterations,
handling infinite loops with symbolic execution.

Results and Implications. Bounded iteration and search-
guiding heuristics have relatively low analysis cost, and yet are
incomplete or unsound. Loop summarization and abstraction
have relatively high analysis cost (facing scalability issues on
large programs), but could be used for proof. Understanding
the advantages and disadvantages of these techniques can
help better make design choices of adapting these techniques
to enhance symbolic execution. For example, for verification
tasks that require completeness, it is better to choose loop
summarization or abstraction. For testing tasks that focus
on structural coverage, bounded iteration or search-guiding
heuristics are a good fit, since these two techniques can prevent
symbolic execution from being stuck in loops. In addition,
we could even adapt different techniques to complement each

other. For example, for software testing, we could achieve gen-
eral structural coverage by employing search-guiding heuristics
to avoid being stuck in certain loops. For certain program
locations that are likely to trigger runtime failures (such
as exceptions or assertion violations), we could use loop
summarization or abstraction to verify their reachability.

Among these 72 loop articles, we further look into the
subject programs used in their evaluations. We find that each
article may use one or more kinds of subject programs in their
evaluations, and these subject programs are mostly benchmark
programs (34/72, 47.2%) and real-world applications (42/72,
58.3‘7<E). These results show that loop techniques have been
used and evaluated not just on small programs used for
illustration purposes, but also on real programs that have
practical usage.

From Table [ we can also see that the most widely
adopted techniques are bounded iteration: 52.7% (38/72) of
the loop articles and 66.7% (24/36) of the loop articles for
software testing, and search-guiding heuristics: 22.2% (16/72)
of the loop articles and 22.2% (8/36) of the loop articles
for software testing. In addition, both of these techniques are
widely used for the tasks of software testing, security analysis,
and verification. For software testing and security analysis,
these two techniques are used to prevent symbolic execution
from being stuck in IDLs, and spend more efforts in exploring
other parts of the programs to improve structural coverage. For
verification, some verification techniques consider bounds to
limit their state space, such as bounded model checking [13],
and thus bounded iteration is also naturally used to deal with
unbound loops in limiting the number of paths. Similar to
testing and security analysis, in verification, search-guiding
heuristics are also used to improve coverage for symbolic
execution. Although these lightweight techniques (bounded
iteration and search-guiding heuristics) are incomplete when
solving some problems posed by loops, they could still be
applicable and effective on various tasks, including verification
tasks. We should not rule out such techniques in our design
choices without deeper investigation of the programs under
analysis, even if our tasks require high precision (such as
verification tasks).

Summary. Loop techniques have been used for various
tasks and evaluated on real programs. Among these techniques,
Bounded iteration and search-guiding heuristics are the most
widely used loop techniques across various tasks. When the
bounded assumption is acceptable, these techniques can also
be used for tasks that require high precision, such as verifica-
tion tasks.

III. OPEN-SOURCE APPLICATION STUDY

In this section, we present the details of the empirical study
on open-source applications and its implications. We further
propose guidelines based on our findings.

3 Among the 72 articles, 9 articles use industrial programs, 13 articles use
programs of operating systems, and 20 articles use open-source programs [4].



A. Subjects and Study Setup

To conduct the study, we choose the DSE tool, Pex [48],
a state-of-the-art test-generation tool developed by Microsoft
Research. The main reasons are (1) Pex has been applied
internally in Microsoft to test core components of the .NET
runtime infrastructure and finds serious faults [48]]; (2) Pex
can automatically instrument .NET programs for generating
test inputs; (3) Pex is integrated with various kinds of search
strategies [48]), [34].

In this study, we select subject applications from two
sources: (1) 4 open-source applications from CodePlex [2] and
4 from GitHub [3]], both of which are the largest application
hostings for open-source software written in .NET languages;
(2) 8 open-source applications from two categories (4 from
each category): application parsers and data structures/algo-
rithms. Some previous studies report that several types of
open-source applications have loop problems for compromis-
ing the effectiveness of their techniques, such as parsers [20].
Since these applications are not .NET programs that can be
instrumented by Pex, we select the same type of applications
from open-source .NET programs. Moreover, applications of
data structures/algorithms tend to have many IDLs, and many
studies extract benchmarks from these applications.

Random Sampling. We randomly select 8 applications
from the top 100 most-downloaded or most-watched applica-
tions from open-source application hostings: 4 from CodePlex
and 4 from GitHub. We base our selection on applications
tagged as being written in the C# language. At the time of
our study, CodePlex had 32,477 such applications in total,
and GitHub listed the top 200 such applications. Applying
Pex to explore all loops in all the applications and studying
the results would not be feasible in reasonable time. Therefore,
we sample the dataset of the top 100 applications, randomly
choosing one application out of these applications at a time.

Sampling from Specific Categories. To sample applica-
tions from the categories of application parsers and data struc-
tures/algorithms, we use the keywords parsers, data structure,
and algorithm to search the repositories and rank the matched
applications by download counts and watch counts. For each
category, we manually inspect the ranked applications in order
and select 4 applications from each repository.

Selection Criteria. For each chosen application, we manu-
ally inspect the application description and the source code to
determine whether it is suitable for our study. We prune the
applications based on three criteria. (1) Applications whose
majority parts are Ul-related or environment-dependent (such
as database-related). These applications typically have many
external-method calls to libraries of UI or database, and Pex
has limitations in handling these external-method calls. (2)
Applications that are built using ASPNET, WPF, or other web-
related and mobile-related frameworks. These applications
have a substantial part of HTML or XAML code that is
used to craft web pages or views, and most of their methods
are written to accept framework-specific objects as inputs,
such as objects for HTTP responses. We do not focus on

TABLE IV
STATISTICS OF OPEN-SOURCE APPLICATIONS
Name # Class | # LOC | # Files
Confuser 914 52,830 301
DotNetZip 697 47,147 118
PSDPlugin 54 3,750 34
Wix 695 | 295,827 1,009
Mono.Cecil 615 31,750 225
GitSharp 1,101 84,745 756
Spine-Runtimes 34 1,819 19
TweetSharp 166 10,688 54
DSA 60 5,155 51
NGenerics 1,005 53,529 925
QuickGraph 319 34,196 536
Algorithmia 114 7,513 82
Commandline 183 7,431 125
HTMLAgilitypack 70 8,859 55
SharpNLP 219 24,438 217
Sprache 123 2,249 43
Total 6,369 | 671,926 4,550

web pages, and Pex has limited capabilities in generating test
inputs for framework-specific objects. (3) Applications that
have concurrency behaviors introduced by multi-threaded pro-
gramming, such as web servers that spawn threads for clients
and maintain queues for threads. Concurrency behaviors bring
extra difficulties for Pex and are not the focus of our study.

We keep sampling applications until we find 16 appli-
cations that satisfy our selection criteria. In particular, for
each chosen application, we download the most recent source
code from the corresponding source repository and try to
build the application. For applications that cannot be built
directly, we search for dependent libraries and provide specific
environment settings. If we still fail to build the applications,
we exclude the applications for our study. In total, we consider
74 (34 from CodePlex and 40 from GitHub) applications until
we have a set of 16 applications for our study. Table [V] shows
the statistics of these applications.

Study Design. We first identify loops in the subject pro-
grams, and classify them as Fixed-Iteration Loops (FILs) or
Input-Dependent Loops (IDLs). The results of the classifi-
cation show the distribution of FILs and IDLs, and provide
us insights on how to automatically identify IDLs and FILs
for further analysis. Moreover, nested loops may cause loss
of precision for loop-invariant techniques or summarization
techniques , and pose more challenges in the scale of path
explorations. Thus, we also identify the nested loops among
the studied loops. These classification results answer RQ2.1.

Among the IDLs, we manually inspect the code to deter-
mine whether these IDLs have side effects on variables that
are used to decide subsequent branches. We refer to such
IDLs as IDLCs (denoting IDLs affecting Coverage). We then
apply Pex (reflecting search-guiding heuristics) and Pex with
bounded iteration (referred to as Pex-bounded) to explore the
identified IDLCs. Our study focuses on only IDLCs since
IDLs that do not compromise coverage of subsequent branches
can be easily handled by bounded iteration and search-guiding
heuristics, while symbolic execution faces challenges to reason



TABLE V
LOOP STATISTICS AND CLASSIFICATION FOR RQ2.1
Name # Loops | # IDL | # FIL | # N.
Confuser 441 373 68 26
DotNetZip 425 254 171 65
PSDPlugin 69 66 3 9
Wix 320 286 34 19
Mono.Cecil 246 245 1 13
GitSharp 175 173 2 21
Spine-Runtimes 57 56 1 8
TweetSharp 28 26 2 1
DSA 82 82 0 17
NGenerics 228 121 107 39
QuickGraph 142 84 58 6
Algorithmia 100 60 40 12
Commandline 35 33 2 2
HTMLAgilitypack 71 71 0 1
SharpNLP 259 259 0 45
Sprache 8 7 1 0
Total 2,686 | 2,196 490 | 284

about the side effects of IDLCs [20], [4Q], [42]. Pex by
default uses the mixed search strategy that combines different
search strategies: depth-first search, random search, and fitness
search [54], making Pex a representative tool for search-
guiding heuristics. Pex-bounded bounds the iteration counts
for the explored loops, thus reducing the search space. In our
study, we choose 2 as the loop-iteration bound. Such bound
makes sure that the back edge of the loop is traversed at least
once and is commonly used in both dynamic techniques and
static techniques [19]], [33]. The results of exploring IDLCs
answer RQ2.2.

Finally, by studying the IDLCs that neither Pex or Pex-
bounded can cover, we identify the major challenges and
propose guidelines to address these challenges.

B. RQ2.1: Statistics and Classification of the Studied Loops

To identify loops in the applications, we develop a static-
analysis tool that detects loops using back edges of domina-
tors [45]. Among the detected loops, we manually classify
them as FILs or IDLs and identify nested loops. Table [V]
shows the statistics of the studied loops and the results of
loop classification. Column “# Loops” shows the number of
studied loops rather than the number of all loops for each
application. In our study, every application has at least two or
more sub-projects or components that would be compiled as
a Dynamic Link Library (DLL) or an executable. Some DLLs
or executables may contain more than 500 loops (e.g., one
DLL of DotNetZip has 640 loops). Manually inspecting all
these loops and studying the results would not be feasible in
reasonable time. Thus, for components that contain more than
100 loops, we randomly choose 100 loops to study, and the
total number of loops studied for each application is shown
in Column “# Loops”. Column “# IDL” shows the number
of studied loops that are IDLs. Column “# FIL” shows the
number of studied loops that are FILs. Column “# N.” shows
the number of studied loops that are nested loops.

Results and Implications. As shown in the results, in
some applications, a substantial portion of loops are FILs.

For example, 46.9% (107/228) of the loops in NGenerics are
FILs. Most of these FILs are from test cases that construct
objects of fixed-size matrix. However, most of the loops
(81.8%, 2196/2686) in the studied applications are IDLs. The
pervasiveness of IDLs indicates that there is a strong need to
provide techniques for dealing with unbound loops. Moreover,
certain techniques that keep unrolling loops, such as the Depth-
First Search (DFS) strategy, should be applied with other
search strategies to avoid getting stuck in IDLs.

Loop summarization [20], uses patterns to identify
IDLs and symbolic analysis to infer the relationship between
program inputs and iteration counts. Thus, to understand the
effectiveness of their techniques, we study how to determine
whether a loop is an IDL and how to infer its iteration count
using symbolic execution. Based on our study, we find out that
the iteration counts of IDLs mainly depend on two types of
inputs: (1) program inputs: input parameters of the containing
method or fields of the containing method’s receiver objects;
(2) environmental inputs: variables storing inputs returned
from external method calls, such as calls related to files or
random generators. Previous work [20], based on patterns
and symbolic analysis can detect IDLs that depend on program
inputs of primitive types, but further work is needed to detect
IDLs that depend on fields of receiver objects. In addition,
our previous technique [52] can be used to compute the
data dependencies between loops and external method calls,
detecting IDLs that depend on values returned from external
method calls.

FILs can be unrolled statically and thus can be treated
as a series of branches in path explorations. Typically, the
iteration counts of FILs depend on numerical constants or
the length of fixed-size arrays. However, we find out that
the iteration counts of some FILs may depend on static
variables or return values of external method calls. For
example, an FIL may depend on the number of values
in an enum type through the external method call of
Enum.GetNames (typeof (SomeEnum) ) . Length.
Thus, static analysis on possible values of static variables and
certain external method calls can be leveraged to determine
the number of iterations for such FILs.

As shown in Table [V] nested loops appear more often in
algorithm-based applications, such as DotNetZip, NGenerics,
and SharpNLP. Since nested loops are shown to pose chal-
lenges for techniques of loop invariants or summarization, loop
invariants or summaries for such applications may be provided
by developers to improve the precision and scalability of the
applied techniques.

Summary. Most of the loops (81.8%: 2196/2686) in the
studied applications are IDLs. Techniques of identifying IDLs
and their iteration counts require analysis on not only pro-
gram inputs, but also environmental inputs. Algorithm-based
applications tend to have more nested loops that may affect
effectiveness of loop techniques.



TABLE VI
RESULST OF RQ2.2

Name # IDLC | # EXP | # Pex | # Bound
Confuser 33 25 12 12
DotNetZip 27 16 9 11
PSDPlugin 4 2 1 0
Wix 47 31 19 17
Mono.Cecil 47 45 37 32
GitSharp 68 39 33 30
spine-runtimes 8 6 5 5
TweetSharp 8 6 2 2
DSA 11 11 11 7
NGenerics 11 11 3 3
QuickGraph 7 7 2 2
Algorithmia 2 0 0 0
Commandline 14 14 14 14
htmlagilitypack 15 13 13 13
sharpnlp 79 40 25 24
sprache 0 0 0 0
Total 381 266 186 172

C. RQ2.2: Loop Explorations

We apply Pex and Pex with bounded iteration to explore
the methods containing IDLCs (in short as MCLs) identified
in our previous step and the methods that invoke an MCL
if the MCL returns a value that may compromise coverage.
We use Pex’s default bounds of various resources, such as the
running time, constraint-solving time, and number of paths.

As shown in our previous work [52] and other studies [16],
30], structural test generation faces two major problems:
object-creation problems (OCPs) and external-method-call
problems (EMCPs). Since these problems are not our study
focus, we manually provide factory methods to address OCPs,
and mock external methods to address EMCPs. For example,
we provide factory methods to guide Pex to generate matrix
objects using integer arrays, and mock calls to file systems
using string-matching functions.

Table [VI] shows the statistics of the IDLCs and the results
of loop explorations. Column “# IDLC” shows the numbers
of studied loops that are IDLCs. We prune the IDLCs that
we cannot provide factory methods or mock objects: 31 for
dependencies on GUI objects, 43 for Input/Output (I0) stream
objects, 31 for complex objects that are difficult to generate
using factory methods, and 10 for various problems that
prevent Pex from exploring the code, such as failures on
instrumenting the DLLs. Column “# EXP” shows the IDLCs
that are explorable by Pex with manually provided factory
methods and mock objects. Columns “# Pex” and “# Bound”
show the number of IDLCs that can be covered by Pex and
Pex with bounded iteration, respectively. Note that covering an
IDLC is to cover the subsequent branches that use variables
whose values are modified by the IDLC.

Results and Implications. Overall, for the 266 IDLCs
that are explorable with our provided factory methods and
mock objects, Pex and Pex-bounded achieve similar results for
covering the IDLCs (69.9%, 186/266, and 64.7%, 172/266).
Both techniques achieve good coverage for DSA as expected,
since such library applications tend not to have many callers on

1 public static Version ParseVersion(string ver) {
2
3 int dotCount = 0;

4 for (inti = 0;i < ver.Length; i++) {

5 char c = verfi];

6 if (c ==".") dotCount++;
7

s}

10 'i'f.(dotCount ==0) { ver =ver +".0"; }
1" else if (dotCount > 3) {

12 string[] verSplit = ver.Split(’.’);

13 ver = String.Join(”.”, verSplit, 0, 4);
4}

15

16 }

Fig. 1. A simplified code snippet from Wix
public static void Main(String[] args) {

1
2
3 for (inti=1;i < args.Length; i++) {

4 switch (argsli]) {

5 case "—keep”: keepOriginal = true; break;

6 case "—f": force = true; break;

7 case "—V": verbose = true; break;

8 default. throw new ArgumentException(argsi]);
9

}

1 string fname = args[0];

12 bool decompress = (fname.ToLower().EndsWith(".bz”) ||
fname.ToLower().EndsWith(”.bz2"));

13 string result = decompress ? Decompress(fname, force) :
Compress(fname, force);

14 if (result==null) {

15 Console.WriteLine(’No action taken. The file already exists.”);
16

17 else{

18 if (verbose) {

19

20 if (decompress) { ... } else { ... }

21 }

2 if (\keepOriginal) { ... }

3}

2 }

Fig. 2. A simplified code snippet from DotNetZip

methods that contain IDLs to do computations. For randomly-
chosen applications, both techniques can cover about 65% of
the IDLCs. For NGenerics and Quickgraph, both techniques
obtain worst results due to validation on input objects (de-
scribed in Section [[V). We next provide explanations and
examples to compare the performance of these two techniques.

Bounded iteration reduces the search space for Pex. How-
ever, under some cases, bounding the iterations of a loop
would cause some subsequent branches not to be covered.
Figure [T shows a simplified example from Wix. To cover the
true branch (dotCount > 3) at Line 11, we need the loop
at Line 4 to have at least 4 iterations. Thus, by bounding the
number of loop iterations to 2, Pex-bounded cannot cover the
true branch at Line 11, while Pex without bounded iteration
can cover both branches at Line 11.

On the other hand, if we do not bound the iterations of
IDLs, Pex may unroll the loop too many times, and would not
achieve the coverage of subsequent branches before running
out of resources. Figure 2l shows an example that Pex-bounded
achieves better coverage than Pex. The iteration count of IDL
at Line 3 depends on the number of arguments in args. In
each iteration of this IDL, the switch statement at Line 4



TABLE VII
OUR MAJOR FINDINGS ON LOOP PROBLEMS AND THEIR IMPLICATIONS

RQ Findings of Literature-Survey Study Implications
RQLI (F.1) In recent 10 years, more than 150 articles published in major | Given the popularity of symbolic execution, improving it in terms of
: conferences of various areas are related to symbolic execution and | precision, effectiveness, or scalability would bring substantial bene-
tasks assisted by symbolic execution. fits to various tasks, such as software testing, program verification,
and security analysis.
(F.2) Few articles on debugging or security analysis propose specific | To what extent loops compromise the effectiveness of applying
techniques to address loop problems, while more than 61.9% (26/42) | symbolic execution depends on the tasks assisted by symbolic
of the articles provide various techniques to deal with loops; nearly | execution; loop problems are one of the major problems when
half of the articles on software testing (32/84, 42.9%) propose | conducting symbolic execution for software testing.
techniques to deal with loops.
RQI.2 (F.3) 75.0% of the articles that provide techniques to address loop | Bounded iteration and search-guiding heuristics are the most widely
’ problems adopt bounded iteration and search-guiding heuristics. used loop techniques across various tasks due to their ease of
implementation and effectiveness in handling loops for different
objectives of these tasks.
(F.4) For tasks of software testing and security analysis, bounded | Lightweight techniques (bounded iteration and search-guiding
iteration and search-guiding heuristics are used to prevent symbolic | heuristics) could be applicable and effective on various tasks, includ-
execution from being stuck in IDLs; for tasks of program verification, | ing verification tasks (when the bounded assumption is acceptable).
these two techniques are used to limit the state space.
RQ Findings of Empirical Study Implications
(E.5) Most of the loops (81.8%, 2196 / 2686) in studied applications | Techniques that keep unrolling loops, such as the Depth-First Search
RQ2.1 | are IDLs. (DFS) strategy, should be applied with other techniques to avoid
getting stuck in loops.
(F.6) The iteration counts of IDLs depend on two types of inputs: | To improve identification of IDLs, extra symbolic analysis should be
program inputs (e.g., primitive values or object fields) and environ- | performed on values returned or modified by external method calls.
mental inputs (e.g., return values of external method calls); existing
techniques mainly focus on IDLs that depend on program inputs.
(E.7) Nested loops pose challenges to compromise the precision and | For algorithm-based applications, developers may specify loop in-
scalability of loop techniques, and appear more often in algorithm- | variants or summaries to improve the precision of the applied loop
based applications. techniques.

RQ2.2 | (F.8) IDLs that do not compromise the coverage of subsequent | In general, bounded iteration and search-guiding heuristics can
branches can be easily handled by bounded iteration and search- | effectively address loop problems. However, in some cases, these
guiding heuristics. These two loop techniques can address loop | techniques still face challenges in covering the branches decided by
problems caused by about 65% of IDLCs. IDLCs.

results in 4-way branches, each of which would cause a local
variable (i.e., force, verbose, and keepOriginal)
to become true or throw an exception. At the later part of
the example, branches at Lines 14, 18, and 22 depend on
the values of force, verbose, and keepOriginal,
respectively. If no specific bound is provided for the IDL
at Line 3, the combinations of branches taken inside the
IDL grow exponentially when the iteration count increases.
Moreover, the value of args[0] used in Lines 12 and 13
makes the number of paths grow even more drastically. Thus,
Pex fails to achieve coverage of all the branches at Lines
14, 18, and 22 due to path explosion. When Pex is applied
with bounded iteration, the number of arguments in args is
constrained to be 2, and Pex can achieve full coverage of the
example within the given bounds of resources.

Summary. In general, bounded iteration and search-guiding
heuristics can effectively address loop problems caused by
IDLs, while in some cases these two techniques still face
challenges in dealing with IDLCs (about 35%).

IV. CHALLENGES AND GUIDELINES

Our characteristic studies identify the widely used loop
techniques and show their effectiveness. The major findings
and implications of our studies are summarized in Table [VIIl
For the IDLCs that cannot be covered by either Pex or Pex-
bounded, we further inspect these IDLCs and identify several
major challenges.

Data Structures. As shown in Table [VI] both Pex and Pex-
bounded achieve poor IDLC-coverage results for the applica-
tions NGenerics (3/11) and Quickgraph (2/7). The main reason
is that the IDLCs in these data structure/algorithm applications
require input objects to pass the validation, i.e., using repOk
to guard against invalid objects. Figure 3] shows such an IDL
that checks whether a matrix is a symmetric matrix. These
validations typically use IDLs to validate each item of a data-
structure object, and generate enormous constraints after the
validation. For example, objects of the symmetric matrix in
NGenerics require a validation for checking whether values in
a 2-dimensional array conform to the symmetric constraints.
Graphs of various edges and vertices require validation of
vertices’ existence before edges can be added and different
shapes of graphs impose further validations that involve both
vertices and edges. In these cases, the validation constraints are
combined with other constraints collected from the IDLCs to
form very long constraints, which cause the constraint solver
to run out of time in solving these constraints.

Guideline: For applications that impose heavy validation
on input values, a separate data generator that generates
valid objects may be employed and only the constraints
that lead to valid objects should be combined with the
constraints collected from IDLCs.

Path Explosion. As shown in Section [II=C| bounded
iteration may cause certain subsequent branches not to be



1 public bool IsSymmetric {

2 get{

3 if (noOfRows == noOfColumns) {

4 for (var i = 0; i < noOfRows; i++) {
5 for (varj=0;j <i;j++) {

6 if (GetValue(i, j) != GetValue(j, i))
7 return false;

‘ }

9

10 return true;

11

12 return false;

3}

14}

Fig. 3. An IDL that performs data validation from NGenerics

covered, and not bounding IDLs can cause symbolic execution
to suffer from path explosion and constraint explosion. When a
symbolic-execution tool negates a branch that decides the loop
termination (i.e., a loop guard), the loop iteration increases by
a certain number, depending on the output from the constraint
solver. If each iteration of the loop contains many branches,
such as the example in Figure 2] increasing the loop iterations
introduces many more constraints and grows the search space
exponentially. The current fitness-heuristic technique [54]] does
not treat loop guards differently, and thus computes the fitness
values for loop guards using the same way as other branches.
Such fitness values increase the probabilities to search paths
in later iterations instead of sufficiently searching the paths in
earlier iterations.

Guideline: Search-guiding heuristics should assign lower
probabilities on loop guards than other branches, and
branches collected in later iterations should be given lower
probabilities than branches collected in earlier iterations.

Complex Loops. Loop summarization [20], can allevi-
ate the loop problems only when the IDLs can be summarized
using induction variables. However, many loops are complex
and cannot be summarized using induction variables. For the
example in Figure [[l in the loop body, dotCount++ is
guarded by a condition ¢ == ’.’, and thus dotCount
may be modified in only some of the iterations. In this
case, most of these summary-based techniques would not
consider dotCount as an induction variable and cannot
generate useful summaries. Moreover, some complex IDLs
that contain nested loops, such as the IDL in Figure [ are
not summarizable using induction variables.

Guideline: For complex IDLs that interleave nested loops
and branches, a test-generation tool may identify such
loops and report to developers, developers can provide
manually specified loop invariants or summaries to assist
the tool in addressing the loop problems.

V. THREATS TO VALIDITY

Threats to External Validity. In our literature-survey study,
we choose articles based on a comprehensive bibliography of
articles on symbolic execution and its applications [1I]; such
bibliography has been collected by a third party. Although
these collected articles may not be complete, the 159 studied

articles can be considered as a representative set of articles
on symbolic execution, since these articles are published in a
wide range of venues, including conferences in software engi-
neering, systems, security, software verification, programming
languages, and database. We may further reduce the threat
by including more articles from scientific publishers, such as
ACM, IEEE, and Springer.

In our empirical study, 16 selected open-source applications
are realistic and reasonable, within our affordable efforts
besides our significant effort spent for the literature-survey
study of 159 articles. In particular, we study these published
papers carefully to classify loop techniques, and select subject
applications of data structures/algorithms and parsers based
on the study results from the literature. Applications of data
structures/algorithms and parsers are often libraries and do not
have many callers, and thus we further randomly sample ap-
plications from open-source project hostings. These randomly
selected applications tend to be applications using libraries,
reducing the bias of our subject selection. In addition, although
previous test-generation studies [[16] investigate the scale of
100 applications, these studies sample only 40 classes for
manual inspection of problems. Note that we manually study
about 2600 loops and provide in-depth analysis of loops that
may compromise coverage. Such study is time-consuming to
conduct, and thus constrains the scale of our studies.

Threats to Internal Validity. Subjectiveness in the failure
classification is inevitable due to the large manual effort
involved in both the literature-survey study and the empiri-
cal study. In addition, there also might be human errors in
collecting application statistics (such as # LOC and # classes)
and studying the exploration results of Pex. These threats are
mitigated by double-checking all manual work. We ensure that
the results are individually verified and agreed upon by at
least two authors. These threats could be further reduced by
involving third-party people who have experiences on software
testing and symbolic execution to verify our results.

VI. DISCUSSION AND FUTURE WORK

Generalization to Other Test-Generation Techniques.
Although our current study focuses on test-generation tools
based on DSE, some of our findings can be generalized to
other test-generation techniques. For example, the challenge
of generating objects of specific data structures are applicable
to both random and constraint-based test generation. Both
of these techniques would take substantial time before they
can produce valid objects, while employing a separate data
generator that generates only valid objects but allows variants
on some fields of the objects can improve the effectiveness of
test generation. Similarly, the challenge of path exploration
and our guideline are applicable to these techniques. For
example, random test generation may give lower probabilities
and constraint-based test generation may use fixed values or
assign lower priorities to mutate variables that may increase
loop iterations.

Future Directions to Improve Loop Techniques. Our
studies show the effectiveness of existing techniques (bounded



iteration and search-guiding heuristics), and identify challenges
faced by these techniques. Based on the findings of our studies,
there are several directions to improve loop techniques. (1)
Identification of IDLs. Symbolic analysis should be applied
on external method calls [30], [52]] to improve identification
of IDLs, and modelling of these methods may be used to
improve the precision of inferring the iteration counts of IDLs.
(2) Bounded heuristics. Bounded iteration may be used to
first bound the search space, and search-guiding heuristics are
then used to guide the search of paths inside the bounded
space. If the objective cannot be satisfied in the bounded
space, the bound may be increased. (3) Mixed techniques.
Bounded iteration and search-guiding heuristics are generally
very effective in handling IDLs that require a few iterations to
cover subsequent branches of the IDLs. after several iterations,
loop summarization can be used to compute summaries for not-
covered IDLs. (4) Cooperative analysis. For complex loops,
such as nested loops or loops that cannot be summarized by
loop summarization, tools may report such loops to users and
present the related not-covered branches to obtain developers’
guidance.

Object Generation and Mock Objects. In our empirical
study, we observe that some complex objects have more than
10 fields that need to be set by symbolic values, and these
fields may in turn be complex objects. The current mechanism
of factory methods has limitations in supporting the creation
of such objects, and often results in lots of constraints during
the process of creating objects. In future work, we plan to
investigate how to simplify the object-creation mechanism to
better assist test-generation tools. In addition, we observe that
there are many IDLCs that require mocking complex objects
to simulate environment dependencies, such as file systems,
IO streams, and GUI objects. We are able to provide mock
objects for file systems, but could not mock IO streams or
GUI objects due to their unique challenges. Mocking 1O
streams requires modelling the pointer for reading data and
the pointer’s movement, while mocking GUI objects requires
modelling view objects organized in layers and their parent-
children relationships. In future work, we plan to investigate
how to construct Parameterized Mock Objectss [39], to
address these challenges.

VII. RELATED WORK

Studies on Test Generation. Lakhotia et al. conduct an
empirical study on applying test-generation tools CUTE [41]
(a symbolic-execution-based tool) and AUSTIN (a search-
based tool) to achieve branch coverage of C programs. Fraser
et al. [[16] present a study of applying a search-based tool
EvoSuite [15] on a set of open-source applications. They
identify that dependencies on the environment inhibit high
coverage achieved by test-generation tools. Kim et al.
propose a distributed concolic algorithm [33]], and present an
empirical study to show that their technique achieves sev-
eral orders-of-magnitude increase in speed of test generation
compared to concolic testing. All these studies focus on the
coverage or scalability of testing the whole applications, while

our work provides in-depth studies to identify challenges on
dealing with loops and presents guidelines on addressing the
challenges.

Heuristics for Path Exploration. To address the path
explosion caused by loops, some DSE tools bound the loop it-
erations [19]], or use heuristics to guide path explorations [48],
such as the fitness-heuristic technique [34]. The fitness-
heuristic technique computes a fitness value to measure how
close an already discovered feasible path is to a manually
specified test target (e.g., a non-covered branch), and guide
symbolic execution to take branches that have better fitness
values. In our studies, we apply these two techniques on open-
source applications, compare their effectiveness, and identify
challenges faced by these two techniques.

Loop Summarization. Loop-summary techniques [20],
define an extra symbolic value for the iteration count of
the executed loop, and collect constraints on program variables
that have relationship to the iteration count of the loop. These
constraints are added to path conditions for steering further
path explorations, addressing the issue of unrolling the loop
without achieving higher coverage. More recent research [42]
extends the summarization of iteration counts by using sym-
bolic variables to represent different paths taken inside the
loop, enabling summarization of the relationship between
program variables and the branches inside the loop. These
techniques require detection of induction variables whose
values are modified by a constant value or constant times for
each loop iteration. However, as shown in our empirical study,
there are also many other complex situations that interleave
nested loops or conditional branches, not summarizable by
using induction variables.

There also exist static-analysis techniques [6], [8], [24] for
automatic loop-invariant generation and summarization. These
static-analysis techniques may not be scalable for real-world
complex applications, and face challenges in handling many
runtime features of real-world applications, such as external
method calls and indirect method calls via function pointers.

VIII. CONCLUSION

This paper has presented the first characteristic studies on
loop problems for structural test generation, with the focus
on test-generation tools based on DSE. Our characteristic
studies consist of two parts: a literature-survey study of
159 published articles and an empirical study on 16 open-
source applications. Our two-phase characteristic studies focus
on bounded iteration and search-guiding heuristics, two most
widely adopted techniques to deal with loop problems. Our
studies find that these two loop techniques can address about
65% of IDLs that have side effects on variables used to decide
subsequent branches. Our studies further identify challenges
that compromise the effectiveness of these loop techniques
and provide guidelines on how to address these challenges.
Our findings and implications provide valuable guidelines for
future research on loop problems for structural test generation.
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