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Abstract—Dynamic Symbolic Execution (DSE) is a state-of-
the-art test-generation approach that systematically explores
program paths to generate high-covering tests. In DSE, the
presence of loops (especially unbound loops) can cause an
enormous or even infinite number of paths to be explored.
There exist techniques (such as bounded iteration, heuristics,
and summarization) that assist DSE in addressing loop problems.
However, there exists no literature-survey or empirical work that
shows the pervasiveness of loop problems or identifies challenges
faced by these techniques on real-world open-source applications.
To fill this gap, we provide characteristic studies to guide future
research on addressing loop problems for DSE. Our proposed
study methodology starts with conducting a literature-survey
study to investigate how technical problems such as loop problems
compromise automated software-engineering tasks such as test
generation, and which existing techniques are proposed to deal
with such technical problems. Then the study methodology con-
tinues with conducting an empirical study of applying the existing
techniques on real-world software applications sampled based
on the literature-survey results and major open-source project
hostings. This empirical study investigates the pervasiveness of
the technical problems and how well existing techniques can
address such problems among real-world software applications.
Based on such study methodology, our two-phase characteristic
studies identify that bounded iteration and heuristics are effective
in addressing loop problems when used properly. Our studies
further identify challenges faced by these techniques and provide
guidelines for effectively addressing these challenges.

I. INTRODUCTION

Software testing is one of the most commonly used tech-

niques for improving software quality, but it is typically a

labor-intensive process that accounts for high cost in soft-

ware development and maintenance. To address the issue,

Dynamic Symbolic Execution (DSE) [18], [34], [41], recently

made popular with the advent of powerful constraint-solving

tools [7], [14], [19], can be used to automatically generate

high-covering tests by systematically exploring program paths.

DSE executes the program under test symbolically with

arbitrary or default inputs and collects path conditions as the

constraints on inputs from the executed branch statements.

DSE then systematically negates part of these constraints to

form new path conditions, and leverages a constraint solver to

solve these path conditions for obtaining new test inputs. These

new test inputs steer the future explorations towards different

paths of the program, iteratively collecting new constraints

and achieving new structural coverage, such as statement

and branch coverages [5]. With the advances of research on

constraint solvers, e.g., Z3 [14] and CVC3 [7], DSE-based

tools, such as SAGE [19] and Pex [48], become promising

in generating test inputs for unit testing and (security) system

testing [10], [11], [19], [41], [48]. Since 2008, SAGE has been

continually running on more than 100 machines in a security

testing lab, and Pex found serious faults from an already-well-

tested component of the .NET runtime.

A significant challenge for DSE is how to handle loops,

which may compromise DSE’s effectiveness in terms of

structural coverage and fault detection. As a special type

of branches, loops can cause the number of paths to be

explored to grow exponentially. Even worse, the number of

paths becomes infinite due to the presence of input-dependent

loops (IDLs)1, causing DSE to run out of resources (e.g., the

allocated time or number of explored paths) before achieving

satisfactory coverage. For example, a recent study [37] shows

that DSE may keep unfolding an IDL without achieving

coverage of any new branches. Recent research has tried to

address this challenge by using bounded iteration to constrain

loop unrolling [19], using search-guiding heuristics to guide

path exploration [11], [48], [54], or using loop summarization

to summarize loops based on inferred loop invariants [20],

[40], [42] (referred to as loop summarization).

Although loops whose iteration counts are statically

bounded may still pose problems to DSE, IDLs are considered

as much more severe problems since IDLs may cause the

search space to become infinite. Some previous work [20],

[28], [29] proposes effective techniques to assist DSE in

dealing with IDLs (referred to as loop techniques), but these

techniques have their limitations in handling different kinds

of IDLs. For example, bounded iteration and search-guiding

heuristics effectively prune the search space, but they may

prevent DSE from covering subsequent branches that require

loops to iterate more than a certain number of times [20].

Inferring loop invariants as conducted by loop summarization

requires some abstractions to be performed on the symbolic

states, and may lose precision on summarizing the loops [28],

[29]. Moreover, loop summarization requires detection of in-

duction variables whose values are modified by a constant

1Input-dependent loops are loops whose iteration numbers depend on some
unbounded input.



value or constant times for each loop iteration. However, only

a few IDLs can be summarized by induction variables. Gode-

froid et al. [20] report that their technique can summarize only

33% (6 out of 19) of the detected IDLs in their evaluations.

Unfortunately, there exists no literature-survey or empirical

work that shows the pervasiveness of loop problems, or

identifies challenges faced when these techniques are applied

on real-world applications. To fill such a significant gap, we

provide two-phase characteristic studies on loop problems for

structural test generation, with the focus on test-generation

tools based on DSE. Our proposed study methodology starts

with conducting a literature-survey study to investigate how

technical problems such as loop problems compromise au-

tomated software-engineering tasks such as test generation,

and which existing techniques are proposed to deal with such

technical problems. Then the study methodology continues

with conducting an empirical study of applying the existing

techniques on real-world applications sampled based on the

literature-survey results and major open-source project host-

ings. This empirical study investigates the pervasiveness of

the technical problems and how well existing techniques can

address such problems among real-world applications.

In our literature-survey study, we survey the literature

from a comprehensive bibliography of papers on symbolic

execution and tasks assisted by symbolic execution [1]. DSE

is a symbolic-execution-based technique, and thus faces the

same path-explosion problem as symbolic execution. The

analysis results of loop problems and loop techniques from

the surveyed articles of symbolic execution are applicable and

beneficial to loop problems for DSE. In particular, we seek to

answer the following questions:

RQ1.1: Are loop problems a kind of major problems

to compromise the effectiveness of symbolic execution

in various tasks? Symbolic execution has been applied for

various tasks, such as test generation [18], [25], [38], [41],

[43], [46], [47], [51], [53], debugging [31], security analy-

sis [9], [12], [49], verification [21], [27]. The answer to this

question can help understand which of these tasks would need

to specifically address loop problems.

RQ1.2: What kinds of techniques are proposed to deal

with loops, and how widely are the techniques used across

various tasks assisted by symbolic execution? In addition,

we study the advantages and disadvantages of different kinds

of techniques, providing guidelines on choosing techniques for

various tasks.

In our empirical study, we choose certain representative

techniques (found from our literature-survey study) to apply on

real-world applications. We sample subject applications from

certain categories (data structures and parsers) that are found

to typically have loop problems from the surveyed articles, and

select subject applications randomly from major open-source

project hostings including CodePlex [2] and GitHub [3]. In

particular, we seek to answer the following questions:

RQ2.1: How pervasive are IDLs in open-source ap-

plications? What are the distribution of nested loops?

We classify loops as Fixed-Iteration Loops (FILs) or Input-

Dependent Loops (IDLs), and identify nested loops that pose

challenges for various techniques, such as loop summarization.

The classification results of FILs and IDLs can show the per-

vasiveness of IDLs, and help understand the causes of IDLs.

Since nested loops pose extra challenges, the distributions of

nested loops provide insights on what kinds of applications

may need manual assistance in dealing with nested loops.

RQ2.2: How well can existing techniques, such as

bounded iteration and search-guiding heuristics, address

the loop problems posed by IDLs on real-world appli-

cations? As our literature-survey study identifies bounded

iteration and search-guiding heuristics as the most widely used

techniques across various tasks, we apply Pex, the state-of-the-

art DSE-based tool, with the mixed search strategy [54]2 and

Pex with bounded iteration (referred to as Pex-bounded) on the

sampled software applications to explore IDLs. The results can

show how well these techniques handle loop problems on real-

world applications. Moreover, our studies identify challenges

faced by existing techniques and propose guidelines on how

to address these challenges.

Our paper makes the following main contributions:

• We present the first characteristic studies to guide re-

search on addressing loop problems for structural test

generation.

• We propose a two-phase methodology on studying tech-

nical problems in automated software-engineering tasks:

(1) a literature-survey study that investigates how tech-

nical problems may compromise automated software-

engineering tasks such as test generation, and which ex-

isting techniques are proposed to deal with such technical

problems; (2) an empirical study that investigates the

pervasiveness of the technical problems and how well

existing techniques can address such problems among

real-world software applications.

• We find out that bounded iteration and search-guiding

heuristics are two most widely used techniques across

various tasks assisted by symbolic execution, and both

techniques are effective in addressing loop problems on

real-world applications when used properly.

• We identify various challenges that compromise the effec-

tiveness of existing loop techniques and provide valuable

guidelines for addressing these challenges.

II. LITERATURE-SURVEY STUDY

In this section, we present the details of the literature-

survey study and its implications. Our literature-survey study

investigates how loop problems compromise various tasks

assisted by symbolic execution, such as testing and security

analysis, and what techniques are proposed to deal with loop

problems.

A. Study Setup

In our literature-survey study, we survey the literature from a

comprehensive bibliography of articles on symbolic execution

2A search strategy that combines different search strategies in a fair round-
robin scheme.



TABLE I
RESEARCH AREAS OF SURVEYED ARTICLES

Area # Articles

Software Engineering 74 (46.5%)

Security 22 (13.8%)

Systems 15 ( 9.4%)

Programming Languages 17 (10.7%)

Verification 29 (18.2%)

Database 2 (1.3%)

Total 159

and its applications [1]. The articles are published in a wide

range of venues, including conferences in software engineering

(e.g., ICSE, FSE, ISSTA), systems (e.g., ASPLOS, OSDI),

security (e.g., CCS, Oakland, USENIX Security), software

verification (e.g., CAV, TACAS, VMCAI), programming lan-

guages (e.g., POPL, PLDI, SAS, CC), and database (e.g.,

SIGMOD). Since the bibliography includes only a few articles

published in 2012, we manually collect more articles in 2012

for the study. The details of the study and results can be found

on our project website [4].

Study Design. We first classify the articles into different

tasks assisted by symbolic execution. We then investigate the

percentage of the articles that propose techniques to deal with

loops (referred to as loop articles) in each task. Such data can

help draw conclusions on how loops may compromise tasks

assisted by symbolic execution.

We then categorize the techniques proposed by the studied

articles to address loop problems. This categorization can

indicate not only which technique is frequently used in which

tasks, but can also identify which technique is widely used

across different tasks.

Statistics of Literature-Survey Study. In our literature-

survey study, we survey 159 articles in total. Table I shows

the number of articles that we survey in each research area. We

next describe the detailed results for answering the questions.

B. RQ1.1: Loop Problems in Various Tasks

Table II shows the task categories of our literature-survey

study. Column “Total” shows the number of articles that be-

long to various tasks assisted by symbolic execution, and Col-

umn “Loop” shows the number of loop articles. We categorize

the articles into five major types of tasks: (1) software testing:

running a program with generated test inputs and dynamically

checking its behavior (Row “Testing”); (2) formal verification:

checking the correctness of a program by verifying that the

program meets requirements or given properties, often in the

form of static analysis (Row “Verification”); (3) security anal-

ysis: identifying security vulnerabilities of a program (Row

“Security”) (4) debugging: locating and removing faults in a

program (Row “Debugging”) (5) other: other applications such

as language transformation [26] and program synthesis [23]

(Row “Other”). Note that some techniques proposed in some

articles may fall into more than one categories.

Results and Implications. In recent years, with the ad-

vances of computing powers and research on constraint solvers

and theorem provers, symbolic execution has been developed

TABLE II
TASKS ASSISTED BY SYMBOLIC EXECUTION

Type Total Loop

Testing 84 (52.8%) 36 (22.6%)

Verification 42 (26.4%) 26 (16.4%)

Security 25 (15.7%) 12 ( 7.5%)

Debugging 11 ( 6.9%) 3 ( 1.9%)

Other 5 ( 3.1%) 1 ( 0.6%)

a lot and been used in various research areas. As shown in

Table II, more than 150 articles (151 = 84 + 42 + 25, 95.0%)

have been published on applying symbolic execution for

software testing, program verification, and security analysis.

Given the popularity of symbolic execution, improving it in

terms of precision, effectiveness, or scalability would bring

substantial benefits to various software engineering or security

tasks.

As described in Section I, IDLs may compromise the

effectiveness of the proposed techniques using symbolic exe-

cution. However, based on the results of our literature-survey

study, we find that to what extent loops may compromise the

effectiveness of applying symbolic execution depends on the

tasks. For example, for program verification, more than 60% of

the articles provide various techniques to deal with loops; the

remaining articles focus on other aspects of symbolic execu-

tion, such as improving constraint solvers to deal with floating-

point computation or solving string constraints. The main

reason is that verification tasks often require high precision

for achieving their objectives, such as proving reachabilities

of certain program locations.

Using symbolic execution to enumerate all feasible paths

would fail the tasks due to the not only large but infinite

search space induced by IDLs. But for some tasks, such

as debugging or vulnerability detection in security analysis,

loops may not be a major obstacle for two major reasons. (1)

When debugging a discovered failure or exploit, a particular

failure-inducing path is already known, and bounded iteration

can produce satisfactory approximations of loops [22]. The

main reason is that paths closer to the failure-triggering path

are more likely to be related to the same fault and more

error-prone. (2) Abstractions used by some static-analysis ap-

proaches abstract away the complexities of unbounded loops,

and the analysis always reaches a fixed point to produce a

conservative result, such as safe or unsafe in proving memory

safety for loops [17].

Among the articles that apply symbolic execution for soft-

ware testing, nearly half of them (32/84, 42.9%) propose tech-

niques to deal with loops, indicating that loops indeed are also

concerns when conducting symbolic execution for software

testing. Moreover, research on symbolic execution for software

testing can benefit from research on symbolic execution for

other research tasks. For example, certain articles on software

testing adapt techniques from articles on program verification,

such as loop summarization [20] and abstraction [35].

Summary. These results show that loop problems are one of

the major kinds of problems that compromise the effectiveness

of symbolic execution for tasks that require high precision for



TABLE III
TECHNIQUES TO DEAL WITH LOOPS

Type Total Testing

Bounded Iteration 38 (23.9%) 24 (15.1%)

Search-Guiding Heuristics 16 (10.1%) 8 ( 5.0%)

Loop Summarization 8 ( 5.0%) 3 ( 1.9%)

Abstraction 7 ( 4.4%) 3 ( 1.9%)

Loop Invariant 4 ( 2.5%) 0 ( 0.0%)

Other 3 ( 1.9%) 0 ( 0.0%)

achieving their objectives, such as verification and testing; for

tasks whose objectives focus on a small set of specific paths,

such as debugging or vulnerability detection, loop problems

may be alleviated with bounded iteration and abstraction.

C. RQ1.2: Techniques to Deal With Loops

Table III shows loop techniques in our literature-survey

study. Column “Total” shows the number of articles that apply

symbolic execution for any purpose, and Column “Testing”

shows the number of articles that apply symbolic execution

for software testing. Each row shows the number of articles

that provide certain techniques to deal with loops.

As shown in Table III, most of these techniques fall into four

categories: (1) bounded iteration, (2) search-guiding heuristics,

(3) loop summarization, and (4) abstraction. Bounded iteration

bounds either loop iteration or input range to make the whole

search space finite, thus addressing the infinite-loop problem

with the loss of completeness. Search-guiding heuristics at-

tempt to guide symbolic execution to focus on exploring paths

that are more likely to achieve certain objectives faster (such

as structural coverage), thus preventing symbolic execution

from being stuck in loops. Loop summarization summarizes a

loop into a set of formulas for addressing infinite loops in a

program. These formulas can be solved by using constraint

solvers to determine whether the objective can be achieved,

such as reachability of certain program locations. Abstraction

uses an abstracted model of program states. Although this

model loses some information, the model is more compact

and easier to manipulate. To maintain soundness, the analysis

must produce a result that would be true regardless of the

information in the abstracted-away state components. Such

techniques can be used to model the states of loop iterations,

handling infinite loops with symbolic execution.

Results and Implications. Bounded iteration and search-

guiding heuristics have relatively low analysis cost, and yet are

incomplete or unsound. Loop summarization and abstraction

have relatively high analysis cost (facing scalability issues on

large programs), but could be used for proof. Understanding

the advantages and disadvantages of these techniques can

help better make design choices of adapting these techniques

to enhance symbolic execution. For example, for verification

tasks that require completeness, it is better to choose loop

summarization or abstraction. For testing tasks that focus

on structural coverage, bounded iteration or search-guiding

heuristics are a good fit, since these two techniques can prevent

symbolic execution from being stuck in loops. In addition,

we could even adapt different techniques to complement each

other. For example, for software testing, we could achieve gen-

eral structural coverage by employing search-guiding heuristics

to avoid being stuck in certain loops. For certain program

locations that are likely to trigger runtime failures (such

as exceptions or assertion violations), we could use loop

summarization or abstraction to verify their reachability.

Among these 72 loop articles, we further look into the

subject programs used in their evaluations. We find that each

article may use one or more kinds of subject programs in their

evaluations, and these subject programs are mostly benchmark

programs (34/72, 47.2%) and real-world applications (42/72,

58.3%3). These results show that loop techniques have been

used and evaluated not just on small programs used for

illustration purposes, but also on real programs that have

practical usage.

From Table III, we can also see that the most widely

adopted techniques are bounded iteration: 52.7% (38/72) of

the loop articles and 66.7% (24/36) of the loop articles for

software testing, and search-guiding heuristics: 22.2% (16/72)

of the loop articles and 22.2% (8/36) of the loop articles

for software testing. In addition, both of these techniques are

widely used for the tasks of software testing, security analysis,

and verification. For software testing and security analysis,

these two techniques are used to prevent symbolic execution

from being stuck in IDLs, and spend more efforts in exploring

other parts of the programs to improve structural coverage. For

verification, some verification techniques consider bounds to

limit their state space, such as bounded model checking [13],

and thus bounded iteration is also naturally used to deal with

unbound loops in limiting the number of paths. Similar to

testing and security analysis, in verification, search-guiding

heuristics are also used to improve coverage for symbolic

execution. Although these lightweight techniques (bounded

iteration and search-guiding heuristics) are incomplete when

solving some problems posed by loops, they could still be

applicable and effective on various tasks, including verification

tasks. We should not rule out such techniques in our design

choices without deeper investigation of the programs under

analysis, even if our tasks require high precision (such as

verification tasks).

Summary. Loop techniques have been used for various

tasks and evaluated on real programs. Among these techniques,

Bounded iteration and search-guiding heuristics are the most

widely used loop techniques across various tasks. When the

bounded assumption is acceptable, these techniques can also

be used for tasks that require high precision, such as verifica-

tion tasks.

III. OPEN-SOURCE APPLICATION STUDY

In this section, we present the details of the empirical study

on open-source applications and its implications. We further

propose guidelines based on our findings.

3Among the 72 articles, 9 articles use industrial programs, 13 articles use
programs of operating systems, and 20 articles use open-source programs [4].



A. Subjects and Study Setup

To conduct the study, we choose the DSE tool, Pex [48],

a state-of-the-art test-generation tool developed by Microsoft

Research. The main reasons are (1) Pex has been applied

internally in Microsoft to test core components of the .NET

runtime infrastructure and finds serious faults [48]; (2) Pex

can automatically instrument .NET programs for generating

test inputs; (3) Pex is integrated with various kinds of search

strategies [48], [54].

In this study, we select subject applications from two

sources: (1) 4 open-source applications from CodePlex [2] and

4 from GitHub [3], both of which are the largest application

hostings for open-source software written in .NET languages;

(2) 8 open-source applications from two categories (4 from

each category): application parsers and data structures/algo-

rithms. Some previous studies report that several types of

open-source applications have loop problems for compromis-

ing the effectiveness of their techniques, such as parsers [20].

Since these applications are not .NET programs that can be

instrumented by Pex, we select the same type of applications

from open-source .NET programs. Moreover, applications of

data structures/algorithms tend to have many IDLs, and many

studies extract benchmarks from these applications.

Random Sampling. We randomly select 8 applications

from the top 100 most-downloaded or most-watched applica-

tions from open-source application hostings: 4 from CodePlex

and 4 from GitHub. We base our selection on applications

tagged as being written in the C# language. At the time of

our study, CodePlex had 32,477 such applications in total,

and GitHub listed the top 200 such applications. Applying

Pex to explore all loops in all the applications and studying

the results would not be feasible in reasonable time. Therefore,

we sample the dataset of the top 100 applications, randomly

choosing one application out of these applications at a time.

Sampling from Specific Categories. To sample applica-

tions from the categories of application parsers and data struc-

tures/algorithms, we use the keywords parsers, data structure,

and algorithm to search the repositories and rank the matched

applications by download counts and watch counts. For each

category, we manually inspect the ranked applications in order

and select 4 applications from each repository.

Selection Criteria. For each chosen application, we manu-

ally inspect the application description and the source code to

determine whether it is suitable for our study. We prune the

applications based on three criteria. (1) Applications whose

majority parts are UI-related or environment-dependent (such

as database-related). These applications typically have many

external-method calls to libraries of UI or database, and Pex

has limitations in handling these external-method calls. (2)

Applications that are built using ASP.NET, WPF, or other web-

related and mobile-related frameworks. These applications

have a substantial part of HTML or XAML code that is

used to craft web pages or views, and most of their methods

are written to accept framework-specific objects as inputs,

such as objects for HTTP responses. We do not focus on

TABLE IV
STATISTICS OF OPEN-SOURCE APPLICATIONS

Name # Class # LOC # Files

Confuser 914 52,830 301

DotNetZip 697 47,147 118

PSDPlugin 54 3,750 34

Wix 695 295,827 1,009

Mono.Cecil 615 31,750 225

GitSharp 1,101 84,745 756

Spine-Runtimes 34 1,819 19

TweetSharp 166 10,688 54

DSA 60 5,155 51

NGenerics 1,005 53,529 925

QuickGraph 319 34,196 536

Algorithmia 114 7,513 82

Commandline 183 7,431 125

HTMLAgilitypack 70 8,859 55

SharpNLP 219 24,438 217

Sprache 123 2,249 43

Total 6,369 671,926 4,550

web pages, and Pex has limited capabilities in generating test

inputs for framework-specific objects. (3) Applications that

have concurrency behaviors introduced by multi-threaded pro-

gramming, such as web servers that spawn threads for clients

and maintain queues for threads. Concurrency behaviors bring

extra difficulties for Pex and are not the focus of our study.

We keep sampling applications until we find 16 appli-

cations that satisfy our selection criteria. In particular, for

each chosen application, we download the most recent source

code from the corresponding source repository and try to

build the application. For applications that cannot be built

directly, we search for dependent libraries and provide specific

environment settings. If we still fail to build the applications,

we exclude the applications for our study. In total, we consider

74 (34 from CodePlex and 40 from GitHub) applications until

we have a set of 16 applications for our study. Table IV shows

the statistics of these applications.

Study Design. We first identify loops in the subject pro-

grams, and classify them as Fixed-Iteration Loops (FILs) or

Input-Dependent Loops (IDLs). The results of the classifi-

cation show the distribution of FILs and IDLs, and provide

us insights on how to automatically identify IDLs and FILs

for further analysis. Moreover, nested loops may cause loss

of precision for loop-invariant techniques or summarization

techniques [42], and pose more challenges in the scale of path

explorations. Thus, we also identify the nested loops among

the studied loops. These classification results answer RQ2.1.

Among the IDLs, we manually inspect the code to deter-

mine whether these IDLs have side effects on variables that

are used to decide subsequent branches. We refer to such

IDLs as IDLCs (denoting IDLs affecting Coverage). We then

apply Pex (reflecting search-guiding heuristics) and Pex with

bounded iteration (referred to as Pex-bounded) to explore the

identified IDLCs. Our study focuses on only IDLCs since

IDLs that do not compromise coverage of subsequent branches

can be easily handled by bounded iteration and search-guiding

heuristics, while symbolic execution faces challenges to reason



TABLE V
LOOP STATISTICS AND CLASSIFICATION FOR RQ2.1

Name # Loops # IDL # FIL # N.

Confuser 441 373 68 26

DotNetZip 425 254 171 65

PSDPlugin 69 66 3 9

Wix 320 286 34 19

Mono.Cecil 246 245 1 13

GitSharp 175 173 2 21

Spine-Runtimes 57 56 1 8

TweetSharp 28 26 2 1

DSA 82 82 0 17

NGenerics 228 121 107 39

QuickGraph 142 84 58 6

Algorithmia 100 60 40 12

Commandline 35 33 2 2

HTMLAgilitypack 71 71 0 1

SharpNLP 259 259 0 45

Sprache 8 7 1 0

Total 2,686 2,196 490 284

about the side effects of IDLCs [20], [40], [42]. Pex by

default uses the mixed search strategy that combines different

search strategies: depth-first search, random search, and fitness

search [54], making Pex a representative tool for search-

guiding heuristics. Pex-bounded bounds the iteration counts

for the explored loops, thus reducing the search space. In our

study, we choose 2 as the loop-iteration bound. Such bound

makes sure that the back edge of the loop is traversed at least

once and is commonly used in both dynamic techniques and

static techniques [19], [35]. The results of exploring IDLCs

answer RQ2.2.

Finally, by studying the IDLCs that neither Pex or Pex-

bounded can cover, we identify the major challenges and

propose guidelines to address these challenges.

B. RQ2.1: Statistics and Classification of the Studied Loops

To identify loops in the applications, we develop a static-

analysis tool that detects loops using back edges of domina-

tors [45]. Among the detected loops, we manually classify

them as FILs or IDLs and identify nested loops. Table V

shows the statistics of the studied loops and the results of

loop classification. Column “# Loops” shows the number of

studied loops rather than the number of all loops for each

application. In our study, every application has at least two or

more sub-projects or components that would be compiled as

a Dynamic Link Library (DLL) or an executable. Some DLLs

or executables may contain more than 500 loops (e.g., one

DLL of DotNetZip has 640 loops). Manually inspecting all

these loops and studying the results would not be feasible in

reasonable time. Thus, for components that contain more than

100 loops, we randomly choose 100 loops to study, and the

total number of loops studied for each application is shown

in Column “# Loops”. Column “# IDL” shows the number

of studied loops that are IDLs. Column “# FIL” shows the

number of studied loops that are FILs. Column “# N.” shows

the number of studied loops that are nested loops.

Results and Implications. As shown in the results, in

some applications, a substantial portion of loops are FILs.

For example, 46.9% (107/228) of the loops in NGenerics are

FILs. Most of these FILs are from test cases that construct

objects of fixed-size matrix. However, most of the loops

(81.8%, 2196/2686) in the studied applications are IDLs. The

pervasiveness of IDLs indicates that there is a strong need to

provide techniques for dealing with unbound loops. Moreover,

certain techniques that keep unrolling loops, such as the Depth-

First Search (DFS) strategy, should be applied with other

search strategies to avoid getting stuck in IDLs.

Loop summarization [20], [40] uses patterns to identify

IDLs and symbolic analysis to infer the relationship between

program inputs and iteration counts. Thus, to understand the

effectiveness of their techniques, we study how to determine

whether a loop is an IDL and how to infer its iteration count

using symbolic execution. Based on our study, we find out that

the iteration counts of IDLs mainly depend on two types of

inputs: (1) program inputs: input parameters of the containing

method or fields of the containing method’s receiver objects;

(2) environmental inputs: variables storing inputs returned

from external method calls, such as calls related to files or

random generators. Previous work [20], [40] based on patterns

and symbolic analysis can detect IDLs that depend on program

inputs of primitive types, but further work is needed to detect

IDLs that depend on fields of receiver objects. In addition,

our previous technique [52] can be used to compute the

data dependencies between loops and external method calls,

detecting IDLs that depend on values returned from external

method calls.

FILs can be unrolled statically and thus can be treated

as a series of branches in path explorations. Typically, the

iteration counts of FILs depend on numerical constants or

the length of fixed-size arrays. However, we find out that

the iteration counts of some FILs may depend on static

variables or return values of external method calls. For

example, an FIL may depend on the number of values

in an enum type through the external method call of

Enum.GetNames(typeof(SomeEnum)).Length.

Thus, static analysis on possible values of static variables and

certain external method calls can be leveraged to determine

the number of iterations for such FILs.

As shown in Table V, nested loops appear more often in

algorithm-based applications, such as DotNetZip, NGenerics,

and SharpNLP. Since nested loops are shown to pose chal-

lenges for techniques of loop invariants or summarization, loop

invariants or summaries for such applications may be provided

by developers to improve the precision and scalability of the

applied techniques.

Summary. Most of the loops (81.8%: 2196/2686) in the

studied applications are IDLs. Techniques of identifying IDLs

and their iteration counts require analysis on not only pro-

gram inputs, but also environmental inputs. Algorithm-based

applications tend to have more nested loops that may affect

effectiveness of loop techniques.



TABLE VI
RESULST OF RQ2.2

Name # IDLC # EXP # Pex # Bound

Confuser 33 25 12 12

DotNetZip 27 16 9 11

PSDPlugin 4 2 1 0

Wix 47 31 19 17

Mono.Cecil 47 45 37 32

GitSharp 68 39 33 30

spine-runtimes 8 6 5 5

TweetSharp 8 6 2 2

DSA 11 11 11 7

NGenerics 11 11 3 3

QuickGraph 7 7 2 2

Algorithmia 2 0 0 0

Commandline 14 14 14 14

htmlagilitypack 15 13 13 13

sharpnlp 79 40 25 24

sprache 0 0 0 0

Total 381 266 186 172

C. RQ2.2: Loop Explorations

We apply Pex and Pex with bounded iteration to explore

the methods containing IDLCs (in short as MCLs) identified

in our previous step and the methods that invoke an MCL

if the MCL returns a value that may compromise coverage.

We use Pex’s default bounds of various resources, such as the

running time, constraint-solving time, and number of paths.

As shown in our previous work [52] and other studies [16],

[30], structural test generation faces two major problems:

object-creation problems (OCPs) and external-method-call

problems (EMCPs). Since these problems are not our study

focus, we manually provide factory methods to address OCPs,

and mock external methods to address EMCPs. For example,

we provide factory methods to guide Pex to generate matrix

objects using integer arrays, and mock calls to file systems

using string-matching functions.

Table VI shows the statistics of the IDLCs and the results

of loop explorations. Column “# IDLC” shows the numbers

of studied loops that are IDLCs. We prune the IDLCs that

we cannot provide factory methods or mock objects: 31 for

dependencies on GUI objects, 43 for Input/Output (IO) stream

objects, 31 for complex objects that are difficult to generate

using factory methods, and 10 for various problems that

prevent Pex from exploring the code, such as failures on

instrumenting the DLLs. Column “# EXP” shows the IDLCs

that are explorable by Pex with manually provided factory

methods and mock objects. Columns “# Pex” and “# Bound”

show the number of IDLCs that can be covered by Pex and

Pex with bounded iteration, respectively. Note that covering an

IDLC is to cover the subsequent branches that use variables

whose values are modified by the IDLC.

Results and Implications. Overall, for the 266 IDLCs

that are explorable with our provided factory methods and

mock objects, Pex and Pex-bounded achieve similar results for

covering the IDLCs (69.9%, 186/266, and 64.7%, 172/266).

Both techniques achieve good coverage for DSA as expected,

since such library applications tend not to have many callers on

1 public static Version ParseVersion(string ver) {
2 ...
3 int dotCount = 0;
4 for (int i = 0; i < ver.Length; i++) {
5 char c = ver[i];
6 if (c == ’.’) dotCount++;
7 ...
8 }
9 ...

10 if (dotCount == 0) { ver = ver + ”.0”; }
11 else if (dotCount > 3) {
12 string[] verSplit = ver.Split(’.’);
13 ver = String.Join(”.”, verSplit, 0, 4);
14 }
15 ...
16 }

Fig. 1. A simplified code snippet from Wix

1 public static void Main(String[] args) {
2 ...
3 for (int i = 1; i < args.Length; i++) {
4 switch (args[i]) {
5 case ”−keep”: keepOriginal = true; break;
6 case ”−f”: force = true; break;
7 case ”−v”: verbose = true; break;
8 default: throw new ArgumentException(args[i]);
9 }

10 }
11 string fname = args[0];
12 bool decompress = (fname.ToLower().EndsWith(”.bz”) ||

fname.ToLower().EndsWith(”.bz2”));
13 string result = decompress ? Decompress(fname, force) :

Compress(fname, force);
14 if (result==null) {
15 Console.WriteLine(”No action taken. The file already exists.”);
16 }
17 else {
18 if (verbose) {
19 ...
20 if (decompress) { ... } else { ... }
21 }
22 if (!keepOriginal) { ... }
23 }
24 }

Fig. 2. A simplified code snippet from DotNetZip

methods that contain IDLs to do computations. For randomly-

chosen applications, both techniques can cover about 65% of

the IDLCs. For NGenerics and Quickgraph, both techniques

obtain worst results due to validation on input objects (de-

scribed in Section IV). We next provide explanations and

examples to compare the performance of these two techniques.

Bounded iteration reduces the search space for Pex. How-

ever, under some cases, bounding the iterations of a loop

would cause some subsequent branches not to be covered.

Figure 1 shows a simplified example from Wix. To cover the

true branch (dotCount > 3) at Line 11, we need the loop

at Line 4 to have at least 4 iterations. Thus, by bounding the

number of loop iterations to 2, Pex-bounded cannot cover the

true branch at Line 11, while Pex without bounded iteration

can cover both branches at Line 11.

On the other hand, if we do not bound the iterations of

IDLs, Pex may unroll the loop too many times, and would not

achieve the coverage of subsequent branches before running

out of resources. Figure 2 shows an example that Pex-bounded

achieves better coverage than Pex. The iteration count of IDL

at Line 3 depends on the number of arguments in args. In

each iteration of this IDL, the switch statement at Line 4



TABLE VII
OUR MAJOR FINDINGS ON LOOP PROBLEMS AND THEIR IMPLICATIONS

RQ Findings of Literature-Survey Study Implications

RQ1.1
(F.1) In recent 10 years, more than 150 articles published in major
conferences of various areas are related to symbolic execution and
tasks assisted by symbolic execution.

Given the popularity of symbolic execution, improving it in terms of
precision, effectiveness, or scalability would bring substantial bene-
fits to various tasks, such as software testing, program verification,
and security analysis.

(F.2) Few articles on debugging or security analysis propose specific
techniques to address loop problems, while more than 61.9% (26/42)
of the articles provide various techniques to deal with loops; nearly
half of the articles on software testing (32/84, 42.9%) propose
techniques to deal with loops.

To what extent loops compromise the effectiveness of applying
symbolic execution depends on the tasks assisted by symbolic
execution; loop problems are one of the major problems when
conducting symbolic execution for software testing.

RQ1.2
(F.3) 75.0% of the articles that provide techniques to address loop
problems adopt bounded iteration and search-guiding heuristics.

Bounded iteration and search-guiding heuristics are the most widely
used loop techniques across various tasks due to their ease of
implementation and effectiveness in handling loops for different
objectives of these tasks.

(F.4) For tasks of software testing and security analysis, bounded
iteration and search-guiding heuristics are used to prevent symbolic
execution from being stuck in IDLs; for tasks of program verification,
these two techniques are used to limit the state space.

Lightweight techniques (bounded iteration and search-guiding
heuristics) could be applicable and effective on various tasks, includ-
ing verification tasks (when the bounded assumption is acceptable).

RQ Findings of Empirical Study Implications

RQ2.1
(F.5) Most of the loops (81.8%, 2196 / 2686) in studied applications
are IDLs.

Techniques that keep unrolling loops, such as the Depth-First Search
(DFS) strategy, should be applied with other techniques to avoid
getting stuck in loops.

(F.6) The iteration counts of IDLs depend on two types of inputs:
program inputs (e.g., primitive values or object fields) and environ-
mental inputs (e.g., return values of external method calls); existing
techniques mainly focus on IDLs that depend on program inputs.

To improve identification of IDLs, extra symbolic analysis should be
performed on values returned or modified by external method calls.

(F.7) Nested loops pose challenges to compromise the precision and
scalability of loop techniques, and appear more often in algorithm-
based applications.

For algorithm-based applications, developers may specify loop in-
variants or summaries to improve the precision of the applied loop
techniques.

RQ2.2 (F.8) IDLs that do not compromise the coverage of subsequent
branches can be easily handled by bounded iteration and search-
guiding heuristics. These two loop techniques can address loop
problems caused by about 65% of IDLCs.

In general, bounded iteration and search-guiding heuristics can
effectively address loop problems. However, in some cases, these
techniques still face challenges in covering the branches decided by
IDLCs.

results in 4-way branches, each of which would cause a local

variable (i.e., force, verbose, and keepOriginal)

to become true or throw an exception. At the later part of

the example, branches at Lines 14, 18, and 22 depend on

the values of force, verbose, and keepOriginal,

respectively. If no specific bound is provided for the IDL

at Line 3, the combinations of branches taken inside the

IDL grow exponentially when the iteration count increases.

Moreover, the value of args[0] used in Lines 12 and 13

makes the number of paths grow even more drastically. Thus,

Pex fails to achieve coverage of all the branches at Lines

14, 18, and 22 due to path explosion. When Pex is applied

with bounded iteration, the number of arguments in args is

constrained to be 2, and Pex can achieve full coverage of the

example within the given bounds of resources.

Summary. In general, bounded iteration and search-guiding

heuristics can effectively address loop problems caused by

IDLs, while in some cases these two techniques still face

challenges in dealing with IDLCs (about 35%).

IV. CHALLENGES AND GUIDELINES

Our characteristic studies identify the widely used loop

techniques and show their effectiveness. The major findings

and implications of our studies are summarized in Table VII.

For the IDLCs that cannot be covered by either Pex or Pex-

bounded, we further inspect these IDLCs and identify several

major challenges.

Data Structures. As shown in Table VI, both Pex and Pex-

bounded achieve poor IDLC-coverage results for the applica-

tions NGenerics (3/11) and Quickgraph (2/7). The main reason

is that the IDLCs in these data structure/algorithm applications

require input objects to pass the validation, i.e., using repOk

to guard against invalid objects. Figure 3 shows such an IDL

that checks whether a matrix is a symmetric matrix. These

validations typically use IDLs to validate each item of a data-

structure object, and generate enormous constraints after the

validation. For example, objects of the symmetric matrix in

NGenerics require a validation for checking whether values in

a 2-dimensional array conform to the symmetric constraints.

Graphs of various edges and vertices require validation of

vertices’ existence before edges can be added and different

shapes of graphs impose further validations that involve both

vertices and edges. In these cases, the validation constraints are

combined with other constraints collected from the IDLCs to

form very long constraints, which cause the constraint solver

to run out of time in solving these constraints.

Guideline: For applications that impose heavy validation

on input values, a separate data generator that generates

valid objects may be employed and only the constraints

that lead to valid objects should be combined with the

constraints collected from IDLCs.

Path Explosion. As shown in Section III-C, bounded

iteration may cause certain subsequent branches not to be



1 public bool IsSymmetric {
2 get {
3 if (noOfRows == noOfColumns) {
4 for (var i = 0; i < noOfRows; i++) {
5 for (var j = 0; j < i; j++) {
6 if (GetValue(i, j) != GetValue(j, i))
7 return false;
8 }
9 }

10 return true;
11 }
12 return false;
13 }
14 }

Fig. 3. An IDL that performs data validation from NGenerics

covered, and not bounding IDLs can cause symbolic execution

to suffer from path explosion and constraint explosion. When a

symbolic-execution tool negates a branch that decides the loop

termination (i.e., a loop guard), the loop iteration increases by

a certain number, depending on the output from the constraint

solver. If each iteration of the loop contains many branches,

such as the example in Figure 2, increasing the loop iterations

introduces many more constraints and grows the search space

exponentially. The current fitness-heuristic technique [54] does

not treat loop guards differently, and thus computes the fitness

values for loop guards using the same way as other branches.

Such fitness values increase the probabilities to search paths

in later iterations instead of sufficiently searching the paths in

earlier iterations.

Guideline: Search-guiding heuristics should assign lower

probabilities on loop guards than other branches, and

branches collected in later iterations should be given lower

probabilities than branches collected in earlier iterations.

Complex Loops. Loop summarization [20], [40] can allevi-

ate the loop problems only when the IDLs can be summarized

using induction variables. However, many loops are complex

and cannot be summarized using induction variables. For the

example in Figure 1, in the loop body, dotCount++ is

guarded by a condition c == ’.’, and thus dotCount

may be modified in only some of the iterations. In this

case, most of these summary-based techniques would not

consider dotCount as an induction variable and cannot

generate useful summaries. Moreover, some complex IDLs

that contain nested loops, such as the IDL in Figure 3, are

not summarizable using induction variables.

Guideline: For complex IDLs that interleave nested loops

and branches, a test-generation tool may identify such

loops and report to developers; developers can provide

manually specified loop invariants or summaries to assist

the tool in addressing the loop problems.

V. THREATS TO VALIDITY

Threats to External Validity. In our literature-survey study,

we choose articles based on a comprehensive bibliography of

articles on symbolic execution and its applications [1]; such

bibliography has been collected by a third party. Although

these collected articles may not be complete, the 159 studied

articles can be considered as a representative set of articles

on symbolic execution, since these articles are published in a

wide range of venues, including conferences in software engi-

neering, systems, security, software verification, programming

languages, and database. We may further reduce the threat

by including more articles from scientific publishers, such as

ACM, IEEE, and Springer.

In our empirical study, 16 selected open-source applications

are realistic and reasonable, within our affordable efforts

besides our significant effort spent for the literature-survey

study of 159 articles. In particular, we study these published

papers carefully to classify loop techniques, and select subject

applications of data structures/algorithms and parsers based

on the study results from the literature. Applications of data

structures/algorithms and parsers are often libraries and do not

have many callers, and thus we further randomly sample ap-

plications from open-source project hostings. These randomly

selected applications tend to be applications using libraries,

reducing the bias of our subject selection. In addition, although

previous test-generation studies [16] investigate the scale of

100 applications, these studies sample only 40 classes for

manual inspection of problems. Note that we manually study

about 2600 loops and provide in-depth analysis of loops that

may compromise coverage. Such study is time-consuming to

conduct, and thus constrains the scale of our studies.

Threats to Internal Validity. Subjectiveness in the failure

classification is inevitable due to the large manual effort

involved in both the literature-survey study and the empiri-

cal study. In addition, there also might be human errors in

collecting application statistics (such as # LOC and # classes)

and studying the exploration results of Pex. These threats are

mitigated by double-checking all manual work. We ensure that

the results are individually verified and agreed upon by at

least two authors. These threats could be further reduced by

involving third-party people who have experiences on software

testing and symbolic execution to verify our results.

VI. DISCUSSION AND FUTURE WORK

Generalization to Other Test-Generation Techniques.

Although our current study focuses on test-generation tools

based on DSE, some of our findings can be generalized to

other test-generation techniques. For example, the challenge

of generating objects of specific data structures are applicable

to both random and constraint-based test generation. Both

of these techniques would take substantial time before they

can produce valid objects, while employing a separate data

generator that generates only valid objects but allows variants

on some fields of the objects can improve the effectiveness of

test generation. Similarly, the challenge of path exploration

and our guideline are applicable to these techniques. For

example, random test generation may give lower probabilities

and constraint-based test generation may use fixed values or

assign lower priorities to mutate variables that may increase

loop iterations.

Future Directions to Improve Loop Techniques. Our

studies show the effectiveness of existing techniques (bounded



iteration and search-guiding heuristics), and identify challenges

faced by these techniques. Based on the findings of our studies,

there are several directions to improve loop techniques. (1)

Identification of IDLs. Symbolic analysis should be applied

on external method calls [50], [52] to improve identification

of IDLs, and modelling of these methods may be used to

improve the precision of inferring the iteration counts of IDLs.

(2) Bounded heuristics. Bounded iteration may be used to

first bound the search space, and search-guiding heuristics are

then used to guide the search of paths inside the bounded

space. If the objective cannot be satisfied in the bounded

space, the bound may be increased. (3) Mixed techniques.

Bounded iteration and search-guiding heuristics are generally

very effective in handling IDLs that require a few iterations to

cover subsequent branches of the IDLs. after several iterations,

loop summarization can be used to compute summaries for not-

covered IDLs. (4) Cooperative analysis. For complex loops,

such as nested loops or loops that cannot be summarized by

loop summarization, tools may report such loops to users and

present the related not-covered branches to obtain developers’

guidance.

Object Generation and Mock Objects. In our empirical

study, we observe that some complex objects have more than

10 fields that need to be set by symbolic values, and these

fields may in turn be complex objects. The current mechanism

of factory methods has limitations in supporting the creation

of such objects, and often results in lots of constraints during

the process of creating objects. In future work, we plan to

investigate how to simplify the object-creation mechanism to

better assist test-generation tools. In addition, we observe that

there are many IDLCs that require mocking complex objects

to simulate environment dependencies, such as file systems,

IO streams, and GUI objects. We are able to provide mock

objects for file systems, but could not mock IO streams or

GUI objects due to their unique challenges. Mocking IO

streams requires modelling the pointer for reading data and

the pointer’s movement, while mocking GUI objects requires

modelling view objects organized in layers and their parent-

children relationships. In future work, we plan to investigate

how to construct Parameterized Mock Objectss [39], [44] to

address these challenges.

VII. RELATED WORK

Studies on Test Generation. Lakhotia et al. [37] conduct an

empirical study on applying test-generation tools CUTE [41]

(a symbolic-execution-based tool) and AUSTIN [36] (a search-

based tool) to achieve branch coverage of C programs. Fraser

et al. [16] present a study of applying a search-based tool

EvoSuite [15] on a set of open-source applications. They

identify that dependencies on the environment inhibit high

coverage achieved by test-generation tools. Kim et al. [32]

propose a distributed concolic algorithm [33], and present an

empirical study to show that their technique achieves sev-

eral orders-of-magnitude increase in speed of test generation

compared to concolic testing. All these studies focus on the

coverage or scalability of testing the whole applications, while

our work provides in-depth studies to identify challenges on

dealing with loops and presents guidelines on addressing the

challenges.

Heuristics for Path Exploration. To address the path

explosion caused by loops, some DSE tools bound the loop it-

erations [19], or use heuristics to guide path explorations [48],

such as the fitness-heuristic technique [54]. The fitness-

heuristic technique computes a fitness value to measure how

close an already discovered feasible path is to a manually

specified test target (e.g., a non-covered branch), and guide

symbolic execution to take branches that have better fitness

values. In our studies, we apply these two techniques on open-

source applications, compare their effectiveness, and identify

challenges faced by these two techniques.

Loop Summarization. Loop-summary techniques [20],

[40] define an extra symbolic value for the iteration count of

the executed loop, and collect constraints on program variables

that have relationship to the iteration count of the loop. These

constraints are added to path conditions for steering further

path explorations, addressing the issue of unrolling the loop

without achieving higher coverage. More recent research [42]

extends the summarization of iteration counts by using sym-

bolic variables to represent different paths taken inside the

loop, enabling summarization of the relationship between

program variables and the branches inside the loop. These

techniques require detection of induction variables whose

values are modified by a constant value or constant times for

each loop iteration. However, as shown in our empirical study,

there are also many other complex situations that interleave

nested loops or conditional branches, not summarizable by

using induction variables.

There also exist static-analysis techniques [6], [8], [24] for

automatic loop-invariant generation and summarization. These

static-analysis techniques may not be scalable for real-world

complex applications, and face challenges in handling many

runtime features of real-world applications, such as external

method calls and indirect method calls via function pointers.

VIII. CONCLUSION

This paper has presented the first characteristic studies on

loop problems for structural test generation, with the focus

on test-generation tools based on DSE. Our characteristic

studies consist of two parts: a literature-survey study of

159 published articles and an empirical study on 16 open-

source applications. Our two-phase characteristic studies focus

on bounded iteration and search-guiding heuristics, two most

widely adopted techniques to deal with loop problems. Our

studies find that these two loop techniques can address about

65% of IDLs that have side effects on variables used to decide

subsequent branches. Our studies further identify challenges

that compromise the effectiveness of these loop techniques

and provide guidelines on how to address these challenges.

Our findings and implications provide valuable guidelines for

future research on loop problems for structural test generation.
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