
OPTIMIZED PRODUCT QUANTIZATION 1

Optimized Product Quantization
Tiezheng Ge, Kaiming He†, Qifa Ke, and Jian Sun

Abstract—Product quantization (PQ) is an effective vector quantization method. A product quantizer can generate an
exponentially large codebook at very low memory/time cost. The essence of PQ is to decompose the high-dimensional vector
space into the Cartesian product of subspaces and then quantize these subspaces separately. The optimal space decomposition
is important for the PQ performance, but still remains an unaddressed issue. In this paper, we optimize PQ by minimizing
quantization distortions w.r.t. the space decomposition and the quantization codebooks. We present two novel solutions to this
challenging optimization problem. The first solution iteratively solves two simpler sub-problems. The second solution is based on
a Gaussian assumption and provides theoretical analysis of the optimality. We evaluate our optimized product quantizers in three
applications: (i) compact encoding for exhaustive ranking [1], (ii) building inverted multi-indexing for non-exhaustive search [2],
and (iii) compacting image representations for image retrieval [3]. In all applications our optimized product quantizers outperform
existing solutions.

Index Terms—Vector quantization, nearest neighbor search, image retrieval, compact encoding, inverted indexing

F

1 INTRODUCTION

Approximate nearest neighbor (ANN) search is of
great importance in many computer vision problem-
s, such as image/video retrieval [4], image classifi-
cation [5], and object/scene recognition [6]. Vector
Quantization (VQ) [7] is a popular and successful
method for ANN search. The vector quantization
method is used in two ways for ANN: (i) to build
inverted indexing [4] for non-exhaustive search, or
(ii) to encode vectors into compact codes [1], [8], [9]
for exhaustive search. In the non-exhaustive search,
the quantizers can be k-means [4] and its variants
[10]. A query is quantized into a codeword and then
compared with a short list of data which have the
same or similar codewords. In the exhaustive search,
the data are quantized into codewords [1], [8], [9]; the
distances of vectors are approximated by the distances
of codewords. With a few dozens of bits used per
vector, the memory footprint is small, and the search
speed is fast. The compact encoding methods can be
combined with inverted indexing (e.g., as in [1], [2])
to achieve real-time and high-quality search in billions
of vectors.

A product quantizer [7] is a solution to VQ when an
exponentially large number of codewords are desired.
The key idea is to decompose the original vector space
into the Cartesian product of M low-dimensional sub-
spaces and quantize each subspace into k codewords.
The effective number of codewords in the original

† Correspondence author.

• T. Ge is with the University of Science and Technology of China, Hefei,
China. E-mail: getzh@mail.ustc.edu.cn

• K. He and J. Sun are with the Visual Computing Group, Microsoft
Research Asia, Beijing, China. E-mail: {kahe,jiansun}@microsoft.com

• Q. Ke is with the Microsoft Bing, Sunnyvale, CA, US. E-mail:
qke@microsoft.com

space is kM , but the cost of storing them is merely
O(Dk) for D-dimensional vectors.

Such a Product Quantization (PQ) technique has
been used for compact encoding for approximate dis-
tance computation in [1], and recently has also been
adopted for building inverted indexing in [2]. When
used for compact encoding, the time complexity is
O(Mk) per distance computation using look-up tables
[1]. When used for building inverted indexing [2],
a query can quickly find its nearest codewords (out
of kM codewords) in O(Mk) time. Currently, [1] is
among the state-of-the-art compact encoding method-
s, whereas [2] is among the state-of-the-art inverted
indexing methods.

Despite the power of PQ, the optimal decompo-
sition of the vector space remains a largely unad-
dressed issue. In [1] it has been noticed that the
prior knowledge about the structures of the input
data (SIFT/GIST) is of particular importance, and the
search accuracy would become substantially worse
if such knowledge is not available. But the strong
reliance on the prior knowledge largely limits the
performance of PQ on general data, e.g., raw image
pixels, compressed representations (by PCA, sparse
coding, etc.), and mixed representations. The usage
of the prior structures also constrains the choice
of the subspace number M and the codebook size.
In case of no structure, [3] propose to optimize a
Householder transform such that the vectors have
balanced variances in all components. In [3] it is also
observed that a random rotation performs similarly
to the Householder transform. But the optimality in
terms of quantization error remains unclear in both
cases.

In this paper, we formulate PQ as an optimization
problem that minimizes the quantization distortion
by seeking for optimal codewords and space decom-

OPTIMIZED PRODUCT QUANTIZATION 2

positions. Such an optimization problem is challeng-
ing due to the large number of unknown parame-
ters. In this work we present two solutions. In the
first solution, we iteratively solve two simpler sub-
problems: solving for the space decomposition with
the codewords fixed, and vice versa. This solution is
non-parametric in that it does not assume any priori
information about the data distribution. Our second
solution is a parametric one in that it assumes the
data follows a Gaussian distribution. Under this as-
sumption, we derive an analytical formulation of the
lower bound of the quantization distortion. Then we
theoretically prove that this lower bound is minimized
when (i) the subspaces are mutually independent, and
simultaneously (ii) the vectors have balanced variances
in all subspaces. Based on these theories, we propose
a simple Eigenvalue Allocation method to effectively
optimize the space decomposition.

We demonstrate by experiments the superiority of
our methods in three applications:

• When used for compact encoding for exhaustive
search, our method outperforms several variants
of PQ and other VQ methods. Our method is also
substantially better than various state-of-the-art
binarization methods.

• When used for building inverted indexing, our
method improves the “inverted multi-index” [2]
by optimizing its codebook. The performance can
be improved even further when our optimized
PQ is adopted in the combination of inverted
multi-index and compact encoding. This marks
the state-of-the-art performance on the one billion
SIFT dataset.

• We further apply our optimized PQ to compress
image representations (VLAD [3] and Fisher Vec-
tors [11]) for image retrieval. Our method pro-
vides better retrieval accuracies than the original
PQ encoding method.

A preliminary version of this work was published
in CVPR 2013 [12]. Concurrent with [12], a very sim-
ilar work “Cartesian k-means” [13] is independently
developed. We note that our first solution (Sec. 3.1)
is equivalent to the Cartesian k-means method. But
our second solution (Sec. 3.2) takes another step.
It provides theoretical guarantees of the optimality
under some practical assumption. It also provides a
way of initialization (better than a random one) for
the non-parametric solution.

We have published the Matlab code1 of our two
solutions for the ease of practical applications and
theoretical analysis.

2 QUANTIZATION DISTORTION

A variety of ANN methods, including k-means [14],
Product Quantization [1], and Iterative Quantization

1. research.microsoft.com/en-us/um/people/kahe/

[9], can be formulated within a framework of vector
quantization [7]. The quantization distortion is a com-
mon objective function among the different methods
studied. We can treat the specific configuration of
each method as the constraints when optimizing the
common objective function, rather than incorporate
the configuration into the objective function. In this
way, various methods (including the proposed) can
be discussed in a unified framework.

2.1 Vector Quantization
A vector quantization (VQ) system [7] maps a vector
x ∈ RD to a codeword c in a codebook C = {c(i)}
with i in a finite index set. The mapping, termed as
a quantizer, is denoted by: x → c(i(x)). The function
i(·) is called an encoder, and function c(·) is called a
decoder [7]2.

The quantization distortion E is defined as:

E =
1

n

∑
x

∥x− c(i(x))∥2, (1)

where ∥ · ∥ is the Euclidean distance, and n is the
total number of data samples. Note this definition of
distortion applies to any quantizer, no matter what
the encoder and decoder are.

Given a codebook C, an encoder that minimizes
the distortion E must satisfy the first Lloyd’s condi-
tion [7]: the encoder i(x) should map any x to its
nearest codeword in the codebook C. Also note this
property is valid no matter what the codebook is. Such
a quantizer is known as a Voronoi quantizer [7].

2.2 Codebook Generation
Minimizing the distortion under different constraints
leads to different methods.

2.2.1 K-means
If there is no constraint on the codebook, minimizing
the distortion in (1) leads to the classical k-means [14].
With the encoder i(·) fixed, a codeword c(i) is the
mean of the vectors that are indexed as i – this is the
second Lloyd’s condition [7].

2.2.2 Product Quantization
If any codeword c must be taken from the Cartesian
product of sub-codebooks, minimizing the distortion
in (1) leads to the PQ method [1].

Formally, denote any x ∈ RD as the concatenation
of M subvectors: x = [x1, ...xm, ...xM]. For simplicity
we assume the subvectors have an equal number of
dimensions D/M . The Cartesian product C = C1×...×

2. In this paper, we abuse the notations of i(·) and i to simplify
the presentation: by i(·) we mean the mapping of a vector to an
index, and by i we mean the index of a certain codeword. Likewise,
we abuse the notations of c(·) and c: by c(·) we mean the mapping
of an index to a codeword, and by c we mean a certain codeword.

OPTIMIZED PRODUCT QUANTIZATION 3

CM is the codebook in which any codeword c ∈ C
concatenates M sub-codewords: c = [c1, ...cm, ...cM],
with each cm ∈ Cm. The objective function of PQ,
though not explicitly defined in [1], is essentially:

min
C1,...,CM

∑
x

∥x− c(i(x))∥2, (2)

s.t. c ∈ C = C1 × ...× CM .

It is easy to show that x’s nearest codeword c in C
is the concatenation of the M nearest sub-codewords
c = [c1, ...cm, ...cM] where cm is the nearest sub-
codeword of the subvector xm. So (2) can be split into
M separate subproblems, each of which can be solved
by k-means. This is exactly the way of PQ [1].

PQ can easily generate a codebook C with an ex-
ponentially large number of codewords. If each sub-
codebook has k sub-codewords, then their Cartesian
product C has kM codewords. The cost of storing these
codewords is merely O(Mk·D/M) = O(Dk). This is
not possible for classical k-means when kM is large.

The PQ developed in [1] is used for compact encod-
ing and approximate distance computation. The cost
of storing each encoded vector is M log2 k bits. The
distance between a query and any vector is approx-
imated by the distance of their codewords (known
as Symmetric Distance Computation or SDC), or by
the distance between the query and the codeword of
the vector (known as Asymmetric Distance Computation
or ADC). Both ways of distance computation are
efficient using lookup tables. For SDC, the distances
between any two sub-codewords in a subspace are
pre-computed and stored in a k-by-k lookup table.
For ADC, the distances between the sub-vector of the
query and the sub-codewords in a subspace are pre-
computed on-line and stored in a 1-by-k lookup table.
The distance in the original space is simply the sum
of the distances computed from the M subspaces.

2.2.3 Iterative Quantization
If any codeword c must be taken from “the vertexes
of a rotating hyper-cube”, minimizing the distortion
leads to a binary embedding method called Iterative
Quantization (ITQ) [9].

The D-dimensional vectors in {−a, a}D are the
vertices of an axis-aligned D-dimensional hyper-cube.
Suppose the data has been zero-centered. The objec-
tive function in ITQ [9] is essentially:

min
R,a

∑
x

∥x− c(i(x))∥2, (3)

s.t. c ∈ C = {c | Rc ∈ {−a, a}D}, RTR = I,

where R is an orthogonal matrix and I is an identity
matrix. The codebook C contains 2D codewords.

This optimization problem is iteratively solved
in [9] just like k-means: update the codebook (rep-
resented by R and a) with the index fixed, and vise
versa. In [9] it has also shown that the length a in

0.1 0.3 0.5
0

0.1

0 15000 30000
0

0.2

Fig. 1: mAP vs. quantization distortion.

(3) does not impact the resulting partition planes. We
keep a here because it matters when we compare the
distortion with other quantization methods.

With a rotating hyper-cube, the squared Euclidean
distance between any two codewords is equivalent to
the Hamming distance. So ITQ can be viewed in the
category of binary hashing methods [15], [16], [17],
[18], [19], [20]. The formulation in (3) also indicates
that any orthogonal binary hashing method can be
viewed a vector quantizer.

2.3 Distortion as the Objective Function
The above methods all optimize the same form of
quantization distortion, but subject to different con-
straints. This implies that distortion is an objective
function that can be evaluated across different quan-
tization methods. The common usage of distortion
as objective functions also implies that it generally
impacts the ANN search accuracy. We empirically
verify that the distortion is tightly correlated to the
ANN search accuracy of different methods.

To show this, we investigate the ANN search accu-
racy on two large datasets (SIFT1M and GIST1M [1]).
The data vectors are ranked by SDC (for ITQ this is
equivalent to Hamming ranking). Then we compute
the mean Average Precision (mAP) over all queries.
We consider the 100 nearest neighbors as the ground
truth.

In this test we use B = 16 bits for each codeword.
This essentially gives K = 216 codewords. Here we
do not use larger B because we want to involve k-
means (since K = 2B). We test five quantization
methods: k-means, ITQ, and three variants of PQ
(decomposed into M = 2, 4, or 8 subspaces, denoted
as PQM). The mAP vs. the distortion are shown in
Fig. 1. We can see that the mAP has a strong relation to
the quantization distortion. We also find this relation
is valid under various ANN metrics besides mAP
(like precision/recall at the top N ranked data), with
various number (1 to 104) of ground truth nearest
neighbors.

The PQ paper [1] has given some statistical rela-
tionship between distortion and distance estimation
(therefore related to ANN search). Our experiment

OPTIMIZED PRODUCT QUANTIZATION 4

shows this relationship remains valid if k-means and
ITQ are also considered.

In Fig. 1 we also see stricter constraints lead to
higher distortion. For example, the solution space
of PQ4 is a subset of the solution space of PQ2 (if
c is in C1 × ... × C4 for some D

4 -dimensional sub-
codebooks C1, ..., C4, then c must be in C′1 × C′2 for
some D

2 -dimensional sub-codebooks C′1, C′2; but not
vice versa). As a result, the distortion of PQ4 must
be no less than the distortion of PQ2. To the extreme
when M = 1 and k = K (equivalent to k-means),
the distortion is the smallest because no constraint
is imposed. However, when k is getting larger, it
is memory/time-consuming to maintain the k-by-k
lookup tables for distance computation. In practice,
k is often kept as the largest affordable number (256
in [1]), and M = B/ log2 k is then fixed given the pre-
defined code length B.

3 OPTIMIZED PRODUCT QUANTIZATION

We use the quantization distortion as an objective
function to evaluate the optimality of a product quan-
tizer. A product quantizer involves decomposing the
D-dimensional vector space into M subspaces and
computing a sub-codebook for each subspace. The
optimization problem in (2) is only w.r.t. the sub-
codebooks, but not the space decomposition. In this
work we consider an optimization problem w.r.t. both.

We use an orthogonal matrix R to represent the
space decomposition. Note that any re-ordering (per-
mutation) of the dimensions can be represented by
an orthogonal matrix. So R decides all degrees-
of-freedom of decomposing a space into M equal-
dimensional subspaces.

Considering the sub-codebooks and the space de-
composition, we optimize the following objective:

min
R,C1,...,CM

∑
x

∥x− c(i(x))∥2, (4)

s.t. c ∈ C = {c | Rc ∈ C1 × ...× CM , RTR = I}

In this problem, the free parameters consist of the sub-
codebooks (C1, ..., CM) and the space decomposition
R. The additional free parameters of R allows the
vector space to rotate, thus relax the constraints on
the codewords. So the optimized product quantizer
can reduce the quantization distortion versus a pre-
fixed R.

Assigning x to its nearest codeword c is equivalent
to assigning Rx to the nearest Rc. To apply the
optimized quantizer for encoding, we only need to
pre-process the data by Rx, and the remaining steps
are the same as those in PQ.

We are not the first to consider a problem like (4). In
[3] a similar objective function has been mentioned3,
but was thought as “not tractable” possibly due to the

3. See Eqn.(8) of [3].

coupling of R and C1, ..., CM . Previous methods pre-
process the data using a pre-fixed R based on simple
heuristics, like randomly ordering the dimensions [1]
or randomly rotating the space [3]. The matrix R has
not been considered in any optimization coupling the
sub-codebooks.

In the following we propose two solutions to the
optimization in (4).

3.1 A Non-Parametric Solution
Our non-parametric solution does not assume any
data distribution4. We split the problem in (4) into
two simpler sub-problems.

Step (i): Fix R and optimize {Cm}Mm=1.
Denote x̂ = Rx and ĉ = Rc. Since R is orthogonal,

we have ∥x − c∥2 = ∥x̂ − ĉ∥2. With R fixed, (4) then
becomes:

min
C1,...,Cm

∑
x̂

∥x̂− ĉ(i(x̂))∥2, (5)

s.t. ĉ ∈ C1 × ...× CM .

This is the same problem as PQ in (2). We can sepa-
rately run k-means in each subspace to compute the
sub-codebooks.

Step (ii): Fix {Cm}Mm=1 and optimize R.
Since ∥x − c∥2 = ∥Rx − ĉ∥2, the sub-problem

becomes:

min
R

∑
x

∥Rx− ĉ(i(x̂))∥2, (6)

s.t. RTR = I.

The codeword ĉ(i(x̂)) is fixed in this subproblem. It is
the concatenation of the M sub-codewords of the sub-
vectors in x̂. We denote ĉ(i(x̂)) as y. Given n training
samples, we denote X and Y as two D-by-n matrices
whose columns are the samples x and y respectively.
Then we can rewrite (6) as:

min
R

∥RX − Y ∥2F, (7)

s.t. RTR = I,

where ∥ · ∥F is the Frobenius norm. This is the Or-
thogonal Procrustes problem [21]. It has a closed-form
solution: first apply Singular Value Decomposition
(SVD) to XY T = USV T, and then let R = V UT. In [9]
this solution was used to optimize the ITQ problem
in (3).

Our algorithm iteratively optimizes Step (i) and (ii).
In Step (i) we need to run k-means, which by itself is
an iterative algorithm. But we can refine the results
from the previous step instead of restarting k-means.

4. We follow the terminology in statistics that a “non-parametric”
model is the one that does not rely on any assumption about the
data distribution, while a “parametric” model explicitly assumes
certain parameterized distribution such as Gaussian distribution.

OPTIMIZED PRODUCT QUANTIZATION 5

Algorithm 1 Non-Parametric OPQ

Input: training samples {x}, number of subspaces
M , number of sub-codewords k in each sub-
codebook.

Output: the matrix R, sub-codebooks {Cm}Mm=1, M
sub-indices {im}Mm=1 for each x.

1: Initialize R, {Cm}Mm=1, and {im}Mm=1.
2: repeat
3: Step(i): project the data: x̂ = Rx.
4: for m = 1 to M do
5: for j = 1 to k: update ĉm(j) by the sample

mean of {x̂m | im(x̂m) = j}.
6: for ∀x̂m: update im(x̂m) by the sub-index of

the sub-codeword ĉm that is nearest to x̂m.
7: end for
8: Step(ii): solve R by (7).
9: until max iteration number reached

0 100 200 300 400 500
3.5

3.7

3.9

4.1

4.3
x 10

4

Fig. 2: Convergence of Algorithm 1 in SIFT1M [1].
Here we show M = 4 and k = 256 (32 bits).

With this strategy, we empirically find that even if
only one k-means iteration is run in each Step (i), our
entire algorithm still converges to a good solution.
A pseudo-code is in Algorithm 1. This algorithm
is applicable even when D is not divisible by the
subspace number M .

If we ignore line 3 and line 8 in Algorithm 1, it is
equivalent to PQ (for PQ one might usually put line 2
in the inner loop). So this algorithm is similar to PQ,
except that in each iteration it updates R (line 8) and
transforms the data by R (line 3). The SVD of R is
O(D3) complex.

Fig. 2 shows the convergence of our algorithm.
In practice we find 100 iterations are good enough
for the purpose of ANN search. Like many other
alternating optimization algorithms, our algorithm is
locally optimal and the final solution depends on
the initialization. In the next subsection we propose
a parametric solution that can be used to initialize
the above iterative algorithm, when no other prior
knowledge is given.

3.2 A Parametric Solution
We further propose another solution assuming the
data follows a parametric Gaussian distribution. This

parametric solution has both practical and theoretical
merits. First, it is a simpler method and is optimal
if the data follows Gaussian distributions. Second,
it provides a way to initialize the non-parametric
method. Third, it provides new theoretical explana-
tions for two commonly used criteria in some other
ANN methods.

A technical challenge in optimizing (4) is the cou-
pling of R and {Cm}Mm=1. We discover that under a
Gaussian assumption, the lower bound of the distor-
tion in (4) has an analytical form only depending on R
but not {Cm}Mm=1. This allows us to directly optimize
w.r.t. R.

The Gaussian assumption is only for the purpose
of theoretical derivations; the usage of the parametric
solution does not rely on this assumption (it only im-
pacts the validity of the optimality). This also happens
in the derivations of Spectral Hashing [16].

3.2.1 Distortion Bound of Quantization

We first assume x ∈ RD is subject to a Gaussian
distribution with zero mean: x ∼ N (0,Σ). Here Σ is
the D-by-D covariance matrix. From the rate distortion
theory [22], the distortion E satisfies:

E ≥ k−
2
D D|Σ| 1

D , (8)

where |Σ| is the determinant. This inequality gives
the distortion lower bound for any quantizer with
k codewords. The following table shows the values
of this bound and the empirical distortion of a k-
means quantizer (105 samples, k = 256, σ2

d randomly
generated in [0.5, 1]):

D 32 64 128
bound 16.2 38.8 86.7

empirical E 17.1±0.035% 39.9±0.025% 88.5±0.021%

TABLE 1

This table implies that it is reasonable to consider
the bound in (8) as an approximation to the k-means
distortion. The small gap (∼ 5%) may be due to
two reasons: a k-means quantizer can only achieve
a locally optimal solution, and the fixed code-length
for all codewords may not achieve optimal bit rate (in
information theory, it is possible to reduce the aver-
age bit rate by varying the bit-length of codewords,
known as entropy encoding [22]).

3.2.2 Distortion Bound of Product Quantization

Next we study the distortion bound of a product
quantizer. We still assume x ∼ N (0,Σ). When apply-
ing R to data, the variable x̂ = Rx is subject to another
Gaussian distribution: x̂ ∼ N (0, Σ̂) with Σ̂ = RΣRT.

OPTIMIZED PRODUCT QUANTIZATION 6

We can decompose Σ̂ into M ×M sub-matrices:

Σ̂ =

Σ̂11 · · · Σ̂1M

...
. . .

...
Σ̂M1 · · · Σ̂MM

 . (9)

Here the diagonal sub-matrices Σ̂mm are the covari-
ance of the m-th subspace. Notice x̂m subjects to D

M -
dimensional Gaussian N (0, Σ̂mm), so from (8), the
distortion of the m-th subspace is no smaller than
k−

2M
D

D
M |Σ̂mm|MD . So the distortion of PQ satisfies:

E(R) ≥ k−
2M
D

D

M

M∑
m=1

|Σ̂mm|MD . (10)

This gives us an analytical form of the lower bound
of the distortion. This lower bound does not depends
on the codewords.

3.2.3 Minimizing the Distortion Bound
If the lower bound is reasonably tight (see Table
1), we can expect reasonably minimized distortion
through minimizing its lower bound. So we propose
to minimize the distortion bound in (10) w.r.t. R :

min
R

M∑
m=1

|Σ̂mm|MD , (11)

s.t. RTR = I,

The constant scale in (10) has been ignored. This
problem belongs to the category of “optimizing a
function with orthogonal constraints” [23]. Due to
the orthogonal constraint, such a problem is non-
convex in general [23]. An iterative algorithm has
been developed in [23], but its quality is still sensitive
to the initialization. Fortunately, the special form of
our objective function can be minimized by a simple
algorithm, as we show next.

We find the objective in (11) has a constant lower
bound independent of R. This lower bound is achiev-
able under a very mild assumption. As a result, opti-
mizing the objective in (11) is equivalent to achieving
its lower bound.

Using the inequality of arithmetic and geometric means
(AM-GM) [24], the objective in (11) satisfies:

M∑
m=1

|Σ̂mm|MD ≥ M
M∏

m=1

|Σ̂mm| 1
D . (12)

The equality is achieved if and only if the term |Σ̂mm|
has the same value for all m.

Further, in matrix analysis [25] the Fischer’s inequal-
ity gives:

M∏
m=1

|Σ̂mm| ≥ |Σ̂|. (13)

The equality is achieved if and only if the off-diagonal
sub-matrices in Σ̂ equal to a zero matrix. Here |Σ̂| ≡
|Σ| is a constant independent of R.

Combining (12) and (13), we obtain the lower
bound for the distortion bound:

M∑
m=1

|Σ̂mm|MD ≥ M |Σ| 1
D . (14)

The lower bound is achieved if the achievability in
(12) and (13) are both satisfied:

(i) Independence. If we align the data by PCA, the
equality in Fischer’s inequality (13) is achieved. This
implies we make the subspaces independent to each
other.

(ii) Balanced the Variances of Subspaces. The
equality in AM-GM (12) is achieved if |Σ̂mm| has
the same value for all subspaces. Suppose the data
has been aligned by PCA. Then |Σ̂mm| equals to the
product of the eigenvalues of Σmm. We make a mild
assumption that by re-ordering the principal compo-
nents, we can balance the product of eigenvalues for
each subspace (so the values |Σ̂mm| are equal). As a
result, both equalities in AM-GM (12) and Fischer’s
(13) are satisfied, so the objective function in (12) is
minimized.

3.2.4 Algorithm: Eigenvalue Allocation
Based on the above analysis, we propose a simple
Eigenvalue Allocation method to optimize (11). This
method is a greedy solution to the combinatorial
“balanced partition” problem [26].

We first align the data using PCA and sort the
eigenvalues σ2 in the descending order σ2

1 ≥ ... ≥ σ2
D.

It is not necessary to reduce dimensions. We prepare
M empty buckets, each for one of the M subspaces.
We sequentially pick out the largest eigenvalue and
allocate it to the bucket having the minimum product
of the eigenvalues in it (unless this bucket is full, i.e.,
with D/M eigenvalues in it). The eigenvalues in each
bucket provide the principal components (eigenvec-
tors) that will be used to form each subspace. In fact,
this algorithm re-orders the eigenvectors to form the
columns of R.

In real data sets, we find this greedy algorithm is
sufficiently good for minimizing the objective function
in (11). To show this fact, we compute the covariance
matrix Σ from the SIFT1M/GIST1M datasets. The fol-
lowing table shows the lower bound of the objective
function (right hand side in (14)) and the objective
function value (left hand side in (14)) optimized by
our Eigenvalue Allocation algorithm. Here we use
M = 8 and k = 256.

theoretical min Eigen Allocation
SIFT 2.9286× 103 2.9287× 103

GIST 1.9870× 10−3 1.9870× 10−3

TABLE 2

We can see the above greedy algorithm well
achieves the theoretical lower bound.

OPTIMIZED PRODUCT QUANTIZATION 7

Summary of the parametric solution. Our parametric
solution first computes the D×D covariance matrix Σ
of the data and uses Eigenvalue Allocation to generate
R. The data are then transformed by R. The PQ
algorithm is then performed on the transformed data.

The derivation of this solution requires D to be
divisible by M due to (10). But in practice, the us-
age of the Eigenvalue Allocation does not need this
assumption.

3.2.5 Discussion

Interestingly, some existing methods have adopted
the criteria of “independence” or “balance”, either
heuristically or in objective functions different from
ours.

Under the Gaussian assumption, in [16], [27], [8] the
“independence” criterion is done by de-correlation via
PCA. These methods are derived from other objective
functions different from ours.

The “balance” criterion was used in [3], [16], [8].
The method in [3] rotates the data by a Householder
transform to balance the variances of all components
(dimensions). But this loses “independence”. On the
contrary, we balance the variances of all subspaces
(but each dimension is allowed to have a different
variance). Driven by other motivations, the methods
in [16], [8] allocate an adaptive number of bits to each
principal component. On the contrary, our method
allocates the principal components to each subspace.

Our derivation provides new theoretical explana-
tions for the two criteria: they can be considered
as minimizing the quantization distortion under a
Gaussian distribution assumption.

3.2.6 A Parametric Model for Iterative Quantization

Interestingly, if we apply the Gaussian assumption to
the ITQ objective (3), we can theoretically derive that
the distortion of ITQ is minimized when the variances
of the components are balanced. The balance can be
done in the form of PCA followed by random rotation
[9] or a Householder transform [3]. A recent method
called Isotropic Hashing [28] explicitly optimizes the
balance. The following derivations show a theoretical
relation between balance and distortion.

Assume the data is subject to D-dimensional Gaus-
sian N (0,Σ). The rotated data is subject to N (0, Σ̂)
with Σ̂ = RΣRT. Denote a diagonal element of
Σ̂ as σ̂2

d. The d-th dimension after rotation is sub-
ject to N (0, σ̂2

d). As discussed in Sec. 2.2.3, ITQ is
using 2 codewords (with distance 2a) to quantize
each dimension. The distortion in this dimension is
Ed = 1

2

∫ +∞
0

(x − a)2p(x)dx + 1
2

∫ 0

−∞(x + a)2p(x)dx =

a2−2a
√

2
π σ̂d+σ̂2

d, where p(x) is the probability density
function. Note this is the actual distortion rather than
the lower bound. So the distortion of ITQ, under the

Gaussian assumption, is given by:

E(R, a) =

D∑
d=1

(
a2 − 2a

√
2

π
σ̂d + σ̂2

d

)
. (15)

Minimizing this distortion w.r.t. a gives us a =√
2
π

1
D

∑
d σ̂d. Putting a into (15) and omitting the con-

stants, we obtain the following optimization problem:

max
R

∑
d

σ̂d, s.t. RTR = I. (16)

This further leads us to:

max
{σ̂d}

∑
d

σ̂d, s.t.
∑
d

σ̂2
d = |Σ| = const. (17)

This problem can be solved by a Lagrange multiplier:
max{σ̂d}

∑
d σ̂d+λ(|Σ|−

∑
d σ̂

2
d). Computing the partial

derivative of each σ̂d we have σ̂d = 1
2λ . This implies

that σ̂d should be equal to each other. In this case, the
problem (16) becomes seeking an orthogonal matrix
R such that the variances {σ̂d} are balanced.

The above derivation indicates the balance criterion
alone can give minimal distortion, if under these con-
ditions: (i) the data is Gaussian; (ii) each subspace is
one-dimensional and has two codewords; and (iii) the
distance between the two codewords in any subspace
is a constant (a).

3.3 Non-Parametric vs. Parametric – the Combi-
natorial Nature

The Eigenvalue Allocation algorithm also reveals the
combinatorial nature of the problem. An orthogonal
matrix R involves the issue of permutating the di-
mensions. A coordinate descent algorithm (like our
non-parametric solution in Sec. 3.1) may not be good
at solving combinatorial problems. Next we show by
experiments that at least for a Gaussian distribution,
the non-parametric solution can be sensitive to the
initialization. And the parametric solution can be a
better way for initialization.

We generate a synthetic dataset subject to a 128-
d independent Gaussian distribution, where the vari-
ances are given by σ2

d = e−0.1d (d=1,...,128). This
synthetic set has 1 million data points and 10000
queries. We fix M = 4 and k = 256. We test three
ways of the non-parametric solution: (i) initialized
by random rotation (denoted as OPQNP+RR), (ii) ini-
tialized by randomly ordering dimensions (denoted
as OPQNP+RO), and (iii) initialized by Eigenvalue Al-
location (simply denoted as OPQNP). We also show
the result of the parametric solution (OPQP). The
following table shows the distortion and the mAP
(search for 100 NNs using ADC):

In this table the randomized algorithms are run
10 trials and averaged (shown with std). We can
see that random initializations cannot approach the
optimality achieved by OPQP or OPQNP. We also see

OPTIMIZED PRODUCT QUANTIZATION 8

OPQNP+RR OPQNP+RO OPQNP OPQP

E 2.324±0.004 2.371±0.063 2.282 2.284
mAP 0.169±0.001 0.156±0.015 0.176 0.176

TABLE 3

OPQNP can hardly improve OPQP. This indicates the
non-parametric solution can be sensitive to the ini-
tializations. If no other prior knowledge is available,
the parametric solution can be a reasonable way to
initialize it.

In Sec. 4 we will see the impact of initializations to
the real GIST dataset.

4 EXPERIMENTS

We evaluate the performance of the optimized prod-
uct quantization in three applications.

4.1 Compact Encoding for Approximate Distance
Computation
In the first experiment, we study the performance of
compact encoding for approximate distance compu-
tation as in [1]. This is a common exhaustive search
strategy used by PQ [1] and other binary embedding
methods like [9]. Given a budget of B bits per vector,
each vector in the database is encoded as a B-bit
code. This allows to fit millions/billions of data in the
memory. In the on-line search, the data are ranked
in the order of their approximate distances to the
query. In [1] Symmetric Distance Computation (SDC)
and Asymmetric Distance Computation (ADC) are
proposed as two ways of approximating distances,
depending on whether the query is encoded or not.
We test both cases. Such exhaustive ranking is fast
for million-scale data: e.g., for B = 64 bits it takes 20
ms per 1 million distance computation (an Intel Core2
2.13GHz CPU using a single core, 8G RAM).

The SDC of ITQ [9] is equivalent to Hamming
ranking as popularly used in other binary embedding
methods [15], [16], [17], [18], [19], [20]. To apply
ADC for ITQ, we need to find its codewords. This is
straightforward in the formulation (3) which involves
the length a. It can be shown (3) is quadratic on a
(see also [9]) so a can be very simply solved by least
squares. With a we can represent any codeword of
ITQ. In this case ITQ is just like a special case of PQ
with M = B subspaces and k = 2 codewords. So the
ADC of ITQ can also adopt lookup tables. We notice
other ways of Asymmetric Hamming (AH) distance
[29], [30] have been developed. We adopt the ADC
of ITQ as described above because it is analogous to
other quantization methods. We also find the ADC
and AH of ITQ behave very similar in experiments.

We evaluate on three real datasets and one syn-
thetic dataset. The first two datasets are SIFT1M and
GIST1M [1]. SIFT1M consists of 1 million 128-d SIFT

vectors [31] and 10k queries. GIST1M consists of 1
million 960-d GIST vectors [32] and 1k queries. The
third dataset MNIST5 consists of 70k images of hand-
written digits, each as a 784-d vector concatenating all
pixels. We randomly sample 1k as the queries and use
the remaining as the data base. We further generate
a synthetic dataset subject to a 128-d independent
Gaussian distribution, where the variances are given
by σ2

d = e−0.1d (d=1,...,128): this is a long-tail curve
fitted to the eigenvalues of many real datasets. This
synthetic set has 1 million data points and 10k queries.

We consider K Euclidean nearest neighbors as the
true neighbors and have evaluated K=1 to 1000. We
find the comparisons among the methods are nearly
unchanged. In this work we report K=100.

4.1.1 Comparisons with Quantization Methods
We first compare with the following methods. All of
them can be viewed as kinds of vector quantization:

• OPQP: this is our parametric solution.
• OPQNP: this is our non-parametric solution ini-

tialized by the parametric solution.
• PQRO: the dimensions are randomly ordered as

suggested in [1].
• PQRR: the data are aligned using PCA and then

randomly rotated, as suggested in [3]. We have also
optimized the Householder transform as in [3] to
balance the variances of the components. We find
this is comparable with random rotation, as also
reported in [3].

• TC (Transform Coding [8]): this is a Scalar Quan-
tization (SQ) method. SQ is a special case of PQ
that each dimension forms a subspace. TC uses
the principal components as the subspaces. It
assigns each principal component with an adap-
tive number of bits. A similar method was also
concurrently proposed in [33].

• ITQ [9]: this is a special vector quantization
method that is also binary embedding.

Notice that in these settings we have assumed there
is no prior knowledge available. Later we will study
the case with prior knowledge.

Given the code-length B, all the PQ-based methods
(OPQNP, OPQP, PQRO, PQRR) assign 8 bits to each
subspace (k = 256). The subspace number M is B/8.

Results in the synthetic dataset
Fig. 3 shows the performance on the synthetic

Gaussian data. Here we evaluate by the recall vs.
N , i.e., the proportion of the true nearest neighbors
ranked in the top N positions. We can see that OPQNP
and OPQP perform almost the same. We verify that
OPQP have achieved the theoretical minimum in (14)
(6.314 × 10−3). This implies that, under a Gaussian
distribution, our parametric solution is optimal.

On the contrary, PQRO and PQRR perform substan-
tially worse. In the Gaussian data, the PQRR performs

5. http://yann.lecun.com/exdb/mnist/

OPTIMIZED PRODUCT QUANTIZATION 9

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

ca
ll

Synthetic 32bits SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

Fig. 3: Comparison on Gaussian synthetic data using
Symmetric Distance Computation and 32-bit codes.

worse than ITQ. This indicates that the subspace de-
composition can be very important to the performance
of PQ, even under a simple Gaussian distribution. Be-
sides, we find PQRO performs better than PQRR. This
is because in the independent Gaussian distribution,
PQRO automatically satisfies the “independence” cri-
terion, and the random order can somewhat “balance”
the variances of the subspaces.

Results in real datasets without prior knowledge
Next we evaluate the performance on real datasets

and assume the prior knowledge is not available.
We are particularly interested in the lack of prior
knowledge, because we expect the methods to work
well in general data that are unstructured, such as
raw pixels or compressed representations (by PCA,
sparse coding, etc.). Many previous works focus on
the highly structured SIFT/GIST vectors and harness
these structures. But this limits the investigation on
general data.

All the above methods can be considered as some-
what blind to the prior knowledge. This is because the
effects of the structures are weakened if the vectors
undergo some PCA, random ordering, or random
rotation.

In Fig. 4, 5, and 6 we compare the result-
s on SIFT1M, GIST1M, and MNIST. We show
the recall vs. N with B=64 bits using SDC/ADC
(Fig. 4, 5, 6 (a)(b)), and the mAP vs. code length
B using SDC (Fig. 4, 5, 6 (c)). We can also evalu-
ate their quantization distortion vs. code length B
(Fig. 4, 5, 6 (d)). More comparisons evaluated by
different metrics are given in the supplementary ma-
terials.

We find our both solutions substantially outper-
form the existing methods. The superiority of our
methods present on both SDC and ADC. In all cas-
es even our simple parametric method OPQP has
shown prominent improvement over PQRO and PQRR.
This again indicates that PQ-based methods strongly
depend on the space decomposition. We also notice
the performance of PQRR is disappointing. Although

16 32 64 128

0

2

4

6

8

x 10
4

bits

D
is

to
rt

io
n

(d) SIFT Distortion

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

16 32 64 128
0

0.2

0.4

0.6

0.8

bits

m
A

P

(c) SIFT SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(a) SIFT 64bits SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(b) SIFT 64bits ADC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

Fig. 4: Comparisons on SIFT1M. (a)(b): recall at the
N top ranked samples, using SDC/ADC and 64-bit
codes. (c): mean Average Precision vs. code-length
using SDC. (d): distortion vs. code-length.

this method (and the Householder transform in [3])
can balance the variance using a random rotation,
the independence between subspaces is lost in the
random rotation.

Our non-parametric solution OPQNP further im-
proves the results of the parametric solution OPQP
in the SIFT1M and MNIST datasets. This is because
these two datasets exhibit non-Gaussian distributions:
the SIFT1M set has two distinct clusters (this can be
visualized by plotting the first two principal com-
ponents of SIFT), and MNIST can be expected to
have 10 clusters. In these very non-Gaussian cases,
the parametric OPQP is certainly not optimal, and the
non-parametric OPQNP is able to further reduce the
distortion. In GIST1M our two methods OPQNP and
OPQP are comparable.

We notice that TC performs clearly better than
PQRO and PQRR in the GIST1M set. But TC is inferior

OPTIMIZED PRODUCT QUANTIZATION 10

16 32 64 128
0

0.1

0.2

0.3

0.4

bits

m
A

P

(c) GIST SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

16 32 64 128

0

0.5

1

1.5

bits

D
is

to
rt

io
n

(d) GIST Distortion

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(a) GIST 64bits SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(b) GIST 64bits ADC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

Fig. 5: Comparisons on GIST1M.

to our methods in all datasets. This is because TC
is scalar quantization, while our method quantizes
multi-dimensional subspaces. Further, TC assigns an
adaptive number of bits to each eigenvalue, while
our method assigns the eigenvalues to each subspace.
Since bit numbers are discrete but eigenvalues are
continuous, it is easier for our method to achieve
balance.

Results in real datasets with prior knowledge
In [1] it has been noticed that PQ works much bet-

ter if utilizing the prior knowledge that SIFT and GIST
are concatenated histograms. The so-called “natural”
order is that each subspace consists of neighboring
histograms. The “structural” order (when M = 8) is
that each subspace consists of the same bin of all
histograms (each histogram has 8 bins). We denote
PQ with priori knowledge as PQnat (natural) and PQstr
(structural). Note such priors may limit the choices of
M and B.

In Fig. 7 we compare PQpri with our prior-free
non-parametric method OPQNP. We also evaluate our

16 32 64 128
0

0.2

0.4

0.6

0.8

1

bits

m
A

P

(c) MNIST SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

16 32 64 128

0

0.6

1.2

1.8

2.4

x 10
6

bits

D
is

to
rt

io
n

(d) MNIST Distortion

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(a) MNIST 64bits SDC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(b) MNIST 64bits ADC

OPQNP

OPQP

PQRO

PQRR

TC

ITQ

Fig. 6: Comparisons on MNIST.

non-parametric method using the prior orders as ini-
tialization, denoted as OPQNP+nat and OPQNP+str. In
Fig. 7 we only show the better order (SIFT: natural;
GIST: structural). We see even our prior-free method
OPQNP outperforms the prior-based PQ on both sets.
In SIFT1M our prior-dependent OPQNP+nat improves
further thanks to a better initialization. In GIST1M our
OPQNP+str is slightly inferior to our prior-free OPQNP.

Sensitivity to Initializations
To further see the impact of initialization, we evalu-

ate the OPQNP (initialized by Eigenvalue Allocation),
OPQNP+str, and OPQNP+nat on GIST1M. We also evalu-
ate OPQNP initialized by a random rotation, denoted
as OPQNP+RR. Table 4 shows the mAP on GIST1M
using 64bits and ADC:

OPQNP+str OPQNP+nat OPQNP+RR OPQNP

mAP 0.191 0.182 0.190±0.003 0.205

TABLE 4: mAP on GIST1M (64bits, ADC)

OPTIMIZED PRODUCT QUANTIZATION 11

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(a) SIFT 64bits SDC

OPQNP

OPQNP+nat

PQnat

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(b) GIST 64bits SDC

OPQNP

OPQNP+str

PQstr

Fig. 7: Comparisons using prior knowledge. (a):
SIFT1M. (b): GIST1M. Here the results are with 64 bits
and SDC.

We see that non-parametric solution initialized by
structural/natural orders or random rotation per-
forms very similarly. This is also observed in the
“Cartesian k-means” paper [13] (“Cartesian k-means”
and our non-parametric solution are equivalent to
each other if using the same initialization). However,
we find our OPQNP (initialized by Eigenvalue Al-
location) performs better than the other three. This
indicates our non-parametric solution (also Cartesian
k-means) relies on the initializations. Our Eigenvalue
Allocation provides a better initialization in the GIST
dataset.

4.1.2 Comparisons with Binary Embedding Methods
Binary embedding is a popular way of encoding
vectors [15], [16], [17], [27], [9], [18], [19]. For near-
est neighbor search, one can rank the encoded data
vectors by their Hamming distance to the encoded
query. Not all binary embedding methods (except
ITQ or orthogonal ones) can be formulated as vector
quantization (encoding/decoding) in Sec. 2.1, because
these binary methods only have partition boundaries
but no codeword.

We compare with the following binary embedding
methods: Locality Sensitive Hashing (LSH) [15], Spec-
tral Hashing (SH) [16], Binary Reconstructive Embed-
ding (BRE) [17], Minimal Loss Hashing (MLH) [18],
and Kernel-based Supervised Hashing (KSH) [19]. We
also compare with Multidimensional Spectral Hash-
ing (MDSH) [34], which uses weighted Hamming

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(a) SIFT 64bits

OPQNP

OPQP

ITQ

MLH

KSH

LSH

SH

BRE

MDSH

1 10 100 1000 10000
0

0.2

0.4

0.6

0.8

1

N

R
e

c
a

ll

(b) GIST 64bits

OPQNP

OPQP

ITQ

MLH

KSH

LSH

SH

BRE

MDSH

Fig. 8: Comparisons with binary embedding methods
using 64 bits. (a): SIFT1M. (b): GIST1M.

distances.
Fig. 8 shows the comparisons on SIFT1M/GIST1M

using 64 bits. For fair comparisons, our methods use
SDC here. We see our OPQNP and OPQP substantially
outperform these binary embedding methods.

4.2 Building Inverted Multi-Index for Non-
exhaustive Search
The inverted multi-index method [2] uses a product
quantizer for inverted indexing. Our optimized prod-
uct quantizer can improve the performance of the
resulted inverted indexing.

We briefly introduce the method of [2] as follows.
To generate a fine codebook with kM codewords, this
method applies a product quantizer using M sub-
spaces with k sub-codeword in each. Unlike [1] that
uses this codebook to encode the data, this method
uses it to build inverted indexing. Off-line, each code-
word has been assigned a short list that contains
all the data vectors belonging to this codeword (i.e.,
nearest to it). On-line, a query will find a number of
nearest codewords and retrieve all their short lists.
Although there are essentially kM codewords in the
original space, the distance of the query to these
codeword can be given by M 1-by-k lookup tables
(analogous to ADC). The recommended number M
is 2 in [2]. In this case, the nearest codewords to the
query can be obtained by a priority queue in a k × k
table spanned by two 1-by-k tables.

This inverted multi-index method is a current state-
of-the-art non-exhaustive search method. Because this

OPTIMIZED PRODUCT QUANTIZATION 12

methods T R@1 R@10 R@100 time(ms)

Multi-D-ADC 10000 0.327(0.304) 0.681(0.665) 0.748(0.740) 6.8(7)

OMulti-D-OADC 10000 0.345 0.725 0.794 6.9
Multi-D-ADC 30000 0.332(0.328) 0.774(0.757) 0.885(0.885) 16.9(16)

OMulti-D-OADC 30000 0.366 0.807 0.913 16.9
Multi-D-ADC 100000 0.344(0.334) 0.809(0.793) 0.960(0.959) 52.0(49)

OMulti-D-OADC 100000 0.373 0.841 0.973 51.5

TABLE 5: Comparisons with inverted multi-index [2] in SIFT1B, with ADC-based re-ranking. This table
corresponds to Table 1 in [2]. The numbers in the brackets are reported in [2]. The time is the average per
query. It consists of the short lists retrieval time and the ranking time.

10 12 14 16 18

0.4

0.5

0.6

0.7

0.8

0.9

1

log
2

(list length T)

R
e

ca
ll

SIFT 1B

OMulti K=2
14

Multi K=2
14

Fig. 9: OPQ for inverted multi-index [2]. Here the
original inverted multi-index [2] is termed as “Multi”,
and our optimized PQ for inverted multi-index is
termed as “OMulti”. This figure corresponds to Figure
3 (left) in [2].

method involves a product quantizer, it is straightfor-
ward to apply for our method to optimize this product
quantizer. Following the experiment settings in [2], we
study the ANN performance on the SIFT1B [1] dataset
containing 1 billion SIFT. Here we consider the first
nearest neighbor as the ground truth. We optimize a
product quantizer using our non-parametric solution
initialized by the natural order. Fig. 9 shows the recall
vs. T , where T is the total number of retrieved vectors
in the short lists. We test M = 2 and k = 214 as in
[2]. We see that our optimized quantizer improves the
recall of the retrieval.

In [2], the retrieved vectors can be re-ranked using
PQ as a compact encoding method. This is termed
as “Multi-D-ADC” in [2]. Notice the product quan-
tizer used to build the inverted indexing and the
one used for compact encoding are different. It is
straightforward to apply for our method to optimize
both quantizers. Our result is termed as “OMulti-D-
OADC” to highlight the two optimized quantizers.

Table 5 shows the recall vs. the N top re-ranked
vectors, together with the querying time. We see our
optimized quantizers can improve the accuracy. To the
best of our knowledge, in terms of both accuracy and

4096-d float 0.564(0.556)

PCA → 128-d float 0.551(0.557)

PQRR OPQNP

4 bytes 0.260 0.377
8 bytes 0.381 0.477

16 bytes 0.479 0.522
32 bytes 0.530 0.543

TABLE 6: mAP in Holiday using VLAD. Here we use
the improved version of VLAD in [35]. The numbers
in the brackets are reported in [35].

4096-d float 0.588(0.595)

PCA → 128-d float 0.561(0.565)

PQRR OPQNP

4 bytes 0.272 0.384
8 bytes 0.370 0.455

16 bytes 0.486 0.519
32 bytes 0.530 0.551

TABLE 7: mAP in Holiday using Fisher Vectors. The
numbers in the brackets are reported in [35].

speed, this is the state-of-the-art ANN solution to this
billion-scale dataset.

4.3 Compacting Image Representations for Image
Retrieval

In [3], PQ was introduced as a way of compacting
image representations for image retrieval. In this s-
cenario, the local descriptors of an image are first
aggregated as a high-dimensional (often thousands of
dimensions) vector. The aggregation methods include
the Fisher Kernel [11] and VLAD [3], [35]. The aggre-
gated vector is normalized and compressed by PCA.
The compressed vector is then compacted into a short
code by PQ for retrieval.

Unlike SIFT/GIST, the Fisher vectors and the VLAD
vectors do not present structural orders, especially
due to the PCA. In [3], [35] it is proposed to apply a
random rotation matrix before PQ (i.e., PQRR). Instead,

OPTIMIZED PRODUCT QUANTIZATION 13

we apply our optimized product quantizer OPQNP for
this compact encoding task.

Table. 6 and Table. 7 show the retrieval accuracy
in the Holiday dataset [3]. We only simply replace
the PQRR by OPQNP for compact encoding. For both
VLAD and Fisher Vectors we study 4096-d uncom-
pressed features. These features are first reduced to
128-d by PCA. Then we apply PQRR/OPQNP on these
128-d features. We can see our optimized product
quantizer significantly improves the retrieval accuracy
of PQRR.

5 DISCUSSION AND CONCLUSION

We have proposed two solutions to optimized product
quantization. Because PQ has witnessed many appli-
cations in computer vision, and also because the space
decomposition has great impacts on the PQ perfor-
mance, we believe this work has made PQ a more
practical and powerful method for many applications.

REFERENCES

[1] H. Jegou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), vol. 33, 2011.

[2] A. Babenko and V. S. Lempitsky, “The inverted multi-index,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 3069–3076.

[3] H. Jegou, M. Douze, C. Schmid, and P. Perez, “Aggregating
local descriptors into a compact image representation,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2010, pp. 3304–3311.

[4] J. Sivic and A. Zisserman, “Video google: a text retrieval
approach to object matching in videos,” in IEEE International
Conference on Computer Vision (ICCV), 2003.

[5] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-
neighbor based image classification,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

[6] A. B. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny
images: A large data set for nonparametric object and scene
recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 30, pp. 1958–1970, 2008.

[7] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transac-
tions on Information Theory (TIT), 1998.

[8] J. Brandt, “Transform coding for fast approximate nearest
neighbor search in high dimensions,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2010.

[9] Y. Gong and S. Lazebnik, “Iterative quantization: A pro-
crustean approach to learning binary codes,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2011.

[10] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2006.

[11] F. Perronnin and C. Dance, “Fisher kernels on visual vo-
cabularies for image categorization,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2007.

[12] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quan-
tization for approximate nearest neighbor search,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2013.

[13] M. Norouzi and D. Fleet, “Cartesian k-means,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2013.

[14] J. B. MacQueen, “Some methods for classification and analysis
of multivariate observations,” in Proceedings of 5th Berkeley
Symposium on Mathematical Statistics and Probability. Univer-
sity of California Press, 1967, pp. 281–297.

[15] P. Indyk and R. Motwani, “Approximate nearest neighbors:
towards removing the curse of dimensionality,” in ACM Sym-
posium on Theory of Computing (STOC), 1998, pp. 604–613.

[16] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in
Advances in Neural Information Processing Systems (NIPS), 2008,
pp. 1753–1760.

[17] B. Kulis and T. Darrell, “Learning to hash with binary recon-
structive embeddings,” vol. 22, 2009, pp. 1042–1050.

[18] M. E. Norouzi and D. J. Fleet, “Minimal loss hashing for
compact binary codes,” in International Conference on Machine
Learning (ICML), 2011, pp. 353–360.

[19] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised
hashing with kernels,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.

[20] K. He, F. Wen, and J. Sun, “K-means Hashing: an Affinity-
Preserving Quantization Method for Learning Binary Compact
Codes,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

[21] P. Schönemann, “A generalized solution of the orthogonal
procrustes problem,” Psychometrika, vol. 31, no. 1, pp. 1–10,
1966.

[22] T. Cover and J. Thomas, Elements of information theory. John
Wiley & Sons, Inc., 1991, ch. 13, p. 348.

[23] Z. Wen and W. Yin, “A feasible method for optimization with
orthogonality constraints,” Mathematical Programming, pp. 1–
38, 2010.

[24] A. Cauchy, Cours d’analyse de l’École Royale Polytechnique. Im-
primerie royale, 1821.

[25] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge
University Press, 1990, ch. 7, p. 478.

[26] S. Mertens, “The easiest hard problem: Number partitioning,”
Computational Complexity and Statistical Physics, vol. 125, no. 2,
2006.

[27] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing
for scalable image retrieval,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2010.

[28] W. Kong and W.-J. Li, “Isotropic hashing,” in Advances in
Neural Information Processing Systems (NIPS), 2012, pp. 1655–
1663.

[29] W. Dong, M. Charikar, and K. Li, “Asymmetric distance esti-
mation with sketches for similarity search in high-dimensional
spaces,” in Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information
retrieval, 2008.

[30] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik, “Asymmet-
ric distances for binary embeddings,” 2013.

[31] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision (IJCV),
vol. 60, pp. 91–110, 2004.

[32] A. Oliva and A. Torralba, “Modeling the shape of the scene:
a holistic representation of the spatial envelope,” International
Journal of Computer Vision (IJCV), 2001.

[33] H. Sandhawalia and H. Jégou, “Searching with expectations,”
in IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). IEEE, 2010, pp. 1242–1245.

[34] Y. Weiss, R. Fergus, and A. Torralba, “Multidimensional spec-
tral hashing,” in European Conference on Computer Vision (EC-
CV), 2012.

[35] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and
C. Schmid, “Aggregating local image descriptors into com-
pact codes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 34, no. 9, pp. 1704–1716, 2012.

Tiezheng Ge is a PhD candidate in the
Department of Electronic Science and Tech-
nology, University of Science and Technol-
ogy of China. Before that, he received the
BS degree from University of Science and
Technology of China in 2009. He is currently
working as an intern of Microsoft Research
Asia. His research interest is large scale
image search. His personal page is http://
home.ustc.edu.cn/∼getzh.

OPTIMIZED PRODUCT QUANTIZATION 14

Kaiming He is currently a researcher at Mi-
crosoft Research Asia. He received the BS
degree from Tsinghua University in 2007,
and the PhD degree from the Chinese Uni-
versity of Hong Kong in 2011. He joined Mi-
crosoft Research Asia in 2011. His research
interests include computer vision and com-
puter graphics. He has won the Best Paper
Award at the IEEE Conference on Comput-
er Vision and Pattern Recognition (CVPR)
2009.

Qifa Ke is currently a software development
engineer in Bing, working on search rele-
vance. Before joining Bing, he was a Re-
searcher in Microsoft Research Silicon Valley
lab, working on Internet image and video
search, large-scale data analysis and ma-
chine learning, and data-parallel distributed
computing systems. Qifa Ke received his
Ph.D. in Computer Science from Carnegie
Mellon University in 2003.

Jian Sun is currently a principal researcher
at Microsoft Research Asia. He got the BS
degree, MS degree and Ph.D. degree from
Xian Jiaotong University in 1997, 2000 and
2003. He joined Microsoft Research Asia in
July, 2003. His current two major research
interests are interactive computer vision (us-
er interface + vision) and internet computer
vision (large image collection + vision). He
is also interested in stereo matching and
computational photography. He has won the

Best Paper Award at the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) 2009.

