
ACCELERATING RECURRENT NEURAL NETWORK TRAINING VIA TWO STAGE
CLASSES AND PARALLELIZATION

Zhiheng Huang, Geoffrey Zweig∗, Michael Levit, Benoit Dumoulin, Barlas Oguz and Shawn Chang

Speech at Microsoft, Mountain View, CA
∗Microsoft Research, Redmond, WA

{zhihuang,gzweig,Michael.Levit,bedumoul,barlaso,Shawn.Chang}@microsoft.com

ABSTRACT
Recurrent neural network (RNN) language models have
proven to be successful to lower the perplexity and word
error rate in automatic speech recognition (ASR). However,
one challenge to adopt RNN language models is due to their
heavy computational cost in training. In this paper, we pro-
pose two techniques to accelerate RNN training: 1) two stage
class RNN and 2) parallel RNN training. In experiments on
Microsoft internal short message dictation (SMD) data set,
two stage class RNNs and parallel RNNs not only result in
equal or lower WERs compared to original RNNs but also
accelerate training by 2 and 10 times respectively. It is worth
noting that two stage class RNN speedup can also be applied
to test stage, which is essential to reduce the latency in real
time ASR applications.

Index Terms— language modeling, recurrent neural net-
work (RNN), speed up, parallelization, hierarchical classes

1. INTRODUCTION

Statistical language modeling assigns a probability to a word
conditioned on previous context. It plays a vital role in several
research fields such as automatic speech recognition, machine
translation, text classification and optical character recogni-
tion. For a long time smoothed n-gram models [1] have been
dominating in language modeling due to their simplicity and
accuracy.

There is considerable research on different language mod-
eling techniques. For example, neural network (NN) based
language models [2, 3] have proven to be successful among
other language modeling techniques. Maximum entropy
modeling [4, 5, 6, 7, 8] have gained significant attention due
to its flexibility in handling heterogeneous features. Recently
recurrent neural network has been reported to obtain signifi-
cant improvement [9, 10, 11, 12].

Despite the good performance of RNN, it is a challenge
to adopt RNN language models due to heavy computational
complexity of training RNN models. It can take up to weeks
to train an accurate RNN model for a large data set (say, 200M
tokens). Unfortunately, it is not easy to speed up RNN train-
ing using GPUs as RNN models are typically updated for
each training example. In addition, training is slowed down
by backpropagation through time (BPTT) [21], which proves
to be essential to train accurate RNN models [10]. Thus re-
search effort has been devoted to make these models more
computationally efficient. For example, classes have been
introduced to RNN infrastructure [10] and joint training of
RNN and Maximum Entropy model has been proposed [13]
to reduce training time. In this paper, we propose two tech-
niques to accelerate RNN training: 1) two stage class RNN

and 2) parallel RNN training. Two stage class RNNs can lead
to 2 times speedup and such speedup applies to both train-
ing and test stages. Related work includes [14, 15, 16] which
applies hierarchical classes scheme to neural network. In the
RNN context, [17] recently introduced a speed-based regu-
larization term in the likelihood objective function to balance
between the computational efficiency and perplexity perfor-
mance. However, it used just one layer of classes. In addition
to two stage class RNNs, we propose parallel RNN training
via data parallelization, which is inspired by the work of [18].
Parallel RNN training can lead to 10 times speedup for RNN
model training. We show the efficiency and effectiveness of
the proposed speedup techniques on Microsoft internal short
message dictation (SMD) data set.

2. RNN MODEL STRUCTURE

Fig. 1 shows the infrastructure of RNN, which includes the
Maximum Entropy features as proposed in [13]. The network
has an input layer x, hidden layer h and output layer y. We use
t to refer to different time stamp. The input vector x at time t,
x(t), is formed as follows by concatenating input vocabulary
vector x′(t) (index of current word is 1 and all rests are 0) and
hidden layer at time t− 1.

x(t) = [x′(t)Th(t− 1)T]T . (1)

Output vector y(t) contains predicted probabilities of all
words in vocabulary. To compute these probabilities, a class
component c(t) is introduced as follows to output layer to
reduce computational complexity [14, 19, 10].

W

maxent

p(t)

vocab
y(t)

class
c(t)

hidden
h(t−1)

vocab
x’(t)

input output

0

1

3

7

6 8

2

hidden
h(t)

5
4

U
V

features

Fig. 1. Recurrent neural network infrastructure

P (y(t)|history) = P (c(t)|h(t))P (y(t)|c(t), h(t)). (2)

326978-1-4799-2756-2/13/$31.00 ©2013 IEEE ASRU 2013

The hidden and output layers are thus computed as follows:

hj(t) = f(
∑
i

xi(t)uji) (3)

ck(t) = g(
∑
m

hm(t)vkm +
∑
n

pn(t)wkn) (4)

yl(t) = g(
∑
m

hm(t)vlm +
∑
n

pn(t)wln) (5)

where uji is the network weight between unit i in input layer
and unit j in hidden layer, vkm is the network weight be-
tween unitm in hidden layer and unit k in class component of
output layer, pn(t) is the Maximum Entropy features, wkn is
the network weight between maximum entropy feature pn(t)
and unit k in class component of output layer. Similarly, vlm
and wln are counterparts of vkm and wkn except that they are
for connections to vocabulary component (as opposed to class
component) in output layer. We hereafter use U, V and W
to refer to the weight matrices in RNN network. Index j it-
erates over hidden layer units, index k iterates over classes,
and index l iterates over words which belong to the predicted
word’s class (see hashed output vocab in Fig. 1, which is the
reason for speedup using classes as we shall see at the end
of this section), and f(z) and g(z) are sigmoid and softmax
activation functions. Softmax function in the output layer is
used to ensure that the outputs form a valid probability distri-
bution. That is, all output words have probability greater than
0 and their sum is 1.

f(z) =
1

1 + e−z
(6)

g(zm) =
ezm∑
k e

zk
(7)

The RNN training algorithm [20] is shown in Algorithm
1. We first initialize epoch number to be 0, the last word
to be 0 (corresponding to end of sentence tag </s>), previ-
ous log probability to be −∞, learning rate to be 0.1, and
learning rate division to be false. We initialize a RNN model
by assigning random values between −0.1 and 0.1 to weight
matrices U, V and W. We then go to an infinite loop until
the training finds a local optimal model and breaks (line 21)
out of the loop. In each iteration within the loop, we adjust
the learning rate on line 9, depending on whether variable di-
vide is true of false. Large learning rates result in quick con-
vergence and they are used in the beginning of RNN model
training. Small learning rates are used to fine tune RNN mod-
els at the end of training. We enumerate all words in training
data set and this enumeration is denoted as an epoch. Method
computeNet computes probability of each word conditioned
on previous word (and other history words). Method learn-
Net updates RNN weight matrices U, V and W. After each
epoch, method evaluateNet is called on line 16 to evaluate the
current RNN model using a validation data set. If the cur-
rent model is not significantly better than previous one for
the first time, we activate the switch to halve learning rate in
next epoch. Otherwise, the algorithm terminates and the latest
RNN model is returned.

The key components in Algorithm 1 are methods com-
puteNet and learnNet. Method computeNet computes the
probability of a word conditioned on previous words. It con-
sists of 9 steps as shown in Fig. 1. Step 0 updates current
hidden layer activation vector by multiplying hidden layer

Algorithm 1 RNN training algorithm
1: epoch = 0
2: lastWord = 0
3: preLogp =−∞
4: learnRate = 0.1
5: divide = false
6: initializeModel()
7: while true do
8: if divide == true then
9: learnRate = learnRate/2

10: end if
11: for each word in training data do
12: computeNet(lastWord, word) //forward pass
13: learnNet(lastWord, word, learnRate) //backward pass
14: lastWord = word
15: end for
16: logp = evaluateNet()
17: if logp× minImprovement < preLogp then
18: if divide == false then
19: divide = true
20: else
21: break
22: end if
23: end if
24: preLogp = logp
25: epoch++
26: end while

activation vector in previous time and weight matrix (part
of U) between them. Step 1 updates hidden layer vector by
multiplying input vocabulary vector (with index of lastWord
being 1 and all others being 0) and the weight matrix (part
of U) between vocabulary component in input layer and hid-
den layer. Step 2 applies sigmoid function to hidden layer.
Therefore the combination of step 0, 1, and 2 corresponds to
equation (3). Similarly, the combination of step 3, 4, and 5
corresponds to equation (4), and the combination of step 6, 7,
and 8 corresponds to equation (5).

The method computeNet is a forward pass which propa-
gates from left to right. On the other hand, method learnNet
is a backward process in which the weight matrices U, V and
W are updated to better fit the data. Similar 9 steps are car-
ried out to update the weight matrices with a reverse order
(from step 8 to 0) and reverse direction (from right to left).
For example, the following is used to update the weights V(t)
between hidden layer and output layer at time t

V(t) = (1− β)V(t− 1) + αe0(t− 1)TH(t− 1) (8)

where β is the regularization term, α is the learning rate, e0
is the prediction error vector in output layer, and H is the
hidden activation vector. It is worth noting that in our exper-
iments, backpropagation through time (BPTT) [21] is used
to update U as it leads to better accuracy [10]. The error is
propagated through recurrent connections back in time for a
specific number of times steps.

In order to derive RNN training complexity, we assume
frequency binning [10] in which word probability mass is
equally distributed on classes. That is, if we choose 20
classes, words that correspond to the first 5% of the prob-
ability mass would be mapped to class 1, the words that
correspond to the next 5% of the probability mass would be
mapped to class 2, etc. Based on this assumption, the average
computational complexity of training a RNN model as shown
in Fig 1 is of

O(I ×W × (H ×H +H × (C +
V

C
))), (9)

where I is the number of training epochs (usually 10 to 20,
around 13 in our experiments in Section 5) before conver-
gence is achieved, W is the number of tokens in training

327

set, H is the size of hidden layer, V is the size of vocabu-
lary, and C is the size of classes. Note that for simplicity we
ignore the small constant complexity O(1 × H) introduced
by the connection between input word and hidden layer, and
O((N −1)× (C+ V

C)) by N -gram based Maximum Entropy
features in factor O(H ×H +H × (C + V

C)) at Equation 9.
If we choose

C =
√
V , (10)

we obtain the following average computational complexity

O(I ×W × (H ×H +H ×
√
V)), (11)

The original RNN model [9] without the use of classes
has computational complexity of

O(I ×W × (H ×H +H × V)). (12)

Usually V is in the order of 100K and thus the class tech-
nique significantly reduces the complexity factor of O(V) to
O(
√
V).

3. TWO STAGE CLASS RNN MODEL

It has been shown in [10] that the adoption of classes can lead
to 15 times speedup for both RNN training and test phases.
It is natural to extend the classes to hierarchical classes [14,
15, 16, 19]. In this paper, we extend the classes to two stage
classes and we denote them as super class and class respec-
tively. Fig. 2 shows the modified RNN mode infrastructure,
in which super class component is introduced to output layer.
The algorithm to train a two stage class RNN remains the
same as Algorithm 1, except that we now have three extra
steps (3’, 4’, and 5’) besides the 9 steps in Fig. 1. These three

h(t)

maxent

p(t)

vocab
y(t)

class
c(t)

super
class
s(t)

hidden
h(t−1)

vocab
x’(t)

input output

0

1

3

4

4’

7

6 8

5

5’

2

3’

hidden

features

Fig. 2. Recurrent neural network structure

extra steps compute the probabilities of super classes and they
correspond to the following equation in computeNet

sk(t) = g(
∑
m

hm(t)vkm +
∑
n

pn(t)wkn) (13)

where sk is the super class and index k iterates over all su-
per classes. Equations (3) to (5) remain the same except that
Equation (4) does not need to iterate over all classes. Instead,
it only iterates over classes which belong to the current word’s
super class. Therefore, the computational complexity for two
stage class RNN becomes

O(I ×W × (H ×H +H × (S +
C

S
+
V

C
))), (14)

where S is the super class size. If we choose

S =
3
√
V , (15)

C =
3
√
V 2, (16)

the training complexity becomes

O(I ×W × (H ×H +H × 3
√
V)). (17)

We can in general derive n stage classes (n > 2), with the
complexity reduced to

O(I ×W × (H ×H +H × n+1
√
V)), (18)

where the complexity factor ofO(
√
V) is reduced toO(n+1

√
V).

It is worth noting that the overall complexity also has a factor
O(H2), thus the speedup may not be strictly from O(

√
V) to

O(n+1
√
V).

In order to facilitate two stage classes, we need to spec-
ify the number of super classes and classes. We can use the
frequency binning [10] as assumed in complexity analysis to
derive classes. However, as suggested by Povey [20], tak-
ing the square root of the frequencies prior to frequency bin-
ning can result in faster training. We thus adopt this square
root frequency binning as baseline in our experiments in Sec-
tion 5. Note that square root frequency binning differs from
the speed-optimal classing of [17] in ignoring exact word fre-
quencies, but is a reasonable approximation in terms of train-
ing speed in practice.

We can apply the same strategy to derive super classes
by treating classes as words. We can alternatively divide the
classes to a group of super classes, each of which consists
of the same number of classes. We tried both approaches in
experiments in Section 5 and they resulted in similar perplex-
ities. We thus only report the results with classes being evenly
divided to a group of super classes.

4. PARALLEL RNN TRAINING

One intuitive way to speed up RNN training is via data par-
allelization, which is inspired by the work in [18] to speed
up deep neural network (DNN) training. Algorithms 2 and 3
show the proposed master and slave RNN training algorithms
respectively, which may run on different machines.

Master algorithm is responsible for slave jobs dispatch-
ing and master model update. In particular, an initial RNN
model is first generated on line 5 in Algorithm 2. It could be
initialized by assigning to random weights as in Algorithm 1.
However, we find that warm start strategy can result in faster
convergence in training. That is, we train a RNN model using
entire training data for one epoch and use such trained RNN
model as an initial model. The initial RNN model is evalu-
ated using a validation data set on line 6. We then go to an
infinite loop until the training finds a local optimal model and
break out the loop (line 27). For each iteration within the loop,
we partition the entire training data to batches1, with possible
overlapping between batches. We found that the overlapping
is helpful for training convergence in our experiments. For
example, we can have 50 batches and each batch takes 5% of
entire training data.

Each data batch is dispatched to a slave node (line 13) to
train a new slave RNN model based on previous master RNN

1Partition may differ for different iterations.

328

model (preM) (see Algorithm 3). Once all slave RNN models
are available (line 16), we evaluate each updated slave model
by comparing its log likelihood (log s) on a validation data
set with preM’s log likelihood (log p). If log s is significantly
worse than log p, that is, log s < t × log p, where t = 1.1 is
the tolerance parameter, such a slave model is rejected to com-
pute average model (averagedM) on line 17, in which all RNN
network weights U, V, and W of slave models are averaged
component wise. We found in experiments that the rejection
rate is low. For example, we may have 0 or 1 slave models
rejected out of 50 batches. However, the rejection is essential
to ensure the training convergence; The master model update
(modelUpdate) using a rejected bad model may result in a
new master model with much higher perplexity than the old
master model. We then use the preM and averagedM to gen-
erate a new master model (m). Method evaluateNet is called
on line 22 to evaluate the new master RNN model. If it is
not significantly better than previous one for the first time, we
activate the switch to halve learning rate in next epoch. Oth-
erwise, the algorithm terminates and the latest RNN model is
returned.

Algorithm 2 Master RNN training algorithm
1: epoch = 0
2: preLogp =−∞
3: learnRate = 0.1
4: divide = false
5: RNN preM = initializeModel()
6: preLogp = evaluateNet(preM)
7: while true do
8: if divide == true then
9: learnRate = learnRate/2

10: end if
11: partition training data into batches
12: for each batch bi do
13: call slave(preM, bi, learnRate) to train a slave RNN model
14: end for
15: while true do
16: if all slave training finished then
17: averagedM = averaged slave models
18: m = modelUpdate(preM, averagedM)
19: break
20: end if
21: end while
22: logp = evaluateNet(m)
23: if logp× minImprovement < preLogp then
24: if divide == false then
25: divide = true
26: else
27: break
28: end if
29: end if
30: preM = m
31: preLogp = logp
32: epoch++
33: end while

Algorithm 3 Slave RNN training algorithm
1: Train one epoch on model preM using batch data bi with learning rate learnRate

and return the updated model

Method modelUpdate creates a new master model based
on previous master model preM and averaged slave model av-
eragedM. The model weights update for U, V, W are similar.
We take model weights V between hidden layer and output
layer as example and the updating equation is

V(t) = (1− β)V(t− 1) + α(Va −V(t− 1)), (19)

Where V(t) and V(t− 1) are weight matrices in epoch t and
t − 1 respectively. Va is weight matrix of averaged slave

model, α is master learning rate (0.1 in our experiments in
Section 5), and β is master regularization parameter. We
found that the β in range of [1e-7,1e-5] leads to similar re-
sults. Fig. 3 shows the master model update pictorially.

batch 1

master model at t−1 master model at t

batch n−1

batch 0

Fig. 3. Master RNN model update

Parallel RNN training reduces complexity from Equation
(9) to

O(I ×W ′ × (H ×H +H × (C +
V

C
))) (20)

where W ′ is the batch training data size. The overhead is the
data partition time and master model updating time, which is
negligible compared to the overall training time. If each batch
contains 5% of entire training data and the training epochs are
the same (which is usually the case in experiments in Section
5), the speedup factor is 20. In practice, we may get less
speedup due to the warm start strategy.

5. EXPERIMENTS

We train RNN models using open source RNN package [20]
which includes speedup tricks of square root frequency bin-
ning [10, 17] and Maximum Entropy features [13]. This pack-
age has been reasonably optimized for training speed. We im-
plemented two stage RNN and parallel RNN training on top
of the open package for the experiments as described below.

We use Microsoft internal short message dictation data set
to test two stage class RNN and parallel RNN training. Table
1 shows number of sentences and tokens for training, valida-
tion, and test data sets. Training data consist of a collection of
transcribed utterances for daily short message dictation. Ex-
ample utterances are I am on my way to San Francisco or Can
I come to your house later. Validation and test data are tran-
scribed utterances which are randomly sampled in two differ-
ent months. Validation set is used to early stop RNN training.

Table 1. Stats of training, validation and test data sets.
data sentences tokens
train 7M 56M
valid 6K 48K
test 2K 15K

The baseline language model is a KN4 n-gram model
trained on entire training data set. This baseline language

329

model is used with a Microsoft production quality acoustic
model to produce n-best list in the first pass decoding for
both validation and test utterances. In doing so, we obtain the
baseline perplexities (PPLX) and word error rates (WER).

We conduct the second pass n-best re-scoring using vari-
ous trained RNN models, including original RNN, two-stage
class RNNs, and parallel RNNs. For all RNN models, we
set maximum entropy feature size to be 100M and maximum
entropy based n-gram feature order to be 3. We vary hid-
den layer size to be 25, 50, 100 and 200 to see how they
affect the performance. For each hidden layer size setting,
we have two settings for two stage class RNNs: 40x1200 and
40x1600, with the first number being the number of super
classes and the second being the number of classes. For ex-
ample, 40x1200 represents the number of super classes being
40 and the number of classes being 1200. We also have two
settings for parallel RNN training: 25x0.1 and 50x0.05, with
the first number being the number of batches, and the second
being the batch size (percentage of entire training data size).

Fig. 4 shows the perplexities of validation data with re-
spect to elapsed training time for various RNNs with hidden
layer size of 100. Each data point in the plot represents the
perplexity evaluated on completion of one epoch. All five
RNNs training asymptotically converges to similar perplexity
on validation data set, with original RNN resulting in slightly
lower perplexity. Two stage class RNNs and original RNN
have a similar convergence pattern in the sense that they all
have a sudden drop of perplexities during epoch 6. This is due
to the fact that learning rate is halved from 0.1 to 0.05. How-
ever, two stage RNNs take less time (40 hours) than original
RNN (75 hours) to converge. Parallel RNNs have identical
perplexity as RNN after first epoch due to the warm start strat-
egy. However, they have a different converge pattern to RNN;
They results in quick convergence during the second epoch.
The learning rate is halved from 0.1 to 0.05 during the 9-th
and 10-th epochs for parallel RNN (25x0.1) and (50x0.05)
respectively. More importantly, RNN (25x0.1) and (50x0.05)
only take 13 and 9 hours respectively to converge.

l

l

l
l l

l

l

l
l

l l l l

0 10 20 30 40 50 60 70 80

58
60
62
64
66
68
70
72
74
76
78
80
82
84
86

elapsed training time (hours)

pe
rp

le
xi

ty

l RNN
Two stage RNN (40x1200)
Two stage RNN (40x1600)
Parallel RNN (25x0.1)
Parallel RNN (50x0.05)

Fig. 4. Perplexity of validation data set in function of elapsed
training time for various RNNs training with 100 hidden layer
size

In n-best list re-scoring, the RNN model re-estimates a
log-probability score for each n-best hypothesis s:

logL(s) = n× p+
n∑

i=1

ai + w

n∑
i=1

logP (wi|hi), (21)

where n is the number of words, p is the word insertion

penalty, ai is the acoustic model score for word wi, hi is the
history w1 . . . wi−1 and w is he language model scale. P is
the combined probability estimate of KN 4-gram and RNN
models, which is obtained by linear interpolation:

P (wi|hi) = λPrnn(wi|hi) + (1− λ)Pkn(wi|hi), (22)

where λ is the weight for RNN model (we fix λ = 0.7 in our
experiments), Prnn is the RNN model probability and Pkn is
KN4 n-gram language model probability.

Table 2 shows the training speed (tokens per second),
training time of various RNNs, perplexities and word error
rates of interpolated modes (KN4 + RNN) for validation and
test data sets respectively. It is a general trend that larger hid-
den layer size RNNs result in lower perplexities and WERs
(see Fig. 5). For example, the 50 hidden layer size RNN
results in perplexity of 75.32 and WER of 24.37 for test data
set, while the 100 hidden layer size RNN results in 73.21
and 23.76 respectively. On the other hand as the hidden layer
size increases, the training of RNN requires longer training
time due to the quadratic complexity term of O(H2). For
example, the training of hidden layer size 100 RNN takes 3.1
days, while the training of hidden size 200 RNN takes 9.4
days.

The lowest PPLXs or WERs of different RNNs for various
hidden layer sizes are highlighted in bold in Table 2. As can
been seen, the original RNNs always result in lowest PPLXs
for both validation and test data sets, with two stage class
RNNs and parallel RNNs leading to slightly higher PPLXs.
In terms of WER metric, it is interesting to see that two stage
RNNs can lead to lower WERs than RNNs on test data set for
hidden layer sizes of 50, 100, and 200. For example, two stage
class RNN (40x1600) results in a WER of 23.64 while RNN
results in a WER of 23.70 for test data with hidden layer size
of 200. Parallel RNNs can lead to lower WERs than RNNs
on validation data set for hidden layer sizes of 25 and 50.
It is surprising that two stage RNN (40x1200) results in the
lowest WER (23.59) on test data set with hidden layer size
100, possibly due to noise. RNN, two stage RNN (40x1600)
and parallel RNN (50x0.05) lead to lower WERs from hidden
layer size 100 to 200.

In terms of training speed, both two stage class RNN and
parallel RNN can speed up training compared to RNN train-
ing. For example with hidden layer size 100, RNN has train-
ing speed of 2.7K tokens per second, while two stage class
RNN (40x1600) has training speed of 5.1K tokens per sec-
ond. It is worth noting the speedup also applies to test stage.
Parallel RNN training can result in more significant speedup
than two stage class RNN training.2 For example with hid-
den layer size 200, the parallel RNN (50x0.05) can obtain
20 times speedup, due to the fact that each data batch is 20
times smaller than the entire training data. In practice, we
may get less speedup due to the warm start strategy. As-
suming a RNN model training needs 13 epochs3 and the total
training time is denoted as T . RNN (50x0.05) takes training
time of 0.13T = T/13 + T/20 only, with the first term ac-
counting for the warm start (one epoch trained on the entire
training data) and the second term accounting for paralleliza-
tion speedup. Similarly, RNN (25x0.1) takes training time of
0.18T = T/13 + T/10 only. Finally, we note that parallel
RNN training can result in even greater speedup if batch size
is smaller. In our experiments, we obtained similar good per-
formance for 25 and 50 batches. For a given training data, it

2Although such speedup does not apply to test stage.
3It is usually the case in our experiments.

330

Table 2. Training speed, training time, perplexity and word error rate of single RNN, parallel RNN and two stage class RNN
training

hidden model setting speed (w/s) train time valid test
size (days) PPLX WER PPLX WER
N/A baseline N/A N/A N/A 79.99 26.02 83.37 24.51

RNN N/A 12K 0.7 75.63 25.87 78.64 24.35
two stage class RNN 40x1200 29K 0.3 76.54 26.02 79.49 24.38

25 two stage class RNN 40x1600 28K 0.3 75.76 25.97 78.94 24.42
parallel RNN 25x0.1 12K 0.1 76.24 25.83 79.25 24.23
parallel RNN 50x0.05 12K 0.1 76.52 25.84 79.51 24.40
RNN N/A 6.1K 1.4 72.39 25.50 75.32 24.37
two stage class RNN 40x1200 15K 0.6 73.08 25.69 75.86 23.95

50 two stage class RNN 40x1600 12K 0.7 72.83 25.79 75.62 24.05
parallel RNN 25x0.1 6.1K 0.2 73.06 25.49 75.99 24.30
parallel RNN 50x0.05 6.1K 0.2 72.80 25.58 75.73 24.25
RNN N/A 2.7K 3.1 70.47 25.34 73.21 23.76
two stage class RNN 40x1200 5.0K 1.7 71.31 25.50 73.98 23.59

100 two stage class RNN 40x1600 5.1K 1.7 70.82 25.65 73.55 23.81
parallel RNN 25x0.1 2.7K 0.6 71.16 25.45 73.85 23.78
parallel RNN 50x0.05 2.7K 0.4 71.28 25.38 73.95 23.83
RNN N/A 0.9K 9.4 68.74 25.16 71.26 23.70
two stage class RNN 40x1200 1.5K 5.6 69.58 25.32 72.37 23.78

200 two stage class RNN 40x1600 1.6K 5.3 69.24 25.42 71.89 23.64
parallel RNN 25x0.1 0.9K 1.7 70.50 25.29 73.18 23.88
parallel RNN 50x0.05 0.9K 1.2 69.95 25.25 72.68 23.76

would be interesting to find optimal number of batches which
balance model performance and training time.

l l

l l

0 50 100 150 200

22

23

24

25

26

27

28

hidden layer size

w
or

d
er

ro
r r

at
e

l RNN
Two stage RNN (40x1200)
Two stage RNN (40x1600)
Parallel RNN (25x0.1)
Parallel RNN (50x0.05)

Fig. 5. Word error rate of test data set in function of hidden
layer size for various RNN training

6. CONCLUSION

In this paper, we proposed two techniques to accelerate RNN
training: 1) two stage class RNN training and 2) parallel RNN
training. We demonstrated these two techniques on Microsoft
internal short message dictation (SMD) data set. Two stage
class RNNs and parallel RNNs not only result in equal or
lower WERs compared to original RNNs but also accelerate
training by 2 and 10 times respectively. Finally, it is worth
noting that two stage class RNNs can also be used to acceler-
ate test stage, which is essential to reduce the latency in real
time ASR applications.

7. REFERENCES

[1] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” in ACL, 1996, pp. 310–318.

[2] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, T. Hoffman, T. Poggio,
and J. Shawe-taylor, “A neural probabilistic language model,” Journal
of Machine Learning Research, , no. 3, 2003.

[3] H. K. J. Kuo, E. Arisoy, A. Emami, and P. Vozila, “Large scale hierar-
chical neural network language models,” in INTERSPEECH, 2012.

[4] R. Rosenfeld, Adaptive Statistical Language Modeling: A Maximum
Entropy Approach, Ph.D. thesis, Carnegie Mellon University, 1994.

[5] S. F. Chen, “Performance prediction for exponential lanuage models,”
in HLT-NAACL, 2009, pp. 450–458.

[6] T. Alumae and M. Kurimo, “Efficient estimation of maximum entropy
language models with n-gram features: an srilm extension,” in INTER-
SPEECH, 2010.

[7] P. Xu, S. Khudanpur, and A. Gunawardana, “Randomized maximum
entropy language models,” in IEEE ASRU, 2011.

[8] G. Zweig and S. Chang, “Personalizing model m for voice-search,” in
INTERSPEECH, 2011.

[9] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in INTERSPEECH,
2010.

[10] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and S. Khudanpur,
“Extensions of recurrent neural network language model,” in ICASSP,
2011.

[11] S. Kombrink, T. Mikolov, M. Karafiat, and L. Burget, “Recurrent neural
network based language modeling in meeting recognition,” in INTER-
SPEECH, 2011.

[12] Y. Shi, P. Wiggers, and C. M. Jonker, “Towards recurrent neural net-
works language models with linguistic and contextual features,” in IN-
TERSPEECH, 2012.

[13] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. H. Cernocky,
“Strategies for training large scale neural network languge models,” in
ASRU, 2011.

[14] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network
language model,” in AISTATS, 2005.

[15] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed lan-
guaged model,” in NIPS, 2009.

[16] H. S. Le and I. Oparin and A. Allauzen and J. L. Gauvain and F. Yvon,
“Structured output layer neural network language model,” ICCASP,
2011.

[17] G. Zweig and K. Makarychev, “Speed regularization and optimality in
word classing,” in ICASSP, 2013.

[18] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in NIPS, 2012.

[19] J. Goodman, “Classes for fast maximum entropy training,” in ICASSP,
2001.

[20] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and J. Cernocky,
“Rnnlm - recurrent neural network language modeling toolkit,” in
ASRU Demo Session, 2011.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams., “Learning internal
representations by back-propagating errors,” in Nature, 1986, pp. 533–
536.

331

