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Abstract 
Data replication is routinely used for highly available and scalable services.  However, no standard replication 

protocols exist since different schemes involve complex trade-offs between consistency, performance, and 

availability.  Some cloud storage services replicate data while providing strong consistency to their clients 

whereas others have chosen eventual consistency in order to obtain better performance and availability.  A 

broader class of consistency guarantees can, and perhaps should, be offered to clients that read shared data.  

This paper explains a range of consistency guarantees along with their motivation by way of example: 

maintaining the score of a baseball game.  During a baseball game, different participants (the scorekeeper, 

umpire, sportswriter, and so on) benefit from six different consistency guarantees when reading the current 

score.  Eventual consistency is insufficient for most of the participants, but strong consistency is not needed 

either.  This example sheds light on the consistency models that are currently offered by cloud providers, what 

consistency may be offered in the future, and why vendors are offering consistency choices. 

1. Introduction 
Replicated storage systems for the cloud deliver different consistency guarantees to applications that are 

reading data.  Invariably, cloud storage providers redundantly store data on multiple machines so that data 

remains available in the face of unavoidable failures.  Replicating data across datacenters is not uncommon, 

allowing the data to survive complete site outages.  However, the replicas are not always kept perfectly 

synchronized.  Thus, clients that read the same data object from different servers can potentially receive 

different versions. 

Some systems, like Microsoft’s Windows Azure, provide only strongly consistent storage services to their 

applications [5].  This ensures that clients of Windows Azure Storage always see the latest value that was written 

for a data object.  While strong consistency is desirable and reasonable to provide within a datacenter, it raises 

concerns as systems start to offer geo-replicated services that span multiple datacenters on multiple continents.   

Many cloud storage systems, such as the Amazon Simple Storage Service (S3), were designed with weak 

consistency based on the belief that strong consistency is too expensive in large systems.  The designers chose 

to relax consistency in order to obtain better performance and availability.  In such systems, clients may perform 

read operations that return stale data.  The data returned by a read operation is the value of the object at some 

past point in time but not necessarily the latest value.  This occurs, for instance, when the read operation is 
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directed to a replica that has not yet received all of the writes that were accepted by some other replica.  Such 

systems are said to be eventually consistent [12]. 

Recent systems, recognizing the need to support different classes of applications, have been designed with a 

choice of operations for accessing cloud storage.  Amazon’s DynamoDB, for example, provides both eventually 

consistent reads and strongly consistent reads, with the latter experiencing a higher read latency and a two-fold 

reduction in read throughput [1].  Amazon SimpleDB offers the same choices for clients that read data.  

Similarly, the Google App Engine Datastore added eventually consistent reads to complement its default strong 

consistency [8].  PNUTS, which underlies many of Yahoo’s web services, provides three types of read operations: 

read-any, read-critical, and read-latest [7].  Modern quorum-based storage systems allow clients to choose 

between strong and eventual consistency by selecting different read and write quorums [4]. 

In the research community over the past thirty years, a number of consistency models have been proposed for 

distributed and replicated systems [10].   These offer consistency guarantees that lie somewhere in between 

strong consistency and eventual consistency.  For example, a system might guarantee that a client sees data that 

is no more than 5 minutes out-of-date or that a client always observes the results of its own writes.  Actually, 

some consistency models are even weaker than eventual consistency, but those I ignore as being less-than-

useful.   

The reason for exploring different consistency models is that there are fundamental tradeoffs between 

consistency, performance, and availability [9, 10, 12, 13].  Offering stronger consistency generally results in 

lower performance and reduced availability for reads or writes or both.  The CAP theorem has proven that, for 

systems that must tolerate network partitions, designers must choose between consistency and availability [5].  

In practice, latency is an equally important consideration [1].  Each proposed consistency model occupies some 

point in the complex space of tradeoffs.   

Are different consistencies useful in practice?  Can application developers cope with eventual consistency?  

Should cloud storage systems offer an even greater choice of consistency than the consistent and eventually 

consistent reads offered by some of today’s services?   

This paper attempts to answer these questions, at least partially, by examining an example (but clearly fictitious) 

application: the game of baseball.  In particular, I explore the needs of different people who access the score of 

a baseball game, including the scorekeeper, umpire, radio reporter, sportswriter, and statistician.  Supposing 

that the score is stored in a cloud-based, replicated storage service, I show that eventual consistency is 

insufficient for most of the participants, but strong consistency is not needed either.  Most participants benefit 

from some intermediate consistency guarantee.  

The outline of this paper is as follows.  The next section defines six possible consistency guarantees for read 

operations.  Section 3 presents an algorithm that emulates a baseball game, indicating where data is written and 

read, and enumerates the results that might be returned when reading the score with different guarantees.  

Section 4 then examines the roles of various people who want to access the baseball score and the read 

consistency that each desires.  Finally, I draw conclusions from this simple example. 
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2. Read Consistency Guarantees 
While replicated systems have provided many types of data consistency over the past 30 years, and a wide 

variety of consistency models have been explored in the computer science research community, many of these 

are tied to specific implementations.  Frequently, one needs to understand how a system operates in order to 

understand what consistency it provides in what situations.  This places an unfortunate burden on those who 

develop applications on top of such storage systems. 

The six consistency guarantees that I advocate in this section can be described in a simple, implementation-

independent way.   This not only benefits application developers but also can permit flexibility in the design, 

operation, and evolution of the underlying storage system.     

These consistency guarantees are based on a simple model in which clients perform read and write operations 

to a data store.  Multiple clients may concurrently access shared information, such as social network graphs, 

news feeds, photos, shopping carts, or financial records.  The data is replicated among a set of servers, but the 

details of the replication protocol are hidden from clients.  A write is any operation that updates one or more 

data objects.  Writes are eventually received at all servers and performed in the same order.  This order is 

consistent with order in which write operations are submitted by clients.  In practice, the order could be 

enforced, even for concurrent writers, by performing all writes at a master server or by having servers run a 

consensus protocol to reach agreement on the global order.  Reads return the values of one or more data 

objects that were previously written, though not necessarily the latest values.  Each read operation can request 

a consistency guarantee, which dictates the set of allowable return values.  Each guarantee is defined by the set 

of previous writes whose results are visible to a read operation.  Table 1 summarizes these six consistency 

guarantees.   

 

Strong Consistency See all previous writes. 

Eventual Consistency See subset of previous writes. 

Consistent Prefix See initial sequence of writes. 

Bounded Staleness See all “old” writes. 

Monotonic Reads See increasing subset of writes. 

Read My Writes See all writes performed by reader. 

Table 1. Six Consistency Guarantees 

Strong consistency is particularly easy to understand.  It guarantees that a read operation returns the value that 

was last written for a given object.  If write operations can modify or extend portions of a data object, such as 

appending data to a log, then the read returns the result of applying all writes to that object.  In other words, a 

read observes the effects of all previously completed writes. 

Eventual consistency is the weakest of the guarantees, meaning that it allows the greatest set of possible return 

values.  For whole-object writes, an eventually consistent read can return any value for a data object that was 
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written in the past.  More generally, such a read can return results from a replica that has received an arbitrary 

subset of the writes to the data object being read.  The term “eventual” consistency derives from the fact that 

each replica eventually receives each write operation, and if clients stopped performing writes then read 

operations would eventually return an object’s latest value. 

By requesting a consistent prefix, a reader is guaranteed to observe an ordered sequence of writes starting with 

the first write to a data store.  For example, the read may be answered by a replica that receives writes in order 

from a master replica but has not yet received some recent writes.  In other words, the reader sees a version of 

the data store that existed at the master at some time in the past.  This is similar to the “snapshot isolation” 

consistency offered by many database management systems.  For reads to a single data object in a system 

where write operations completely overwrite previous values of an object, even eventual consistency reads 

observe a consistent prefix.  The main benefit of requesting a consistent prefix arises when reading multiple 

data objects or when write operations incrementally update an object.   

Bounded staleness ensures that read results are not too out-of-date.  Typically, staleness is defined by a time 

period T, say 5 minutes.  The storage system guarantees that a read operation will return any values written 

more than T minutes ago or more recently written values.  Alternative, some systems have defined staleness in 

terms of the number of missing writes or even the amount of inaccuracy in a data value.  I find that time-

bounded staleness is the most natural concept for application developers. 

Monotonic Reads is a property that applies to a sequence of read operations that are performed by a given 

storage system client.  As such, it is called a “session guarantee” [11].  With monotonic reads, a client can read 

arbitrarily stale data, as with eventual consistency, but is guaranteed to observe a data store that is increasingly 

up-to-date over time.  In particular, if the client issues a read operation and then later issues another read to the 

same object(s), the second read will return the same value(s) or a more recently written value. 

Read My Writes is a property that also applies to a sequence of operations performed by a single client.  It 

guarantees that the effects of all writes that were performed by the client are visible to the client’s subsequent 

reads.  If a client writes a new value for a data object and then reads this object, the read will return the value 

that was last written by the client (or some other value that was later written by a different client).  For clients 

that have issued no writes, the guarantee is the same as eventual consistency.  (Note: In previous papers this 

has been called “Read Your Writes” [11], but I have chosen to rename it to more accurately describe the 

guarantee from the client’s viewpoint.) 

These last four read guarantees are all a form of eventual consistency but stronger than the eventual 

consistency model that is typically provided in cloud storage systems.  The “strength” of a consistency guarantee 

does not depend on when and how writes propagate between servers, but rather is defined by the size of the 

set of allowable results for a read operation.  Smaller sets of possible read results indicate stronger consistency.  

When requesting strong consistency, there is a single value that must be returned, the latest value that was 

written.  For an object that has been updated many times, an eventually consistent read can return one of many 

suitable values.  Of the four intermediate guarantees, none is stronger than any of the others, meaning that 

each might have a different set of possible responses to a read operation.  In some cases, as will be shown later, 
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applications may want to request multiple of these guarantees.  For example, a client could request both 

monotonic reads and read my writes so that it observes a data store that is consistent with its own actions [11]. 

In this paper, the data store used for baseball scores is a traditional key-value store, popularized by the “noSQL” 

movement.  Writes, also called puts, modify the value associated with a given key.  Reads, also called gets, 

return the value for a key.  However, these guarantees can apply to other types of replicated data stores with 

other types of read and write operations, such as file systems and relational databases.  This is why the 

guarantees are defined in terms of writes rather than data values.  In a system that offers increment, 

decrement, or append operations, all writes performed on an object contribute to the object’s observed value, 

not just the latest write.  For example, consider a bank account to which deposits and withdrawals are 

performed.  Moreover, the guarantees could apply to atomic transactions that access multiple objects, though 

the examples in this paper do not require atomic updates. 

Table 2 shows the performance and availability typically associated with each consistency guarantee.  It rates 

the three properties on a scale from poor to excellent.  Consistency ratings are based on the strength of the 

consistency guarantee as previously defined.  Performance refers to the time it takes to complete a read 

operation, that is, the read latency.  Availability is the likelihood of a read operation successfully returning 

suitably consistent data in the presence of server failures.   

Strong consistency is desirable from a consistency viewpoint but offers the worst performance and availability 

since it generally requires reading from a designated primary site or from a majority of replicas.  Eventual 

consistency, on the other hand, allows clients to read from any replica, but offers the weakest consistency.  The 

inverse correlation between performance and consistency is not surprising since weaker forms of consistency 

generally permit read requests to be sent to a wider set of servers.  With more choices of servers that are 

sufficiently up-to-date, clients are more able to choose a nearby server.  The latency difference between 

accessing a local rather than a remote server can be a factor of 100.  Similarly, a larger choice of servers means 

that a client is more likely to find one (or a quorum) that is reachable, resulting in higher availability.   

Each guarantee offers a unique combination of consistency, performance, and availability.  Labeling each cell in 

Table 2 is not an exact science (and I could devote a whole paper to this topic).  One might argue that some 

entry listed as “okay” should really be “good”, or vice versa.  Providing a model to predict the delivered 

consistency, performance, and availability for a given read guarantee is difficult since these depend on many 

factors, including implementation issues, deployment configurations, technology characteristics, and application 

workloads.  For some clients, eventually consistent reads may often return strongly consistent results, and may 

not be any more efficient than strongly consistent reads [3, 13].  But, the general comparisons between the 

various consistency guarantees are qualitatively accurate.  The bottom line is that one faces substantial trade-

offs when choosing a particular replication scheme with a particular consistency model.   

Without offering any evidence, I assert that all of these guarantees can be provided as choices within the same 

storage system.  In fact, my colleagues and I at the MSR Silicon Valley Lab have built a prototype of such a 

system (but that’s the topic for another paper).  In our system, clients requesting different consistency 

guarantees experience different performance and availability for the read operations that they perform, even 
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when accessing shared data.  For this paper, let’s assume the existence of a storage system that offers its clients 

a choice of these six read guarantees.  I proceed to show how they would be used … in baseball. 
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Guarantee Consistency Performance Availability 

Strong Consistency excellent poor poor 

Eventual Consistency poor excellent excellent 

Consistent Prefix okay good excellent 

Bounded Staleness good okay poor 

Monotonic Reads okay good good 

Read My Writes okay okay okay 

Table 2. Consistency, Performance, and Availability Trade-offs 

3. Baseball as a Sample Application 
For those readers who are not familiar with baseball, but who love to read code, Figure 1 illustrates the basics of 

a 9-inning baseball game.  The game starts with the score of 0-0.  The visitors bat first and remain at bat until 

they make three outs.  Then the home team bats until it makes three outs.  This continues for nine innings.  

Granted, this leaves out many of the subtleties that are dear to baseball aficionados, like myself.  But it does 

explain all that is needed for this paper.   

Assume that the score of the game is recorded in a key-value store in two objects, one for the number of runs 

scored by the “visitors” and one for the “home” team’s runs.  When a team scores a run, a read operation is 

performed on its current score, the returned value is incremented by one, and the new value is written back to 

the key-value store.   

 
      
   Write (“visitors”, 0); 

   Write (“home”, 0); 

       for inning = 1 .. 9   
      outs = 0; 

      while outs < 3  

        visiting player bats; 

        for each run scored 

           score = Read (“visitors”); 

           Write (“visitors”, score + 1); 

      outs = 0; 

      while outs < 3  

         home player bats; 

         for each run scored  

            score = Read (“home”); 

            Write (“home”, score + 1); 

   end game; 

 

Figure 1.  A Simplified Baseball Game 
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As a concrete example, consider the write log for a sample game as shown in Figure 2.  In this game, the home 

team scored first, then the visitors tied the game, then the home team scored twice more, and so on.  

Write (“home”, 1)   
Write (“visitors”, 1) 
Write (“home”, 2) 
Write (“home”, 3) 
Write (“visitors”, 2) 
Write (“home”, 4) 
Write (“home”, 5) 

Figure 2.  Sequence of Writes for a Sample Game 

This sequence of writes could be from a baseball game with the inning-by-inning line score that is shown in 

Figure 3.  This hypothetical game is currently in the middle of the seventh inning (the proverbial seventh-inning 

stretch), and the home team is winning 2-5. 

 

 1 2 3 4 5 6 7 8 9 RUNS 

Visitors 0 0 1 0 1 0 0   2 
Home 1 0 1 1 0 2    5 

Figure 3.  The Line Score for this Sample Game 

Suppose the key-value store that holds the visitors and home team’s run totals resides in the cloud and is 

replicated among a number of servers.  Different read guarantees may result in clients reading different scores 

for this game that is in progress.  Table 3 lists the complete set of scores that could be returned by reading the 

visitors and home scores with each of the six consistency guarantees.  Note that the visitors’ score is listed first, 

and different possible return values are separated by comas. 

 

Strong Consistency 2-5 

Eventual Consistency 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 
2-2, 2-3, 2-4, 2-5 

Consistent Prefix 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5 

Bounded Staleness scores that are at most one inning out-of-date:  2-3, 2-4, 2-5 

Monotonic Reads after reading 1-3:  1-3, 1-4, 1-5, 2-3, 2-4, 2-5 

Read My Writes for the writer:  2-5 
for anyone other than the writer:  0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 
1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5 

Table 3. Possible Scores Read for Each Consistency Guarantee 
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A strong consistency read can only return one result, the current score, whereas an eventual consistency read 

can return one of 18 possible scores.  Observe that many of the scores that can be returned by a pair of 

eventually consistent reads are ones that were never the actual score.  For example, reading the visitors’ score 

may return two and reading the home team’s score may return zero, even though the home team never trailed.  

The consistent prefix property limits the result to scores that actually existed at some time.  The results that can 

be returned by a bounded staleness read clearly depend on the desired bound.  Table 3 shows the possible 

scores for a bound of one inning, that is, scores that are at most one inning out-of-date; for a bound of 7 innings 

or more, the result set is the same as for eventual consistency in this example.  In practice, a system is unlikely to 

express staleness bounds in units of “innings”.  So, for this example, assume that the reader requested a bound 

of 15 minutes and that the previous inning lasted exactly that long.  For monotonic reads, the possible return 

values depend on what has been read in the past.  For read my writes they depend on who is writing to the key-

value store; in this example, assume that all of the writes were performed by a single client. 

4. Read Requirements for Participants 
Now, let’s examine the consistency needs of a variety of people involved in a baseball game who want to read 

the score.  Certainly, each of these folks could perform a strongly consistent read to retrieve the visiting and 

home team’s score.  In this case, as pointed out in the previous section, only one possible value would be 

returned: the current score.  However, as shown in Table 2, readers requesting strong consistency will likely 

receive longer response times and may even find that the data they are requesting is not currently available due 

to temporary server failures or network outages.  The point of this section is to evaluate, for each participant, 

the minimum consistency that is required.  By requesting read guarantees that are weaker than strong 

consistency, these clients are likely to experience performance benefits and higher availability. 

4.1 Official scorekeeper 
The official scorekeeper is responsible for maintaining the score of the game by writing it to the persistent key-

value store.  Figure 4 illustrates the steps taken by the scorekeeper each time the visiting team scores a run; his 

action when the home team scores is similar.  Note that this code is a snippet of the overall baseball game code 

that was presented in Figure 1. 

 
      
      score = Read (“visitors”); 

      Write (“visitors”, score + 1); 

 

Figure 4.  Role of the Scorekeeper 

What consistency does the scorekeeper require for his read operations?  Undoubtedly, the scorekeeper needs 

to read the most up-to-date previous score before adding one to produce the new score.  Otherwise, the 

scorekeeper runs the risk of writing an incorrect score and undermining the game, not to mention inciting a mob 

of angry baseball fans.  Suppose the home team had previous scored five runs and just scored the sixth.  Doing 

an eventual consistency read, as shown in Table 3, could return a score of anything from zero to five.  Perhaps, 
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the scorekeeper would get lucky and receive the correct score in response to his read, but he should not count 

on it. 

Interestingly, while the scorekeeper requires strongly consistent data, he does not need to perform strong 

consistency reads.  If there were multiple people playing the role of scorekeeper and taking turns updating the 

score, then they would need to perform reads that request strong consistency.  However, each baseball game 

generally has one official scorekeeper.  Since the scorekeeper is the only person who updates the score, he can 

request the read my writes guarantee and receive the same effect as a strong read.  In the unusual event where 

the person serving as the scorekeeper changes in the middle of the game, the new scorekeeper could perform a 

strong read when he first updates the score but can use read my writes for subsequent reads.   Essentially, the 

scorekeeper uses application-specific knowledge to obtain the benefits of a weaker consistency read without 

actually giving up any consistency.  

This might seem like a subtle distinction, but, in fact, could be quite significant in practice.  In processing a strong 

consistency read the storage system must pessimistically assume that some client, anywhere in the world, may 

have just updated the data.  The system therefore must access a majority of servers (or a fixed set of servers) in 

order to ensure that the most recently written data is accessed by the submitted read operation.  In providing 

the read my writes guarantee, on the other hand, the system simply needs to record the set of writes that were 

previously performed by the client and find some server that has seen all of these writes [11].  In a baseball 

game, the previous run that was scored, and hence the previous write that was performed by the scorekeeper, 

may have happened many minutes or even hours ago.  In this case, almost any server will have received the 

previous write and be able to answer the next read that requests the read my writes guarantee. 

4.2 Umpire 
The umpire is the person who officiates a baseball game from behind home plate.  The umpire, for the most 

part, does not actually care about the current score of the game.  The one exception comes after the top half of 

the 9th inning, that is, after the visiting team has batted and the home team is about to bat.  Since this is the last 

inning (and a team cannot score negative runs), the home team has already won if they are ahead in the score; 

thus, the home team can and does skip its last at bat in some games.  The code for the umpire who needs to 

make this determination is shown in Figure 5. 

 
      
    if first half of 9

th

 inning complete then 

         vScore = Read (“visitors”); 

         hScore = Read (“home”); 

         if vScore < hScore  

             end game; 

 

Figure 5.  Role of the Umpire 

When accessing the score during the 9th inning, the umpire does need to read the current score.  Otherwise, he 

might end the game early, if he incorrectly believes the home team to be ahead, or make the home team bat 

unnecessarily.  Unlike the scorekeeper, the umpire never writes the score; he simply reads the values that were 
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written by the official scorekeeper.  Thus, in order to receive up-to-date information, the umpire must perform 

strong consistency reads. 
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4.3 Radio reporter 
In most areas of the United States, radio stations periodically announce the scores of games that are in progress 

or have completed.  In the San Francisco area, for example, KCBS reports sports news every 30 minutes.  The 

radio reporter performs the steps outlined in Figure 6.  A similar, perhaps more modern, example is the sports 

scores that scroll across the bottom of the TV screen while viewers are watching ESPN. 

 
      
     do { 

          vScore = Read (“visitors”); 

          hScore = Read (“home”); 

          report vScore and hScore; 

          sleep (30 minutes);     

     } 

 

Figure 6.  Role of the Radio Sports Reporter 

If the radio reporter broadcasts scores that are not completely up-to-date, that’s okay.  People are accustomed 

to receiving old news.  Thus, some form of eventual consistency is fine for the reads that he performs.  But what 

guarantees, if any, are desirable?   

As shown in Table 3, the read with the weakest guarantee, an eventual consistency read, may return scores that 

never existed.  For the sample line score given in Figure 3, such a read might return a score with the visitors 

leading 1-0, even though the visiting team has never actually been in the lead.  The radio reporter does not want 

to report such fictitious scores.  Thus, the reporter wants both his reads to be performed on a snapshot that 

hold a consistent prefix of the writes that were performed by the scorekeeper.  This allows the reporter to read 

the score that existed at some time, without necessarily reading the current score. 

But reading a consistent prefix is not sufficient.  For the line score in Figure 3, the reporter could read a score of 

2-5, the current score, and then, 30 minutes later, read a score of 1-3.  This might happen, for instance, if the 

reporter happens to read from a primary server and later reads from another server, perhaps in a remote 

datacenter, that has been disconnected from the primary and has yet to receive the latest writes.  Since 

everyone knows that baseball scores are monotonically increasing, reporting scores of 2-5 and 1-3 in subsequent 

news reports would make the reporter look foolish.  This can be avoided if the reporter requests the monotonic 

reads guarantee in addition to requesting a consistent prefix.  Observe that neither guarantee is sufficient by 

itself. 

Alternatively, the reporter could obtain the same effect as a monotonic read by requesting bounded staleness 

with a bound of less than 30 minutes.  This would ensure that the reporter observes scores that are at most 30 

minutes out-of-date.  Since the reporter only reads data every 30 minutes, he must receive scores that are 

increasingly up-to-date.  Of course, the reporter could ask for a tighter bound, say 5 minutes, to get scores that 

are reasonably timely.   
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4.4 Sportswriter 
Another interesting person is the sportswriter who watches the game and later writes an article that appears in 

the morning paper or that is posted on some web site.  Different sportswriters may behave differently, but my 

observations (from having been a sportswriter) is that they often act as in Figure 7. 

 
      
     While not end of game { 

         drink beer; 

         smoke cigar; 

     }  

     go out to dinner; 

     vScore = Read (“visitors”); 

     hScore = Read (“home”); 

     write article; 

 

Figure 7.  Role of the Sportswriter 

The sportswriter may be in no hurry to write his article.  In this example, he goes out to a leisurely dinner before 

sitting down to summarize the game.  He certainly wants to make sure that he reports the correct final score for 

the game.  So, he wants the effect of a strong consistency read.  However, he does not need to pay the cost.  If 

the sportswriter knows that he spent an hour eating dinner after the game ended, then he also knows that it has 

been at least an hour since the scorekeeper last updated the score.  Thus, a bounded staleness read with a 

bound of one hour is sufficient to ensure that the sportswriter reads the final score.  In practice, any server 

should be able to answer such a read.  In fact, an eventual consistency read is likely to return the correct score 

after an hour, but requesting bounded staleness is the only way for the sportswriter to be 100% certain that he 

is obtaining the final score. 

4.5 Statistician 
The team statistician is responsible for keeping track of the season-long statistics for the team and for individual 

players.  For example, the statistician might tally the total number of runs scored by her team this season.  

Suppose that these statistics are also saved in the persistent key-value store.  As shown in Figure 8, the home 

team’s statistician, sometime after each game has ended, adds the runs scored to the previous season total and 

writes this new value back into the data store. 

 
      
     Wait for end of game; 

     score = Read (“home”); 

     stat = Read (“season-runs”); 

     Write (“season-runs”, stat + score); 

 

Figure 8.  Role of the Statistician 
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When reading the team’s score from today, the statistician wants to be sure to obtain the final score.  Thus, she 

needs to perform a strong consistency read.  If the statistician waits for some time after the game, then a 

bounded staleness read may achieve the same effect (as discussed in Section 4.4 for the sportswriter). 

When reading the current statistics for the season, i.e. for the second read operation in Figure 8, the statistician 

also wants strong consistency.  If an old statistic is returned, then the updated value written back will 

undercount the team’s total runs.  Since the statistician is the only person who writes statistics into the data 

store, she can use the read my writes guarantee to get the latest value (as discussed in Section 4.1 for the 

scorekeeper). 

4.6 Stat watcher 
Others who periodically check on the team’s season statistics are usually content with eventual consistency.  

The statistical data is only updated once per day, and numbers that are slightly out-of-date are okay.  For 

example, a fan inquiring about the total number of runs that have been scored by his team this season, as 

shown in Figure 9, can perform an eventual consistency read to get a reasonable answer.   

 
      
     do { 

         stat = Read (“season-runs”); 

         discuss stats with friends; 

         sleep (1 day);     

     } 

 

Figure 9.  Role of the Stat Watcher 

5. Conclusions 
Clearly, storing baseball scores is not the killer application for cloud storage systems.  And we should be cautious 

about drawing conclusions from one simple example.  But perhaps some lessons can be learned. 

Table 4 summarizes the consistency guarantees desired by the variety of baseball participants that were 

discussed in the previous section.  Recall that the listed consistencies are not the only acceptable ones.  In 

particular, each participant would be okay with strong consistency, but, by relaxing the consistency requested 

for his reads, he will likely observe better performance and availability.  Additionally, the storage system may be 

able to better balance the read workload across servers since it has more flexibility in selecting servers to 

answer weak consistency read requests.   
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Official scorekeeper Read My Writes 

Umpire Strong Consistency 

Radio reporter Consistent Prefix & Monotonic Reads 

Sportswriter Bounded Staleness 

Statistician Strong Consistency, Read My Writes 

Stat watcher Eventual Consistency 

Table 4. Read Guarantees for Baseball Participants 

These participants can be thought of as different applications that are accessing shared data: the baseball score.  

In some cases, such as for the scorekeeper and sportswriter, the reader, based on application-specific 

knowledge, knows that he can obtain strongly consistent data even when issuing a weakly consistent read using 

a read my writes or bounded staleness guarantee.  In some cases, such as the radio reporter, multiple 

guarantees must be combined to meet the reader’s needs.  In other cases, such as the statistician, different 

guarantees are desired for reads to different data objects. 

I draw four main conclusions from this exercise: 

 All of the six presented consistency guarantees are useful.  Observe that each guarantee appears at least 

once in Table 4.  Systems that offer only eventual consistency would fail to meet the needs of all but one of 

these clients, and systems that offer only strong consistency may underperform in all but two cases. 

 

 Different clients may want different consistencies even when accessing the same data.  Often, systems 

bind a specific consistency to a particular data set or class of data.  For example, it is generally assumed that 

bank data must be strongly consistent while shopping cart data needs only eventually consistency.  The 

baseball example shows that the desired consistency depends as much on who is reading the data as on the 

type of data.  

 

 Even simple databases may have diverse users with different consistency needs.  A baseball score is one of 

the simplest databases imaginable, consisting of only two numbers.  Nevertheless, it effectively illustrates 

the value of different consistency options.   

 

 Clients should be able to choose their desired consistency.  The system cannot possibly predict or 

determine the consistency that is required by a given application or client.  The preferred consistency often 

depends on how the data is being used.  Moreover, knowledge of who writes data or when data was last 

written can sometimes allow clients to perform a relaxed consistency read, and obtain the associated 

benefits, while reading up-to-date data.   

The main argument often expressed against providing eventual consistency is that it increases the burden on 

application developers.  This may be true, but the extra burden need not be excessive.  The first step is to define 

consistency guarantees that developers can understand; observe that the six guarantees presented in Table 1 
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are each described in a few words.  By having the storage system perform write operations in a strict order, 

application developers can avoid the complication of dealing with update conflicts from concurrent writes.  This 

leaves developers with the job of choosing their desired read consistency.  This choice requires a deep 

understanding of the semantics of their application, but need not alter the basic structure of the program.  None 

of the code snippets that were provided in the previous section required any additional lines to deal specifically 

with stale data.   

Cloud storage systems that offer only strong consistency make it easy for developers to write correct programs 

but may miss out on the benefits of relaxed consistency.  The inherent trade-offs between consistency, 

performance, and availability are tangible and may become more pronounced with the proliferation of geo-

replicated services.  This suggests that cloud storage systems should at least consider offering a larger choice of 

read consistencies.  Some cloud providers already offer two both strongly consistent and eventually consistent 

read operations, but this paper shows that their eventual consistency model may not be ideal for applications.  

Allowing cloud storage clients to read from diverse replicas with a choice of several consistency guarantees 

could benefit a broad class of applications as well as lead to better resource utilization and cost savings.   
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