
1

Replicated Data Consistency Explained
Through Baseball

Doug Terry

Microsoft Research Silicon Valley

Abstract
Data replication is routinely used for highly available and scalable services. However, no standard replication

protocols exist since different schemes involve complex trade-offs between consistency, performance, and

availability. Some cloud storage services replicate data while providing strong consistency to their clients

whereas others have chosen eventual consistency in order to obtain better performance and availability. A

broader class of consistency guarantees can, and perhaps should, be offered to clients that read shared data.

This paper explains a range of consistency guarantees along with their motivation by way of example:

maintaining the score of a baseball game. During a baseball game, different participants (the scorekeeper,

umpire, sportswriter, and so on) benefit from six different consistency guarantees when reading the current

score. Eventual consistency is insufficient for most of the participants, but strong consistency is not needed

either. This example sheds light on the consistency models that are currently offered by cloud providers, what

consistency may be offered in the future, and why vendors are offering consistency choices.

1. Introduction
Replicated storage systems for the cloud deliver different consistency guarantees to applications that are

reading data. Invariably, cloud storage providers redundantly store data on multiple machines so that data

remains available in the face of unavoidable failures. Replicating data across datacenters is not uncommon,

allowing the data to survive complete site outages. However, the replicas are not always kept perfectly

synchronized. Thus, clients that read the same data object from different servers can potentially receive

different versions.

Some systems, like Microsoft’s Windows Azure, provide only strongly consistent storage services to their

applications [5]. This ensures that clients of Windows Azure Storage always see the latest value that was written

for a data object. While strong consistency is desirable and reasonable to provide within a datacenter, it raises

concerns as systems start to offer geo-replicated services that span multiple datacenters on multiple continents.

Many cloud storage systems, such as the Amazon Simple Storage Service (S3), were designed with weak

consistency based on the belief that strong consistency is too expensive in large systems. The designers chose

to relax consistency in order to obtain better performance and availability. In such systems, clients may perform

read operations that return stale data. The data returned by a read operation is the value of the object at some

past point in time but not necessarily the latest value. This occurs, for instance, when the read operation is

2

directed to a replica that has not yet received all of the writes that were accepted by some other replica. Such

systems are said to be eventually consistent [12].

Recent systems, recognizing the need to support different classes of applications, have been designed with a

choice of operations for accessing cloud storage. Amazon’s DynamoDB, for example, provides both eventually

consistent reads and strongly consistent reads, with the latter experiencing a higher read latency and a two-fold

reduction in read throughput [1]. Amazon SimpleDB offers the same choices for clients that read data.

Similarly, the Google App Engine Datastore added eventually consistent reads to complement its default strong

consistency [8]. PNUTS, which underlies many of Yahoo’s web services, provides three types of read operations:

read-any, read-critical, and read-latest [7]. Modern quorum-based storage systems allow clients to choose

between strong and eventual consistency by selecting different read and write quorums [4].

In the research community over the past thirty years, a number of consistency models have been proposed for

distributed and replicated systems [10]. These offer consistency guarantees that lie somewhere in between

strong consistency and eventual consistency. For example, a system might guarantee that a client sees data that

is no more than 5 minutes out-of-date or that a client always observes the results of its own writes. Actually,

some consistency models are even weaker than eventual consistency, but those I ignore as being less-than-

useful.

The reason for exploring different consistency models is that there are fundamental tradeoffs between

consistency, performance, and availability [9, 10, 12, 13]. Offering stronger consistency generally results in

lower performance and reduced availability for reads or writes or both. The CAP theorem has proven that, for

systems that must tolerate network partitions, designers must choose between consistency and availability [5].

In practice, latency is an equally important consideration [1]. Each proposed consistency model occupies some

point in the complex space of tradeoffs.

Are different consistencies useful in practice? Can application developers cope with eventual consistency?

Should cloud storage systems offer an even greater choice of consistency than the consistent and eventually

consistent reads offered by some of today’s services?

This paper attempts to answer these questions, at least partially, by examining an example (but clearly fictitious)

application: the game of baseball. In particular, I explore the needs of different people who access the score of

a baseball game, including the scorekeeper, umpire, radio reporter, sportswriter, and statistician. Supposing

that the score is stored in a cloud-based, replicated storage service, I show that eventual consistency is

insufficient for most of the participants, but strong consistency is not needed either. Most participants benefit

from some intermediate consistency guarantee.

The outline of this paper is as follows. The next section defines six possible consistency guarantees for read

operations. Section 3 presents an algorithm that emulates a baseball game, indicating where data is written and

read, and enumerates the results that might be returned when reading the score with different guarantees.

Section 4 then examines the roles of various people who want to access the baseball score and the read

consistency that each desires. Finally, I draw conclusions from this simple example.

3

2. Read Consistency Guarantees
While replicated systems have provided many types of data consistency over the past 30 years, and a wide

variety of consistency models have been explored in the computer science research community, many of these

are tied to specific implementations. Frequently, one needs to understand how a system operates in order to

understand what consistency it provides in what situations. This places an unfortunate burden on those who

develop applications on top of such storage systems.

The six consistency guarantees that I advocate in this section can be described in a simple, implementation-

independent way. This not only benefits application developers but also can permit flexibility in the design,

operation, and evolution of the underlying storage system.

These consistency guarantees are based on a simple model in which clients perform read and write operations

to a data store. Multiple clients may concurrently access shared information, such as social network graphs,

news feeds, photos, shopping carts, or financial records. The data is replicated among a set of servers, but the

details of the replication protocol are hidden from clients. A write is any operation that updates one or more

data objects. Writes are eventually received at all servers and performed in the same order. This order is

consistent with order in which write operations are submitted by clients. In practice, the order could be

enforced, even for concurrent writers, by performing all writes at a master server or by having servers run a

consensus protocol to reach agreement on the global order. Reads return the values of one or more data

objects that were previously written, though not necessarily the latest values. Each read operation can request

a consistency guarantee, which dictates the set of allowable return values. Each guarantee is defined by the set

of previous writes whose results are visible to a read operation. Table 1 summarizes these six consistency

guarantees.

Strong Consistency See all previous writes.

Eventual Consistency See subset of previous writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness See all “old” writes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by reader.

Table 1. Six Consistency Guarantees

Strong consistency is particularly easy to understand. It guarantees that a read operation returns the value that

was last written for a given object. If write operations can modify or extend portions of a data object, such as

appending data to a log, then the read returns the result of applying all writes to that object. In other words, a

read observes the effects of all previously completed writes.

Eventual consistency is the weakest of the guarantees, meaning that it allows the greatest set of possible return

values. For whole-object writes, an eventually consistent read can return any value for a data object that was

4

written in the past. More generally, such a read can return results from a replica that has received an arbitrary

subset of the writes to the data object being read. The term “eventual” consistency derives from the fact that

each replica eventually receives each write operation, and if clients stopped performing writes then read

operations would eventually return an object’s latest value.

By requesting a consistent prefix, a reader is guaranteed to observe an ordered sequence of writes starting with

the first write to a data store. For example, the read may be answered by a replica that receives writes in order

from a master replica but has not yet received some recent writes. In other words, the reader sees a version of

the data store that existed at the master at some time in the past. This is similar to the “snapshot isolation”

consistency offered by many database management systems. For reads to a single data object in a system

where write operations completely overwrite previous values of an object, even eventual consistency reads

observe a consistent prefix. The main benefit of requesting a consistent prefix arises when reading multiple

data objects or when write operations incrementally update an object.

Bounded staleness ensures that read results are not too out-of-date. Typically, staleness is defined by a time

period T, say 5 minutes. The storage system guarantees that a read operation will return any values written

more than T minutes ago or more recently written values. Alternative, some systems have defined staleness in

terms of the number of missing writes or even the amount of inaccuracy in a data value. I find that time-

bounded staleness is the most natural concept for application developers.

Monotonic Reads is a property that applies to a sequence of read operations that are performed by a given

storage system client. As such, it is called a “session guarantee” [11]. With monotonic reads, a client can read

arbitrarily stale data, as with eventual consistency, but is guaranteed to observe a data store that is increasingly

up-to-date over time. In particular, if the client issues a read operation and then later issues another read to the

same object(s), the second read will return the same value(s) or a more recently written value.

Read My Writes is a property that also applies to a sequence of operations performed by a single client. It

guarantees that the effects of all writes that were performed by the client are visible to the client’s subsequent

reads. If a client writes a new value for a data object and then reads this object, the read will return the value

that was last written by the client (or some other value that was later written by a different client). For clients

that have issued no writes, the guarantee is the same as eventual consistency. (Note: In previous papers this

has been called “Read Your Writes” [11], but I have chosen to rename it to more accurately describe the

guarantee from the client’s viewpoint.)

These last four read guarantees are all a form of eventual consistency but stronger than the eventual

consistency model that is typically provided in cloud storage systems. The “strength” of a consistency guarantee

does not depend on when and how writes propagate between servers, but rather is defined by the size of the

set of allowable results for a read operation. Smaller sets of possible read results indicate stronger consistency.

When requesting strong consistency, there is a single value that must be returned, the latest value that was

written. For an object that has been updated many times, an eventually consistent read can return one of many

suitable values. Of the four intermediate guarantees, none is stronger than any of the others, meaning that

each might have a different set of possible responses to a read operation. In some cases, as will be shown later,

5

applications may want to request multiple of these guarantees. For example, a client could request both

monotonic reads and read my writes so that it observes a data store that is consistent with its own actions [11].

In this paper, the data store used for baseball scores is a traditional key-value store, popularized by the “noSQL”

movement. Writes, also called puts, modify the value associated with a given key. Reads, also called gets,

return the value for a key. However, these guarantees can apply to other types of replicated data stores with

other types of read and write operations, such as file systems and relational databases. This is why the

guarantees are defined in terms of writes rather than data values. In a system that offers increment,

decrement, or append operations, all writes performed on an object contribute to the object’s observed value,

not just the latest write. For example, consider a bank account to which deposits and withdrawals are

performed. Moreover, the guarantees could apply to atomic transactions that access multiple objects, though

the examples in this paper do not require atomic updates.

Table 2 shows the performance and availability typically associated with each consistency guarantee. It rates

the three properties on a scale from poor to excellent. Consistency ratings are based on the strength of the

consistency guarantee as previously defined. Performance refers to the time it takes to complete a read

operation, that is, the read latency. Availability is the likelihood of a read operation successfully returning

suitably consistent data in the presence of server failures.

Strong consistency is desirable from a consistency viewpoint but offers the worst performance and availability

since it generally requires reading from a designated primary site or from a majority of replicas. Eventual

consistency, on the other hand, allows clients to read from any replica, but offers the weakest consistency. The

inverse correlation between performance and consistency is not surprising since weaker forms of consistency

generally permit read requests to be sent to a wider set of servers. With more choices of servers that are

sufficiently up-to-date, clients are more able to choose a nearby server. The latency difference between

accessing a local rather than a remote server can be a factor of 100. Similarly, a larger choice of servers means

that a client is more likely to find one (or a quorum) that is reachable, resulting in higher availability.

Each guarantee offers a unique combination of consistency, performance, and availability. Labeling each cell in

Table 2 is not an exact science (and I could devote a whole paper to this topic). One might argue that some

entry listed as “okay” should really be “good”, or vice versa. Providing a model to predict the delivered

consistency, performance, and availability for a given read guarantee is difficult since these depend on many

factors, including implementation issues, deployment configurations, technology characteristics, and application

workloads. For some clients, eventually consistent reads may often return strongly consistent results, and may

not be any more efficient than strongly consistent reads [3, 13]. But, the general comparisons between the

various consistency guarantees are qualitatively accurate. The bottom line is that one faces substantial trade-

offs when choosing a particular replication scheme with a particular consistency model.

Without offering any evidence, I assert that all of these guarantees can be provided as choices within the same

storage system. In fact, my colleagues and I at the MSR Silicon Valley Lab have built a prototype of such a

system (but that’s the topic for another paper). In our system, clients requesting different consistency

guarantees experience different performance and availability for the read operations that they perform, even

6

when accessing shared data. For this paper, let’s assume the existence of a storage system that offers its clients

a choice of these six read guarantees. I proceed to show how they would be used … in baseball.

7

Guarantee Consistency Performance Availability

Strong Consistency excellent poor poor

Eventual Consistency poor excellent excellent

Consistent Prefix okay good excellent

Bounded Staleness good okay poor

Monotonic Reads okay good good

Read My Writes okay okay okay

Table 2. Consistency, Performance, and Availability Trade-offs

3. Baseball as a Sample Application
For those readers who are not familiar with baseball, but who love to read code, Figure 1 illustrates the basics of

a 9-inning baseball game. The game starts with the score of 0-0. The visitors bat first and remain at bat until

they make three outs. Then the home team bats until it makes three outs. This continues for nine innings.

Granted, this leaves out many of the subtleties that are dear to baseball aficionados, like myself. But it does

explain all that is needed for this paper.

Assume that the score of the game is recorded in a key-value store in two objects, one for the number of runs

scored by the “visitors” and one for the “home” team’s runs. When a team scores a run, a read operation is

performed on its current score, the returned value is incremented by one, and the new value is written back to

the key-value store.

 Write (“visitors”, 0);

 Write (“home”, 0);

 for inning = 1 .. 9
 outs = 0;

 while outs < 3

 visiting player bats;

 for each run scored

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

 outs = 0;

 while outs < 3

 home player bats;

 for each run scored

 score = Read (“home”);

 Write (“home”, score + 1);

 end game;

Figure 1. A Simplified Baseball Game

8

As a concrete example, consider the write log for a sample game as shown in Figure 2. In this game, the home

team scored first, then the visitors tied the game, then the home team scored twice more, and so on.

Write (“home”, 1)
Write (“visitors”, 1)
Write (“home”, 2)
Write (“home”, 3)
Write (“visitors”, 2)
Write (“home”, 4)
Write (“home”, 5)

Figure 2. Sequence of Writes for a Sample Game

This sequence of writes could be from a baseball game with the inning-by-inning line score that is shown in

Figure 3. This hypothetical game is currently in the middle of the seventh inning (the proverbial seventh-inning

stretch), and the home team is winning 2-5.

 1 2 3 4 5 6 7 8 9 RUNS

Visitors 0 0 1 0 1 0 0 2
Home 1 0 1 1 0 2 5

Figure 3. The Line Score for this Sample Game

Suppose the key-value store that holds the visitors and home team’s run totals resides in the cloud and is

replicated among a number of servers. Different read guarantees may result in clients reading different scores

for this game that is in progress. Table 3 lists the complete set of scores that could be returned by reading the

visitors and home scores with each of the six consistency guarantees. Note that the visitors’ score is listed first,

and different possible return values are separated by comas.

Strong Consistency 2-5

Eventual Consistency 0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1,
2-2, 2-3, 2-4, 2-5

Consistent Prefix 0-0, 0-1, 1-1, 1-2, 1-3, 2-3, 2-4, 2-5

Bounded Staleness scores that are at most one inning out-of-date: 2-3, 2-4, 2-5

Monotonic Reads after reading 1-3: 1-3, 1-4, 1-5, 2-3, 2-4, 2-5

Read My Writes for the writer: 2-5
for anyone other than the writer: 0-0, 0-1, 0-2, 0-3, 0-4, 0-5,
1-0, 1-1, 1-2, 1-3, 1-4, 1-5, 2-0, 2-1, 2-2, 2-3, 2-4, 2-5

Table 3. Possible Scores Read for Each Consistency Guarantee

9

A strong consistency read can only return one result, the current score, whereas an eventual consistency read

can return one of 18 possible scores. Observe that many of the scores that can be returned by a pair of

eventually consistent reads are ones that were never the actual score. For example, reading the visitors’ score

may return two and reading the home team’s score may return zero, even though the home team never trailed.

The consistent prefix property limits the result to scores that actually existed at some time. The results that can

be returned by a bounded staleness read clearly depend on the desired bound. Table 3 shows the possible

scores for a bound of one inning, that is, scores that are at most one inning out-of-date; for a bound of 7 innings

or more, the result set is the same as for eventual consistency in this example. In practice, a system is unlikely to

express staleness bounds in units of “innings”. So, for this example, assume that the reader requested a bound

of 15 minutes and that the previous inning lasted exactly that long. For monotonic reads, the possible return

values depend on what has been read in the past. For read my writes they depend on who is writing to the key-

value store; in this example, assume that all of the writes were performed by a single client.

4. Read Requirements for Participants
Now, let’s examine the consistency needs of a variety of people involved in a baseball game who want to read

the score. Certainly, each of these folks could perform a strongly consistent read to retrieve the visiting and

home team’s score. In this case, as pointed out in the previous section, only one possible value would be

returned: the current score. However, as shown in Table 2, readers requesting strong consistency will likely

receive longer response times and may even find that the data they are requesting is not currently available due

to temporary server failures or network outages. The point of this section is to evaluate, for each participant,

the minimum consistency that is required. By requesting read guarantees that are weaker than strong

consistency, these clients are likely to experience performance benefits and higher availability.

4.1 Official scorekeeper
The official scorekeeper is responsible for maintaining the score of the game by writing it to the persistent key-

value store. Figure 4 illustrates the steps taken by the scorekeeper each time the visiting team scores a run; his

action when the home team scores is similar. Note that this code is a snippet of the overall baseball game code

that was presented in Figure 1.

 score = Read (“visitors”);

 Write (“visitors”, score + 1);

Figure 4. Role of the Scorekeeper

What consistency does the scorekeeper require for his read operations? Undoubtedly, the scorekeeper needs

to read the most up-to-date previous score before adding one to produce the new score. Otherwise, the

scorekeeper runs the risk of writing an incorrect score and undermining the game, not to mention inciting a mob

of angry baseball fans. Suppose the home team had previous scored five runs and just scored the sixth. Doing

an eventual consistency read, as shown in Table 3, could return a score of anything from zero to five. Perhaps,

10

the scorekeeper would get lucky and receive the correct score in response to his read, but he should not count

on it.

Interestingly, while the scorekeeper requires strongly consistent data, he does not need to perform strong

consistency reads. If there were multiple people playing the role of scorekeeper and taking turns updating the

score, then they would need to perform reads that request strong consistency. However, each baseball game

generally has one official scorekeeper. Since the scorekeeper is the only person who updates the score, he can

request the read my writes guarantee and receive the same effect as a strong read. In the unusual event where

the person serving as the scorekeeper changes in the middle of the game, the new scorekeeper could perform a

strong read when he first updates the score but can use read my writes for subsequent reads. Essentially, the

scorekeeper uses application-specific knowledge to obtain the benefits of a weaker consistency read without

actually giving up any consistency.

This might seem like a subtle distinction, but, in fact, could be quite significant in practice. In processing a strong

consistency read the storage system must pessimistically assume that some client, anywhere in the world, may

have just updated the data. The system therefore must access a majority of servers (or a fixed set of servers) in

order to ensure that the most recently written data is accessed by the submitted read operation. In providing

the read my writes guarantee, on the other hand, the system simply needs to record the set of writes that were

previously performed by the client and find some server that has seen all of these writes [11]. In a baseball

game, the previous run that was scored, and hence the previous write that was performed by the scorekeeper,

may have happened many minutes or even hours ago. In this case, almost any server will have received the

previous write and be able to answer the next read that requests the read my writes guarantee.

4.2 Umpire
The umpire is the person who officiates a baseball game from behind home plate. The umpire, for the most

part, does not actually care about the current score of the game. The one exception comes after the top half of

the 9th inning, that is, after the visiting team has batted and the home team is about to bat. Since this is the last

inning (and a team cannot score negative runs), the home team has already won if they are ahead in the score;

thus, the home team can and does skip its last at bat in some games. The code for the umpire who needs to

make this determination is shown in Figure 5.

 if first half of 9

th

 inning complete then

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 if vScore < hScore

 end game;

Figure 5. Role of the Umpire

When accessing the score during the 9th inning, the umpire does need to read the current score. Otherwise, he

might end the game early, if he incorrectly believes the home team to be ahead, or make the home team bat

unnecessarily. Unlike the scorekeeper, the umpire never writes the score; he simply reads the values that were

11

written by the official scorekeeper. Thus, in order to receive up-to-date information, the umpire must perform

strong consistency reads.

12

4.3 Radio reporter
In most areas of the United States, radio stations periodically announce the scores of games that are in progress

or have completed. In the San Francisco area, for example, KCBS reports sports news every 30 minutes. The

radio reporter performs the steps outlined in Figure 6. A similar, perhaps more modern, example is the sports

scores that scroll across the bottom of the TV screen while viewers are watching ESPN.

 do {

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 report vScore and hScore;

 sleep (30 minutes);

 }

Figure 6. Role of the Radio Sports Reporter

If the radio reporter broadcasts scores that are not completely up-to-date, that’s okay. People are accustomed

to receiving old news. Thus, some form of eventual consistency is fine for the reads that he performs. But what

guarantees, if any, are desirable?

As shown in Table 3, the read with the weakest guarantee, an eventual consistency read, may return scores that

never existed. For the sample line score given in Figure 3, such a read might return a score with the visitors

leading 1-0, even though the visiting team has never actually been in the lead. The radio reporter does not want

to report such fictitious scores. Thus, the reporter wants both his reads to be performed on a snapshot that

hold a consistent prefix of the writes that were performed by the scorekeeper. This allows the reporter to read

the score that existed at some time, without necessarily reading the current score.

But reading a consistent prefix is not sufficient. For the line score in Figure 3, the reporter could read a score of

2-5, the current score, and then, 30 minutes later, read a score of 1-3. This might happen, for instance, if the

reporter happens to read from a primary server and later reads from another server, perhaps in a remote

datacenter, that has been disconnected from the primary and has yet to receive the latest writes. Since

everyone knows that baseball scores are monotonically increasing, reporting scores of 2-5 and 1-3 in subsequent

news reports would make the reporter look foolish. This can be avoided if the reporter requests the monotonic

reads guarantee in addition to requesting a consistent prefix. Observe that neither guarantee is sufficient by

itself.

Alternatively, the reporter could obtain the same effect as a monotonic read by requesting bounded staleness

with a bound of less than 30 minutes. This would ensure that the reporter observes scores that are at most 30

minutes out-of-date. Since the reporter only reads data every 30 minutes, he must receive scores that are

increasingly up-to-date. Of course, the reporter could ask for a tighter bound, say 5 minutes, to get scores that

are reasonably timely.

13

4.4 Sportswriter
Another interesting person is the sportswriter who watches the game and later writes an article that appears in

the morning paper or that is posted on some web site. Different sportswriters may behave differently, but my

observations (from having been a sportswriter) is that they often act as in Figure 7.

 While not end of game {

 drink beer;

 smoke cigar;

 }

 go out to dinner;

 vScore = Read (“visitors”);

 hScore = Read (“home”);

 write article;

Figure 7. Role of the Sportswriter

The sportswriter may be in no hurry to write his article. In this example, he goes out to a leisurely dinner before

sitting down to summarize the game. He certainly wants to make sure that he reports the correct final score for

the game. So, he wants the effect of a strong consistency read. However, he does not need to pay the cost. If

the sportswriter knows that he spent an hour eating dinner after the game ended, then he also knows that it has

been at least an hour since the scorekeeper last updated the score. Thus, a bounded staleness read with a

bound of one hour is sufficient to ensure that the sportswriter reads the final score. In practice, any server

should be able to answer such a read. In fact, an eventual consistency read is likely to return the correct score

after an hour, but requesting bounded staleness is the only way for the sportswriter to be 100% certain that he

is obtaining the final score.

4.5 Statistician
The team statistician is responsible for keeping track of the season-long statistics for the team and for individual

players. For example, the statistician might tally the total number of runs scored by her team this season.

Suppose that these statistics are also saved in the persistent key-value store. As shown in Figure 8, the home

team’s statistician, sometime after each game has ended, adds the runs scored to the previous season total and

writes this new value back into the data store.

 Wait for end of game;

 score = Read (“home”);

 stat = Read (“season-runs”);

 Write (“season-runs”, stat + score);

Figure 8. Role of the Statistician

14

When reading the team’s score from today, the statistician wants to be sure to obtain the final score. Thus, she

needs to perform a strong consistency read. If the statistician waits for some time after the game, then a

bounded staleness read may achieve the same effect (as discussed in Section 4.4 for the sportswriter).

When reading the current statistics for the season, i.e. for the second read operation in Figure 8, the statistician

also wants strong consistency. If an old statistic is returned, then the updated value written back will

undercount the team’s total runs. Since the statistician is the only person who writes statistics into the data

store, she can use the read my writes guarantee to get the latest value (as discussed in Section 4.1 for the

scorekeeper).

4.6 Stat watcher
Others who periodically check on the team’s season statistics are usually content with eventual consistency.

The statistical data is only updated once per day, and numbers that are slightly out-of-date are okay. For

example, a fan inquiring about the total number of runs that have been scored by his team this season, as

shown in Figure 9, can perform an eventual consistency read to get a reasonable answer.

 do {

 stat = Read (“season-runs”);

 discuss stats with friends;

 sleep (1 day);

 }

Figure 9. Role of the Stat Watcher

5. Conclusions
Clearly, storing baseball scores is not the killer application for cloud storage systems. And we should be cautious

about drawing conclusions from one simple example. But perhaps some lessons can be learned.

Table 4 summarizes the consistency guarantees desired by the variety of baseball participants that were

discussed in the previous section. Recall that the listed consistencies are not the only acceptable ones. In

particular, each participant would be okay with strong consistency, but, by relaxing the consistency requested

for his reads, he will likely observe better performance and availability. Additionally, the storage system may be

able to better balance the read workload across servers since it has more flexibility in selecting servers to

answer weak consistency read requests.

15

Official scorekeeper Read My Writes

Umpire Strong Consistency

Radio reporter Consistent Prefix & Monotonic Reads

Sportswriter Bounded Staleness

Statistician Strong Consistency, Read My Writes

Stat watcher Eventual Consistency

Table 4. Read Guarantees for Baseball Participants

These participants can be thought of as different applications that are accessing shared data: the baseball score.

In some cases, such as for the scorekeeper and sportswriter, the reader, based on application-specific

knowledge, knows that he can obtain strongly consistent data even when issuing a weakly consistent read using

a read my writes or bounded staleness guarantee. In some cases, such as the radio reporter, multiple

guarantees must be combined to meet the reader’s needs. In other cases, such as the statistician, different

guarantees are desired for reads to different data objects.

I draw four main conclusions from this exercise:

 All of the six presented consistency guarantees are useful. Observe that each guarantee appears at least

once in Table 4. Systems that offer only eventual consistency would fail to meet the needs of all but one of

these clients, and systems that offer only strong consistency may underperform in all but two cases.

 Different clients may want different consistencies even when accessing the same data. Often, systems

bind a specific consistency to a particular data set or class of data. For example, it is generally assumed that

bank data must be strongly consistent while shopping cart data needs only eventually consistency. The

baseball example shows that the desired consistency depends as much on who is reading the data as on the

type of data.

 Even simple databases may have diverse users with different consistency needs. A baseball score is one of

the simplest databases imaginable, consisting of only two numbers. Nevertheless, it effectively illustrates

the value of different consistency options.

 Clients should be able to choose their desired consistency. The system cannot possibly predict or

determine the consistency that is required by a given application or client. The preferred consistency often

depends on how the data is being used. Moreover, knowledge of who writes data or when data was last

written can sometimes allow clients to perform a relaxed consistency read, and obtain the associated

benefits, while reading up-to-date data.

The main argument often expressed against providing eventual consistency is that it increases the burden on

application developers. This may be true, but the extra burden need not be excessive. The first step is to define

consistency guarantees that developers can understand; observe that the six guarantees presented in Table 1

16

are each described in a few words. By having the storage system perform write operations in a strict order,

application developers can avoid the complication of dealing with update conflicts from concurrent writes. This

leaves developers with the job of choosing their desired read consistency. This choice requires a deep

understanding of the semantics of their application, but need not alter the basic structure of the program. None

of the code snippets that were provided in the previous section required any additional lines to deal specifically

with stale data.

Cloud storage systems that offer only strong consistency make it easy for developers to write correct programs

but may miss out on the benefits of relaxed consistency. The inherent trade-offs between consistency,

performance, and availability are tangible and may become more pronounced with the proliferation of geo-

replicated services. This suggests that cloud storage systems should at least consider offering a larger choice of

read consistencies. Some cloud providers already offer two both strongly consistent and eventually consistent

read operations, but this paper shows that their eventual consistency model may not be ideal for applications.

Allowing cloud storage clients to read from diverse replicas with a choice of several consistency guarantees

could benefit a broad class of applications as well as lead to better resource utilization and cost savings.

6. References

1. D. Abadi. Consistency Tradeoffs in Modern Distributed Database System Design. IEEE Computer, February

2012.

Explores the impact of consistency and latency tradeoffs on system design.

2. Amazon. Amazon DynamoDB. http://aws.amazon.com/dynamodb/.

Describes the consistency, throughout, and pricing of Amazon’s beta DynamoDB service.

3. E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie. What Consistency Does Your Key-value Store Actually

Provide? Proceedings Usenix Workshop on Hot Topics in Systems Dependability, 2010.

Measures the frequency with which an eventually consistent key-value store actually provides strong consistency

and reports that consistency violations are rare.

4. P. Bailis, S. Venkataraman, M. Franklin, J. Hellerstein, and I. Stoica. Probabilistically Bounded Staleness for

Practical Partial Quorums. Proceedings VLDB Endowment, August 2012.

Analyzes the probability of staleness for quorum-based systems with non-overlapping read and write quorums.

5. E. Brewer. CAP Twelve Years Later: How the “Rules” Have Changed. IEEE Computer, February 2012.

Explains why designers often choose availability over consistency, but also revisits some of the tradeoffs.

6. B. Calder, et. al. Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency.

Proceedings ACM Symposium on Operating Systems Principles, October 2011.

http://aws.amazon.com/dynamodb/

17

Presents the design of the Windows Azure Storage cloud storage system including support for geographic

replication.

7. B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,

and R. Yerneni. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proceedings International Conference on

Very Large Data Bases, August 2008.

Describes the relaxed consistency model adopted for the distributed database system underlying many of Yahoo!’s

web applications.

8. Google. Read Consistency & Deadlines: More Control of Your Datastore. Google App Engine Blob, March

2010, http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html.

Announces a change to Google App Engine to allow eventually consistent reads.

9. T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency Rationing in the Cloud: Pay Only When It

Matters. Proceedings International Conference on Very Large Data Bases, August 2009.

Built a cloud database system on top of Amazon’s S3 and shows that relaxing consistency can significantly lower

transaction costs and improve performance.

10. Y. Saito and M. Shapiro. Optimistic Replication. ACM Computing Surveys, March 2005.

Outlines a range of consistency choices for replicated data as well as implementation techniques.

11. D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. Welch. Session Guarantees for Weakly

Consistent Replicated Data. Proceedings IEEE International Conference on Parallel and Distributed

Information Systems, 1994.

Defines read-your-writes, monotonic reads, and other session guarantees and shows how to implement them in an

eventually consistent system.

12. W. Vogels. Eventually Consistent. Communications of the ACM, January 2009.

Explains why Amazon chose eventual consistency for its large-scale, reliable infrastructure services

13. H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data Consistency Properties and the Trade-offs in

Commercial Cloud Storages: The Consumers’ Perspective. Proceedings CIDR, January 2011.

Analyzes Amazon’s SimpleDB and observes that the service frequently delivers stale data and fails to provide read-

your-writes or monotonic read guarantees, and yet the observed performance of eventually consistent reads is not

better than that of strong consistency reads to the same service.

http://googleappengine.blogspot.com/2010/03/read-consistency-deadlines-more-control.html

