
CONVOLUTIONAL NEURAL NETWORK BASED TRIANGULAR CRF FOR JOINT INTENT
DETECTION AND SLOT FILLING

Puyang Xu, Ruhi Sarikaya

Microsoft Corporation

ABSTRACT

We describe a joint model for intent detection and slot filling
based on convolutional neural networks (CNN). The proposed
architecture can be perceived as a neural network (NN) ver-
sion of the triangular CRF model (TriCRF), in which the in-
tent label and the slot sequence are modeled jointly and their
dependencies are exploited. Our slot filling component is a
globally normalized CRF style model, as opposed to left-to-
right models in recent NN based slot taggers. Its features are
automatically extracted through CNN layers and shared by
the intent model. We show that our slot model component
generates state-of-the-art results, outperforming CRF signifi-
cantly. Our joint model outperforms the standard TriCRF by
1% absolute for both intent and slot. On a number of other
domains, our joint model achieves 0.7 - 1%, and 0.9 - 2.1%
absolute gains over the independent modeling approach for
intent and slot respectively.

Index Terms— Joint modeling, slot filling, convolutional
neural network, triangular CRF

1. INTRODUCTION

Spoken language understanding (SLU) typically involves
identifying a user’s intent and extracting relevant semantic
constituents from the natural language sentence – a task often
called slot filling. While intent detection is a standard clas-
sification problem in which only one label is predicted for
each sentence, slot filling is often formulated as a sequence
labeling task, where a sequence of labels need to be assigned
jointly.

Intent detection and slot filling are usually carried out sep-
arately. A number of standard classifiers can be used for in-
tent detection, such as logistic regression and support vector
machines. For slot filling, conditional random field (CRF) [1]
is a proven technique and has been used extensively. As op-
posed to the left-to-right, factorized probabilistic models for
sequence labeling, such as maximum entropy markov mod-
els (MEMM) [2], CRF directly models the global conditional
distribution, and is often thought to overcome the label bias
problem [1] facing locally normalized models.

We thank Anoop Deoras and Minwoo Jeong for sharing the ATIS
datasets, and Ashley Fidler for preparing the other datasets.

Joint training of intent and slot models has been investi-
gated in the literature. In [3], triangular CRF (TriCRF) was
proposed for this purpose: On top of the standard CRF, an
additional random variable indicating the topic/intent assign-
ment of the sentence is introduced, with dependency links es-
tablished between the added variable and the hidden label se-
quence. It was shown empirically that exploiting such depen-
dencies can lead to improved results for both of the modeling
tasks.

Similar to most classification techniques, TriCRF requires
feature functions to be predefined by human before the model
can be trained. Inspired by the success of neural network
(NN) based deep architectures for various tasks, the goal of
this work is to exploit the powerful feature learning mech-
anism enabled by NNs, and apply it to joint intent and slot
modeling for SLU.

NN based techniques have been previously explored for
SLU. In [4], intent detection (call routing) was shown to ben-
efit substantially from the use of a multi-layer NN architec-
ture. Recently, several NN based models were introduced
for slot filling, either using feed-forward NNs [5] or recur-
rent NNs [6, 7]. However, no joint training was discussed
in these work. In fact, due to the left-to-right, locally nor-
malized model nature, it is not straightforward to adapt the
recently proposed NN based slot models to simultaneously
handle intent detection.

In this work, we first describe a globally normalized NN
architecture for slot filling. The benefit of global normaliza-
tion is two-fold: First, it overcomes the label bias problem,
which is often perceived to be a weakness of local normal-
ization. Second, since the sequence of tags are predicted in
a single step, it allows other labels such as intent to be pre-
dicted simultaneously. The same features extracted through
convolutional neural networks (CNN) can thus be shared by
the two modeling tasks. To the best of our knowledge, this is
the first attempt to train intent and slot models jointly based
on NNs, and can be thought of as a continuous space version
of the TriCRF model.

NN based CRF has been investigated in the literature.
In [8, 9], conditional neural field and neural CRF were intro-
duced which combined the NN based feature learning and the
CRF models. However, the features were not derived from
variable length word sequences and no convolutional layers

were used. The experiments they presented were also limited
to using linear chain CRF models, as opposed to TriCRF in
this work. In [10], a multi-layer CRF was used for sequence
labeling, but the feature extraction was also different, and no
joint modeling was performed. Another related work is the
multi-task learning framework presented in [11]. It also uses
convolutional units for feature extraction. However, the task
of sequence labeling was reduced to a set of independent lo-
cal classification tasks (similar to 0th order CRF), in which no
dependency is assumed to be present among the hidden tags.
In contrast, our architecture handles sequence labeling as a
full blown CRF model, and also allows handling other tasks
simultaneously.

2. GLOBALLY NORMALIZED NN FOR SLOT
FILLING

2.1. Local and Global Normalization

Discriminative models for sequence labeling attempts to
model the conditional distribution of the hidden sequence
Y given the observation X . In a locally normalized model,
P (Y |X) is factorized into the product of a sequence of local
probabilities, as shown in (1),

P (Y |X) =

l∏
i=1

P (Yi|X,Y1, ..., Yi−1), (1)

where Yi is the ith observation in the sequence of length l.
There are different ways to parameterize each P (Yi|X),

such as the maximum entropy models in MEMM, and the var-
ious kinds of NN models in the recently proposed slot filling
approaches [5, 6, 7]. Despite the notorious label bias problem
for such local models, the recent NN based local models have
uniformly achieved superior slot tagging results.

As opposed to modeling local probabilities, globally nor-
malized models directly specify the global conditional distri-
bution, usually in an exponential framework,

P (Y |X) =
e
∑

j fj(X,Y)θj∑
Y ′ e

∑
j fj(X,Y

′)θj
. (2)

Here, fj(X,Y) is the jth feature function defined over the
observation X and the hidden sequence Y , and θj is the cor-
responding feature weight. The denominator sums over all
possible hidden sequences.

Many loss functions for optimization can be applied ac-
cording to the probability definition in (2). The likelihood
loss is convex thus can be minimized using gradient-based
techniques. The gradient with respect to each θj usually re-
quires computing the posterior probabilities P (Yi = y|X)
or P (Yi = y, Yi−1 = y′|X), and these can be efficiently
computed through forward-backward passes over the hidden
trellis.

2.2. Feature Learning Through CNN

Note that in (2), each fj(Y,X) needs to be predefined. It is
usually a binary function and describes a certain pattern (e.g.
n-gram pattern) in the sequence. In our proposed architec-
ture, the score for each sequence, instead of based on a set
of predefined feature functions, will be derived from a CNN
architecture over the word sequence.

CNN has been used extensively for various machine
learning tasks. It is a way of controlling the number of pa-
rameters and capturing some of the translation invariance in
the input data. CNN was previously used for extracting fea-
tures over variable length word sequences in [11] (Figure 1).
Similar as other NN based natural language processing tech-

Fig. 1. The CNN architecture introduced in [11]. Note that
each tag in Y is predicted separately through softmax.

niques, each word in the vocabulary, instead of being treated
as a discrete symbol, is represented as a fixed dimensional
continuous vector. Such vectors are learned in the same way
as other NN parameters, and can be initialized either ran-
domly or using vectors obtained through auxiliary tasks such
as language modeling.

As shown in the Figure 1, the word sequence is repre-
sented as the concatenated word vectors. Such word vec-
tors may also encode positional information indicating which
word in the sequence the tag will be predicted for. The feature
transform T spans over a fix-sized n-gram window and slides
over the input sequence. The obtained features usually un-
dergo some kind of nonlinear activation function such as tanh
before feeding into subsequent layers. In [11], a max-pooling
layer was also used to reduce the number of parameters and
ensure the feature layers have fixed dimensions such that clas-
sic NN layers can be applied on the top.

Note that in Figure 1, the final feature layer after max-
pooling goes into an array of softmax output layers, each pro-
ducing a distribution over tags for the current word position.
This approach essentially follows the local modeling strategy
illustrated in (1), and no dependency is assumed between ad-
jacent tags.

In contrast, in our proposed sequence labeling architec-
ture (Figure 2), no normalization is performed at each indi-
vidual position. In fact, the top layer is essentially the same
as a 1st order CRF model – the only difference is that the
features from the word sequence are automatically extracted
continuous-valued features, instead of predefined indicator
functions.

Fig. 2. Globally normalized conditional model based on
CNN. The top layer is essentially the same as CRF.

Similar as (2), the global conditional distribution can be
written as

P (Y |X) =
e
∑

i(t(Yi−1,Yi)+
∑

j hij(Xi,R,T)θj(Yi))∑
Y ′ e

∑
i(t(Y

′
i−1,Y

′
i)+

∑
j hij(Xi,R,T)θj(Y

′
i))

.

(3)
Note that the total score of the sequence is factorized into the
sum of scores at each word position i. t(Yi−1, Yi) is the tag
transition score from Yi−1 to Yi. hij(Xi, R, T) denotes the
jth element in the feature vector extracted out of the n-gram
window centered at Xi, and θj(Yi) is the corresponding fea-
ture weight associated with the tag Yi. It is worth pointing
out that the described framework can also incorporate exter-
nal features such as entity and syntactic features – either by
augmenting the word feature vectors or adding these features
directly at the topmost layer of the architecture.

Training of the topmost layer is the same as training a
standard CRF model. The bottom layers can be trained using
the well-known back propagation algorithm. Remember that
the back propagation is essentially the chain rule of deriva-
tives. We can easily take the derivative of the loss function
with respect to each hij(Xi, R, T) at the top layer, and obtain
the derivative with respect to T and R by applying the chain
rule.

3. NN BASED TRIANGULAR CRF

3.1. Intent Detection Using CNN

The intent classification component in our proposed NN ar-
chitecture (Figure 3) differs from the NN based intent classi-
fier introduced in [4], in which case the word sequence is first
converted into a feature vector (e.g. a n-gram count vector),

upon which standard NN layers are built. In this work, con-
volutional layers are employed for feature extraction directly
from the embedded word sequence.

Fig. 3. CNN based intent classifier. The top layer is the same
as standard linear classifiers such as logistic regression. The
feature vectors in h are summed.

As depicted in Figure 3, the feature vectors extracted
by the convolutional units at different word positions, are
summed up before the intent type Z is predicted. The proba-
bility of each Z is specified according to (4),

P (Z|X) =
e
∑

i(
∑

j hijβj(Z))∑
Z′ e

∑
i(

∑
j hijβj(Z′))

. (4)

Note that the max-pooling layer can also be used here instead
of the summation. We have not observed much difference
between the two approaches.

3.2. Joint Slot Filling and Intent Detection

We can easily combine Figure 2 and Figure 3 into a single
architecture. (Figure 4).

Fig. 4. Joint slot filling and intent detection based on CNN.
The curly dashed lines at the top capture the dependency be-
tween intent and slot as in TriCRF.

Note that the convolutional layers and the resulting fea-
ture vectors h are shared by the two tasks. The global na-
ture of our sequence labeling component allows the system

to simultaneously handle multiple labeling and classification
tasks.

With the combined architecture, our model specifies the
conditional distribution of Y and Z jointly,

P (Y,Z|X) =
e
∑

i(t(Yi−1,Yi)+g(Yi,Z)+
∑

j(θj(Yi)+βj(Z))hij)

Z(X)
.

(5)
Same as in TriCRF, the feature function g(Yi, Z) is used to
model the interaction between intent and slot – it essentially
acts as an intent dependent slot prior for the model. More
detailed per-intent modeling is possible within TriCRF, such
as adding intent independent slot transition features and slot
emission features, in which case learning can become chal-
lenging given limited amounts of training data. The denomi-
nator Z(X) is the normalizer and sums over all possible com-
binations of Y and Z.

Similar as before, the top layer of the proposed architec-
ture can be trained in the same way as the standard TriCRF,
and the layers below can be trained using the back propaga-
tion. As described in [3], the posterior probability P (Y, Z|X)
can be written as P (Z|X)P (Y |X,Z). Both of these quanti-
ties can be obtained from multiple forward-backward passes
through the hidden trellis – one pass for each Z. Therefore,
the training complexity is theoretically |Z| times larger than
CRF models. Recall that the complexity for training CRF
models is quadratic in the number of slot types. Since the
number of observed slot types for each intent in the training
data is usually much smaller than the total number of slots,
we can achieve significant speedup if we allow only a subset
of slot types to appear for each intent. We also observed no
degradation of performance applying this constraint in our ex-
periments. At test time, the best Y , Z combination can be ob-
tained similarly by running multiple viterbi decoding passes.

4. EXPERIMENTAL RESULTS

4.1. Model Training

We use stochastic gradient descent to learn the model parame-
ters. A development set is used to track the training progress.
The learning rate starts at 0.05 and halves every time the result
on the development set ceases to improve for 5 consecutive
iterations. The training stops when the learning rate falls be-
low 0.0001. All the NN parameters are randomly initialized
as opposed to derived from other tasks.

We use the rectifier activation function at layer h, and
also regularize the features using the dropout technique (with
probability 0.5) [12].

The size of the word vectors, the hidden layers, and the
convolutional n-gram windows are tuned minimally on the
development set. Unless stated otherwise, we generally use
30 dimensional word vectors, and extract 110 dimensional
hidden features from the 5-gram window centered around the

current position. While additional features can be easily in-
corporated into our architecture, we only use lexical features
(features automatically extracted from word sequences) for
the experiments.

4.2. Slot Filling Results

The ATIS dataset has been use extensively in the SLU re-
search community. To evaluate our slot filling model, we use
the same ATIS corpus that was used in [5], which consists of
4978 utterances in the training set, and 893 utterances in the
test set. We also have a set of 491 utterances as a development
set.

We mainly compare with the three recently introduced
NN based slot filling models [5, 6, 7]. While it is not straight-
forward for these models to simultaneously handle intent clas-
sification, they all produced the new state-of-the-art slot fill-
ing results in the literature. CRF results are also presented as
it is often perceived to be a powerful sequence tagger.

Table 1. F1 scores on ATIS compared with recent state-of-
the-art NN techniques (lexical features only).

Model F1 score
CRF 91.00

DBN [5] (discriminative embedding) 93.20
RNN [6](ATIS embedding) 94.11

RNN [7] (Wikipedia embedding) 94.26
This work (random embedding) 94.35

The CRF result is obtained using CRF++ [13]. L2 regular-
ization is used and the regularization weight is optimized on
the development set. As shown in Table 1, the proposed NN
architecture significantly outperforms the CRF model, and is
also similar to the recent state-of-the-art approaches. It is
worth mentioning that all the recent NN methods presented
here used word embedding obtained from external tasks or
resources, while our word vectors are initialized randomly.

4.3. Joint Modeling Results

The goal of this set of experiments is to compare with the
standard TriCRF model and demonstrate the advantage of
performing joint modeling within the proposed NN architec-
ture.

We obtained the same dataset used in the original TriCRF
paper [3]. It is also an ATIS corpus consisting of 5138 utter-
ances with both slot and intent annotated. There are in total
21 types of intents and 110 types of slots. We use the same
10-fold cross validation setup as in [3]. Instead of training on
9 folds and testing on the remaining 1 fold, we leave another
1 fold out as the development set in order to track the training
progress. The intent error rate and the slot F1 score averaged
over the 10 folds are demonstrated in Table 2.

Table 2. Averaged intent error rate and slot F1 score on
ATIS compared with independent training and standard Tri-
CRF (10-fold cross validation).

Intent Error Slot F1
Indep training [3] 7.91 90.67

Indep training (CNN) 6.65 92.43
TriCRF [3] 6.93 94.42

CNN TriCRF 5.91 95.42

In addition to the independent training results reported
in [3], which made use of the standard CRF models, we also
present the independent training results using the CNN based
individual component in our joint architecture. As indicated
by the table, both the CNN based intent classifier and slot tag-
ger outperform the standard models in [3] by significant mar-
gins. When joint training is performed, both intent and slot
models benefit substantially. Moreover, the proposed CNN
based TriCRF outperforms the standard TriCRF by 1% abso-
lute on both tasks, although it is trained on one less fold of
data.

Another favorable condition for the CNN based TriCRF
is that it usually produces much more compact models. In the
TriCRF model presented in [3], a large number of features are
used for slot filling in each n-gram window – n-grams, skip
n-grams, and also features such as prefix, suffix which are not
directly used by our CNN based model. In our approach, all
features in the n-gram window are succinctly represented as
an automatically learned continuous vector. For intent clas-
sification, the same feature vector can be used, without re-
quiring a new set of features to be defined as in the standard
TriCRF.

4.4. More Domains From Real Applications

The benefit of joint training is quite obvious on the ATIS
dataset. However, it was found in [14], that joint training may
not always be advantageous (using the standard TriCRF), es-
pecially for real-world systems at early stages of the develop-
ment. It was observed that while TriCRF produces slightly
better slot filling results, the two-pass (independent) train-
ing yields significantly better intent classification accuracy.
Therefore, the goal of this set of experiments, is to evaluate
the efficacy of the proposed CNN based TriCRF on a number
of datasets collected for real dialogue applications.

The baseline we are comparing with, is the independent
training strategy consisting of support vector machine (SVM)
based intent classifier, and the linear chain CRF based slot
tagger (using CRF++). Only lexical features (n-grams) are
used in the experiments.

We have datasets from 4 different domains (communi-
cation, calendar, alarm and notes), each containing around
10,000 utterances. The datasets are each partitioned into

training, testing and development sets according to an 80/10/10
division.

Table 3. Intent error rate and slot F1 score on 4 domains us-
ing CNN TriCRF compared with independent training using
SVM and CRF (lexical feature only).

Domain Intent Error Slot F1
Indep CNN TriCRF Indep CNN TriCRF

Comm. 7.2 6.4 88.6 90.0
Calendar 7.2 6.4 85.9 88.0

Alarm 7.8 7.1 87.6 89.3
Notes 6.5 5.5 85.7 86.6

As Table 3 demonstrates, the advantage of CNN based
TriCRF is very consistent across the 4 domains for both tasks,
differing from the findings presented in [14]. We observe
0.7% - 1% absolute improvement in intent accuracy, and 0.9
- 2.1% absolute improvement in slot F1. The advantage here
could be the result of two reasons, namely the CNN based
modeling, and the joint training. Even if the dependency be-
tween intent and slot is not useful, in which case the joint
training brings little benefit, the proposed architecture can
benefit from the CNN based feature learning and yield supe-
rior results than the existing separate training strategy (SVM
+ CRF).

5. CONCLUSION

We proposed a NN version of the TriCRF model, which si-
multaneously handles intent detection and slot filling. The
slot filling component is globally normalized. The features
are extracted through CNN layers and shared by the two tasks.
Experimental results showed that the slot filling component
in our architecture is state-of-the-art, and the joint model out-
performs TriCRF by 1% absolute for both intent and slot. We
also applied the joint model to a number of real world do-
mains and demonstrated consistent improvement over the ex-
isting independent modeling strategy.

6. REFERENCES

[1] J. Lafferty, A. McCallum, and F. Pereira, “Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data,” in ICML, 2001.

[2] A. McCallum, D. Freitag, and F. Pereira, “Maximum
entropy markov models for information extraction and
segmentation,” in ICML, 2000, pp. 591–598.

[3] M. Jeong and G.G. Lee, “Triangular-chain condi-
tional random fields,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 16, pp. 1287–
1302, September 2008.

[4] R. Sarikaya, G.E. Hinton, and B. Ramabhadran, “Deep
belief nets for natural language call-routing,” in
ICASSP, 2011.

[5] A. Deoras and R. Sarikaya, “Deep belief network based
semantic taggers for spoken language understanding,”
in INTERSPEECH, 2013.

[6] K. Yao, J. Zweig, M. Hwang, Y. Shi, and D. Yu, “Re-
current neural networks for language understanding,” in
INTERSPEECH, 2013.

[7] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investiga-
tion of recurrent-neural-network architectures and learn-
ing methods for spoken language understanding,” in IN-
TERSPEECH, 2013.

[8] J. Peng, L. Bo, and J. Xu, “Conditional neural fields,”
in NIPS, 2009.

[9] T.M.T. Do and T. Artieres, “Neural conditional random
fields,” JMLR, 2010.

[10] D. Yu, S. Wang, and L. Deng, “Sequential labeling us-
ing deep-structured conditional random fields,” IEEE
Journal of Selected Topics in Signal Processing, 2010.

[11] R. Collobert and J. Weston, “A unified architecture for
natural language processing: Deep neural networks with
multitask learning,” in ICML, 2008.

[12] G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Improving neural networks by
preventing co-adaptation of feature detectors,” arXiv,
2012.

[13] H. Kudo, “Crf++: Yet another crf toolkit.,” in
http://crfpp.googlecode.com/svn/trunk/doc/index.html,
2009.

[14] Y. Wang, “Strategies for statistical spoken language
understanding with small amount of data an empirical
study,” in INTERSPEECH, 2010.

