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Abstract. Computing driving directions interactively on continental road net-
works requires preprocessing. This step can be costly, limiting our ability to in-
corporate new optimization functions, including traffic information or personal
preferences. We show how the performance of the state-of-the-art customizable
route planning (CRP) framework is boosted by GPUs, even though it has highly
irregular structure. Our experimental study reveals that our method is an order of
magnitude faster than a highly-optimized parallel CPU implementation, enabling
interactive personalized driving directions on continental scale.

1 Introduction

The past decade has seen intense research on the computation of driving directions in
road networks [2, 20]. This problem can be modeled as computing shortest paths on a
weighted graph and solved by classical algorithms such as Dijkstra’s [4]. For continen-
tal road networks (with tens of millions of arcs), however, queries can take seconds,
which is too slow for interactive applications. To overcome this, modern specialized
algorithms [1, 3, 12, 14] generally work in two phases: a preprocessing stage precom-
putes some auxiliary data, which is then used to answer on-line queries. The fastest
algorithms [1, 3] answer queries in microseconds or less after a few minutes of prepro-
cessing on a standard server.

Such queries are certainly fast enough, but since preprocessing must be rerun when-
ever arc weights change, these methods do not support dynamic scenarios such as
real-time traffic. The recent customizable route planning (CRP) algorithm [7, 10] (see
also [8]) offers a different trade-off by working in three phases. The initial prepro-
cessing phase is metric-independent: it takes as input only the graph topology. The
customization phase takes as input the cost function (metric) and the output of the pre-
vious phase. Finally, queries use the outputs of both phases to compute point-to-point
shortest paths. Queries are just fast enough (milliseconds rather than microseconds) for
interactive applications, but a new cost function can be incorporated in mere seconds
(by running only the customization phase), enabling CRP to handle frequent traffic up-
dates. The algorithm is currently used by Bing Maps to compute driving directions.

We investigate how we can use GPUs to accelerate customization even further.
Our approach is to set up all necessary data structures on the GPU during the metric-
independent preprocessing, such that we only need to invoke a few GPU kernels when
? The second author worked on this project while at Microsoft Research.
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a metric change occurs. This enables a degree of personalization well beyond what
is available in current systems. Most notably, one could define a cost function at query
time and still obtain driving directions in a fraction of a second. At first sight, computing
driving directions is not a natural application for GPUs. Through careful engineering,
however, we can harness the power of GPUs to make customization not only faster, but
also more energy-efficient than CPU-based (even multicore) implementations.

We are not aware of previous work that uses GPUs to process dynamic continen-
tal road networks effectively. PHAST [6] can efficiently answer one-to-all (rather than
point-to-point) queries on a GPU, but only after heavy CPU-based metric-dependent
preprocessing, and is thus not dynamic. Parallelizing a single shortest-path computation
on sparse and high-diameter graphs (such as road networks) is generally hard [16, 18]
even on multicore CPUs. It is even harder on GPUs [5,17,19], since access patterns and
operations are far from regular. We get around this issue by parallelizing more than a
single shortest-path computation.

2 Preliminaries

The standard representation [2] of a road network is as a directed graph G = (V,A),
where each vertex v ∈V represents an intersection (junction) and each arc a ∈ A repre-
sents a (directed) road segment. A cost function (or metric) ` : A→N maps each arc
a ∈ A to a positive cost (or length) reflecting the effort to traverse it. We use a more
realistic model that incorporates turn costs and restrictions. The customization phase
takes as input an expanded graph where vertices correspond to the heads of original
arcs, and arcs are the concatenation of an original turn and an original arc. For queries
and to store the graph in main memory, we use a more compact representation [7, 13].

Each original arc in our application is modeled as a collection of static properties,
such as physical length (in meters), road category (freeway, local road, or ferry, for
example), number of lanes, and speed limit. Similarly, each turn has a type (left turn,
right turn, and so on). A metric decoder is a function that maps these properties to the
cost of traversing the arc or making the turn. We could model special cases (such as
traffic) by storing costs explicitly for some exceptional arcs. We assume all costs are
integral and that the length of any shortest path fits in 32 bits.

A path in the graph is a sequence of arcs of the form (v0,v1), (v1,v2), (v2,v3), . . .,
(vk−1,vk). The cost (or length) of a path is the sum of the costs of its arcs and the
turns between them. The point-to-point shortest path problem takes as input the graph
G = (V,A) and two arcs as and at , and returns the shortest (minimum-length) path that
starts at as and ends at at in G.

Customizable Route Planning. The preprocessing phase of CRP starts by computing a
nested L-level partition. A partition of V is a collection of cells such that each vertex
v∈V belongs to exactly one cell. A nested L-level partition of V is a family of partitions
such that, for any level i < L and each cell C, there exists a cell C′ on level i+ 1 that
contains C; we say that C is a subcell of C′. (For simplicity, define a level-0 partition
consisting of singletons.) CRP uses the PUNCH [9] graph-partitioning algorithm to
generate an L-level partition top-down, partitioning level L first, then (recursively) each
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Fig. 1. A cell C with the overlays of its two subcells (left), its compact graph (center), and the
abstracted subgraph with entry (filled circles), inner (squares), and exit (hollow circles) vertices.

cell thus created. For each level l, PUNCH finds cells with no more than Ul (an input
parameter) vertices and minimizes the number of boundary arcs between cells.

The CRP preprocessing phase also sets up the topology of a multilevel overlay
graph [15]. Figure 1 (left) shows a cell C on some level. Every incoming boundary arc
(u,v) (with u 6∈C and v ∈C) corresponds to an entry vertex for C, and every outgoing
boundary arc (v,w) (with v ∈C and w 6∈C) defines an exit vertex for C. The overlay of a
cell is the complete bipartite graph with directed shortcuts (black arrows in the figure)
between its entry (filled circles) and exit (hollow circles) vertices. The overlay of level
l is the union of all cell overlays and boundary arcs (gray arrows) on this level.

The CRP customization phase computes the costs of all shortcut arcs on the over-
lay. It computes, for each cell C, the distances between each entry vertex and each exit
vertex: a shortcut (p,q) in C represents the shortest p–q path restricted to C. The algo-
rithm processes cells bottom-up, starting at level one; when processing a level-l cell C,
it works on the (small) overlay graph for level l− 1. One could simply run Dijkstra’s
algorithm from each entry vertex until all exit vertices are scanned [7], but one can do
better (even on CPUs [10]) using Bellman-Ford [4] or contraction [12]. Sections 3 and
4 detail these approaches and show how they can be effectively realized on the GPU.

A point-to-point CRP query runs bidirectional Dijkstra on the overlay graph, but
only entering cells that contain either the source s or the target t.

3 Search-Based Customization

The main subroutine of the CRP customization phase computes arc lengths of bipartite
graphs. The fastest [10] approach based on graph traversal is based on the classical
Bellman-Ford algorithm. To process a cell C at level i, it first builds a compact graph
GC = (VC,AC) consisting of the shortcuts and boundary arcs on level i− 1 that are in
C, but with the head vertices of the internal boundary arcs (i.e., those not on level i)
removed and their incident arcs concatenated. See Figure 1 (center). Let NC and XC be
the sets of entry and exit vertices of C, respectively. The algorithm maintains, for each
vertex in VC, a distance array with |NC| values; the k-th position for the k-th entry vertex
is initialized with zero, and all others with infinity. Then it runs Bellman-Ford as long
as there is an improvement on any of the distance labels. Eventually, the distance labels
of the exit vertices will reflect their distances from each of the entry vertices.
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Basic Algorithm. On small diameter graphs, Bellman-Ford works well on GPUs [5],
but we can make it even more efficient for our purposes. We can classify the vertices in
VC into three categories: entry (NC), exit (XC), and inner (IC). Figure 1 (center) shows
that entry vertices have only outgoing arcs, and exit vertices only incoming arcs. More-
over, there are four types of arcs in AC (illustrated in Figure 1 (right), obtained by rear-
ranging Figure 1 (center)). The init arcs A j

C (dashed gray) link entry to inner vertices,
the inner arcs Ai

C (solid black) connect inner vertices to one another, the collection arcs
Ac

C (dashed black) link inner to exit vertices, and the mapping arcs Am
C (solid gray) link

entry to exit vertices. Note that init and mapping arcs are shortcuts, while each inner
or collection arc is the concatenation of a shortcut and a cut arc (all from level i− 1).
When running on GC, Bellman-Ford touches each mapping and init arc only once, at
which point it sets exactly one distance value at its head vertex. We can exploit this.

For a cell C, let Gi
C = (IC,Ai

C) be its inner graph and V c
C = (XC,Ac

C) be its collection
graph. In general, on level i, we compute the costs of shortcuts on level i (to be stored
in a shortcut array Si) from costs of level-i−1 shortcuts and boundary arcs (stored in a
boundary array B). Our algorithm processes a cell in five phases. The mapping phase
copies the costs of the mapping arcs from Si−1 to Si. The subsequent aggregation phase
computes the costs of the inner arcs from Si−1 and B. The third phase (injection) copies
the init arc costs from Si−1 into the distance array (which now has size |NC| · |IC|). The
fourth phase, search, runs Bellman-Ford on the inner graph, stopping when there is no
improvement. The final collection phase first aggregates the costs of the collection arcs
(as in the aggregation phase); then, for each exit vertex v, it iterates over its incoming
collection arcs to compute the costs of the level-i shortcuts ending at v, updating Si. We
propose two GPU implementations of this approach: global and local.

Global Implementation. The global implementation is orchestrated by the CPU and
invokes multiple kernels per level i. We maintain one global distance array representing
the distance values of all inner vertices of all cells on level i.

For each of the first three phases of customization (mapping, aggregation, and in-
jection), we create a single kernel with one thread for each relevant arc. We support
these threads by maintaining auxiliary arrays with the relevant information in global
memory; thread t reads position t from this array. For aggregation, we arrange the data
in global memory such that threads also write their output to consecutive positions.

More precisely, the mapping phase has one thread per mapping arc: it uses the aux-
iliary array to learn the position it must read from (in Si−1) and write to (in Si). During
the aggregation phase, thread t computes the length of inner arc t; the corresponding
auxiliary array contains the positions in Bi−1 and Si−1 the thread must read from. Sim-
ilarly, injection has one thread per init arc, and its auxiliary array stores a position in
Si−1 (for reading) and another in the distance array (for writing).

The search phase uses one thread per distance value. Recall that we have one dis-
tance per pair (inner vertex, entry vertex). A thread processes all incoming arcs for a
fixed inner vertex v and updates a single distance value (for one entry vertex). The cor-
responding index array contains the vertex ID it has to process, as well as an index (a
number from 0 to |NC|−1) indicating which of its distances to update. This information
can be packed into 32 bits. Also, rather than storing the tail ID, an arc stores the position
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of the first distance of its tail; the thread then uses the index as an offset. Since global
synchronization is required, each Bellman-Ford iteration runs as a single kernel. Each
thread writes to a timestamp array (indexed by cell number) whenever it updates some
value; Bellman-Ford stops after an iteration in which this array does not change.

The collection phase is similar to the search phase, but operates on the exit vertices
and is limited to one round. Moreover, it stores its information directly to Si. To make
these accesses more efficient, shortcuts are ordered by tail in global memory.

Note that our implementation has no write-write conflict. During Bellman-Ford, a
thread may read a position that is being updated by another. Since integers are atomic
and values only improve from one round to the next, this does not affect correctness.

Local Implementation. The local implementation invokes one kernel per level and op-
erates block-wise. For simplicity, we first describe our algorithm assuming it processes
one cell per thread block, then generalize it. Since we no longer have one thread for
each value we deal with, we use a small block header to store relevant information the
threads require. It includes the numbers of all types of arcs (mapping, injection, inner,
and collection) and vertices (inner, entry, and exit). It also has pointers to the positions
in global memory where we store the topology of the inner and collection graphs.

The algorithm starts by reserving space in shared memory for the distance values it
will compute (initialized with ∞). The mapping phase is exactly as before. The aggre-
gation phase is also similar, but stores the values in shared memory; it also copies the
inner graph topology to shared memory. Similarly, injection works as before, but writ-
ing into the distance array in shared memory. The search phase now operates entirely in
shared memory and uses the GPU block-based synchronization between Bellman-Ford
rounds. Note that thread t (within the block) can deduct from the block header both the
vertex it has to work on (bt/|IC|c) and the entry vertex number (t mod |IC|). The col-
lection phase first copies the collection graph to shared memory (overwriting the inner
graph, which is no longer needed), aggregating the costs of the collection arcs. It then
performs a single Bellman-Ford round and stores the final distances to global memory.
We use global memory as fallback if any of these phases does not fit in shared memory.

We use 16 bits for indexing; if that is not enough for a given cell, we process the
entire level using the global implementation instead. This happens only very rarely, and
can usually be avoided by optimizations we introduce later.

Since we know in advance how much shared memory each cell occupies, we can
often group multiple cells into the same block. We reorder the cells in GPU memory
to ensure their shortcuts appear consecutively. For regularity, we only group cells that
have the same number of entry vertices. The algorithm works exactly as before: it just
sees the input as a bigger, disconnected graph.

Comparing the local and global approaches, the latter is more space-consuming,
since it needs to store additional data for each distance value in global memory. It is
still a good option when there are few cells or when graphs are too large to fit in shared
memory. We thus use the global implementation on levels with fewer than 100 cells
(about 6 times the typical number of multi-processors of current GPUs), or when the
number of collection or inner arcs exceeds 65536, the maximum number the local ap-
proach can index with 16 bits.



6 D. Delling, M. Kobitzsch, and R. F. Werneck

We have been assuming that we can use a level-i−1 overlay to compute the overlay
of level i, but this is not true for the first level, when we must operate on the underlying
original graph. We can handle this by adapting the routine that aggregates arc costs.
Mapping and init arcs represent an original graph arc, and all other arcs are a concate-
nation of a turn and an original arc. Therefore, for a mapping or init arc, we store its
physical properties (rather than a position in Si−1); for other arcs, we store the turn type
as well. In all cases, we apply the current metric decoder during aggregation.

An important optimization is to use mezzanine levels [10], partition levels that are
used to accelerate customization, but discarded for queries (to save space). Mezzanine
levels help reduce the size of inner graphs (which are expensive to deal with) by turning
more arcs into init, mapping, or collection arcs (which are accessed a constant number
of times). This reduces the number of Bellman-Ford iterations, our main bottleneck.
Mezzanine levels are not free, though: there is some overhead for mapping the extra
levels, but this is very cheap on the GPU (not so on CPUs [10]). Moreover, they increase
both the number of cells and the space consumption on the GPU. Note, however, that we
can overwrite shortcut weights for mezzanine level i as soon as level i+1 is processed.

4 Contraction-Based Customization

For lower levels of the hierarchy, customization is faster [10] if one uses graph con-
traction instead of graph searches (Dijkstra or Bellman-Ford). We first recap how the
CPU-based approach works on the CPU, then explain how it can be adapted to the GPU.

When processing a cell C on the CPU, we can compute the lengths of the short-
est paths (in GC) from its entry vertices to its exit vertices using the shortcut opera-
tion [12]. Shortcutting an inner vertex v means removing it from the graph and, for each
incoming arc (u,v) and outgoing arc (v,w), creating a shortcut arc (u,w) with length
`(u,w) = `(u,v)+ `(v,w). If (u,w) does not yet exist, we insert it; if it does, we update
its length if the new arc is shorter. By repeatedly applying this operation to all inner ver-
tices in GC, one ends up with a bipartite graph with arcs between entry and exit vertices
of C, where arc lengths represent the corresponding distances (missing arcs represent
infinite distances). Any contraction order leads to the same final topology, but a care-
fully chosen (during preprocessing) order based on nested dissections leads to fewer
operations overall and a faster algorithm [10].

The fundamental operation of contraction is to read the costs of two arcs, add them
up, compare the result with the cost of a third arc, and update its cost if needed. Instead
of using a graph during customization, Delling and Werneck [10] propose simulating
the contraction process during preprocessing to create an instruction array representing
these fundamental operations (microinstructions) compactly as triples (a,b,c), where a
and b are the positions to be read and c the position to write to. These positions refer to
a memory array M and correspond to arc costs. Each cell C has its own instruction and
memory arrays. Moreover, they use an arc instruction array to initialize M.

Building the GPU Microinstructions. Microinstructions provide a natural starting
point for implementing contraction-based customization on the GPU. Although the mi-
croinstruction array can be fairly large, it is only read once (and sequentially), so we
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keep it in global memory. Since M is much smaller and has a less rigid access pattern
(each position can be accessed multiple times), we keep it in shared memory. For opti-
mal performance, however, we must address several issues: decreasing the space used
by microinstructions (for fewer accesses to slower memory), reducing the memory ar-
ray (to keep multiple cells in shared memory at once), and parallelization within a cell
(for efficiency on GPU). We do so by preprocessing and enriching the microinstructions
before copying them to the GPU (the arc instructions can be copied essentially as is).

First, we make the microinstructions more compact. Since each entry in the memory
array M takes 32 bits of shared memory, it can have at most 12 288 positions in the
GPUs we test. These can be addressed with 14 bits, or 42 bits per triple in the instruction
array. For most cells, however, 32 bits are enough. To achieve this, we first ensure that
a< b in each instruction triple (a,b,c) (we swap a and b otherwise), then store the triple
(a,b−a,c−b) using 14, 8, and 9 bits, respectively (we reserve the 32nd bit for later).
This means a can be any position in shared memory, b can refer to positions a+ 1 to
a+256, and c can refer to b−256 to b+255. If a cell has at least one instruction that
cannot use this compact representation (with b too far from a or c too far from b), we
use a full 48-bit representation for all of its microinstructions.

To parallelize within a cell, we group independent instructions by layers. Note that
two instructions in a cell are independent if they do not write to the same memory
position. We create these layers by working in rounds, from latest to earliest, greedily
assigning instructions to the latest possible layer (after accounting for the dependencies
between them); we then apply a postprocessing step to make the layers more balanced.

Next, we reduce the memory array. Once a shortcut is eliminated by the contraction
routine, the memory position that stores its cost could be reused for another shortcut,
thus saving on shared memory. We identify such reusage opportunities during prepro-
cessing as follows. We process the layered microinstructions from earliest to latest. We
interpret each entry in a triple (a,b,c) as a shortcut (rather than positions in M, which
is what we are trying to determine). We keep counters of pending reads and writes for
each shortcut and a candidate pool of free memory positions (initially, all but those used
by the arc instructions); when a read counter becomes zero for some shortcut, we add
its position to the pool for potential reuse in future layers. When processing an instruc-
tion (a,b,c) that writes to shortcut c for the first time, we assign c to the free position
that is closest to b; in addition, we use the 32nd bit (mentioned above) to mark this in-
struction, indicating that the GPU must simply write to the target position (ignoring the
value already there) when executing this instruction. As an optimization, if an instruc-
tion (a,b,c) performs the last read from a (or b) and the first to c, we can immediately
assign c to a’s (or b’s) position. If after running this basic algorithm the new instruc-
tions still cannot be represented in compact form (32 bits), we perturb the positions of
the original arcs and retry; this is cheap and helps in some cases. Since the final short-
cuts do not necessarily have consecutive positions in M, we use a map to translate them
to the corresponding (consecutive) positions in S1, the shortcut array on level 1. Note
that we use microinstructions only to compute the shortcuts on the lowest level.

Finally, for better block utilization, we greedily pack cells as long as their combined
memory arrays fit in shared memory. For better memory access patterns, we do not mix
compact and full cells. We prefer to group cells with the same number of layers within
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a block, but we may combine blocks with different depth if needed. When we finally
store the instruction array on the GPU, we reorder it to reflect the block assignments:
instructions within the same block are sorted by layer (across cells). Since the GPU
must synchronize between layers, we store layer sizes in the block header.

GPU Execution. With the data structures set up, we compute S1 on the GPU as follows.
We invoke one kernel for the full computation, since synchronization is only needed
within a block. On each block, we first run the arc instructions. The block header stores
the number of arc instructions in each of its cells; each thread can use this information
(and its own ID) to determine where in shared memory to store the result of the arc
instruction it is responsible for. We then execute the microinstructions, layer by layer,
also with one thread per instruction. Finally, we map the costs of the output shortcuts to
S1, using one thread per value. For each block, we store its first position in S1, allowing
each thread to determine (using its own ID) where to write to.

5 Putting Everything Together

During the metric-independent phase of CRP, we set up all necessary data structures on
the GPU, including arc instructions to aggregate the costs of the boundary arcs.

The work flow of the customization phase is as follows. We start by transferring
the current metric decoder (less than a kilobyte) from main to GPU memory. Then we
invoke two streams on the GPU, one computing the lowest level (using either Bellman-
Ford or microinstrutions), and one setting the costs of the boundary arcs of the overlay
graph. When both are done, one stream processes all remaining levels, while another
asynchronously copies shortcut levels to main memory as soon as they are ready. This
hides the time needed for the GPU-CPU data transfer almost completely.

Our implementation can use multiple GPUs in a single machine simply by allocat-
ing all top-level cells (and their subcells) among them so as to balance the (estimated)
work. This approach requires no GPU to GPU communication during customization.

6 Experiments

We implemented all algorithms in C++ and CUDA, and compiled them with Visual
C++ 2012 and CUDA 5.5. We ran most tests on a desktop computer running Windows
8.1. It has an Intel Core-i7 4770 (4 cores, 8 threads, 3.4 GHz, 4x64 KB L1, 4x256 KB
L2, and 8 MB L3 cache) and 32 GiB of 1600-DDR3 RAM. Moreover, it has an ASUS
NVIDIA GTX Titan with 6144 MiB of DDR5 RAM (6 GHz) and 14 multiprocessing
units, each with 192 cores (2688 cores in total). The GPU has a normal clock rate of
837 MHz, but operates at 1 GHz as long as it stays cool enough (which was the case for
all of our experiments).

Our focus is on the overall customization time, the total time from a metric change
to the point we can compute driving directions (on the CPU). Thus, in our GPU setting,
we include the time needed for data transfer (copying the metric decoder to the GPU
and the shortcut costs back). All GPU times are averages over 1000 executions.
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Table 1. Impact of mezzanine levels on customization done by local and global Bellman-Ford.

LOCAL BELLMAN-FORD GLOBAL BELLMAN-FORD

TIME ON LEVEL [MS] TOTAL TIME ON LEVEL [MS] TOTAL

Z 0 1 2 3 4 5 [ms] [MiB] 0 1 2 3 4 5 [ms] [MiB]
0 73.8 37.9 23.0 25.5 40.7 — — 2212 157.6 82.1 56.9 45.8 43.7 40.4 477 3679
1 52.2 26.5 14.4 12.6 16.7 65.8 244 2816 94.9 48.9 28.6 25.9 25.6 22.8 295 4363
2 51.9 26.8 14.6 11.3 16.5 50.7 228 3412 99.3 47.9 26.1 23.0 23.7 21.3 289 5559
3 56.0 27.2 14.0 10.6 12.4 38.5 212 3911 114.9 47.7 25.5 20.4 20.0 18.8 297 5913
4 61.7 28.7 15.3 10.6 13.9 42.3 224 4342 133.1 52.0 44.7 21.3 21.2 19.7 344 7318

Our default input represents the road network of (Western) Europe and was made
available by PTV AG for the 9th DIMACS Implementation Challenge [11]. This graph
has |V | = 18 · 106 vertices, |A| = 42 · 106 arcs, and travel times as the cost function.
As in previous work [7], we augment it by U-turn costs of 100 s (other turns are free).
Our default CRP setup has 5 levels, with maximum cell sizes of U1 = 28, U2 = 211,
U3 = 214, U4 = 217, and U5 = 220; it requires about 72 MiB to store all shortcut costs.

Table 1 evaluates the global (GBF) and local (LBF) Bellman-Ford implementations,
as well as how mezzanine levels affect them. As in previous work [7], we always keep
two phantom levels (these are fixed mezzanine levels) of size U−1 = 4 and U0 = 32. We
always use LBF to compute the lowest level (cell size 4); this takes about 50 ms. We then
vary the number of mezzanine levels (Z) between two consecutive levels; maximum
mezzanine cell sizes are set so that their ratios across levels remain roughly constant.
The table reports the times spent on each level (starting from the level below) for 0 ≤
Z ≤ 4. A “—” entry means that LBF could not be executed because at least one cell has
more than 65 535 inner arcs (see Section 3). We also report the total customization time
(including all mezzanine levels) and the space consumption on the GPU.

We observe that mezzanine levels reduce customization times in general. One mez-
zanine level is enough on lower levels, but we can use up to three on higher levels, since
more mezzanine levels can make more inner graphs fit into shared memory. Moreover,
LBF is faster than GBF for all levels but the highest one, on which the number of cells
is small and LBF is unbalanced. GBF consumes more space, mostly due to the distance
array and thread data we need to store in global memory. For the rest of the paper, our
default setting is to use Z = 1 up to level 1 and Z = 3 for higher levels; moreover, we use
GBF for levels with fewer than 100 cells, and LBF otherwise. With this combination,
customization takes 182.0 ms and uses 3034 MiB of GPU memory.

With this default setup, we now evaluate the effect of microinstructions. Figure 2
(left) reports the (relative) increase in customization time and GPU space when we use
microinstructions up to a certain (possibly mezzanine) level, and Bellman-Ford after-
wards. Using microinstructions up to cell size 32 reduces customization times by up to
20% (to 150.4 ms), but increases the overall space consumption by 25% (to 3792 MiB).
Interestingly, using microinstructions for bigger or smaller cells does not help: many
bigger cells cannot use instructions packed into 32 bits, and for smaller cells the over-
head for initializing the memory array by arc instructions is too high. For the remaining
experiments, we use microinstructions to process cells of size up to 32.
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Fig. 2. Left: Impact of microinstructions on GPU space consumption and customization times for
varying cell sizes. Right: Impact of clock rates on customization times.

Figure 2 (right) reports the speedup when we vary the core clock rate of the GTX
Titan between 900 and 1200 MHz (recall that 1000 is the default) and the memory clock
rate between 5400 and 7200 MHz (the default is 6000). We observed no data errors
when overclocking in these ranges. The results indicate we are computation bound:
increasing the core clock by 20% accelerates customization by almost 17%, whereas
the memory clock rate has very little impact on the overall performance.

Table 2 compares our novel GPU implementation of CRP with the previous (highly
tuned) CPU implementation [10], which uses microinstructions up to cell sizes of 256.
We test various machines and GPU setups: M1-4 is our default machine (Core i7 4770),
M2-12 has two 6-core Intel Xeon X5680 (3.33 GHz, 6x64 KB L1, 6x256 KB L2, and
12 MB shared L3 cache) with 96 GiB of DDR3-1333 RAM, and M2-16 has two 8-core
Intel Xeon E5-2690 (2.9 GHz, 8x64 KB L1, 8x256 KB L2, and 20 MB shared L3 cache)
with 384 GiB of DDR-1066 RAM. (We turn hyperthreading off for M2-12 and M2-16
because it does not help performance in our setting.) Finally, we test different GPU
setups in M1-4: our default Titan, the Titan with core clock rate overclocked by 20%,
two EVGA GTX 780 Ti OC (15 multiprocessors, 2880 CUDA cores, 1.2 GHz core, and
3 GiB of 7 GHz memory), as well as four GTX 780 Ti. (Note that a single GTX 780 Ti
does not have enough memory for our default setup.) Besides customization times, we
report the number of CPU threads used (t), the space occupied by all data structures in

Table 2. Key figures for various hardware setups.

RATE [GHZ] MEM [MIB] TIME POW ENER.
machine t GPU core mem main GPU [ms] [W] [J]
M1-4 1 Titan 1.0 6.0 484 3791 150.4 248 37.3
M1-4 1 Titan 1.2 6.0 484 3791 129.3 280 36.2
M1-4 2 2x780 Ti 1.2 7.0 484 3800 67.3 574 38.6
M1-4 4 4x780 Ti 1.2 7.0 484 3821 35.8 1045 37.4
M1-4 1 – – – 3119 – 2654.0 54 143.3
M1-4 8 – – – 3119 – 645.0 94 60.6
M2-12 12 – – – 3119 – 371.0 332 123.2
M2-16 16 – – – 3119 – 346.0 401 141.5
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Table 3. Performance of CRP with GPU customization on other inputs.

DATA STRUCT. CUSTOM QUERIES

|V | cost setup space[MiB] time space nmb. dist path
source input [×106] func [s] main GPU [ms] [MiB] scans [ms] [ms]
PTV Europe 18.0 distance 1736 484 3821 36.3 72.3 2993 1.30 5.95

Europe 18.0 time 1736 484 3821 35.8 72.3 3050 1.17 3.17
TIGER US 23.9 distance 2005 682 6939 57.9 113.1 3149 1.30 8.05

US 23.9 time 2005 682 6939 56.6 113.1 3006 1.14 5.47
Bing N. America 30.3 default 2767 908 8590 68.4 139.1 3387 1.12 3.98

Europe 47.9 default 3618 1128 6707 62.8 124.1 3661 1.35 4.03

main and GPU memory, the (system-wide) power usage during customization, and the
resulting average energy consumption for a single customization.

The GPU implementation always outperforms the CPU implementation. Using a
single GPU, our algorithm is about 20 times faster than a sequential CPU execution.
Increasing the number of GPUs linearly decreases customization times; with 4 GPUs,
we are still 10 times faster than the best CPU setup (on 16 cores). Moreover, GPU
customization is 2 to 3 times more energy-efficient, which is consistent with previous
observations on related problems [6]. We also note that, since we store microinstruc-
tions on the GPU, the memory footprint on the CPU is reduced significantly.

Finally, we test more benchmark instances. Besides PTV Europe, we use TIGER
USA from the 9th DIMACS Implementation Challenge, both with two cost functions:
driving times (enriched by 100s U-turns) and distances. We also evaluate instances from
Bing Maps, which build on Navteq data and include actual turn costs and restrictions;
the proprietary “default” metric correlates well with driving times. We use the 4xGTX
780 Ti setup. Table 3 reports, besides customization times and CPU/GPU space con-
sumption, the overall time spent (using all CPU cores) in the metric-independent phase
(partitioning, microinstruction generation, and setting up the GPU data structures). For
reference, it also reports the average performance for 10 000 random queries, given by
the number of vertices scanned and the times to find the distance and a full description
of the path (including the distance). Note that we do not cache path unpacking [10],
thus capturing the average time to execute the first query after a metric change.

We can apply a metric change on every input in less than 70 ms, which is 10–12
times faster than on all 12 cores of M2-12 [10]. Preprocessing takes an hour or less,
which is fast enough to incorporate topology changes in a timely manner. About 90%
of that time is spent partitioning the graph; setting up our GPU data structures only
takes a few minutes. On our Bing instances, computing (on the CPU) the first path after
a metric changes takes about 4 ms, still considerably less time than customization.

7 Final Remarks

We have shown how to use GPUs to quickly incorporate a new cost function when com-
puting shortest path on road networks. Although computing shortest paths on arbitrary
graphs is not a natural fit for GPUs (given its irregular nature), we can still take ad-
vantage of their architecture by carefully exploiting various features of our application.



12 D. Delling, M. Kobitzsch, and R. F. Werneck

Since we work on a graph with fixed topology, we use preprocessing to carefully plan
the computation and prepare GPU-friendly data structures. Instead of operating on the
entire graph at once, we decompose it into small graphs (cells) with low diameter, which
usually fit in shared memory and can be processed in parallel. Finally, cost functions
are described compactly, saving on communication overhead.
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