Changing Bases: Multistage Optimization for
Matroids and Matchings

Anupam Gupta'*, Kunal Talwar?, and Udi Wieder?

! Computer Science Dept., Carnegie Mellon University, Pittsburgh, PA 15213.
anupamg@cs.cmu.edu
2 Microsoft Research Silicon Valley. 1065 La Avenida, Mountain View, CA, USA.
{kunal,uwieder}@microsoft.com

Abstract. This paper is motivated by the fact that many systems need
to be maintained continually while the underlying costs change over time.
The challenge then is to continually maintain near-optimal solutions to
the underlying optimization problems, without creating too much churn
in the solution itself. We model this as a multistage combinatorial opti-
mization problem where the input is a sequence of cost functions (one
for each time step); while we can change the solution from step to step,
we incur an additional cost for every such change.

We first study the multistage matroid maintenance problem, where we
need to maintain a base of a matroid in each time step under the changing
cost functions and acquisition costs for adding new elements. The online
version of this problem generalizes onine paging, and is a well-structured
case of the metrical task systems. E.g., given a graph, we need to maintain
a spanning tree T; at each step: we pay c:(7%) for the cost of the tree at
time ¢, and also |T3 \ Tt—1]| for the number of edges changed at this step.
Our main result is a polynomial time O(log m log r)-approximation to the
online multistage matroid maintenance problem, where m is the number
of elements/edges and r is the rank of the matroid. This improves on
results of Buchbinder et al. [7] who addressed the fractional version of
this problem under uniform acquisition costs, and Buchbinder, Chen and
Naor [8] who studied the fractional version of a more general problem.
We also give an O(logm) approximation for the offline version of the
problem. These bounds hold when the acquisition costs are non-uniform,
in which case both these results are the best possible unless P=NP.

We also study the perfect matching version of the problem, where we
must maintain a perfect matching at each step under changing cost
functions and costs for adding new elements. Surprisingly, the hard-
ness drastically increases: for any constant & > 0, there is no O(n'~¢)-
approximation to the multistage matching maintenance problem, even
in the offline case.

1 Introduction

In a typical instance of a combinatorial optimization problem the underlying
constraints model a static application frozen in one time step. In many appli-
cations however, one needs to solve instances of the combinatorial optimization

* Research performed while the author was at Microsoft Reserach Silicon Valley. Re-
search was partly supported by NSF awards CCF-0964474 and CCF-1016799, and
by a grant from the CMU-Microsoft Center for Computational Thinking.

problem that changes over time. While this is naturally handled by re-solving
the optimization problem in each time step separately, changing the solution one
holds from one time step to the next often incurs a transition cost. Consider,
for example, the problem faced by a vendor who needs to get supply of an item
from k different producers to meet her demand. On any given day, she could get
prices from each of the producers and pick the & cheapest ones to buy from. As
prices change, this set of the & cheapest producers may change. However, there is
a fixed cost to starting and/or ending a relationship with any new producer. The
goal of the vendor is to minimize the sum total of these two costs: an ” acquisition
cost” a(e) to be incurred each time she starts a new business relationship with a
producer, and a per period cost ¢;(e) of buying in period ¢ from the each of the
k producers that she picks in this period, summed over T' time periods. In this
work we consider a generalization of this problem, where the constraint “pick
k producers” may be replaced by a more general combinatorial constraint. It is
natural to ask whether simple combinatorial problems for which the one-shot
problem is easy to solve, as the example above is, also admit good algorithms
for the multistage version.

The first problem we study is the Multistage Matroid Maintenance problem
(MMM), where the underlying combinatorial constraint is that of maintaining a
base of a given matroid in each period. In the example above, the requirement
the vendor buys from k different producers could be expressed as optimizing over
the k—uniform matroid. In a more interesting case one may want to maintain a
spanning tree of a given graph at each step, where the edge costs ¢;(e) change
over time, and an acquisition cost of a(e) has to paid every time a new edge
enters the spanning tree. (A formal definition of the MMM problem appears in
Section 2.) While our emphasis is on the online problem, we will mention results
for the offline version as well, where the whole input is given in advance.

A first observation we make is that if the matroid in question is allowed to be
different in each time period, then the problem is hard to approximate to any
non-trivial factor (see Section A.1) even in the offline case. We therefore focus on
the case where the same matroid is given at each time period. Thus we restrict
ourselves to the case when the matroid is the same for all time steps.

To set the baseline, we first study the offline version of the problem (in Section 3),
where all the input parameters are known in advance. We show an LP-rounding
algorithm which approximates the total cost up to a logarithmic factor. This
approximation factor is no better than that using a simple greedy algorithm, but
it will be useful to see the rounding algorithm, since we will use its extension in
the online setting. We also show a matching hardness reduction, proving that
the problem is hard to approximate to better than a logarithmic factor; this
hardness holds even for the special case of spanning trees in graphs.

We then turn to the online version of the problem, where in each time period, we
learn the costs ¢;(e) of each element that is available at time ¢, and we need to
pick a base S; of the matroid for this period. We analyze the performance of our
online algorithm in the competitive analysis framework: i.e., we compare the cost
of the online algorithm to that of the optimum solution to the offline instance
thus generated. In Section 4, we give an efficient randomized O(log|E|log(rT))-
competitive algorithm for this problem against any oblivious adversary (here
E is the universe for the matroid and r is the rank of the matroid), and show

2

that no polynomial-time online algorithm can do better. We also show that the
requirement that the algorithm be randomized is necessary: any deterministic
algorithm must incur an overhead of Q2(min(|E|,T)), even for the simplest of
matroids.

Our results above crucially relied on the properties of matriods, and it is natural
to ask if we can handle more general set systems, e.g., p-systems. In Section 5,
we consider the case where the combinatorial object we need to find each time
step is a perfect matching in a graph. Somewhat surprisingly, the problem here is
significantly harder than the matroid case, even in the offline case. In particular,
we show that even when the number of periods is a constant, no polynomial
time algorithm can achieve an approximation ratio better than £2(|E|'~¢) for
any constant € > 0.

1.1 Techniques

We first show that the MMM problem, which is a packing-covering problem,
can be reduced to the analogous problem of maintaining a spanning set of a
matroid. We call the latter the Multistage Spanning set Maintenance (MSM)
problem. While the reduction itself is fairly clean, it is surprisingly powerful
and is what enables us to improve on previous works. The MSM problem is a
covering problem, so it admits better approximation ratios and allows for a much
larger toolbox of techniques at our disposal. We note that this is the only place
where we need the matroid to not change over time: our algorithms for MSM
work when the matroids change over time, and even when considering matroid
intersections. The MSM problem is then further reduced to the case where the
holding cost of an element is in {0, co}, this reduction simplifies the analysis.

In the offline case, we present two algorithms. We first observe that a greedy
algorithm easily gives an O(logT)-approximation. We then present a simple
randomized rounding algorithm for the linear program. This is analyzed using
recent results on contention resolution schemes [13], and gives an approximation
of O(log rT'), which can be improved to O(logr) when the acquisition costs are
uniform. This LP-rounding algorithm will be an important constituent of our
algorithm for the online case.

For the online case we again use that the problem can be written as a covering
problem, even though the natural LP formulation has both covering and packing
constraints. Phrasing it as a covering problem (with box constraints) enables us
to use, as a black-box, results on online algorithms for the fractional problem [9].
This formulation however has exponentially many constraints. We handle that
by showing a method of adaptively picking violated constraints such that only
a small number of constraints are ever picked. The crucial insight here is that if
x is such that 2z is not feasible, then x is at least % away in ¢ distance from
any feasible solution; in fact there is a single constraint that is violated to an
extent half. This insight allows us to make non-trivial progress (using a natural
potential function) every time we bring in a constraint, and lets us bound the
number of constraints we need to add until constraints are satisfied by 2.

1.2 Related Work

Our work is related to several lines of research, and extends some of them. The
paging problem is a special case of MMM where the underlying matroid is a uni-
form one. Our online algorithm generalizes the O(log k)-competitive algorithm

3

for weighted caching [5], using existing online LP solvers in a black-box fash-
ion. Going from uniform to general matroids loses a logarithmic factor (after
rounding), we show such a loss is unavoidable unless we use exponential time.

The MMM problem is also a special case of classical Metrical Task Systems
[6]; see [1, 4] for more recent work. The best approximations for metrical task
systems are poly-logarithmic in the size of the metric space. In our case the
metric space is specified by the total number of bases of the matroid which is
often exponential, so these algorithms only give a trivial approximation.

In trying to unify online learning and competitive analysis, Buchbinder et al. [7]
consider a problem on matroids very similar to ours. The salient differences are:
(a) in their model all acquisition costs are the same, and (b) they work with
fractional bases instead of integral ones. They give an O(logn)-competitive al-
gorithm to solve the fractional online LP with uniform acquisition costs (among
other unrelated results). Our online LP solving generalizes their result to arbi-
trary acquisition costs. They leave open the question of getting integer solutions
online (Seffi Naor, private communication), which we present in this work. In a
more recent work, Buchbinder, Chen and Naor [8] use a regularization approach
to solving a broader set of fractional problems, but once again can do not get
integer solutions in a setting such as ours.

Shachnai et al. [28] consider “reoptimization” problems: given a starting solution
and a new instance, they want to balance the transition cost and the cost on
the new instance. This is a two-timestep version of our problem, and the short
time horizon raises a very different set of issues (since the output solution does
not need to itself hedge against possible subsequent futures). They consider a
number of optimization/scheduling problems in their framework.

Cohen et al. [15] consider several problems in the framework of the stability-
versus-fit tradeoff; e.g., that of finding “stable” solutions which given the previous
solution, like in reoptimization, is the current solution that maximizes the quality
minus the transition costs. They show maintaining stable solutions for matroids
becomes a repeated two-stage reoptimization problem; their problem is poly-
time solvable, whereas matroid problems in our model become NP-hard. The
reason is that the solution for two time steps does not necessarily lead to a
base from which it is easy to move in subsequent time steps, as our hardness
reduction shows. They consider a multistage offline version of their problem
(again maximizing fit minus stability) which is very similar in spirit and form
to our (minimization) problem, though the minus sign in the objective function
makes it difficult to approximate in cases which are not in poly-time.

In dynamic Steiner tree maintenance [21, 24, 18] where the goal is to maintain an
approximately optimal Steiner tree for a varying instance (where terminals are
added) while changing few edges at each time step. In dynamic load balancing [2,
16] one has to maintain a good scheduling solution while moving a small number
of jobs around. The work on lazy experts in the online prediction community [11]
also deals with similar concerns.

There is also work on “leasing” problems [25, 3, 26]: these are optimization
problems where elements can be obtained for an interval of any length, where
the cost is concave in the lengths; the instance changes at each timestep. The
main differences are that the solution only needs to be feasible at each timestep

4

(i.e., the holding costs are {0,00}), and that any element can be leased for any
length ¢ of time starting at any timestep for a cost that depends only on /,
which gives these problems a lot of uniformity. In turn, these leasing problems
are related to “buy-at-bulk” problems.

2 Maintaining Bases to Maintaining Spanning Sets

Given reals c(e) for elements e € E, we will use ¢(S) for S C E to denote
Y ecscle). We denote {1,2,...,T} by [T7].

We assume basic familiarity with matroids: see, e.g., [27] for a detailed treatment.
Given a matroid M = (E,Z), a base is a maximum cardinality independent set,
and a spanning set is a set .S such that rank(S) = rank(F); equivalently, this set
contains a base within it. The span of a set S C E is span(S) = {e € E | rank(S+
e) = rank(S)}. The matroid polytope P;(M) is defined as {z € RLEOl | z(S) <
rank(S) VS C E}. The base polytope Pg(M) = Pr(M) N {z | z(E) = rank(E)}.
We will sometimes use m to denote |E| and r to denote the rank of the matroid.

Formal Definition of Problems An instance of the Multistage Matroid Main-
tenance (MMM) problem consists of a matroid M = (E,T), an acquisition cost
a(e) > 0 for each e € E, and for every timestep ¢ € [T] and element e € E, a
holding cost cost c;(e). The goal is to find bases {B; € Z};cr) to minimize

> (ce(Be) + a(Be \ Bi-1)), (2.1)

where we define By := (. A related problem is the Multistage Spanning set
Maintenance(MSM) problem, where we want to maintain a spanning set Sy C F
at each time, and cost of the solution {S¢};c[r (once again with Sy := () is

>4 (ce(Sh) +a(Se \ Si-1)). (2.2)

Maintaining Bases versus Maintaining Spanning Sets The following
lemma shows the equivalence of maintaining bases and spanning sets. This en-
ables us to significantly simplify the problem and avoid the difficulties faced by
previous works on this problem.

Lemma 1. For matroids, the optimal solutions to MMM and MSM have the
same costs.

Proof. Clearly, any solution to MMM is also a solution to MSM, since a base is
also a spanning set. Conversely, consider a solution {S;} to MSM. Set B; to any
base in S;. Given B;_1 C S;_1, start with B;_1 NS}, and extend it to any base B;
of S. This is the only step where we use the matroid properties—indeed, since
the matroid is the same at each time, the set B;_1 N S; remains independent at
time ¢, and by the matroid property this independent set can be extended to a
base. Observe that this process just requires us to know the base B;_; and the
set S;, and hence can be performed in an online fashion.

We claim that the cost of {B;} is no more than that of {S;}. Indeed, ¢;(B;) <
ct(St), because By C S;. Moreover, let D := B; \ B;_1, we pay Y .pac for
these elements we just added. To charge this, consider any such element e € D,
let t* < t be the time it was most recently added to the cover—i.e., e € Sy for
all ¢ € [t*,t], but e € Si«_1. The MSM solution paid for including e at time

5

t*, and we charge our acquisition of e into B; to this pair (e,t*). It suffices to
now observe that we will not charge to this pair again, since the procedure to
create {B;} ensures we do not drop e from the base until it is dropped from S;
itself—the next time we pay an addition cost for element e, it would have been
dropped and added in {S;} as well. [|

Hence it suffices to give a good solution to the MSM problem. We observe that
the proof above uses the matroid property crucially and would not hold, e.g.,
for matchings. It also requires that the same matroid be given at all time steps.
Also, as noted above, the reduction is online: the instance is the same, and given
an MSM solution it can be transformed online to a solution to MMM.

Elements and Intervals We will find it convenient to think of an instance of
MSM as being a matroid M, where each element only has an acquisition cost
a(e) > 0, and it has a lifetime I, = [l., r.]. There are no holding costs, but the
element e can be used in spanning sets only for timesteps ¢ € I.. Or one can
equivalently think of holding costs being zero for ¢ € I, and co otherwise.

An Offtine Exact Reduction. The translation is the natural one: given instance
(E,Z) of MSM, create elements e, for each e € F and 1 <[< r < T, with
acquisition cost a(e;.) = a(e) + Y., ct(e), and interval I, := [I,r]. (The
matroid is extended in the natural way, where all the elements e;,. associated
with e are parallel to each other.) The equivalence of the original definition of
MSM and this interval view is easy to verify.

An Online Approximate Reduction. Observe that the above reduction created at
most (g) copies of each element, and required knowledge of all the costs. If we are
willing to lose a constant factor in the approximation, we can perform a reduction
to the interval model in an online fashion as follows. For element ¢ € E, define
to = 0, and create many parallel copies {e;}icz, of this element (modifying the
matroid appropriately). Now the i‘" interval for e is I, := [t;_1 + 1,;], where t;
is set to t;—1 + 1 in case ¢,_,+1(€e) > a(e), else it is set to the largest time such
that the total holding costs Zi;ti—l"t‘l ci(e) for this interval [¢;_q1 + 1,¢;] is at
most a(e). This interval I., is associated with element e;, which is only available
for this interval, at cost a(e;) = a(e) + ¢¢,_,+1(e).

A few salient points about this reduction: the intervals for an original element e
now partition the entire time horizon [T']. The number of elements in the modified
matroid whose intervals contain any time ¢ is now only |E| = n, the same as
the original matroid; each element of the modified matroid is only available for a
single interval. Moreover, the reduction can be done online: given the past history
and the holding cost for the current time step ¢, we can ascertain whether ¢ is
the beginning of a new interval (in which case the previous interval ended at
t — 1) and if so, we know the cost of acquiring a copy of e for the new interval
is a(e) + c¢(e). It is easy to check that the optimal cost in this interval model is
within a constant factor of the optimal cost in the original acquisition/holding
costs model.

3 Offline Algorithms

Given the reductions of the previous section, we can focus on the MSM problem.
Being a covering problem, MSM is conceptually easier to solve: e.g., we could

6

use algorithms for submodular set cover [29] with the submodular function being
the sum of ranks at each of the timesteps, to get an O(logT') approximation.

In Section B, we give a dual-fitting proof of the performance of the greedy
algorithm. Here we give an LP-rounding algorithm which gives an O(logrT)
approximation; this can be improved to O(logr) in the common case where all
acquisition costs are unit. (While the approximation guarantee is no better than
that from submodular set cover, this LP-rounding algorithm will prove useful in
the online case in Section 4). Finally, the hardness results of Section C.2 show
that we cannot hope to do much better than these logarithmic approximations.

3.1 The LP Rounding Algorithm

We now consider an LP-rounding algorithm for the MMM problem; this will
generalize to the online setting, whereas it is unclear how to extend the greedy
algorithm to that case. For the LP rounding, we use the standard definition of
the MMM problem to write the following LP relaxation.

min Z ale) - yi(e) + Z ce(e) - ze(e) (LP2)

s.t. 2z € Pp(M) vt
ye(e) > zi(e) — ze—1(e) Vt, e
ye(e), ze(e) =2 0

It remains to round the solution to get a feasible solution to MSM (i.e., a spanning
set Sy for each time) with expected cost at most O(logn) times the LP value,
since we can use Lemma 1 to convert this to a solution for MMM at no extra
cost. The following lemma is well-known (see, e.g. [10]), we give a proof in the
appendix for completeness.

Lemma 2. For a fractional base z € Pg(M), let R(z) be the set obtained by
picking each element e € E independently with probability z.. Then E[rank(R(z))]

r(1—1/e).

Theorem 1. Any fractional solution can be randomly rounded to get solution
to MSM with cost O(logrT) times the fractional value, where r is the rank of
the matroid and T the number of timesteps.

Proof. Set L = 32log(rT). For each element e € E, choose a random threshold
Te independently and uniformly from the interval [0, 1/L]. For each ¢t € T, define
the set S; := {e € E | z(e) > 7.}; if S; does not have full rank, augment its rank
using the cheapest elements according to (c¢i(e) + a(e)) to obtain a full rank set
St. Since Pr[e € §t] = min{L- z/(e), 1}, the cost ct(gt) < L x (¢t - z¢). Moreover,
e € §t \ :S'\t,l exactly when 7. satisfies z;_1(e) < 7. < z;(e), which happens with
probability at most

max(z(e) — z—1(e),0)
1/L

< L-ye).

Hence the expected acquisition cost for the elements newly added to §t is at
most L x Y _(a(e) - y:(e)). Finally, we have to account for any elements added

to extend §t to a full-rank set S;.

Lemma 3. For any fized t € [T], the set S, contains a basis of M with proba-
bility at least 1 — 1/(rT)3.

The proof of the lemma is a Chernoff bound, and appears in the Appendix.
Now if the set S; does not have full rank, the elements we add have cost at
most that of the min-cost base under the cost function (a. + c¢¢(e)), which is at
most the optimum value for (LP2). (We use the fact that the LP is exact for
a single matroid, and the global LP has cost at least the single timestep cost.)
This happens with probability at most 1/(r7)®, and hence the total expected
cost of augmenting §t over all T' timesteps is at most O(1) times the LP value.
This proves the main theorem. []

Again, this algorithm for MSM works with different matroids at each timestep,
and also for intersections of matroids. To see this observe that the only require-
ments from the algorithm are that there is a separation oracle for the polytope
and that the contention resolution scheme works. In the case of k—matroid in-
tersection, if we pay an extra O(logk) penalty in the approximation ratio we
have that the probability a rounded solution does not contain a base is < 1/k
so we can take a union bound over the multiple matroids.

An Improvement: Avoiding the Dependence on T'. When the ratio of
the maximum to the minimum acquisition cost is small, we can improve the ap-
proximation factor above. More specifically, we show that essentially the same
randomized rounding algorithm (with a different choice of L) gives an approx-
imation ratio of log ™®mez We defer the argument to Section D.1, as it needs

Ui

some additional definitions and results that we present in the online section.

Hardness for Offline MSM. We defer the hardness proof to Appendix C,
which shows that the MSM and MMM problems are NP-hard to approximate
better than 2(min{logr,logT}) even for graphical matroids. An integrality gap
of 2(logT') appears in Appendix A.3.

4 Online MSM

We now turn to solving MMM in the online setting. In this setting, the acquisi-
tion costs a(e) are known up-front, but the holding costs ¢;(e) for day t are not
known before day t. Since the equivalence given in Lemma 1 between MMM and
MSM holds even in the online setting, we can just work on the MSM problem.
We show that the online MSM problem admits an O(log | E|log rT')-competitive
(oblivious) randomized algorithm. To do this, we show that one can find an
O(log | E|)-competitive fractional solution to the linear programming relaxation
in Section 3, and then we round this LP relaxation online, losing another loga-
rithmic factor.

4.1 Solving the LP Relaxations Online

Again, we work in the interval model outlined in Section 2. Recall that in this
model, for each element e there is a unique interval I, C [T] during which it
is alive. The element e has an acquisition cost a(e), no holding costs. Once an
element has been acquired (which can be done at any time during its interval),
it can be used at all times in that interval, but not after that. In the online

8

setting, at each time step ¢ we are told which intervals have ended (and which
have not); also, which new elements e are available starting at time ¢, along with
their acquisition costs a(e). Of course, we do not know when its interval I, will
end; this information is known only once the interval ends.

We will work with the same LP as in Section 3.1, albeit now we have to solve it
online. The variable x. is the indicator for whether we acquire element e.

P:=min)__ a(e) -z, (LP3)
s.t. zet € Pp(M) vt
Zet < Te Ve,t € I,
Te, Zet € [0, 1]

Note that this is not a packing or covering LP, which makes it more annoying to
solve online. Hence we consider a slight reformulation. Let Pgs(M) denote the
spanning set polytope defined as the convex hull of the full-rank (a.k.a. spanning)
sets {xs | S C E,rank(S) = r}. Since each spanning set contains a base, we can
write the constraints of (LP3) as:

xg, € Pss(M) Vt, where By = {e:t € I.}. (4.3)

Here we define xg to be the vector derived from x by zeroing out the x. values
for e ¢ S. It is known that the polytope Pss(M) can be written as a (rather
large) set of covering constraints. Indeed, x € Pys(M) <= (1 —x) € Py(M*),
where M* is the dual matroid for M. Since the rank function of M* is given by
r*(S)=r(E\S)+|S|—r(E), it follows that (4.3) can be written as

YoecsTe 21(E) —r(E\S) V¢, VS C E; (LP4)
Te >0 Vee FE
Te <1 Ve € E.

Thus we get a covering LP with “box” constraints over E. The constraints can
be presented one at a time: in timestep ¢, we present all the covering constraints
corresponding to E;. We remark that the newer machinery of [8] may be applica-
ble to LP4. We next show that a simpler approach suffices®. The general results
of Buchbinder and Naor [9] (and its extension to row-sparse covering problems
by [19]) imply a deterministic algorithm for fractionally solving this linear pro-
gram online, with a competitive ratio of O(log |E|) = O(logm). However, this is
not yet a polynomial-time algorithm, the number of constraints for each timestep
being exponential. We next give an adaptive algorithm to generate a small yet
sufficient set of constraints.

Solving the LP Online in Polynomial Time. Given a vector x € [0,1]F,
define X as follows:

Ze = min(2x,, 1) Ve € E. (4.4)

Clearly, X < 2x and X € [0,1]”. We next describe the algorithm for generating
covering constraints in timestep ¢. Recall that [9] give us an online algorithm

3 Additionally, Lemma 4 will be useful in improving the rounding algorithm.

9

Aonrp for solving a fractional covering LP with box constraints; we use this as a
black-box. (This LP solver only raises variables, a fact we will use.) In timestep
t, we adaptively select a small subset of the covering constraints from (LP4), and
present it to Ay, p. Moreover, given a fractional solution returned by A,,.rp,
we will need to massage it at the end of timestep ¢ to get a solution satisfying
all the constraints from (LP4) corresponding to ¢.

Let x be the fractional solution to (LP4) at the end of timestep ¢ — 1. Now
given information about timestep ¢, in particular the elements in E; and their
acquisition costs, we do the following. Given x, we construct X and check if
Xpg, € Pss(M), as one can separate for Pss(M). If Xg, € Pss(M), then X is
feasible and we do not need to present any new constraints to A,,rp, and we
return X. If not, our separation oracle presents an S such that the constraint
YoecsTe 2 1(E) —r(E\S) is violated. We present the constraint corresponding
to S to Aonrp to get an updated x, and repeat until X is feasible for time
t. (Since A, p only raises variables and we have a covering LP, the solution
remains feasible for past timesteps.) We next argue that we do not need to repeat
this loop more than 2n times.

Lemma 4. If for some x and the corresponding X, the constraint) .qTe >
r(E) —r(E\S) is violated. Then

SesTe ST(E)—r(E\S) -1

Proof. Let S ={e€ S:Z. =1} and let S; = S\ S;. Let v denote Zee52 Te.
Thus

151 = 2ees Te = Lees, Te <1(E) —r(E\S) =

Since both |S1| and r(E) — r(E \ S) are integers, it follows that |S;| < r(F) —
r(E\ S) — [v]. On the other hand, for every e € S»,z¢ = % - %, and thus
> ees, Te = 5. Consequently

DeesTe =D ees, Te + Dees, Te = 91| + 3
<r(E)—r(E\S)—[v]+3.

Finally, for any v > 0, [v] — 2 > 1, so the claim follows. [

The algorithm A,,, 1 p updates x to satisfy the constraint given to it, and Lemma 4
implies that each constraint we give to it must increase) . B, Te by at least %
The translation to the interval model ensures that the number of elements whose
intervals contain ¢ is at most |E;| < |E| = m, and hence the total number of
constraints presented at any time ¢ is at most 2m. We summarize the discussion
of this section in the following theorem.

Theorem 2. There is a polynomial-time online algorithm to compute an O(log|E|)-
approximate solution to (LP3).

We observe that the solution to this linear program can be trivially transformed
to one for the LP in Section 3.1. Finally, the randomized rounding algorithm

of Section 3.1 can be implemented online by selecting a threshold ¢, € [0,1/L]

10

the beginning of the algorithm, where L = ©O(logrT) and selecting element e
whenever . exceeds t.: here we use the fact that the online algorithm only ever
raises x. values, and this rounding algorithm is monotone. Rerandomizing in
case of failure gives us an expected cost of O(log rT') times the LP solution, and
hence we get an O(log m logrT)-competitive algorithm.

An O(log T‘Z"n—‘i‘:)-Approximate Rounding The dependence on the time
horizon T is unsatisfactory in some settings, but we can do better using Lemma 4.
Recall that the log(rT)-factor loss in the rounding follows from the naive union
bound over the T time steps. We can argue that when ;“"J is small, we can
afford for the rounding to fail occasionally, and charge it to the acquisition cost
incurred by the linear program. The details appear in Appendix D.1.

Hardness of the online MMM and online MSM. We can show that any
polynomial-time algorithm cannot achieve better than an £2(log mlog T') compet-
itive ratio, via a reduction from online set cover. Details appear in Appendix D.2.

5 Perfect Matching Maintenance

We next consider the Perfect Matching Maintenance (PMM) problem where F is
the set of edges of a graph G = (V, E), and the at each step, we need to maintain
a perfect matchings in G.

Integrality Gap. Somewhat surprisingly, we show that the natural LP relax-
ation has an 2(n) integrality gap, even for a constant number of timesteps. The
LP and the (very simple) example appears in Appendix E.1.

Hardness. Moreover, in Appendix E.2 we show that the Perfect Matching Main-
tenance problem is very hard to approximate:

Theorem 3. For any € > 0 it is NP-hard to distinguish PMM instances with
cost N¢ from those with cost N*=¢, where N is the number of vertices in the
graph. This holds even when the holding costs are in {0,00}, acquisition costs
are 1 for all edges, and the number of time steps is a constant.

6 Conclusions

In this paper we studied multistage optimization problems: an optimization prob-
lem (think about finding a minimum-cost spanning tree in a graph) needs to be
solved repeatedly, each day a different set of element costs are presented, and
there is a penalty for changing the elements picked as part of the solution. Hence
one has to hedge between sticking to a suboptimal solution and changing solu-
tions too rapidly. We present online and offline algorithms when the optimization
problem is maintaining a base in a matroid. We show that our results are op-
timal under standard complexity-theoretic assumptions. We also show that the
problem of maintaining a perfect matching becomes impossibly hard.

Our work suggests several directions for future research. It is natural to study
other combinatorial optimization problems, both polynomial time solvable ones
such shortest path and min-cut, as well NP-hard ones such as min-max load
balancing and bin-packing in this multistage framework with acquisition costs.
Moreover, the approximability of the bipartite matching maintenance, as well
as matroid intersection maintenance remains open. Our hardness results for the

11

matroid problem hold when edges have {0, 1} acquisition costs. The unweighted
version where all acquisition costs are equal may be easier; we currently know no
hardness results, or sub-logarithmic approximations for this useful special case.

References

1]

[14]
[15]
[16]
17)
18]
[19]
120]
21]
[22]

23]

Abernethy, J., Bartlett, P.L., Buchbinder, N., Stanton, I.: A regularization ap-
proach to metrical task systems. In: ALT. pp. 270-284 (2010)

Andrews, M., Goemans, M.X., Zhang, L.: Improved bounds for on-line load bal-
ancing. Algorithmica 23(4), 278-301 (1999)

Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: IPCO. pp. 424-438
(2007)

Bansal, N., Buchbinder, N., Naor, J.: Metrical task systems and the k-server prob-
lem on hsts. In: ICALP (1). pp. 287-298 (2010)

Bansal, N., Buchbinder, N.; Naor, J.S.: Randomized competitive algorithms for
generalized caching. In: STOC’08, pp. 235-244 (2008)

Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745-763 (Oct 1992)

Buchbinder, N., Chen, S., Naor, J., Shamir, O.: Unified algorithms for online
learning and competitive analysis. JMLR 23, 5.1-5.18 (2012)

Buchbinder, N., Chen, S., Naor, J.S.: Competitive analysis via regularization. In:
ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 436-444 (2014)
Buchbinder, N.; Naor, J.S.: Online primal-dual algorithms for covering and pack-
ing. Math. Oper. Res. 34(2), 270-286 (2009)

Calinescu, G., Chekuri, C., Pal, M., Vondrédk, J.: Maximizing a submodular set
function subject to a matroid constraint (extended abstract). pp. 182-196 (2007)
Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge Univer-
sity Press (2006)

Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: STOC. pp. 311-320 (2010)

Chekuri, C., Vondrak, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In: STOC. pp. 783—
792 (2011)

Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233-235 (1979)

Cohen, E., Cormode, G., Duffield, N.G., Lund, C.: On the tradeoff between sta-
bility and fit. CoRR abs/1302.2137 (2013)

Epstein, L., Levin, A.: Robust algorithms for preemptive scheduling. In: ESA,
Lecture Notes in Comput. Sci., vol. 6942, pp. 567-578. Springer, Heidelberg (2011)
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions. II. Math. Prog. Stud. (8), 73-87 (1978)
Gu, A., Gupta, A., Kumar, A.: The power of deferral: maintaining a constant-
competitive steiner tree online. In: STOC. pp. 525-534 (2013)

Gupta, A., Nagarajan, V.: Approximating sparse covering integer programs online.
In: ICALP (1) (Jul 2012)

Guruswami, V., Khanna, S.: On the hardness of 4-coloring a 3-colorable graph.
SIAM J. Discrete Math. 18(1), 30-40 (electronic) (2004)

Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete Math.
4(3), 369-384 (1991)

Kann, V.: Maximum bounded 3-dimensional matching is max snp-complete. Inf.
Process. Lett. 37(1), 27-35 (Jan 1991)

Korman, S.: On the use of randomness in the online set cover problem. M.Sc.
thesis, Weizmann Institute of Science (2005)

12

[24] Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online
MST and TSP. In: ICALP (1). pp. 689-700 (2012)

[25] Meyerson, A.: The parking permit problem. In: FOCS. pp. 274-284 (2005)

[26] Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. In: IPCO. pp.
303-315 (2008)

[27] Schrijver, A.: Combinatorial Optimization. Springer (2003)

[28] Shachnai, H., Tamir, G., Tamir, T.: A theory and algorithms for combinatorial
reoptimization. In: LATIN. pp. 618-630 (2012)

[29] Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica 2(4), 385-393 (1982)

A Lower Bounds: Hardness and Gap Results

A.1 Hardness for Time-Varying Matroids

An extension of MMM/MSM problems is to the case when the set of elements
remain the same, but the matroids change over time. Again the goal in MMM is
to maintain a matroid base at each time.

Theorem 4. The MMM problem with different matroids is NP-hard to approxi-
mate better than a factor of 2(T), even for partition matroids, as long as T > 3.

Proof. The reduction is from 3D-Matching (3DM). An instance of 3DM has
three sets X,Y, Z of equal size |X| = |Y| = |Z] = k, and a set of hyperedges
E C X xY x Z. The goal is to choose a set of disjoint edges M C FE such that
|M| = k.

First, consider the instance of MMM with three timesteps T" = 3. The universe
elements correspond to the edges. For t = 1, create a partition with &k parts, with
edges sharing a vertex in X falling in the same part. The matroid M is now
to choose a set of elements with at most one element in each part. For t = 2,
the partition now corresponds to edges that share a vertex in Y, and for ¢t = 3,
edges that share a vertex in Z. Set the movement weights w(e) = 1 for all edges.

If there exists a feasible solution to 3DM with k edges, choosing the correspond-
ing elements form a solution with total weight k. If the largest matching is of
size (1 — €)k, then we must pay (2(¢ k) extra over these three timesteps. This
gives a k-vs-(1 + £2(¢))k gap for three timesteps.

To get a result for T' timesteps, we give the same matroids repeatedly, giving
matroids My (mod 3) at all times ¢ € [T]. In the “yes” case we would buy the
edges corresponding to the 3D matching and pay nothing more than the initial
k, whereas in the “no” case we would pay {2(ck) every three timesteps. Finally,
the APX-hardness for 3DM [22] gives the claim. [

The time-varying MSM problem does admit an O(log rT') approximation, as the
randomized rounding (or the greedy algorithm) shows. However, the equivalence
of MMM and MSM does not go through when the matroids change over time.

The restriction that the matroids vary over time is essential for the NP-hardness,
since if the partition matroid is the same for all times, the complexity of the
problem drops radically.

13

Theorem 5. The MMM problem with partition matroids can be solved in poly-
nomial time.

Proof. The problem can be solved using min-cost flow. Indeed, consider the
following reduction. Create a node v.; for each element e and timestep ¢. Let the
partition be E = F1 U E2 U...U E,.. Then for each i € [r] and each e,¢’ € E;,
add an arc (vet, Ver 1+1), with cost w(e’) - 1ezer. Add a cost of ¢;(e) per unit flow
through vertex ve;. (We could simulate this using edge-costs if needed.) Finally,
add vertices s1, So,..., s, and source s. For each 7, add arcs from s; to all vertices
{Ve1 }eer, with costs w(e). All these arcs have infinite capacity. Now add unit
capacity edges from s to each s;, and infinite capacity edges from all nodes ver
to t.

Since the flow polytope is integral for integral capacities, a flow of r units will
trace out r paths from s to ¢, with the elements chosen at each time ¢ being
independent in the partition matroid, and the cost being exactly the per-time
costs and movement costs of the elements. Observe that we could even have
time-varying movement costs. Whereas, for graphical matroids the problem is
2(logn) hard even when the movement costs for each element do not change
over time, and even just lie in the set {0, 1}. []

Moreover, the restriction in Theorem 4 that T" > 3 is also necessary, as the
following result shows.

Theorem 6. For the case of two rounds (i.e., T = 2) the MSM problem can
be solved in polynomial time, even when the two matroids in the two rounds are
different.

Proof. The solution is simple, via matroid intersection. Suppose the matroids
in the two timesteps are My = (E,Z;) and Mo = (E,Z,). Create elements (e, €’)
which corresponds to picking element e and €’ in the two time steps, with cost
c1(e) + c2(€') + we + wer Leer. Lift the matroids My and Mo to these tuples in
the natural way, and look for a common basis. |

A.2 Lower Bound for Deterministic Online Algorithms

We note that deterministic online algorithms cannot get any non-trivial guaran-
tee for the MMM problem, even in the simple case of a 1-uniform matroid. This
is related to the lower bound for deterministic algorithms for paging. Formally,
we have the 1-uniform matroid on m elements, and T = m. All acquisition costs
a(e) are 1. In the first period, all holding costs are zero and the online algorithm
picks an element, say e;. Since we are in the non-oblivious model,the algorithm
knows e; and can in the second time step, set ca(e;) = oo, while leaving the
other ones at zero. Now the algorithm is forced to move to another edge, say
es, allowing the adversary to set cz(ez) = oo and so on. At the end of T = m
rounds, the online algorithm is forced to incur a cost of 1 in each round, giving
a total cost of T. However, there is still an edge whose holding cost was zero
throughout, so that the offline OPT is 1. Thus against a non-oblivious adversary,
any online algorithm must incur a £2(min(m,T")) overhead.

14

A.3 An 2(min(logT,log 5===)) LP Integrality Gap

In this section, we show that if the aspect ratio of the movement costs is not
bounded, the linear program has a logT gap, even when T is exponentially
larger than m. We present an instance where logT and log Z:’n—:z are about r
3 — 2 1 o max
with m = 7, and the linear program has a gap of £2(min(log T’ log g=e=)).
This shows that the O(min(log T’ log %=4=)) term in our rounding algorithm is
unavoidable.

The instance is a graphical matroid, on a graph G on {vg,v1,...,v,}, and T =

(%) =29 The edges (vo,v;) for i € [n] have acquisition cost a(vo, v;) = 1 and
2

holding cost ¢;(vg, v;) = 0 for all ¢. The edges (v;,v;) for 4, j € [n] have acquisition

cost T%T and have holding cost determined as follows: we find a bijection between

the set [T] and the set of partitions (Uy, V4) of {vy,...,v,} with each of U; and

Vi having size 4 (by choice of T such a bijection exists, and can be found e.g.
by arranging the U,’s in lexicographical order.) . In time step ¢, we set ¢;(e) =0

for e € (U x Up) U (Vy x V), and ¢i(e) = oo for all e € Uy x V4.

First observe that no feasible integral solution to this instance can pay acquisition
cost less than % on the (vo,v;) edges. Suppose that the solution picks edges
{(vo,vs) = v € Usar} for some set Usq of size at most . Then any time step ¢
such that U, C Uy, the solution has picked no edges connecting vy to V;, and
all edges connecting U; to V; have infinite holding cost in this time step. This
contradicts the feasibility of the solution. Thus any integral solution has cost

Finally, we show that on this instance, (LP2) from Section 3.1, has a feasible
solution of cost O(1). We set y;(vo,v;) = 2 for all i € [n], and set y;(v;, v;) = 2
for (vi,v;) € (Uy x Up) U (Vy x V3). Tt is easy to check that z, = y; is in the
spanning tree polytope for all time steps t. Finally, the total acquisition cost is
at most n-1- % for the edges incident on vy and at most 7" - n? - % . % for the
other edges, both of which are O(1). The holding costs paid by this solution is

zero. Thus the LP has a solution of cost O(1)

The claim follows.

B The Greedy Algorithm

The greedy algorithm for MSM is the natural one. We consider the interval view
of the problem (as in Section 2) where each element only has acquisition costs
a(e), and can be used only in some interval I.. Given a current subset X C E,
define X; :={¢’ € X | I.» > t}. The benefit of adding an element e to X is

benx (e) = > (rank(X; U {e}) — rank(X¢))

tel.

and the greedy algorithm repeatedly picks an element e maximizing benx (e)/a(e)
and adds e to X. This is done until rank(X;) = r for all ¢ € [T].

Phrased this way, an O(logT) bound on the approximation ration follows from
Wolsey [29]. We next give an alternate dual fitting proof. We do not know of an

15

instance with uniform acquisition costs where greedy does not give a constant
factor approximation. The dual fitting approach may be useful in proving a
better approximation bound for this special case.

The natural LP is:

P:=min) _ a(e) -z, (LP1)
st. {zet}e € Pp(M) Vit
zet < x(e) Ve,Vt € I,
T, >0 Ve
Zet > 0 Ve,Vt € I,

where the polytope Pp(M) is the base polytope of the matroid M.

Using Lagrangian variables 3.; > 0 for each e and t € I, we write a lower bound
for P by

D(B) :==min)__ a(e) -z, + Z Bet(zet — xe)

e, tel,
st. ze € PB(M) vt
Tey Zet Z 0

which using the integrality of the matroid polytope can be rewritten as:
I;1>11(} Ze Le (a(e) - Ze7t€1e ﬂet) + Zt mSt(ﬁet)'

Here, mst(S.:) denotes the cost of the minimum weight base at time ¢ according
to the element weights {Be: }ecm, where the available elements at time ¢ is Ey =
{z € E |t € I.}. The best lower bound is:

D :=max), mst(Bet)
st D ier. Bet < ale)
/Bet 2 0.

The analysis of greedy follows the dual-fitting proofs of [14, 17].

Theorem 7. The greedy algorithm outputs an O(log |Imax|)-approximation to
MSM, where |Lyax| s the length of the longest interval that an element is alive
for. Hence, it gives an O(logT')-approzimation.

Proof. For the proof, consider some point in the run of the greedy algorithm
where set X of elements has been picked. We show a setting of duals §.; such
that

(a) the dual value equals the current primal cost) .y a(e), and
(b) the constraints are nearly satisfied, namely >, ; Ber < a(e)log|L| for
every e € E.

It is useful to maintain, for each time t, a minimum weight base B; of the
subset span(X;) according to weights {S:}. Hence the current dual value equals

16

>t 2een, Bet- We start with B, = 0 and X; = B; = () for all t, which satisfies
the above properties.

Suppose we now pick e maximizing benx(e)/a(e) and get new set X' := X U
{e}. We use X] := {¢’ € X' | I, > t} akin to our definition of X;. Call a
timestep ¢ “interesting” if rank(X[) = rank(X;) + 1; there are benx(e) inter-
esting timesteps. How do we update the duals? For ¢’ € span(X}) \ span(X%),
we set [er < a(e)/benx(e). Note the element e itself satisfies the condition of
being in span(X]) \ span(X;) for precisely the interesting timesteps, and hence
>t interesting Ot = (a(e)/benx (e)) - benx (e) = a(e). For each interesting ¢ € I,
define the base B] < B; + ¢; for all other times set Bj < B;. It is easy to verify
that Bj is a base in span(X}). But is it a min-weight base? Inductively assume
that B; was a min-weight base of span(X;); if ¢ is not interesting there is nothing
to prove, so consider an interesting ¢. All the elements in span(X;) \ span(X})
have just been assigned weight 8., = a(e)/benx(e), which by the monotonic-
ity properties of the greedy algorithm is at least as large as the weight of any
element in span(X;). Since e lies in span(X}) \ span(X;) and is assigned value
Bet = a(e)/benx(e), it cannot be swapped with any other element in span(Xj)
to improve the weight of the base, and hence B; = B; + e is an min-weight base
of span(Xj).

It remains to show that the dual constraints are approximately satisfied. Con-
sider any element f, and let A = |Iy|. The first step where we update (3, for
some t € Iy is when f is in the span of X; for some time t. We claim that
Bt < a(f)/A. Indeed, at this time f is a potential element to be added to the
solution and it would cause a rank increase for A time steps. The greedy rule
ensures that we must have picked an element e with weight-to-coverage ratio at
most as high. Similarly, the next ¢ for which Sy, is updated will have a(f)/(A—1),
etc. Hence we get the sum

S5 <ol (177 + oy e+ 1) <alh) x Olog 1y,
t

Since each element can only be alive for all T' timesteps, we get the claimed
O(log T)-approximation. [

Note that the greedy algorithm would solve MSM even if we had a different ma-

troid M, at each time ¢t. However, the equivalence of MMM and MSM no longer
holds in this setting, which is not surprising given the hardness of Theorem 4.

C Missing Proofs for the Offline Case (Section 3)

C.1 Missing Proofs

Proof of Lemma 2: We use the results of Chekuri et al. [13] (extending those
of Chawla et al. [12]) on so-called contention resolution schemes. Formally, for a
matroid M, they give a randomized procedure 7, that takes the random set R(z)
and outputs an independent set 7, (R(2)) in M, such that 7,(R(z)) C R(z), and

17

for each element e in the support of z, Prle € m,(R(2)) | e € R(z)] > (1 — 1/e).
(They call this a (1,1 — 1/e)-balanced CR scheme.) Now, we get

E[rank(R(2))] > E[rank(m,(R(2)))] = Z Prle € m.(R(2))]

ecsupp(z)
= Y Prleem(R(2)) |e€R(2)]-Prle € R(2)]
e€supp(z)
> > (1-1/e)-ze=r(1—1/e).
e€supp(z)

The first inequality used the fact that 7, (R(z)) is a subset of R(z), the follow-
ing equality used that 7,(R(z)) is independent with probability 1, the second
inequality used the property of the CR scheme, and the final equality used the
fact that z was a fractional base. |

Proof of Lemma 3: The set §t is obtained by threshold rounding of the frac-
tional base z; € Pg(M) as above. Instead, consider taking L different samples
TW 7@ . T@) where each sample is obtained by including each element
e € F independently with probability z;(e); let T := UleT(i). It is easy to check
that Pr[rank(T) = r] < Prrank(S;) = 7], so it suffices to give a lower bound on
the former expression. For this, we use Lemma 2: the sample 7)) has expected
rank r(1 — 1/e), and using reverse Markov, it has rank at least r/2 with prob-
ability at least 1 — 2/e > 1/4. Now focusing on the matroid M’ obtained by
contracting elements in span(7(")) (which, say, has rank r’), the same argument
says the set T(®) has rank r’/2 with probability at least 1/4, etc. Proceeding in
this way, the probability that the rank of T is less than r is at most the proba-
bility that we see fewer than log, r heads in L = 32logrT flips of a coin of bias
1/4. By a Chernoff bound, this is at most exp{—(7/8)?-(L/4)/3} =1/(rT)%. W

C.2 Hardness for Offline MSM

Theorem 8. The MSM and MMM problems are NP-hard to approzimate better
than 2(min{logr,logT}) even for graphical matroids.

Proof of Theorem 8: We give a reduction from Set Cover to the MSM problem
for graphical matroids. Given an instance (U, F) of set cover, with m = |F| sets
and n = |U| elements, we construct a graph as follows. There is a special vertex
r, and m set vertices (with vertices s; for each set S; € F). There are m edges
e; = (1, s;) which all have inclusion weight a(e;) = 1 and per-time cost ¢;(e) = 0
for all ¢. All other edges will be zero cost short-term edges as given below.
In particular, there are T = n timesteps. In timestep j € [n], define subset
F; :== {s; | Si 2 u;} to be vertices corresponding to sets containing element
uj. We have a set of edges (e;,e) for all ¢,i' € Fj, and all edges (x,y) for
z,y € {r} U F;. All these edges have zero inclusion weight a(e), and are only
alive at time j. (Note this creates a graph with parallel edges, but this can be
easily fixed by subdividing edges.)

In any solution to this problem, to connect the vertices in F; to r, we must
buy some edge (r, s;) for some s; € F;. This is true for all j, hence the root-set

18

edges we buy correspond to a set cover. Moreover, one can easily check that if
we acquire edges (r, s;) such that the sets {S; : (7, s;) acquired} form a set cover,
then we can always augment using zero cost edges to get a spanning tree. Since
the only edges we pay for are the (r, s;) edges, we should buy edges corresponding
to a min-cardinality set cover, which is hard to approximate better than 2(logn).
Finally, that the number of time periods is T' = n, and the rank of the matroid
is m = poly(n) for these hard instances. This gives us the claimed hardness. W

D Missing Proofs for the Online Case (Section 4)

D.1 An O(logrZ=e=)-Approximate Rounding

The dependence on the time horizon T is unsatisfactory in some settings, but we
can do better using Lemma 4. Recall that the log(rT)-factor loss in the rounding
follows from the naive union bound over the T time steps. We now argue that
when Z’"A is small, we can afford for the rounding to fail occasionally, and
charge it to the acquisition cost incurred by the linear program.

Let us divide the period [1...T] into disjoint “epochs”, where an epoch (except
for the last) is an interval [p, ¢) for p < g such that the total fractional acquisition
cost Zg;; Yooale) ye) > - amas > Zg;; Y. ale) - y(e). Thus an epoch is a
minimal interval where the linear program spends acquisition cost € [r- amaqz, 27+
Gmax), SO that we can afford to build a brand new tree once in each epoch and can
charge it to the LP’s fractional acquisition cost in the epoch. Naively applying
Theorem 1 to each epoch independently gives us a guarantee of O(logrT"), where
T’ is the maximum length of an epoch.

However, an epoch can be fairly long if the LP solution changes very slowly. We
break up each epoch into phases, where each phase is a maximal subsequence
such that the LP incurs acquisition cost at most “=i=; clearly the epoch can be
divided into at most R := % disjoint phases. For a phase [t1,t2], let Z, 4,
denote the solution defined as Z};, ;,1(€) = minge[, ¢,) 2¢(e). The definition of the
phase implies that for any ¢ € [t, 2], the L difference || Z;, +,) — 2¢[[1 < %. Now

Lemma 4 implies that ’Zv[thtz] is in Py (M), where Z is defined as in (4.4).

Suppose that in the randomized rounding algorithm, we pick the threshold ¢, €
[0,1/L'] for L' = 641og R. Let Gy, ¢,) be the event that the rounding algorithm
applied to Z};, 4,) gives a spanning set. Since Z[t1,t2] < 274, 4, is in Pp(M) for
a phase [t1,3], Lemma 3 implies that the event i, ;) occurs with probability
1 — 1/R®. Moreover, if Gl ,t2) Occurs, it is easy to see that the randomized
rounding solution is feasible for all ¢ € [t1,t5]. Since there are R phases within
an apoch, the expected number of times that the randomized rounding fails any
time during an epoch is R-1/R® = R™".

Suppose that we rerandomize all thresholds whenever the randomized rounding
fails. Each rerandomization will cost us at most ra,,., in expected acquisition
cost. Since the expected number of times we do this is less than once per epoch,
we can charge this additional cost to the ra,., acquisition cost incurred by the
LP during the epoch. Thus we get an O(log R) = O(log *2=e=)-approximation.
This argument also works for the online case; hence for the common case where

19

all the acquisition costs are the same, the loss due to randomized rounding is

O(log).

D.2 Hardness of the Online MMM and Online MSM

In the online set cover problem, one is given an instance (U, F) of set cover, and in
time step ¢, the algorithm is presented an element u; € U, and is required to pick
a set covering it. The competitive ratio of an algorithm on a sequence {u; }¢cp] is
the ratio of the number of sets picked by the algorithm to the optimum setcover of
the instance ({uy : t € [n']}, F). Korman [23, Theorem 2.3.4] shows the following
hardness for online set cover:

Theorem 9 ([23]). There exists a constant d > 0 such that if there is a (possibly
randomized) polynomial time algorithm for online set cover with competitive ratio

dlogmlogn, then NP C BPP.

Recall that in the reduction in the proof of Theorem 8, the set of long term edges
depends only on F. The short term edges alone depend on the elements to be
covered. It can then we verified that the same approach gives a reduction from
online set cover to online MSM. It follows that the online MSM problem does
not admit an algorithm with competitive ratio better than dlogm logT unless
NP C BPP. In fact this hardness holds even when the end time of each edge is
known as soon as it appears, and the only non-zero costs are a(e) € {0,1}.

E Missing Proofs for Perfect Matchings (Section 5)

Recall that in Section 5 we wanted were given a graph and wanted, at each step,
to maintain a perfect matching in this graph. We claimed an integrality gap and
a hardness result for this problem; here are the proofs.

E.1 Integrality Gap for PM-Maintenance

The natural LP relaxation we use is:

minz cLe Xt + Z yi(e)
t t,e

st. x € PM(G) vt

ye(e) = zi(e) — wea(e) Vi

ye(e) > xir1(e) — ze(e) Vt, e
zi(e),ye(e) >0

The polytope PM(G) is now the perfect matching polytope for G.

Lemma 5. There is an 2(n) integrality gap for the PMM problem.

20

=

Fig. E.1. Integrality gap example

Proof. Consider the instance in the figure, and the following LP solution for
4 time steps. In 1, the edges of each of the two cycles has z. = 1/2, and
the cross-cycle edges have z, = 0. In z2, we have x2(ab) = z2(pg) = 0 and
xo(ap) = z2(bg) = 1/2, and otherwise it is the same as x1. x3 and x5 are the
same as z1. In x4, we have z4(ab) = z4(qr) = 0 and z4(aq) = z4(br) = 1/2,
and otherwise it is the same as x;. For each time ¢, the edges in the support of
the solution x; have zero cost, and other edges have infinite cost. The only cost
incurred by the LP is the movement cost, which is O(1).

Consider the perfect matching found at time ¢ = 1, which must consist of match-
ings on both the cycles. (Moreover, the matching in time 3 must be the same,
else we would change 2(n) edges.) Suppose this matching uses exactly one edge
from ab and pg. Then when we drop the edges ab, pg and add in ap, bg, we get a
cycle on 4n vertices, but to get a perfect matching on this in time 2 we need to
change 2(n) edges. Else the matching uses exactly one edge from ab and gr, in
which case going from time 3 to time 4 requires {2(n) changes. [|

E.2 Hardness of PM-Maintenance

In this section we prove the following hardness result:

Theorem 10. For any € > 0 it is NP-hard to distinguish PMM instances with
cost N¢ from those with cost N'=¢, where N is the number of vertices in the
graph. This holds even when the holding costs are in {0,00}, acquisition costs
are 1 for all edges, and the number of time steps is a constant.

Proof. The proof is via reduction from 3-coloring. We assume we are given an
instance of 3-coloring G = (V, E) where the maximum degree of G is constant.
It is known that the 3-coloring problem is still hard for graphs with bounded
degree [20, Theorem 2].

We construct the following gadget X,, for each vertex u € V. (A figure is given
in Figure E.2.)

e There are two cycles of length 3¢, where £ is odd. The first cycle (say C})
has three distinguished vertices u/;, ug, v’z at distance ¢ from each other. The
second (called C2) has similar distinguished vertices u/;, ufs, v} at distance
¢ from each other.

e There are three more “interface” vertices ug,uq,un. Vertex ug is con-
nected to up and u/;, similarly for ug and up.

e There is a special “switch” vertex s,, which is connected to all three of
{ugr,ug,up}. Call these edges the switch edges.

21

Fig. E.2. Per-vertex gadget

Due to the two odd cycles, every perfect matching in X, has the structure that
one of the interface vertices is matched to some vertex in C}L, another to a vertex
in C2 and the third to the switch s,. We think of the subscript of the vertex
matched to s, as the color assigned to the vertex wu.

At every odd time step t € T', the only allowed edges are those within the gadgets
{Xu}uev: i.e., all the holding costs for edges within the gadgets is zero, and all
edges between gadgets have holding costs co. This is called the “steady state”.

At every even time step t, for some matching M; C E of the graph, we move into
a “test state”, which intuitively tests whether the edges of a matching M; have
been properly colored. We do this as follows. For every edge (u,v) € M, the
switch edges in X,,, X;, become unavailable (have infinite holding costs). More-
over, now we allow some edges that go between X,, and X,, namely the edge
(Su, Sv), and the edges (u;,v;) for 4,5 € {R,G,B} and i # j. Note that any
perfect matching on the vertices of X,, U X,, which only uses the available edges
would have to match (s,,s,), and one interface vertex of X, must be matched
to one interface vertex of X,. Moreover, by the structure of the allowed edges,
the colors of these vertices must differ. (The other two interface vertices in each
gadget must still be matched to their odd cycles to get a perfect matching.)
Since the graph has bounded degree, we can partition the edges of G into a con-
stant number of matchings My, M, ..., Ma for some A = O(1) (using Vizing’s
theorem). Hence, at time step 27, we test the edges of the matching M, . The
number of timesteps is T = 2A, which is a constant.

NUp - B~ ur UR
-~ N

U (e, UG va
/—"up g, up UB
su S’U SU SU

Fig. E.3. On the left, the steady-state edges incident to the interface and switch ver-
tices of edge (u,v). The test-state edges are on the right.

22

Suppose the graph G was indeed 3-colorable, say x : V' — {R, G, B} is the proper
coloring. In the steady states, we choose a perfect matching within each gadget
X 50 that (sy, Uy () is matched. In the test state 2t, if some edge (u,v) is in
the matching My, we match (sy, 8,) and (uy(y), Uy(v))- Since the coloring x was a
proper coloring, these edges are present and this is a valid perfect matching using
only the edges allowed in this test state. Note that the only changes are that for
every test edge (u,v) € My, the matching edges (sy,Uy(y)) and (sy, vy (w)) are
replaced by (sy, sy) and (uy(y), Vy(v)). Hence the total acquisition cost incurred
at time 2t is 2|My|, and the same acquisition cost is incurred at time 2t 4+ 1 to
revert to the steady state. Hence the total acquisition cost, summed over all the
timesteps, is 4|E|.

Suppose G is not 3-colorable. We claim that there exists vertex u € U such that
the interface vertex not matched to the odd cycles is different in two different
timesteps—i.e., there are times ¢1,%2 such that uw; and u; (for ¢ # j) are the
states. Then the length of the augmenting path to get from the perfect matching
at time ¢, to the perfect matching at t, is at least £. Now if we set ¢ = n?/¢,
then we get a total acquisition cost of at least n2/¢ in this case.

The size of the graph is N := O(nf) = O(n'*?/¢), so the gap is between 4|F| =
O(n) = O(N¢) and £ = N'7¢. This proves the claim. [

23

