Proof engineering, from the Four Color to the Odd Order Theorem

Georges Gonthier
Microsoft Research Cambridge
An old puzzle’s story

Four colours suffice

proof text
1 submap

1 configuration

calculations
3 colourings

Heawood 1890

De Morgan

publication 1878

Guthrie 1852

Kempe 1879
Saved by the computer?

Four colours suffice

Coq formal proof text
10,000 submaps
1,000,000,000 colourings

Four colours suffice

#sides < 6

1 configuration

proof text

Coq program proof
10,000 submaps
1,500 configurations

Robertson, Sanders, Seymour, & Thomas 1995

Appel & Haken 1976

Gonthier & Werner 2004

Diagram showing the process of formal verification with Coq programs.
Early lessons

• It is possible to build rigorously self-certifying program/proofs.
  – *proof by computation is feasible.*

• A computer proof assistant can be used to explore the logical structure of a proof.
  – *new math can be gleaned from a formalization.*

• Software Engineering *matters* in formal proofs.
  – old rules and *new techniques.*
Coloring by induction

reducible

configuration context
The whole proof

• Find a set of configurations such that:
  (A) **unavoidability**: At least one appears in any planar map.
  (B) **reducibility**: Each one can be coloured to match any planar ring colouring.
• Verify that the combinatorics fit the topology (graph theory + analysis).
The Poincaré principle

- How do you prove: \(2 + 2 = 4\) ?
- Given \(2 \overset{\text{def}}{=} 1 + (1+0)\)
  \[4 \overset{\text{def}}{=} 1 + (1 + (1 + (1 + 0)))\]
  \[n + m \overset{\text{def}}{=} \text{if } n \text{ is } 1 + n' \text{ then } 1 + (n' + m) \text{ else } m\]
  (a recursive program)
- \(a: \quad 0 + 2 = 2\) (neutral left)
- \(b: \quad (1 + 0) + 2 = 1 + (0 + 2)\) (associativity)
- \(c: \quad 2 + 2 = 1 + ((1 + 0) + 2)\) (def, associativity)
- \(d: \quad 2 + 2 = 1 + (1 + (0 + 2))\) (replace b in c)
- \(e: \quad \) (replace calculation, def)
Reflecting reducibility

• Setup
  Variable cf : config.
  Definition cfreducible : Prop := …
  Definition check_reducible : bool := …
  Lemma check_reducible_valid : check_reducible -> cfreducible.

• Usage
  Lemma cfred232 : cfreducible (Config 33 37 H 2 H 13 Y 5 H 10 H 1 H 1 Y 3 H 11 Y 4 H 9 H 1 13 H 9 Y 6 Y 1 Y 1 Y 3 Y 1 Y Y 1 Y).
  Proof. apply check_reducible_valid; by compute. Qed.

20,000,000 cases
Describing a map

Euler: $\#\text{edge} + \#\text{node} + \#\text{face} = \#\text{dart} + 2 \times \#\text{comp}$
Group Theory

- The theory of invertible operators...
  - and of puzzles
- Due to Évariste Galois
  - \( x^5 + 3x^3 + 7 = 0 \)
- Explains quantum mechanics
- Crystallography, cryptography…
The Swiss army knife of Group Theory

- Theorem (Jordan-Hölder): *Any finite group factors uniquely into a series of simple groups*

- Theorem (Classification): *Finite simple groups belong to either one of 4 general classes, or one of 26 sporadic exceptions*
The Finite Group Challenge

The Classification of Finite Simple Groups

Frobenius groups
Thompson factorisation
character theory
linear representation
Galois theory
linear algebra
polynomials

Odd Order

$|G| \text{ odd}$

$G \text{ simple}$

$G \cong F_p$

Sylow theorems
canonical isomorphisms
The Odd Order Theorem

Theorem (Feit & Thompson, 1963):

All finite groups of odd order are solvable.

Proof. – 255 pages, 50 years

Proofread. – 240 pages, 20 years

Theorem Feit_Thompson (gT : finGroupType) (G : {group gT}) :
odd #|G| -> solvable G.

Definitions. – 54 LOC

Proof. – 45,000 LOC, 2 years (+ 4 for the library)
A mathematical library shelf

Section Lagrange.

Variable gT : finGroupType.
Implicit Types G H K : {group gT}.

Proof.
rewrite -[#|G|]sum1_card (partition_big_imset (rcoset H)) /=.
rewrite mulfC -sum_nat_const; apply: eq_bigr => __ /rcosetsP[x Gx ->].
rewrite -(card_rcoset _ x) -sum1_card; apply: eq_bigr => y.
rewrite rcosetE eqEcard mulGS !card_rcoset leqnn andbT.
by rewrite group_modr subset // inE.
Qed.

Lemma divgI G H : #|G| %/ #|G :&: H| = #|G : H|.
Proof. by rewrite -(LagrangeI G H) mulfKn ?cardG_gt0. Qed.

Lemma divg_index G H : #|G| %/ #|G : H| = #|G :&: H|.
Proof. by rewrite -(LagrangeI G H) mulfK. Qed.

Lemma dvdn_indexG G H : #|G : H| %| #|G|.
Proof. by rewrite -(LagrangeI G H) dvdn_mulG. Qed.

Theorem Lagrange G H : H \subset G -> (#|H| * #|G : H|)%N = #|G|.
Proof. by move/setIdPr=> sHG; rewrite -(1)sHG LagrangeI. Qed.
Mathematics

- Notation
- Exercises
- Interfaces
- Components
- Definitions
- Theorems
- Lemmas

Diagram:
- Notation and Exercises connected to Interfaces and Components.
- Definitions connected to Theorems and Lemmas.
- Interfaces and Components are central to the diagram, linking all other components.
Theorem \text{Ptype_embedding}:
\[
\forall M \in \mathbb{M}_P \setminus \kappa(M) \setminus \text{Hall}(M) : \exists M_\ast \in \mathbb{M}_P \setminus \text{Hall}(M) \setminus \kappa(M) \setminus \text{Hall}(M) \\
\text{such that } (M_\ast, \mathcal{C}_{\text{Hall}}(M_\ast)) \subseteq (M, \mathcal{C}_M)
\]
Demonstration

**Lemma mxtrace_mulC**  \( m \, n \)  \( (A : 'R[M](m, n)) \, B : \)  
\[ \text{tr} (A \times B) = \text{tr} (B \times A). \]

**Proof.**  
\begin{align*}
\text{tr} (A \times B) &= \sum_j \sum_i A_{i,j} \times B_{j,i} \\
&= \sum_j (BA)_{j,j} = \text{tr} BA
\end{align*}

**mxtrace_mulC is defined**  
\[ \text{tr} (A \times B) = \sum_j \sum_i A_{i,j} \times B_{j,i} \]
Formal mathematics

- Lemmas
- Functions

- implement
- Reflection

- Logic
- CiC/Coq

- infer types
- compute types

- Proof script
- SSReflect

- define types
- package computation

- invoke computation
- control computation
Algebraic notation

\[ \sum a_i x^i \quad \sum \left( \Phi(n/d) m^d \right) \quad \bigcap_{H < G \atop \text{H maximal}} \bigcap_{H < G} H \]

\[ \sum (\sigma) \prod A_{i, \sigma} \quad \bigcap H \quad \bigoplus V_i \quad V_i \approx W \]

Definition `determinant n (A : 'M_n) : R := \sum_(s : 'S_n) (-1)^s * \prod_i A_i (s_i).`
Definition \texttt{mxtrace} (R : \texttt{ringType}) n (A : \texttt{\textquotesingle M[R]_n}) :=
@\texttt{bigop} R \texttt{\textquotesingle I_n 0 +\%R \ (index_enum \_)}
\texttt{(fun i : \texttt{\textquotesingle I_n => fun_of_matrix A i i)}}
Algebra interfaces

- Equality
- Choice
- Zmodule
- Ring
- ComRing
- UnitRing
- ComUnitRing
- Lmodule
- Algebra
- ComUnitRing
- Falgebra
- Additive
- Linear
- Rmorphism
- Lrmorphism
- Vector
Definition \texttt{mxtrace} (R : ringType) n (A : 'M[R]_n) :=
@bigop R 'I_n 0 (@Gring.add (Ring.ZmodType R))
(index_enum _)
(fun i : 'I_n => fun_of_matrix A i i)
Basic interfaces and objects

Equality
- \( x == y \)

Finite
- \( \{x_1, x_2, \ldots, x_n\} \)

bool
- \( \text{if } b \text{ then ...} \)

nat
- \( 0, n+1, \ldots \)

seq
- \( [::x_1; \ldots; x_n] \)

ordinal
- \( l_n, 0, \text{ord_max} \)
Ad hoc inference

Definition **mxtrace** \( (R : \text{ringType}) \ n \ (A : \ 'M[R]_n) \ := \) 
\[ @\text{bigop} \ R \ 'I_n \ 0 \ (@\text{Gring}\text{.add} \ (\text{Ring}\text{.ZmodType} \ R)) \]
\( (\text{index_enum} \ (\text{ordinal}\_\text{finType} \ n)) \)
\( (\text{fun} \ i : \ 'I_n \ => \ \text{fun}_\text{of}_\text{matrix} \ A \ i \ i) \)
Generic Lemmas

Pull, split, reindex, exchange ...

Lemma **bigD1** (I : finType) (j : I) P F :

\[ P \ j \ \rightarrow \ \big[\text{\*M/1}\big]_\text{(i | P i)} F \ i \]

\[ = \ F \ j \ \ast \ \big[\text{\*M/1}\big]_\text{(i | P i && (i != j))} F \ i \]

Lemma **big_split** I (r : list I) P F1 F2 :

\[ \big[\text{\*M/1}\big]_\text{(i <- r | P i)} (F1 \ i \ \ast \ F2 \ i) = \]

\[ \big[\text{\*M/1}\big]_\text{(i <- r | P i)} F1 \ i \ \ast \ \big[\text{\*M/1}\big]_\text{(i <- r | P i)} F2 \ i. \]

Lemma **reindex** (I J : finType) (h : J -> I) P F :

\{on P, bijective h\} ->

\[ \big[\text{\*M/1}\big]_\text{(i | P i)} F \ i = \ \big[\text{\*M/1}\big]_\text{(j | P (h j))} F \ (h j) \]

Lemma **bigA_distr_bigA** (I J : finType) F :

\[ \big[\text{\*M/1}\big]_\text{(i : I)} \ \big[\text{+%M/0}\big]_\text{(j : J)} F \ i \ j \]

\[ = \ \big[\text{+%M/0}\big]_\text{(f : {ffun I -> J})} \ \big[\text{\*M/1}\big]_\text{(i)} F \ i \ (f \ i). \]
Operator structures

Polymorphism for values!

Structure law : Type := Law {
    operator :> T -> T -> T;
    _ : associative operator;
    _ : left_id idx operator;
    _ : right_id idx operator
}.

Canonical addn_monoid := Monoid.Law addnA add0n addn0.
Canonical addn_abeloid := Monoid.ComLaw addnC.
Canonical muln_monoid := Monoid.Law mulnA muln1 muln1.

Structure com_law : Type := AbelianLaw {
    com_operator :> law;
    _ : commutative com_operator
}.

Canonical ring_add_monoid := Monoid.Law addrA add0r addr0.
Canonical ring_add_abeloid := Monoid.ComLaw addrC.

...
Interfacing big operators

Equality

Finite

bool

nat

'\l_n

seq

Monoid.law

Monoid.com_law

Monoid.add_law

Zmodule

Ring

ComRing

bigop

\bigoplus_{i \leftarrow r \& P(i)} E_i
More mathematical components…

- Finite group theory: morphisms, actions, characteristic & functor subgroups, p-groups, Frobenius & extremal groups…
- Character theory, representation and module theory, vector geometry.
- Finite field and Galois theory, algebraic number theory.
- Linear algebra, matrix rank.
Linear algebra interface?

Matrices

- compute
- shape

Vector spaces

- row spaces
- kernels
- coordinates
- bases

- aggregate
- dimension

group representation

\[ \Xi : G \rightarrow M_n(\mathbb{C}) \]

group character

\[ \chi = \text{tr} \, \Xi : G \rightarrow \mathbb{C} \]
Notation abuse

In math:
\[ S = A + \sum_i B_i \text{ is direct} \]
iff rank \( S = \text{rank } A + \sum_i \text{rank } B_i \)

In Coq:

\begin{verbatim}
Lemma mxdirectP n (E : mxsum_expr n) :
    reflect (\rank E = mxsum_rank E) (mxdirect E).
\end{verbatim}

This is generic in the shape of \( E \)

Let \( \text{sumV} := (\sum_{i < h} V_i) \%\text{MS} \).

(* This is B & G, Proposition 2.4(a) *)

Lemma mxdirect_sum_eigenspace_cycle :
    (sumV :=: 1%M) %\text{MS} /\ mxdirect sumV.
Recurrences

B. The Puig Subgroup

Proof.
Again we use induction for (a). For \( n = 0 \) we know (a) is true by hypothesis. Now suppose that \( n > 0 \) and \( L(G) \). Then

\[ L(G) \to L_{2n+1}(H). \]

Hence

\[ L_{2n+1}(H) \subseteq L_{2n}(L(G)) = L_{2n}(G). \]

Furthermore,

\[ L_{2n+1}(H) = L_{2n}(L(G)) = L(G) \subseteq H. \]

Thus

\[ L(G) \subseteq L_{2n+1}(H). \]

Again, (b) follows from Lemma B.1(c). 

By Step 1 and Step 2 we can now conclude that \( L(G) \).

Let \( \mu \) be a Sylow \( p \)-subgroup of \( G \) and suppose that \( S \) is a Sylow \( p \)-subgroup of \( G \) and \( T = \mu S(G) \).

Now \( L_{2n+1}(T) \) is a normal subgroup of \( G \) and \( \mu S(G) \).

By Lemma B.2 and Theorem A.5, \( \mu S(G) \).

Hence, by (B.2),

\[ L_{2n+1}(S) \subseteq L(T_{2n+1}(T)). \]

(\( B.1 \)) holds for some \( n \). Since \( L_{2n+1}(S) = L_{2n+1}(T) \).

Now \( L_{2n+1}(T) \) is a normal subgroup of \( G \) and, by Lemma B.2,

\[ L_{2n+1}(T) = \mathcal{C}_T(L_{2n+1}(T)). \]

Thus, by (B.2) and Theorem A.5, \( \mu S(G) \).

\[ L_{2n+1}(S) \subseteq T. \]

which is trivial.

Assume \( (B.1) \) holds for some \( n \). Since \( L_{2n+1}(S) = L_{2n+1}(T) \).

Therefore, by Lemma B.2 and Theorem A.5, \( \mu S(G) \).

\[ L_{2n+1}(S) \subseteq T. \]

(\( B.2 \)) holds for some \( n \). Since \( L_{2n+1}(S) = L_{2n+1}(T) \).

Now \( L_{2n+1}(T) \) is a normal subgroup of \( G \) and, by Lemma B.2,

\[ L_{2n+1}(T) = \mathcal{C}_T(L_{2n+1}(T)). \]

Thus, by (B.2) and Theorem A.5, \( \mu S(G) \).

\[ L_{2n+1}(S) \subseteq T. \]

(\( B.3 \)) holds for some \( n \). Since \( L_{2n+1}(S) = L_{2n+1}(T) \).

Consequently, by Lemma B.1(a),

\[ L_{2n+1}(S) = \mathcal{C}_T(L_{2n+1}(T)). \]

By Lemma B.1(b),

\[ L_{2n+1}(S) \subseteq T. \]

For \( n = 0 \) the statement reduces to

\[ 1 \subseteq 1 \subseteq T \subseteq S, \]

which is trivial.

Assume \( (B.1) \) holds for some \( n \). Since \( L_{2n+1}(S) = L_{2n+1}(T) \).

Therefore, by Lemma B.2 and Theorem A.5, \( \mu S(G) \).

\[ L_{2n+1}(S) \subseteq T. \]

(\( B.4 \)) holds for some \( n \). Since \( L_{2n+1}(S) = L_{2n+1}(T) \).

By Lemma B.1(b),

\[ L_{2n+1}(S) \subseteq T. \]
Telescopic algebra

have [[U_a U1 U2 P0s1 Dusv1]] /sus_modP-Duv1 := (usv1P, usv1P).
have [[U _ U2 Uv2 P0s2 _]] [U_b U3 Uv3 P0s3 _]] := (usv2P, usv3P).
suffices : (congrl sigma): s ^+ 2 = s ^* v1 ^* s ^* a ^* -1 ^* t ^+ 3.
  rewrite inl sigmaX : sigma_s sigmaM ?memj_p -?psiE ?nUt1n => => ->.
    by rewrite addrK -!inlpsi !mem_imset ?nUt2n.
rewrite groupV in Ua; have [Hsl Hs3]: s1 \in H \; s3 \in H by rewrite !sD0H.
rewrite nt_s1: s1 := 1 by apply: nt_sUs usv1P.
have nt_s3: s3 := 1 by apply: nt_sUs usv3P.
have sUsxp Dsp: s2def (w1 ^+ p) (w2 ^+ p) (w3 ^+ p).
rewrite !^=^~ conjxg _ _ p, expUmp ?grouplV ?l[t]exppl ?nUt2n ?nUt3n //.
apply: ds2 usv1p usv2p usv3p => //.
    by rewrite !psiX // !Frobenius_autoE -!morphismD Dab rmorphf nat.
have[Da2] Ds2: s2def w1 w2 w3 by apply: Ds2 usv1P usv2D usv3P.
wlog [Uw1 Uw2 Uw3]: w1 w2 w3 Dsp Ds2 / [/w1 \in U, w2 \in U & w3 \in U].
    by move/\_ w1 w2 w3 => ; rewrite ?(nUt2n, nUt3n 18N, nUt3n 18N, in_group).
have[Da2p] Dwp: (w2 ^- p ^* w1 ^- p ^- p ^- s3 ^* w2) ^ t ^+ 2 = w3 ^* p ^- 1 ^* s1 ^- l.
  rewrite ![w1 ^+ _] (mulKg w1) ![w3 ^+ _] (mulKg w3) !expgs !expgsr !predK //.
  rewrite -(canlr (mulKg _ _) Dsp) -(canlr (mulKg _ _) Da2) 6!invvG !invvG.
    by rewrite mulAg mulKg [2]lock /conjg !mulAg mulVg mulGl mulGk.
  have w_id w: w \in U => w ^+ p ^- 1 == 1 => w = 1.
    by move=> Uw /eqF/(canRL in (expkg _ _)) Uw => ; rewrite !expgln ?cU.
have[Uw3] Dwp: w3 = 1.
  apply: w_id => //; have:= @not_splitU s1 ^* s1 ^* s1 ^* (w3 ^* p ^- 1).
  rewrite ![grouplV mulVg eqxx andE] (2)invvK (negFf nt_s1) groupX // => => //.
  have /tih D1 <=: t ^+ 2 \in D1^*.
    by rewrite oddgt2 ?order_gt1 // orderE defp0 (odd2g sdefp0).
by rewrite -mulAg -conjgE inE -(2)Dwp mamJ conjg !in_group ?Hs1 // sUh.
have[Dwp] Dwp: w2 ^+ p ^- 1 = w3 ^- ^- p ^- 1 ^* s3.
  apply ![mulKg w2] /eqF; rewrite !expgsr !predK // eq_mulVg1 mulAg.
by rewrite (canRL (conjgK _ _) Dwp) Dwp expgln !conjg1.
have[Uw1] Dwl: w1 = 1.
  apply: w_id => //; have:= @not_splitU s3 ^* s3 ^* (w1 ^* p ^- 1).
  rewrite mulVg (negFf nt_s3) andB -mulAg -conjgE -Dwp !in_group //.
    by rewrite eqxx andB eq_invv1 /= => => .
have[w1 w2 w3 Dw1 Dw3 w_id Uw2 Dw2p Ds2] Ds2: t ^* s2 ^* t ^* s3 ^* t ^+ 2 ^* s1.
Proof by reflection

Assume that (3.5) has been shown. Set $w_j^o = x_{ij}$ and extend $c$ to $CF(W)$ by linearity. Then (a) and (b) of Theorem (3.2) are established, and assertions (c) and (d) of Theorem (3.5) follow from (1.3).

**Proof of (3.5).**

(3.5.1) Let $\beta_0 = \sum_{i,j} \beta_{ij} x_{ij} - 1 \leq i \leq w_1, 1 \leq j \leq w_2$. Then $\beta_{ij} = 0$ and $\|\beta_j\|^2 = 0$ for all $i, j$, where $\beta_{ij} = 0$ and $\beta_{ij} = 0$ for all $i \neq i, j \neq j$.

**Proof.** That $\|\beta_{ij}\|^2 = 0$ follows from Frobenius reciprocity, and so $\beta_{ij} = 0$. The other relations follow from the fact that $\sum_{i,j} \beta_{ij} w_{ij} = 0$.

Let $1 \leq i \leq w_1, 1 \leq j \leq w_2$. By (3.3.1) and the fact that $\beta_{ij} = 0$, we see that $\beta_{ij} = \sum_{i,j} \alpha_{ij} x_{ij}$, where $\alpha_{ij}$ is a set of three pairwise orthogonal elements of $(\mathbb{R}(G) - \{1\})$.

(3.5.2) We have $\|\beta_{ij}\|^2 = 0$ and $\sum_{i,j} \alpha_{ij} = 0$.

**Proof.** Let $\beta_{ij} = \sum_{i,j} \alpha_{ij} x_{ij}$ and $\alpha_{ij} = (\beta_{ij} x_{ij})$ for $i, j \in [1, 2]$. Then $\beta_{ij} = \sum_{i,j} \alpha_{ij} x_{ij} = 0$ for $i \neq i, j \neq j$. The numbers $\alpha_{ij}$ are thus either 0, 0, or 1, 1, 1. If $\alpha_{ij}$ is 0, 0, or 1, 1, 1, 1, then we may assume that $\beta_{ij} = x_{ij} + x_{jl} - x_{ij}$, where $\beta_{il} = \beta_{jl} = 0$. By induction, $\beta_{ij} = 0$.

**Lemma (3.5.2) clearly holds.**

By Hypothesis (3.5), $\sum_{i,j} \alpha_{ij} x_{ij} = 0$. By the symmetry between $\alpha_{ii}$ and $\alpha_{ij}$, we assume

(3.5.3) $\alpha_{ii} \geq 0$.

In the proof which follows, the functions $x_i$ and $x_{ij}$ are pairwise orthogonal elements of $(\mathbb{R}(G) - \{1\})$.

(3.5.4) $\sum_{i,j} \alpha_{ij} x_{ij} = 0$.

**Proof.** Suppose that (3.5.4) is false. By (3.5.2), we can then write, for some choice of indices $i, j, k$,

\[ \beta_{ij} = x_{ij} + x_{ik} - x_{ij}, \]
\[ \beta_{jk} = x_{jk} + x_{ik} - x_{jk}, \]
\[ \beta_{kl} = x_{kl} + x_{ik} - x_{kl}, \]
\[ \beta_{ik} = x_{ik} + x_{ij} - x_{ik}. \]

By induction, $\beta_{ij} = 0$. Thus, $\sum_{i,j} \alpha_{ij} = 0$, which contradicts (3.5.4).

(by unmet theorems)

**Proof.** Suppose that (3.5.4) is false. By (3.5.2), we can then write, for some choice of indices $i, j, k$,

\[ \beta_{ij} = x_{ij} + x_{ik} - x_{ij}, \]
\[ \beta_{jk} = x_{jk} + x_{ik} - x_{jk}, \]
\[ \beta_{kl} = x_{kl} + x_{ik} - x_{kl}, \]
\[ \beta_{ik} = x_{ik} + x_{ij} - x_{ik}. \]

By induction, $\beta_{ij} = 0$. Thus, $\sum_{i,j} \alpha_{ij} = 0$, which contradicts (3.5.4).

(by unmet theorems)

(by unmet theorems)
Wandering typo

- B & G 15.7
  - (e)(2) $p = |X|$ is a prime in $\sigma(M) - \beta(M)$, $O_p(H)$ is not abelian, $O_p'(H)$ is cyclic, ...

- Theorem 15.7. Suppose $F(M)$ is not a TI-subgroup of $G$. Let $H = M_F$ and choose $g \in G - M$ such that $X = F(M) \cap F(M)^g$ is not trivial. Take $E, E_1, E_2, E_3$ as in Sections 12-13. Then
  - (a) $M \in \mathcal{M}_\mathcal{G} \cup \mathcal{M}_{\mathcal{G}_1}$ and $H = M_\sigma$,
  - (b) $X \subseteq H$ and $X$ is cyclic,
  - (c) $M' \cong F(M) = M_\sigma \times O_{\sigma(M)}(F(M))$,
  - (d) $E_3 = 1, E_2 \triangleleft E$, and $E/E_2 \cong E_1$, which is cyclic, and
  - (e) one of the following conditions holds:
    - (1) $M \in \mathcal{M}_\mathcal{G}$ and $H$ is abelian of rank two,
    - (2) $p = |X|$ is a prime in $\sigma(M) - \beta(M)$, $O_p(H)$ is not abelian, $O_p'(H)$ is cyclic, and the exponent of $M/H$ divides $q - 1$ for every $q \in \pi(H)$,
    - (3) $p = |X|$ is a prime in $\sigma(M) - \beta(M)$, $O_p'(H)$ is cyclic, $O_p(H)$ has order $p^3$ and is not abelian, $M \in \mathcal{M}_{\mathcal{G}_1}$, and $|M/H|$ divides $p + 1$. 

- Peterfalvi (8.3) - (b) ... there is a prime divisor $p$ of $|H|$ such that $O_p'(M)$ is cyclic.
Things to look forward to

- Certification
  - of computer computations
  - of complex proofs
- Collaboration
  - safe contributions from diverse backgrounds
- Inspiration
  - explore logic, dependencies, and factoring