
Forming Beneficial Teams of Students
in Massive Online Classes

Rakesh Agrawal
Microsoft Research

Behzad Golshan
Boston University

Evimaria Terzi
Boston University

ABSTRACT
Given a class of large number of students, each exhibiting
a different ability level, how can we form teams of stu-
dents so that the expected performance of team members
improves due to team participation? We take a compu-
tational perspective and formally define two versions of
such team-formation problem: the MaxTeam and the
MaxPartition problems. The first asks for the iden-
tification of a single team of students that improves the
performance of most of the participating team members.
The second asks for a partitioning of students into non-
overlapping teams that also maximizes the benefit of the
participating students. We show that the first problem
can be solved optimally in polynomial time, while the
second is NP-complete. For the MaxPartition prob-
lem, we also design an efficient approximate algorithm
for solving it. Our experiments with generated data com-
ing from different distributions demonstrate that our al-
gorithm is significantly better than any of the popular
strategies for dividing students in a class into sections.

MODEL
Assume a class S of n students. Each student i is asso-
ciated with ability θi ∈ R, determined using techniques
such as Item Response Theory. Define the lift of team
T ⊆ S, Lifts(T) =

∑
i∈T Iθi≤Θ̂T

, where Icondition is an

indicator variable and Θ̂T = 1/|T |
∑
i∈T θi. Intuitively,

the Lifts(T) is the number of students in team T that
would benefit by interacting with the students of above
average ability.

IDENTIFYING A SINGLE TEAM
Problem 1 (MaxTeam). Given a set of n stu-

dents S = {1, . . . , n}, identify a team T ⊆ S of at most
k students such that Lifts(T) is maximized.

The Leaders&Followers algorithm: A good team con-
sists of a set L of leaders of high ability who will pull
up the team’s overall ability and a set F of followers
whose abilities will be below the team’s ability yet their
abilities will not be as low so as to decrease the overall
ability of the team. Clearly, Θ̂T should be larger than
the largest ability score of a student in the set F thus

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s). Copyright is held by
the author/owner(s).
L@S’14 , March 4–5, 2014, Atlanta, Georgia, USA.
ACM 978-1-4503-2669-8/14/03.
http://dx.doi.org/10.1145/2556325.2567856

Algorithm 1 Leaders&Followers

Input: Set of students S = {1, . . . , n} with sorted
abilities θ1 > θ> . . . > θn.
Output: Team T with the maximum Lifts(T).

1: T = ∅
2: for i = 1 . . . k do
3: L = top-i ability students
4: for j = i+ 1 . . . n− (k − i) + 1 do
5: F = students with abilities θj , θj+1, . . . ,
θj+k−i−1

6: if F and L satisfy feasibility condition then
return T = L ∪ F

the following Feasibility condition should be satisfied:

Θ̂T = (
∑
i∈L θi+

∑
i∈F θi)/k > maxi∈F θi, which can be

rewritten as:
∑
i∈F θi > k ×maxi∈F θi −

∑
i∈L θi.

If we knew the number of students in set L and the
top (highest ability) student in set F (with ability score
denoted as θF), then we can compute the right hand
side of the above inequality. However, we do not know
which student is going to be the top student in set F
but there are only O(n) possibilities. For a given set
L and the top student with ability θF , the easiest way
to satisfy this inequality is by placing the top students
with ability lower than θF in the set F . These students
are clearly a set of consecutive students with ability lev-
els below θF . With a preprocessing step of complexity
O(n) for computing the cumulative sums of all the abil-
ity levels of all the students sorted in decreasing abil-
ity level, Leaders&Followers algorithm has complexity
O(nk). This complexity reduces to O(n log k) by replac-
ing the linear search in Algorithm 1 with a binary search.

PARTITIONING A CLASS INTO TEAMS
Problem 2 (MaxPartition). Given an integer k

and a set of n students S = {1, . . . , n} (with n = k`) find
a partition of S into teams T1, . . . T`, where each team is

of size k and
∑`
i=1 Lifts(Ti) is maximized.

Lemma 1. When k = n/2 then the MaxPartition
is NP-complete.

The IterL&F algorithm: The IterL&F algorithm solves
the MaxPartition problem by iteratively picking one
team of size k using the Leaders&Followers algorithm
in every iteration and removing this team from the set of
students. Among the many candidates that may possibly
exist that achieve the same value of Lifts, the one with
the highest highest-ability follower is picked. Intuitively,
this tie-breaking rule groups the highest ability leaders

2 4 8 16 32 64 128 256 512
500

600

700

800

900

1000

Team size (k)

Li
fts

IterL&F
Random
Stratified
RoundRobin

Figure 1. Performance of the IterL&F, Random, Stratified
and RoundRobin algorithms for the MaxPartition problem;
x-axis (log-scale): number of students per team (k); y-axis
sum of the Lifts values of the teams in the partition.

with relatively high ability followers. Clearly, there are
n/k iterations of IterL&F, each taking time O(n log k).
Therefore, the overall running time is O(n2 log k/k).

EXPERIMENTS
We experiment with a dataset of n = 1024 students, with
ability values randomly sampled from a pareto distribu-
tion having the shape parameter equal to 3.

Baseline algorithms: In addition to the IterL&F algo-
rithm, we experiment with the following three baseline
algorithms: Random, Stratified, and RoundRobin.

The Random algorithm simply creates ` teams of size k by
randomly assigning students to teams. The running time
of the Random algorithm is O(n), since it is adequate to
create a random permutation of the students and then
create the ` teams by considering consecutive members
of this permutation. Note that Random is the frequently
used algorithm for partitioning a large class into sections.

The Stratified algorithm sorts the students in decreas-
ing order of their abilities. Then, the first team is created
by considering the first k students with the highest abili-
ties and putting them in a team by themselves. The sec-
ond team is created with the subsequent k students and
so on. The running time of this algorithms for a sorted
input consisting of n students is O(n). This algorithm
can be thought of as an idealized version of the oft-used,
ability-based homogeneous grouping of students.

The RoundRobin algorithm again considers the sorted
list of students. In this case, the first team is created by
considering k students at positions 1, k+ 1, (2k+ 1) etc.
in this sorted list. The second team is formed by students
at positions 2, k + 2, (2k + 2) etc. on the same sorted
list and so on until ` teams are formed. The running
time of this algorithms for a sorted input consisting of
n students is O(n). This algorithm mimics how teams
are often formed (particularly in recreational sports) by
first selecting the leaders and then letting the leaders
take turn in adding members to their respective teams.

Performance of team-formation algorithms: Fig-
ure 1 shows the total gain of the teams formed by the dif-

ferent algorithms as a function of the team size k. The re-
sults (which are averages over 20 random datasets drawn
from the respective distribution) demonstrate that for all
values of k (except for k = 2, where all algorithms have
similar performance), IterL&F is significantly better. In
fact, there are values of k (e.g., k = 32) for which the
IterL&F achieves total Lifts of more than 950, while the
maximum possible value is less than 1024. This means
that more than 90% of the students are assigned into
teams that can potentially improve their performance
since the team’s ability is higher than the students’ abil-
ities for all these students.

Amongst the baseline algorithms, Random and
RoundRobin are better than Stratified. The reason is
that the dataset drawn from a pareto distribution has
a small number of exceptionally high-ability students.
The Stratified algorithm puts these students together
in one team and therefore their high abilities cannot be
leveraged to lift up the average abilities of other teams.
This phenomenon is not observed in the teams formed
by Random and RoundRobin since these algorithms
distribute the high-ability individuals into different
teams allowing more teams to benefit from them.

For k = 2, all algorithms have the same total Lifts,
which is equal to n/2 = 1024/2 = 512. This is because
in teams of size 2 inevitably there is one student that
is above and one that is below average and therefore
the team is beneficial for exactly half of the students,
independently of how the team assignment is performed.

DISCUSSION
One could object that our approach is unfair to strong
students. We offer the following counterpoints:

• Our algorithm builds teams in such a way that the
highest ability leaders are grouped with the highest
ability followers, the next set of highest ability leaders
are put together with the next set of highest ability
of followers, and so on. Thus the strong students are
still in good company.

• Helping someone else understand the material can pro-
duce a more organized cognitive structure than only
trying to learn the material for oneself. The person
starts seeing the issues from new perspectives, lead-
ing to a better fundamental grasp of the material.

• A student could be very strong in one subject, but not
so strong in another. It is only fair that she helps her
team mates in her strong subject, while she gets help
from them in the subject that is not her strong suit.

In the future, we would like to investigate the implication
of extending the partitioning objective to incorporate
the numeric increases in the performance of the group
members. We would also like to enrich our problem for-
mulation with constraints due to socio-emotional factors
such as interpersonal relations. Finally, we would like
to partner with some MOOCs to study the performance
characteristics of our proposal in real-life settings.

