AN3: A Low-Cost, Circuit-Switched Datacenter Network

Eric Chung, Andreas Nowatzyk, Tom Rodeheffer, Chuck Thacker, Fang Yu
Microsoft Research, Silicon Valley

Abstract

In this paper, we present AN3—a low-cost, circuit-switched
datacenter network. AN3 replaces expensive IP switches with
custom hardware that supports circuit-based switching effi-
ciently and with low cost. AN3 is enabled by a new speculative
transmission protocol that (1) enables rapid multiplexing of
links to efficiently support many flows in a datacenter-scale
computer, and (2) establishes setup and teardown of circuits
within tens of microseconds—well below the TCP handshake
delay. In simulations, AN3 achieves over 90% link utilization
in synthetic and real-world applications. A significant portion
of AN3 has been built using low-cost, commodity FPGAs—our
cost analysis shows that AN3 reduces the amortized per-server
cost of the network by 1.7-2.4X relative to a conventional dat-
acenter network.

1. Introduction

The datacenter network forms the critical infrastructure for
enabling robust and scalable communication between hun-
dreds of thousands of datacenter servers and storage nodes.
Existing datacenter network architectures are predominantly
packet-switched networks built out of expensive, commod-
ity IP-based switches. These switches provide many (largely
unused) capabilities and execute millions of lines of code, con-
tributing to software failures and lowered reliability. Including
the base costs, repair, and cabling, the datacenter network
alone can incur nearly 19% of the entire datacenter’s cost of
ownership [20].

Our goal in this work is to develop a new datacenter network
architecture that can simultaneously improve performance,
efficiency, and reliability while drastically reducing network-
ing costs. In a radical departure from conventional practice,
this paper argues for the merits of circuit-switched networks
in the design of future datacenter networks. Unlike packet-
switched networks that carry traffic flows in packets, circuit-
switched networks establish connections that allocate network
resources along a path from the source to the destination. After
a connection is established, cells are transferred without inter-
ruption until the connection is torn down. A circuit-switched
network offers several key benefits in a datacenter:

e Predictable performance. In circuit-switched networking,
flows are transferred with guaranteed bandwidth, bounded
latency, low jitter, and no cells can be dropped due to con-
gestion.

e Performance isolation. Flows do not interact with one
another. This is particularly important to the operator of a
large datacenter. The actions of one customer’s application

cannot be allowed to interfere with performance received
by another customer.

Despite their benefits, traditional circuit-switched networks
fell out of favor due to their perceived disadvantages relative
to packet-switched networks: (1) High setup overhead: In a
circuit-switched network, a connection must be established
before data is transmitted—this is expensive in a large-scale
network such as the Internet, (2) Low link efficiency: Since
traffic is inherently bursty, a circuit-switched network has
low link utilization due to its inability to perform statistical
multiplexing, (3) Complex switch design: Circuit-switched
networks require maintaining per-flow states at each router or
switch, and (4) Less robustness: If a router or link in a packet-
switched network fails, flows need to re-establish new circuits
before they can be rerouted. These are plausible reasons why
packet-switched networking is used for the Internet today.

In “re-thinking” the network architecture for a datacenter-
scale computer, we argue that many of the perceived disad-
vantages of circuit-switched networking do not arise as they
would in the Internet. We observe that: (1) A datacenter is
typically set up and maintained by one central organization
that has full knowledge of the datacenter topology and link
capacities. For a circuit-switched network, this vastly simpli-
fies the complexity and task of rerouting traffic during failures.
(2) Unlike the Internet, there are a bounded number of hosts
in the datacenter. Therefore, links are short, so the round trip
delay is much lower when compared to the Internet.

Thus, the major challenge that remains is how to support
many concurrent flows efficiently to fully utilize link band-
width. We observe that if one can build a network that supports
fast circuit setup and teardown, then statistical multiplexing
of the links and low latencies can be achieved in a circuit-
switched network exactly as it would in a packet-switched
network.

The AN3 Network. In working towards the goal of build-
ing an efficient, low-cost datacenter network, we present the
AN3 network—a custom network architecture that scales to
90,000 nodes. AN3 overcomes the limitations of traditional
circuit-switched networks using a novel speculative transmis-
sion scheme, where cells can be transmitted before a con-
nection is fully established between source and destination.
Speculative transmission is critical for enabling rapid setup
and teardown of circuits, which (1) increases link utilization
efficiency, (2) reduces per-flow states needed per router, and
(3) avoids slowing down applications that exhibit short or
mixed flow patterns. The AN3 architecture also imposes less
complexity and cost than existing datacenter networks by re-

Internet Internet

Data Center
Layer 3

Key

* CR = L3 Core Router

* AR = L3 Access Router

* AS = L2 Aggr Switch

*S =12 Switch

« ToR = Top-of-Rack Switch

T
ASingle Laver 2 Domain

Figure 1: Baseline network (figure adapted from [16]).

placing expensive top-of-rack switches (TOR) with building
blocks that can be implemented cheaply in commodity FPGAs.
Based on extensive cost analysis, simulations, and prototyping,
we demonstrate the following properties of AN3:

o Excellent Scalability. We show that the AN3 topology
scales up to 90,000 nodes in one geographic location. !

o High performance. When simulating a variety of synthetic
and real-world applications, we show that AN3 achieves
very high bandwidth utilizations (90% and above). We show
that circuit setups can be achieved in tens of microseconds,
well below the TCP handshake delay and two to three orders
of magnitude faster than traditional ATM switches [24]. Our
experimental results further show that our design supports
both long and short flows efficiently (Section 8).

e Low complexity. We show that the AN3 building blocks
are simple to implement on commodity FPGAs and incur
much lower cost in chip area and buffering compared to
traditional packet-switched routers (Section 6).

e Low cost. Based on a detailed comparison study, we show
that AN3 can achieve a 1.7-2.4X reduction in per-server
networking costs relative to a standard datacenter network
(Section 7).

2. AN3 Network Architecture

Before presenting AN3, we first describe the baseline network
architecture commonly deployed in commercial datacenters
today [11]. As Figure 1 shows, a traditional datacenter net-
work comprises a tree-based hierarchy of servers and switches,
where servers form the leaves, and switches are aggregated
in multiple layers to provide full end-to-end connectivity and
bisection bandwidth. At the lowest layer, servers (typically
a rack’s worth, 20-40) are aggregated to top-of-rack (TOR)
switches. Above the switches, TORs are connected to aggre-
gation switches, that are in turn connected further by core and
Internet switches. The dominant cost of a datacenter network
today are in the Network Interface Card (NIC)s, the switches,
and the cables.

Beyond that, it is better to have geographic diversity to protect against
catastrophic events.

A 4 To other containersa A

A A A A
L1 Switch L1 Switch
(Primary) (Secondary)

Level 0 networ

One container in Ci-Net
10G optical cables
(L1 switches to other switches) NIC

5G SATA cables
(connections between LO NICs)

Standard NIC
(four 5G ports to other NICs)

Egress NIC
E-NIC (four 5G ports + 10G port to L1)
Figure 2: Topology of switches in a single container.

2.1. AN3 Architecture: Single Container

The AN3 network replaces traditional TOR and core switches
with two simple building blocks: (1) a specialized, 5-port NIC
for building small, local networks between servers in a rack,
and (2) a 128-port crossbar switch for aggregating the local
servers into a larger global network.

Physically, the AN3 network adopts the popular shipping
container model for the datacenter [4]. Figure 2 shows various
AN3 components within a single container. In contrast to
conventional TORs, the server NICs within the same half-rack
(typically 22 servers) are connected to each other to form a
Level-0 (LO) network. Each NIC exposes four 5G ports that
can be connected via low-cost SATA cables to other NICs
within the same LO network.

Within each container, two redundant 128-port crossbar
switches are used to provide full end-to-end connectivity be-
tween all LO networks within the container and between con-
tainers throughout the datacenter. In Figure 2, these switches
are designated as L1 primary and L1 secondary. Each L1
switch exposes 128 10G ports—half of them used for the LO
networks belonging to one container, and the other half con-
necting to other L1s belonging in other containers. Within
the LO networks, two NICs (designated as E-NIC in Figure 2)
have a 5th port that connects to the L1 switches directly. Gen-
erally, the AN3 configuration is flexible—more L1 switches
or E-NICs could be included in a container to provider higher
bisection bandwidth.

2.2. AN3 Architecture: Multi-Container

As shown in Figure 3, in a large-scale AN3 network, there
are up to 64 containers connected to each other using L1
switches. For each L1 switch, 63 ports are connected to other
containers and 1 port connects to the Network Operations
Center. The remaining 64 ports connect up to 64 LO networks
hosted within the same container. In a typical LO network with
22 nodes per half-rack, one AN3 network can support up to
64 x 64 x 22 =90, 112 servers.

Network
[~ Operation i
Center

L1-S

‘ ‘ d-11

PLN

10G optical cables

L1-P

ST

Container 0 (Co) Container 63 (Cg3)

Container 1 (C4)

Figure 3: AN3 network with multiple containers. Containers C;
and C; are connected with two 10G cables from port 64 + j of
C; to port 64 + i of C; through the primary and secondary L1s.
Adding a new container does not require rewiring of existing

containers.
Frame 0 Frame 1
1FrameTime

—@olo[o[ola[0[o[

Slot0 | Slot2
Slotl Slot3

g o[o[o][0]

Time

Figure 4: Example of framing on the link with 1 control cell
and 4 data cells per frame.

The Network Operations Center shown in Figure 3 pro-
vides a AN3-to-TCP/IP bridging function and connections
to external routers. The AN3 network employs Valiant Load
Balancing (VLB) to provide more bandwidth than a single
pair of links between a pair of containers can provide. When
the bandwidth of the two links between a pair of containers
is saturated, additional circuits can be routed through another
L1 switch rather than being routed directly to the destination.
When there are less than 64 containers in the data center, un-
used ports can also be connected to each other to provide
higher bandwidth between containers.

3. Circuit-switched Network

The most significant departure from standard networking prac-
tice in AN3 is the use of circuit-based switching rather than
packet-based switching.

In ANS3, there are two types of cells flowing through the
network: the control and data cells. Control cells are used
to set up and tear down circuits and data cells are used to
carry the actual data. More specifically, bits over the link are
transmitted as a stream of repeating frames, each consisting of
128 8-byte control cells and 128 64-byte data cells. A data cell
within the frame is identified by a slot number, and a frame
has 128 slots. Unused slots are marked with null data cells.
On a 10G link with 128 slots and 66/64B encoding, each port
sends out exactly one frame of data during each frame time
(7.32us). Figure 4 illustrates a simplified example of framing
on a link.

Any given data cell belongs to some part of an existing flow.

Setup Ack (t=2)
Container 2

Container 1

p

Setup
Req (t=1)

Setup

Setup Ack (t=1)

Req (t=0)

Figure 5: Example flow setup and tear down topology. Af-
ter L1-P in Container 1 processes the setup request at time
0, it forwards the request to the next L1 switch. Meanwhile,
it sends an ACK to the previous switch (E-NIC), telling the
source NIC that it is ready to accept data.

The client NIC at the source is responsible for controlling
injection of data cells into the network at one cell per frame
time for each flow. Flows are set up unidirectionally since
traffic patterns may not be symmetric. Data cells flow through
the switches in the forward direction, and ACKs (one ACK
for a number of data cells) travel along the reverse path. For
symmetric flows, two circuits are set up, one from each end.

When a path through the network is set up, each switch
on the path assigns a local slot in its frame to this flow. All
subsequent data cells belonging to this flow occupy this slot at
this switch and an outgoing link towards the next switch. The
slot numbers are carried in the data cell headers and are used
to determine the input buffer for the data payload at the next
switch. The slot number is modified at the output unit in each
switch along the path in a manner similar to the modification
of the virtual circuit identifier in an ATM network. As we will
discuss in Section 4, the use of framing and slots in the L1
network vastly simplifies the design complexity and dynamic
scheduling of a 128 x 128 crossbar.

3.1. Circuit Setup and Teardown

Since flows can be short in datacenter workloads, AN3 creates
circuits dynamically for each flow, rather than trying to predict
the aggregate bandwidth for multiple flows and setting up
long-lasting circuits. The setup request reserves a default
(low) bandwidth for each flow. When an application requires
higher bandwidth, multiple flows are requested independently
to achieve a higher aggregated bandwidth allocation.

To mitigate the path setup overhead for short flows, data
cells can be transmitted speculatively by the source NIC as
soon as the path setup process begins. Figure 5 illustrates the
setup process using an example topology, where the source
NIC A tries to establish a flow to the destination NIC B.

In similar vein to the RSVP protocol [40], the source NIC
A initiates a setup request, which travels through all interme-
diate switches to reserve bandwidth, and finally reaches the
receiver (NIC B). However, unlike RSVP, the ACKs in AN3
are generated differently. In RSVP, ACKSs are initiated by the
destination NIC, so the source must wait a full round trip delay

before it can receive an ACK and start sending data. In con-
trast, the L1 switches in AN3 respond with ACKs immediately
after processing setup requests, when the flow has yet to be
established all the way to the destination. The ACK travels
to the previous L1 switch or NIC, informing it that the next
switch is ready to accept data.

In the example shown in Figure 5, after the L1 switch of
Container 1 processes the setup request, it simultaneously for-
wards the setup request to the next hop switch (L1 of Container
2) and sends an ACK to the previous hop, which relays it to
the source NIC. When the source NIC receives a setup ACK,
it begins sending data (speculatively) on the connection. In
this protocol, the source NIC does not wait for a full round
trip delay before pumping data into the network.

If a connection is rejected by some switches along the route
(or by the destination NIC itself), a teardown is sent along the
reverse path to the source NIC, releasing resources allocated
in the switches it passes. Similarly, when a switch or a link
fails, the neighboring switch detects the error and tears down
all existing connections. When the source NIC receives the
teardown message, it attempts to use the alternate L1 switch
to create a new connection or to use VLB routing.

Data cells that are injected into a connection where a setup
request subsequently failed are discarded by the network. They
are re-sent by the source NIC after another circuit is success-
fully set up. To ensure correctness, the setup and teardown
protocols were specified in TLA+ [23] and verified using the
TLC model checker [38]. Due to page limitations, we refer
the reader to a technical report for these details [3].

3.2. Sending Data

Once a setup ACK is received, the sender NIC begins sending
one data cell per frame time for this flow. Its first cell has
a distinguished type, so the destination knows whether it is
missing initial cells. If so, it sends a Restart message back
to the source and the source will restart the flow. In practice,
this case is extremely rare (only when the control channel is
heavily loaded). This is because data cells experience at least
one frame of delay at intermediate switches, while the control
cells do not, hence the probability of data cells catching up to
control cells is low.

A source NIC sends a Chunk Mark cell on a connection
every 128 data cells (a 4 KB “chunk”). The Chunk Mark
includes a checksum over the 4KB of data calculated by the
source NIC, as well as a sequence number for the chunk. The
Marks flow on the data connection and arrive after the last data
cell corresponding to the chunk. The resulting Data ACKs,
which contain the chunk sequence number, are sent in control
slots from the receiver back to the sender. A chunk forms
the unit of error checking and retransmission for a flow. If a
destination NIC receives a checksum error upon receiving a
Chunk Mark, it does not respond with a Data ACK, and the
source will retransmit the chunk after a (short) timeout.

When the source wishes to end a flow, it sends a Last Chunk
Mark. When the destination NIC sees a Last Chunk and the

checksum is correct, it responds with a Teardown message.
The destination NICs also provide a mechanism to suspend a
flow temporarily in order to multiplex the limited number of
simultaneously active flows among hundreds to thousands of
logical connections. These suspended flows can be restarted
at the point of suspension. The suspension mechanism allows
us to provide a device driver that matches the characteristics
of the AN3 hardware to the familiar sockets abstraction pro-
vided by the operating system to clients. Clients can open
many simultaneous logical connections, which are transpar-
ently multiplexed between the limited number of simultaneous
flows supported by the network. Similarly, long connections
can be torn down after a fixed period and re-setup to avoid
starving other connections. If there are no other connections
that need to be served, long connections can continue to utilize
available resources.

3.3. Compatibility with Existing Networking Protocols

The AN3 network provides fast connection setup and teardown
as a basic communication primitive. Applications can use
these primitives to send data directly or tunnel higher-level
legacy protocols such as TCP. Because cells flow at a fixed
rate with no jitter or packet losses due to congestion, AN3
does not rely on TCP to conduct flow control and avoids many
TCP-related congestion problems such as TCP incast [27, 10].
Other functions provided by TCP, such as data sequencing,
error retransmission and rate control, are provided by the
client NICs. NICs, together with the OS driver, expose a
simple circuit “socket” abstraction that can support existing
datacenter workloads. External connections can also be easily
tunneled to exit routers using circuits, just as many IP links
are now built upon ATM links.

Note that broadcast and multicast functions are not directly
supported by AN3. End-host-based solutions could be used to
facilitate such functions [39, 22].

4. L1 Switch

The L1 switch architecture forms the heart of the AN3 network
and is a critical building block for creating large-scale, low-
diameter networks. In a traditional packet-based design, dy-
namic scheduling of packets in a large crossbar is prohibitively
expensive and complex due to the matching problem. In AN3,
the use of slots and framing dramatically simplifies this pro-
cess, enabling the practical implementation of a large, 128-port
crossbar with minimal logic.

Figure 6 shows the overall architecture of the L1 switch. In
total, there are 16 line cards, each containing 8 bidirectional
10G ports for an aggregate throughput of 2.56Tbits of band-
width. Each 10G port contains an input unit for receiving cells
and an output unit for sending cells. Together, we call them
1/0O units. When framed data arrives on an I/O unit, data cells
are separated from control cells, as they go through different
paths in the L1 switch. Control cells are sent to the ringmaster
as shown in Figure 6, whereas data cells are sent to the frame

Unidirectional Ring Network

Crossbar
‘ Setup Station

Update
Schedule

Ring Master O

10G,
128x128
Crossbar
(16 FPGAs)

|

)
)
.
)
)
.
.
)
]
)
.
.
)
)
:
A
.
)
)
L}
7y
.
)
)
.
)
)
.
.
)
)
]

Line — [Ring Master 1 |
Card 1 s 1/0 Units (8-15)
Line —N Ring Master 2] .
Card 2 *J 1/0 Units (16-31) —
[]
[]
. []
Line Card 15
i —
R p—— Ring Master 15 .
_" 1/0 Units (120-127) =

Control + Data
Cells (Framed)

Control Cells ——»

— Data Cells =)

Ring Messages

Figure 6: The L1 switch. The switch consists of 128 ports and
16 ringmasters. Control cells travel through the ring. Data
cells go through the frame buffer and the crossbar.

buffer preceding the actual crossbar. Next, we describe the
crossbar and the ring masters in detail.

4.1. L1 Crossbar

AN3 pre-configures the switching instructions within the cross-
bar chips during circuit setups. This avoids the dynamic match-
ing computation and allows the AN3 switch to scale to large
port numbers. The AN3 128 x 128 crossbar (right, Figure 6) is
bit-sliced over 16 crossbar cards, each on its own PCB. Each
crossbar chip contains 128 x 128 : 1 multiplexers, one for each
output port. The switching instructions within each crossbar
chip determines the input line selected by each multiplexer
during each slot in a frame. Each crossbar chip cycles through
the 128 slots in a frame, matching inputs to outputs according
to the instructions. After finishing all 128 slots in a frame time,
the crossbar repeats the process from the beginning.

Figure 7 uses a 2X2 crossbar as an example to illustrate
the switching process. At time ¢ = 0, multiplexers of both
output ports process data cells in slot O in parallel. In this
example, the output port A selects the port B according to
its switching instruction and transfers the data D, from port
B, while the output port B transfers data Dy from port A. At
time t = 1, these multiplexers load the next round of switching
instructions and process the data cells in slot number 1. At
time ¢t = 2, this process repeats and the crossbar returns to
processing slot O of the next frame.

Crossbar

To Ring Switching instructions for
Output Port A t=0t=1
_ @ slot =0, select B
C m @slot=1, seIectA}J D,| Dy
Input
Port A OutpLt
Port A
Output
Input Port B
Port B
@ slot =0, select A t=0 t=1
C D, @ slot =1, selectB m
Switching instructions for
T4 Ring Output Port B

Figure 7: Example 2x2 L1 Crossbar.

The switching instructions are set by the Crossbar Setup
Station (top-right, Figure 6). The Crossbar Setup Station sits
along the path of the ringmasters and watches for ACKs that
are transmitted along the ring during the setup process, which
is described next.

4.2. L1 Ring

Since the crossbar can only ship data cells from one port to
another in a common slot—for any new setup request, the L1
switch must identify a common free slot for both the input
and output ports. To perform this quickly in the L1 switch,
both input and output ports maintain 128b bitmasks that track
the slot utilization of their respective links. We refer to these
bitmasks as input and output schedules, respectively. An input
schedule records free slots for flows that arrive at a given port,
while an output schedule records free slots for flows departing
at a given port.

In a straightforward setup, one can use a centralized pro-
cessing unit to maintain all schedules and process all requests.
However, this approach easily creates bottlenecks. Thus, we
adopt a distributed approach: 16 distributed ringmasters (one
per linecard) are responsible for processing control cells and
orchestrating the setup and teardown of flow resources. Each
ringmaster services the 8 I/O units within each linecard. Ring-
masters are connected to each other in a ring that passes be-
tween the line cards on a large back-plane.

Figure 8 gives a detailed step-by-step example of how setup
requests are processed. When a setup request control cell
reaches the ringmaster from one of its 8 I/O units, a common
unused slot must be identified for both the source port and
destination port. This typically requires two ringmasters of
the input and output ports to coordinate this request. When
the input ringmaster services a setup request ((1) in Figure 8),
it first locks the input schedule for the input port. It then
forwards the setup request together with the input schedule
along the ring to the output port ringmaster (2,3). When the
ringmaster of the output port receives the message, it ANDs
the received input schedule with its own output schedule to
identify a common free slot (4). If a common slot is found, the
ringmaster of the output port deasserts the corresponding bit

Setup ACK to Port 0

RingMaster
15

(with common schedule)

A;
ofl1/0f0
\ \

Forwarded
Setup REQ {T
RingMaster 8

RingMaster 0
[o]

Setup REQ®
to Port 64 Port O

Setup ACK to
previous switch

@ of1]o]1
4
Setup ACK to Port 0 RingMaster 8 selects @
@ [o]1]0]o0] common schedule
Hﬂﬂll Forwarded
@ RingMaster 0 nn o Setup REQ
processes Setup ACK =
| noon
Forwarded)
@ Setup REQ RingMaster 7
[]

Input Schedule
Output Schedule [o]2]o]1]
Common Schedule [o]1]0] o]

Figure 8: Setup process through the ring.

in the output schedule and sends an ACK to the input port with
the common slot (5b). Simultaneously with the ACK (5a), the
ringmaster of the output port forwards the setup request to the
next switch along the path. When the next switch responds
with an ACK later, a small table in the output ringmaster
associates its own common slot with the local slot of the next
switch (not shown).

At the same time within the same L1 switch, when the input
ringmaster receives the ACK (6), it records the output slot and
associates it with the original setup request (7); this is followed
by an ACK to the previous switch (8). Within the original
input ringmaster, a small table records the mapping between
the local slot of the previous switch to the newly allocated
common slot (not shown).

With distributed ring processing, our prototype AN3 switch
can handle 156 million setup and teardown requests per sec-
ond, several orders of magnitudes higher than ATM switches
that can only set up hundreds to thousands calls per sec-
ond [24].

S. LONIC

LO NICs are in charge of maintaining the flow status and
sending and receiving cells. They must be aware of framing.
During any one-frame interval, a NIC may not send more than
one cell to an L1 switch for a given L1 slot number. At the
egress NIC, data and control cells are combined in a frame to
send to the connected L1 port.

In AN3, the LO networks are arranged differently than the L1
because they are much smaller. The NICs route cells through
the LO network, rather than using the customary TOR switch.
The LO NICs use routing tables based on the known topology
of the network. These tables are only updated by a lightweight
NIC CPU if a node or link in the local LO network fails. The
NICs use cut-through forwarding to minimize latency. The
per-hop latency through an unloaded NIC is 192 ns, so traffic
traverses an LO network in much less than a frame time. Hence,
the total latency through the network is dominated by the frame
delay at the L1 switches.

The topology of the LO network and the number of egress
NICs per LO network are flexible. Different data centers, or

Component LUT Area FF Area Memories
LONIC Logic 9368, 4% 9276, 2% 33%

L1 Ringmaster 2400, 1% 670, <1% 2, <1%
L1 I/O Unit 1136, <1% 314, <1%, 1, <1%
L1 Line-card 11544,5% 2638, <1%, 6,1%

Table 1: LO and L1 Components Mapped to Xilinx Kintex-7
LX325T-3 FPGA.

even different LO networks can have different configurations.
Common topologies such as a 2-D torus or mesh can be used.
In our experiments, we use a 22-node fat-tree with cross-links.
Each NIC has four 5G link to four other NICs. Two egress
NICs have extra 10Gb/s links to the L1 switches. In our LO
topology, all nodes reach an egress NIC within two hops and
can reach any other nodes in the LO network with an average
of 2.04 hops.

6. AN3 FPGA Protoyping

In this section, we report on the prototyping efforts of AN3
on commodity FPGAs. Samples of the AN3 LO NIC were re-
cently received from our manufacturer and tested successfully
on commodity PCI express Gen-3 motherboards. The 5-port
LO NIC comprises a single Xilinx Kintex-7 LX325T-3 FPGA
along with 4 SATA ports (to operate as 5G links) and a single
10G optical transceiver. The LO design was implemented in
synthesizable Verilog and has been validated in actual hard-
ware. Table 3 shows area statistics about the design, with
under 5% of the total FPGA being utilized. The SATA-3 links
are able to sustain the full 5Gb/s rate with extremely low error
rates (a single bit error every few days).

In addition to the LO NICs, the L1 crossbar has been fully
implemented in synthesizable Verilog. Table 3 shows the
synthesized costs for the various sub-components, including
the ringmaster, the I/O unit, a single line-card, and a single
crossbar chip. For the relatively modest FPGA, the line-card
(which includes eight I/O units and a single ringmaster) fits
comfortably within 5% area of the FPGA. It is noteworthy
that the L1’s modest area consumption was achieved without
any logic optimization due to the simplicity of the L1’s circuit-
switched architecture. Furthermore, the lack of extensive
buffering contributes significantly to a lower area cost.

The LO NIC is measured to consume about 12W of power,
comparable to standard off-the-shelf 10G NICs. We do not
have measured power numbers for the L1 switch but we con-
servatively estimate that with 33 LX325T-3 FPGAs operating
at worst-case consumption, the total L1 power should not
exceed 400W, comparable to TOR switches [34].

The L1 switch components have been validated in RTL sim-
ulation with a combination of test cases and assertions. In
addition to the test cases, the L1 setup and teardown proto-
cols were described using a formal specification written in
TLA+ [23] and verified using the TLC model checker [38].

Baseline AN3

Servers Oversub NICs TORs AggSw LONICs LI1Sw
20K 2.5 20K 500 143 20K 125
20K 5.0 20K 429 71 20K 63
40K 2.5 40K 1000 286 40K 250
40K 5.0 40K 857 143 40K 125
60K 2.5 60K 1500 429 60K 375
60K 5.0 60K 1286 214 60K 188

Table 2: Datacenter Network Configurations. The number of
TOR, Aggregated, and L1 switches are calculated based on
the number of servers and the oversubscription rate.

Unit Price (§) NRE ($) Discounts (0.5, 0.75)
10G NIC 400 200, 100
56-port 10G Agg Switch 34,500 - 17250, 8625
L1 Switch (FPGA) 6,600 100,000
L0 NIC (FPGA) 90 100,000
L0 NIC (ASIC) 10 1,000,000
LO SATA Cable 0.10

10G Copper+Cable (20m) 25
10G Optics+Cable (20m) 110

Table 3: Datacenter Component Costs (Baseline and AN3).

7. Cost of AN3 vs. Traditional Networks

A major goal of AN3 is to significantly reduce the cost and
overhead of building a datacenter network. As shown by
Hamilton et al. [20], the network can incur up to 19% over-
head relative to server costs. Our analysis will show that AN3
can reduce this component by 1.7-2.4X, even when factoring
in volume discounts. To estimate costs, we compare AN3 to a
representative baseline datacenter network discussed in Sec-
tion 2. To ensure a fair comparison between the two radically
different architectures, our cost analysis follows the method-
ology by Popa et al. [29], where both network architectures
are configured to have approximately equivalent bisection
bandwidth and delay.

For a conservative estimation, we select network parameters
that minimize the overall cost of the baseline network. We use
a standard, 56-port 10G access layer switch [1] recommended
by Cisco [11] for both TOR and aggregation switches”. We
conservatively ignore the cost of higher-level core switches
and only count server NICs, TORs, aggregation switches, and
the cables used between them. An important parameter that
has a first-order effect on switch costs is oversubscription at
the TORs. In our study, we select oversubscription values
based on recommendations from Cisco [11] and for various
datacenter workloads [2].

To mimic the baseline topology in AN3, we configure each
LO network to have the same number of servers aggregated to
each TOR. To provide the same level of bandwidth between
TORs, we scale the number of egress NICs within the LO to
match the oversubscription on the baseline TOR switches. The
egress NICs are connected to 64 inward facing ports of the

2Note: we make the conservative assumption that the lowest-cost switch
can be used at any level of the hierarchy. Although we could use fewer,
higher-radix switches for aggregation, the average per-port cost increases
substantially.

128-port L1 switches, and the remaining 64 outward facing
ports are fully connected to other L1 switches. In our cost
model, we consider two variants of AN3, one using higher-cost
FPGA s for the LO NICs and one with ASICs.

Table 3 shows estimated per-component costs based on pub-
licly available listing prices and internal estimates. Given that
the prices can vary dramatically based on volume discounts,
market forces, etc., our analysis assumes discount factors of
50% and 75% for the baseline switches and NICs. The com-
ponent costs of AN3 are based on vendor-provided volume
pricings of FPGAs and ASICs, board design, and manufac-
turing. For the baseline, low-cost copper cables are used for
intra-rack connections, while more expensive optical cables
and transceivers are assumed for inter-rack communication. In
AN3, we assume SATA cables for intra-rack communication
within the LO network and optical cables and transceivers for
L1 port connections. In AN3, we also include the NRE design
costs of implementing custom hardware.

Discussion. Figure 9 shows the per-port costs of AN3 and
the baseline networks for various server configurations (20K,
40K, 60K), levels of oversubscription (2.5, 5), and discount
factors (50%, 75%). With an oversubscription of 2.5, the AN3
per-port costs are significantly better than the 75% discounted
baseline by a factor of 2.4X at best (60K servers, ASIC LOs)
and 1.7X at the minimum (20K servers, ASIC L0s). As ex-
pected, the per-port cost of AN3 with ASIC L0Os improves with
increased volume. However, even in a low-volume scenario
using more expensive FPGA L0 NICs, the AN3 still achieves
a 1.8X improvement in cost relative to the baseline network
with a 75% discount factor. We observe similar trends at a
higher level of oversubscription (5).

Figure 10 shows the cost breakdown between the baseline
network (with a 75% discount) and AN3. The AN3 incurs a
much lower cost in switches and NICs due to the very simple,
circuit-switched hardware deployed on low-cost FPGAs and/or
ASICs. Note, our cost analysis is highly conservative and
favorable towards the baseline network because we do not
include the cost of expensive core switches (we assume all
aggregations switches are fully populated using the lowest-
cost switch). Overall, our cost analysis shows that AN3 is
practical to implement using commodity technology available
today and can offer sigificant cost savings in the datacenter
under conservative assumptions (1.7-2.4X).

8. Evaluation

We rely on simulation to measure the performance of large
AN3 configurations under a variety of workloads. Our simula-
tor implements all details of the LO and L1 switches including
ports, buffers, ringmasters and crossbars, as well as the full
setup, teardown, and data transmission. All parameters such as
processing times and delays were calibrated from our FPGA-
based implementation.

1000 Cost-per-Port Comparison (Oversubscription = 2.5)

800

W20K @40K 060K
600

I ww

Ci-Net Ci-Net
(FPGA LO) (ASIC LO)

4

Cost per Port
o
o

2|

o
o

Baseline Baseline
(50% discount) (75% discount)

800 Cost-per-Port Comparison (Oversubscription = 5)

600
200 I IH
0

Baseline Baseline
(50% discount) (75% discount)

W 20K @40K 060K

Cost per Port
=y
o
o

In

Ci-Net
(ASIC LO)

]

Ci-Net
(FPGA LO)

Figure 9: Cost-per-port (AN3 vs. Baseline).

60K Servers, Oversubscription = 2.5

., $30
5

= $25
=

$20

$15

$10

$5

$_

Baseline Ci-Net Ci-Net
(75% Discount) (FPGA LO) (ASIC LO)

M Switches B NICs @Cables ONRE
Figure 10: Cost Breakdown (AN3 vs. Baseline).

8.1. Experimental Setup

We evaluate three types of traces: (1) randomly generated
flows to test the circuit setup and teardown latencies, (2) a
well-known sorting benchmark (used in [16, 19, 15, 8] etc.)
to test whether the AN3 network can maintain high throughput
for all-to-all traffic, and (3) traces from a commercial data
center network, also used in [3] to study the impact of uneven
distribution of node loads.

In our experiments, each NIC sustains at most two outstand-
ing remote setup requests (one towards each egress link), so
that one aggressive node will not starve other neighboring
nodes. Subsequent requests are buffered in a request queue
at the NIC. An ACK is received from the first L1 switch in-
dicating whether the request is granted or not. If the request
is granted, the NIC starts sending data cells speculatively. If
not, the request is inserted at the tail of the request queue
and is retried again later. Upon receiving the ACK, the NIC
immediately sends out another setup request.

8.2. Performance on Random Flows

To test the speed at which AN3 can setup and teardown flows,
we use a topology containing three containers of nodes (4224
nodes in total) to test local, same-container, cross-container,
and VLB traffic. Each node in the system randomly issues
setup requests to other nodes in the system. The duration of a
flow is randomly selected, with the shortest flow being just 10
bytes. We generate enough flows to saturate the network.
Figure 11 presents the setup and teardown overhead, plot-
ting the three types of delay a connection experiences. The
first is the Setup ACK delay, which records the time from when
a source NIC starts sending out a setup request to the time it
receives a Setup ACK, either from the destination NIC (local

70
m SetupAck Del
=60 | etupAck Delay

3 M FirstMark Del
25 irstMark Delay

°
S0
$ 30 |
8
£§20 -
210 -
o

EndMark Delay

Local Same Container Diff Container Diff Container
using VLB

Figure 11: Setup and teardown delay.

100% -
80% -

>
o

§ 60% - ——Same Container

% 40% - ——Diff Container

W 20% - Diff Container using VLB

0%

T T T T T T T T i
10 100 1K 10K 100K 1M 10M 100M 1G

Flow size (bytes)

Figure 12: Setup and teardown overhead.

traffic) or from the first L1 switch (remote, cross-container,
and VLB traffic). Figure 11 shows that the Setup Ack delay is
very short (below 1 us) for all four types of traffic.

The second type is FirstMark delay, which records the time
from when a source NIC sends out the setup request to the
time the first data cell arrives at the destination NIC. Figure 11
shows that the FirstMark delay increases as the path gets
longer because the data cells experience frame delays at each
input port of the L1 switch. However, unlike packet networks,
where the buffer delay can become very long if there is a
congested output link, the frame delay in AN3 is bounded.
Every cell experiences one frame delay at the input frame
buffer, plus up to one frame delay imposed by the scheduling
of crossbar (the major source of the error bar in Figure 11). So,
a cell can experience a maximum of two frames of delays (7.3
us*2 = 14.6 us) at each L1 switch and the output port of an
egress LO. As we limit the maximum number of hops a data
cell travels in the AN3 network to be three L1 switches (VLB
case), the frame delay a data cell can experience is bounded.
Figure 11 shows that even with VLB, the FirstMark delay is
only about 60 us, well below a typical Round Trip Time (RTT)
in a packet-switched data center network [37].

The last delay we examine is the EndMark delay, which
records the time when a source NIC sends out the last data cell
to the time it receives a teardown acknowledgement from the
receiver. Figure 11 shows that it follows the same trend as the
FirstMark delay, but its value is slightly lower. This is because
when the teardown control cell travels back to the source, it is
given a higher priority to access the ring than the setup request
cells. Therefore, it experiences less delay.

Next, we study the impact of setup and teardown delay on
the overall flow transmission time. Since flows have variable
sizes, the setup and teardown delay is more critical to small
flows. Figure 12 plots the efficiency of different flow sizes,
where efficiency is calculated as the total time the NIC spends
on raw data transmission only over the entire time the network
spends on the flow (including the setup and teardown over-
head). As we can see from the figure, the efficiency of very
small flows with only one cell can be quite low. But when the
flow size increases to 1KB (16 frames), the efficiency grows
to 69%-84%. For flow size greater than 10KB (157 frames),
the efficiency is 96-98%. Previous studies of data center work-
loads report that the vast majority of background traffic is
greater then SOKB and query traffic is 1.6KB to 2KB [5]; thus,
AN3 is able to handle data center workloads with very little
overhead.

8.3. Performance on a Sorting Benchmark

Sorting is a popular benchmark for testing data center perfor-
mance. In MapReduce-style implementation with N machines,
there are two phases [30]. In Phase 1, a local processing step
is performed where N mappers process their inputs locally.
Each mapper divides the input into N ranges and produces
N output files. At the end of phase 1, the network shuffles
N * N output files to N reducers. In phase 2, each reducer is in
charge of one specific range and produces the sorted output.
In some implementations, each reducer duplicates the results
in several other nodes for fault-tolerance.

We test the AN3 network using phase 1 (all-to-all) and phase
2 (all-to-many) traffic. In phase 1, we test two settings with
each node sending to all other nodes in a random order and a
fixed order. The former is commonly used in other tests [15],
where the load of both the source and the destination nodes is
roughly balanced throughout the test, while the latter causes
more contention. We use two topologies: a small network
with 5 LO networks (110 nodes) and a larger network with a
full container (1408 nodes). In both, each node sends 10KB
files to every other node in the system.

All-to-all traffic with random ordering. For the all-to-all
traffic, the links from the LO egress NICs to the L1 switches
(10Gb/s) are the bottleneck. Figure 13 shows the throughput
on these links in the 110-node test. Almost all of the 128 avail-
able slots are used during the test so the throughput is close to
10Gb/s. There are 7 small dips during the test as flows com-
plete and new flows start. We call the transmission between
dips a round. Each node sends flows to other 109 nodes, with
21 of them being local and 88 of them being remote connec-
tions. As one LO network has two egress links with 256 slots
in total, each node in the LO network gets an average of 11.63
slots in each round. To send all 88 remote connections, the
first 7 rounds operate nearly at the full capacity, while there
are not enough flows to saturate the full bandwidth in the last
round, as shown in the last dip of the solid line in Figure 13.
If NICs are allowed to increase their slot sizes for existing

-

—— Without flow slot increase
------ With flow slot increase

Throuput of 10Gb/s links
OFRLr NWHRUONWOO

-
[
3
(]
f=4
3
(]
=
-
=
o
3
[=4
3
]
n
~N
~
N
f =4
&

Figure 13: Throughput of a 110 nodes all-to-all traffic.

128

e
[N
N
o

100 | e SetupReject
=== SetupAccept
80 £ eeeees ControlSent
DataSent

60 |
40

Cells sent per frame
(max 128 for 10Gb/s rate)

20

Figure 14: Different types of cells sent during the first two
rounds (110 nodes all-to-all traffic).

connections by setting up new slots when there are no more
requests in its queue, we can improve the utilization of the last
round as shown in the dotted line of Figure 13.

Figure 14 zooms in the first two rounds and plots the number
of data and control cells transmitted on the 10Gb/s link. We
can see that, in the first few frames, there are many control cells
for setting up flows and many setup requests being accepted.
Shortly thereafter, data cells begin to flow on the link. For
every 128 data cells, source NICs send chunk marks, which
trigger small peaks of ACK control cells around frame time
136 and 294. Even when the network is almost fully utilized,
there are still setup requests flowing through the network,
trying to use the final unused slots. Most of them are rejected
at the L1 switch either because the slots are full or no common
slots can be found. But when there are flows releasing slots,
these requests can quickly acquire the free slots. Therefore,
the gap between rounds are tiny with less than 8 frames (< 6
us)—two to three orders faster than the speed of commercial
optical switches reported in [15].

We also test the all-to-all performance on a larger network
with 1408 nodes sending 10KB files to each other. The
all-to-all traffic on 1408 nodes finishes in 142.0 millisec-
onds (ms). Compared to the NIC’s pure data sending time
(123.8 ms, which does not take into account of link delay and
setup/teardown overhead), this is 87% of overall efficiency
even with all the contentions from different nodes. Also note
that these flows are fairly small with only 10KB each. For
larger sorting benchmarks that have larger files to shuffle, the
efficiency would be higher. We also performed a test on an
even larger network with three containers of nodes with similar
results. Due to space limitation, we omit the results here.

All-to-all traffic with fixed identical ordering. The results
presented above are based on the setting in which each NIC

-

ORrNWRARUON®OLO

= Each NIC sends flows in its own random order

i 7
I s

Al NICs send flows in the same order

Throuput of 10Gb/s links

127
190
253
316
568
694
757
820
883
946
1009

<)
~
o0

442
505

o ~
™ ~
© o
—

1135
1198
1261

Frame time (1 frame time = 7.372 us)

Figure 15: All-to-all traffic with random v.s. fixed flow ordering.

sends to other NICs in its own random order, so the incoming
requests to each NIC are evenly distributed throughout the test.
This setting is commonly required for many existing networks
to achieve high throughput on the all-to-all benchmark. In this
subsection, we present the results of another setting, where
NICs communicate to others in a fixed order, i.e., from 1 to
N, to maximize the contention. In this setting, all nodes send
data to the same destination node simultaneously, which is
known to produce the infamous TCP Incast problem in packet-
switched networks.

Figure 15 shows the comparison of the two settings. The
result of the fixed order sending is only slightly worse than the
random-order test in the AN3 network. This shows that the
limited number of slots in AN3 network allows the network
to reject flows, which essentially reorders the flows to achieve
a high overall throughput automatically. Even if the applica-
tion writer does not optimize the flow sending order to take
advantage of the network’s characteristics, the AN3 network
can still accommodate these requests efficiently.

All-to-many traffic. In some systems, the final phase of the
sorting benchmark requires each merge node to duplicate re-
sults to other nodes for fault-tolerance purposes. A duplication
factor of two or three is often used in practice. We test the
AN3 network with each node sending S0KB of traffic to two
other nodes randomly selected from the entire 110-node pool.
Under this workload, since each node in the LO network only
has 2 connections through two egress NICs, the outgoing link
from one egress NIC to the L1 switch only carries roughly
22 connections, which could not fully saturate the 10G link.
The dynamic flow slot increase scheme, which allows the NIC
to request more slots for existing long lasting flows if it does
not have any waiting requests, resolves this issue. It is able to
utilize the unused bandwidth and finishes the test 3.55 times
faster.

The sorting benchmark shows that the AN3 network per-
forms gracefully on all-to-all traffic and all-to-many traffic,
where nodes have symmetric workloads. Next, we study the
performance of AN3 on workloads with uneven distribution
of loads across nodes.

8.4. Performance on Real Data Center Workloads

We use flow-level traces from a real datacenter with more than
2000 nodes. Nodes in the trace have different loads as shown
in Figure 16. A majority of the nodes emit several hundred

10

2.50%

2.00%

1.50%

1.00%

0.50%

Percentage of servers

0.00%

10
210
410
610
810

1020
1230 i
1440
1640
1840
2040
2260
2460
o 2660
2880
3090
3300
3510
3750
4060

=

Numbe connections second

=

o

n
Figure 16: Distribution of connections per second per server.

30

—&— Avg requests (nodes with <50% of avg requests)

—{ll— First request (nodes with <50% of avg requests)
Avg requests (all nodes)

== First request (all nodes)

Waiting time (us)
= [N N
o v o w

w
L

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Load of LO network to the max loaded LO network

Figure 17: The waiting time for nodes with few requests.

flows per second, while a small fraction of nodes send out
several thousands of flows per second. Because the topology
and the bandwidth of AN3 are significantly different from the
original datacenter network, we do not directly compare the
throughput and efficiency of two networks. Instead, we focus
on the performance of different nodes to demonstrate that the
AN3 network can work efficiently for nodes with thousands
of requests per second without starving nodes with very few
connection requests.

Response time of nodes with few requests. We analyze the
waiting time, i.e., the time from when the application issues a
flow setup request to the NIC to the time the NIC gets an ACK
from the network. In other words, the waiting time includes
both the time spent in the NIC’s queue and the time for the
network to generate a response. We compare the waiting time
of “light” nodes that send out less than 50% of the requests to
the waiting time of “average” nodes.

Figure 17 shows the load of the LO network vs. delay. As
various LO networks experience different loads, we categorize
the LO network according to the total number of requests com-
pared to the maximally loaded one. Unsurprisingly, nodes in
a lightly loaded LO network experience shorter waiting time
compared to nodes in a heavily loaded LO network. Interest-
ingly, this only applies to the average request case. The first
request of all nodes stays very low (less than 3 us) regardless
of the LO network load. This shows that for all types of nodes,
whenever they want to send one request, they can always send
it out quickly and get a response from the network. It is only
the case where a node wants to send many requests and the
neighbors are busy sending out many requests as well, that
subsequent requests need to be buffered at the NIC. We believe
that the admission control strategy imposed at the NIC (one
outstanding request per egress direction) and the egress NIC
(limited slots) is better than letting all connections go through

350
=o—The first request in the chain

=@-All requests in the chain

300

Waiting time (us)

10 20 30 40 50 60 70 80 S0 100 110 120>130

Request chain size

Figure 18: Waiting time for nodes with many concurrent re-
quests.

simultaneously into the L1 network, which could cause serious
congestion.

Performance of nodes with many requests. Figure 17
shows that for nodes that send out many connections in a
loaded LO network, they can experience on more than 20 us of
waiting time. Is this an acceptable delay, especially for nodes
that wish to set up thousands of concurrent connections?

To answer this question, we divide the concurrent connec-
tions into two cases: the external and internal data center
connections. For external connections, even if a server has
thousands of concurrent connections, they go through the same
path in the local data center, i.e., from the node to the router
(co-located with NOC). Therefore, all these connections can
be tunneled through just one circuit.

For internal connections, we study the prevalence of such
problem in our trace. In particular, we look at the size of
concurrent requests a node generates within a short window
(1us), which we call the request chain size. In our trace, vast
majority of the chains are short: 90% of them have less than 3
concurrent requests and 99% of the chains have less than 40
concurrent requests.

Figure 17 plots the waiting time of nodes with different
request chain sizes. Waiting time goes up when the request
chain size increases, as we limit each NIC to have at most two
outstanding remote setup requests in our setting. However,
given 99% of request chains are smaller than 40 requests, the
delays those nodes experienced are below 20 us, which is
well below the typical round trip delay we saved using our
speculative transmission protocol.

For the few nodes that have long request chains in busy LO
networks, they may experience hundreds of microseconds of
delay, which is still smaller than the hundreds of microseconds
RTT delay in the current packet-switched network. Therefore,
applications would hardly notice the effect.

It is possible to improve the waiting time for long chains:
We could allow NICs to have more outstanding requests. NICs
can also incorporate better scheduling heuristics to cut down
the waiting time. For example, they could tear down long
lasting flows temporally and serve new requests. Further,
one could design better heuristics or adopt CPU scheduling
algorithms from operating systems to achieve better results.
This is beyond the scope of this paper.

11

To summarize, our experimental results have showed that
the AN3 network can set up and tear down flows within tens of
microseconds, which is well below the TCP handshake delay.
In addition, we are able to support large all-to-all traffic grace-
fully and also real-world data center workloads efficiently.

9. Related Work

The idea of circuit switching is not new and was widely used
in traditional ATM [13, 21] and telephone networks [14]. AN3
improves the performance of circuit-switching with specula-
tive transmission, whereas in ATM and telephone networks,
circuits are long lasting and must be set up before cells can
flow. AN3 also employs a new scheduling method in the
crossbar, enabling scalability to much larger port numbers
(e.g., 128) than possible in traditional ATM switches (e.g.,
16 [33]). Compared to ATM switches that can only set up
up to thousands of calls per second [24] (a major reason why
ATM was unpopular), AN3 handles 156 million setup and tear-
down requests per second per L1 switch (orders of magnitude
higher).

AN3 uses a simple and efficient framing scheme, whereas
traditional circuit-switching networks such as SONET employ
complex two dimensional framing formats [35]. AN3 can
achieve this simplicity because the datacenter network is sim-
ple with a known topology. Thus the traffic monitoring and
failure recovery schemes can be separated from framing. In
AN3, frames are used to carry data and control cells directly,
whereas SONET’s framing provides other functionalities such
as monitoring traffic quality, detecting failures, and supporting
different higher protocols, etc [35].

The flow setup and bandwidth reservation of AN3 is related
to traditional Quality of Service (QoS) features such as inte-
grated [12] and differentiated services [9]. A key difference is
that AN3 initiates flows directly from the source NICs; there-
fore, no traffic shaping is required at the intermediate switches,
resulting in a simpler switch design. Speculative transmission
also eliminates the round trip latency required in traditional
bandwidth reservation protocols such as RSVP [40].

AN3 is not the first proposal to introduce circuits to dat-
acenter networks. Two recent proposals (Helios [15] and
c-Through [36]) employ hybrid electric/optical switch tech-
nologies to boost the performance of datacenter networks.
Our approach is similar, but we eliminate packet switching
altogether. In addition, we set up per-flow circuits, which
are much more fine-grained than the circuits that are shared
among many flows in hybrid switches. Our circuits are set
up electronically within tens of microseconds—two to three
orders faster than the commercial optical switches used in [15].
Hence, our switch supports short and bursty flows in a more
flexible and efficient manner.

With AN3’s fine-grained circuit switching, each flow knows
its allocated bandwidth, and there is no congestion-related
packet loss. Therefore, the network is much simpler, elim-
inating special efforts needed to improve TCP performance
on datacenter environments, e.g., DCTCP [5], or additional

methods to isolate networking usage between tenants. Given
that circuits provide predictive performance, resource allo-
cation schemes such as Oktopus [7], SecondNet [18], Gate-
keeper [31], SeaWall [32] and Faircloud [28] are easily applied
to AN3. We also envision that it is easier to deploy software
defined networks such as Open Flow [26] on top of AN3.

AN3 allows end hosts to communicate directly, which is
similar to server switch [25], Dcell [19], and BCube [17]. AN3
takes the additional step of eliminating the expensive TOR
switches, allowing egress NICs in a half-rack to communicate
directly with the L1 switch.

AN3 can also be used to access and transfer data from
remote storage. In the storage context, Infiniband [6] is a
high-performance packet switched network developed for su-
percomputer clusters but has seen adoption for accessing re-
mote storage in networked datacenters. Infiniband offers high
performance, reliable delivery, remote DMA, and a multicast
capability. Although it is feasible to construct a large Infini-
band network, it is expensive because Infiniband employs a
two-level structure that requires free-standing switches in the
interior of the network to route cells between subnets. AN3
eliminates the interior switches (i.e. the usual TOR switches),
and therefore, scales more gracefully and costs significantly
less.

10. Conclusions

The AN3 network is a radical departure from current practice.
We have shown that it works efficiently for different types
of traffic patterns. Beside performance benefits, it provides
a substantial reduction in the capital cost with the removal
of top of rack switches, the replacement of optical cables
with SATA cables, and the use of FPGA for switches. AN3
also simplifies operation, since the NOC has full visibility
and complete control of all the elements in the network. We
believe AN3 can be a candidate design for next generation
data center networks.

References

[1] “Cisco Nexus 5020 Switch, http://www.cisco.com/en/US/products/
ps9710/index.html.”

“Data Center Design Considerations, http://www.cisco.com/en/US/
docs/solutions/Enterprise.”

“Removed for blind submission.”

“Data Center In a Box,” in Scientific American, Aug 2007.

M. Alizadeh et al., “Data center tcp (dctcp),” ACM SIGCOMM Com-
puter Communication Review, vol. 40, no. 4, pp. 63-74, 2010.

I. T. Association, InfiniBand Architecture Specification: Release 1.2.1.
InfiniBand Trade Association, 2008.

H. Ballani et al., “Towards predictable datacenter networks,” in ACM
SIGCOMM, 2011.

H. Bazzaz et al., “Switching the optical divide: Fundamental challenges
for hybrid electrical/optical datacenter networks,” in Proceedings of
the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 30.
S. Blake et al., “An architecture for differentiated services,” 1998.

Y. Chen et al., “Understanding tcp incast throughput collapse in data-
center networks,” in Proceedings of the 1st ACM workshop on Research
on enterprise networking. ACM, 2009, pp. 73-82.

Cisco, “Data Center Design—IP Network Infrastructure,” Nov 2011.
D. Clark, R. Braden, and S. Shenker, “Integrated services in the internet
architecture: an overview,” 1994.

[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]
[10]

[11]
(12]

12

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[35]
[36]

[37]

[38]

[39]

[40]

M. de Prycker, Asynchronous transfer mode: solution for broadband
ISDN. Upper Saddle River, NJ, USA: Ellis Horwood, 1991.

L. Dryburgh and J. Hewett, Signaling System No. 7 ($87/C7): protocol,
architecture, and services. Cisco Press, 2005.

N. Farrington et al., “Helios: a hybrid electrical/optical switch archi-
tecture for modular data centers,” ACM SIGCOMM Computer Commu-
nication Review, vol. 41, no. 4, pp. 339-350, 2011.

A. Greenberg et al., “V12: a scalable and flexible data center network,”
in ACM SIGCOMM Computer Communication Review, vol. 39, no. 4.
ACM, 2009, pp. 51-62.

C. Guo et al., “Bcube: a high performance, server-centric network
architecture for modular data centers,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 63-74, 2009.

C. Guo et al., “Secondnet: a data center network virtualization archi-
tecture with bandwidth guarantees,” in Proceedings of the 6th Interna-
tional COnference. ACM, 2010, p. 15.

C. Guo et al., “Dcell: a scalable and fault-tolerant network structure for
data centers,” in ACM SIGCOMM Computer Communication Review,
vol. 38, no. 4. ACM, 2008, pp. 75-86.

J. Hamilton, “Talk: Datacenter Networks Are In My Way - Principals
of Amazon,” Oct 2010.

A. Joel, “Asynchronous transfer mode switching,” IEEE, New York,
1993.

K. Lakshminarayanan et al., “End-host controlled multicast routing,”
Computer Networks, vol. 50, no. 6, pp. 807-825, 2006.

L. Lamport, “Specifying systems: The tla+ language and tools for
hardware and software engineers. 2002.”

S. Long et al., “Call performance studies on the atm forum uni sig-
nalling implementations,” 1999.

G. Lu et al., “Serverswitch: A programmable and high performance
platform for data center networks,” in Proc. NSDI, 2011.

N. McKeown et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69-74, 2008.

A. Phanishayee et al., “Measurement and analysis of tcp throughput
collapse in cluster-based storage systems,” in Proceedings of the 6th
USENIX Conference on File and Storage Technologies. USENIX
Association, 2008, pp. 1-14.

L. Popa et al., “Faircloud: Sharing the network in cloud computing,” in
Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication.
ACM, 2012, pp. 187-198.

L. Popa et al., “A cost comparison of datacenter network architectures,”
in Proceedings of the 6th International COnference, ser. Co-NEXT
’10. New York, NY, USA: ACM, 2010, pp. 16:1-16:12. Available:
http://doi.acm.org/10.1145/1921168.1921189

A. Rasmussen et al., “Tritonsort: A balanced large-scale sorting sys-
tem,” in USENIX NSDI, vol. 11, 2011.

H. Rodrigues et al., “Gatekeeper: Supporting bandwidth guarantees
for multi-tenant datacenter networks,” USENIX WIOV, 2011.

A. Shieh et al., “Sharing the data center network,” in USENIX NSDI,
vol. 11, 2011.

C. Systems, “Catalyst 8500 csr architecture,” http:
/Iwww.cisco.com/en/US/products/hw/switches/ps718/products_
white_paper09186a008009263d.shtml.

C. Systems, “Cisco nexus 5000 series switches,” http:

/Iwww.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/
data_sheet_c78-461802.pdf.

Telcordia, “Synchronous Optical Network (SONET) Transport Sys-
tems: Common Generic Criteria,” 2009.

G. Wang et al., “c-through: Part-time optics in data centers,” in ACM
SIGCOMM, vol. 10, 2010, pp. 327-338.

H. Wu et al., “Ictcp: Incast congestion control for tcp in data center
networks,” in Proceedings of the 6th International COnference. ACM,
2010, p. 13.

Y. Yu, P. Manolios, and L. Lamport, “Model checking tla+ speci-
fications,” Correct Hardware Design and Verification Methods, pp.
702-702, 1999.

B. Zhang, S. Jamin, and L. Zhang, “Host multicast: A framework for
delivering multicast to end users,” in INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3. 1EEE, 2002, pp. 1366—1375.
L. Zhang et al., “Rsvp: A new resource reservation protocol,” Network,
IEEE, vol. 7, no. 5, pp. 818, 1993.

http://www.cisco.com/en/US/products/ps9710/index.html.
http://www.cisco.com/en/US/products/ps9710/index.html.
http://www.cisco.com/en/US/docs/solutions/Enterprise
http://www.cisco.com/en/US/docs/solutions/Enterprise
http://doi.acm.org/10.1145/1921168.1921189
http://www.cisco.com/en/US/products/hw/switches/ps718/products_white_paper09186a008009263d.shtml
http://www.cisco.com/en/US/products/hw/switches/ps718/products_white_paper09186a008009263d.shtml
http://www.cisco.com/en/US/products/hw/switches/ps718/products_white_paper09186a008009263d.shtml
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/data_sheet_c78-461802.pdf
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/data_sheet_c78-461802.pdf
http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps9670/data_sheet_c78-461802.pdf

	Introduction
	AN3 Network Architecture
	AN3 Architecture: Single Container
	AN3 Architecture: Multi-Container

	Circuit-switched Network
	Circuit Setup and Teardown
	Sending Data
	Compatibility with Existing Networking Protocols

	L1 Switch
	L1 Crossbar
	L1 Ring

	L0 NIC
	AN3 FPGA Protoyping
	Cost of AN3 vs. Traditional Networks
	Evaluation
	Experimental Setup
	Performance on Random Flows
	Performance on a Sorting Benchmark
	Performance on Real Data Center Workloads

	Related Work
	Conclusions

