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Abstract—Past decade has witnessed the availability of
Trusted Platform Modules (TPM) on commodity computers.
While the most common use of TPM appears to be BitLocker
on Windows OS, server class motherboards have not yet
enjoyed a similar TPM deployment base. Recent research
and products show that the TPM can provide a level of
trust on locally executing software. Nonetheless, TPMs haven’t
been utilized in data center cryptographic key management
for higher levels of security assurance than software-only
techniques. Hardware-based key management has so far been
constrained to higher cost add-on hardware.

We present a large scale policy-driven cryptographic key
manager built with TPM security assurances. We describe our
design principles and axioms, architecture and abstractions,
security policy, and implementation. We create a role-based
security model and express the model with SecPal security
policy assertions. We describe our implementation of three
roles, actions, resources, SecPal policies and tokens that com-
bine them. Finally, we present our implementation results with
SecPal proof graphs.

Keywords-TPM; cryptography; key management; SecPal;
policy language; data center

I. INTRODUCTION

An enterprise or a user need some level of assurance
before entrusting a service from a hosted service provider.
With multiple benefits of what is collectively called “the
cloud”, more data and processing are moving to the cloud
sush as e-mails, company documents with various forms of
Intellectual Property, family documents and media files, and
financial transaction data and services [1].

Under the cloud paradigm, suppose you are one of the
CxOs in a company or in your family as the family IT
person responsible for technology decisions and implement-
ing them. You have already made the decision to move to
a hosted provider to reduce costs and improve IT qual-
ity for your company’s staff. You now have to choose a
storage and processing provider for your Human Resources
(your spouse), Legal (your spouse), R&D (your children),
and Finance (you) departments. One of the providers runs
third-party certified data centers in a physically controlled
environment at premium price. Another one is running
software of the month with the latest feature updates from
its R&D department at a low price. Which provider would
you choose?

None of the service level agreements from the providers
satisfies your stringent requirements, and you decided to
setup hardware and software in order to provide some of the
services on-premise. Now you face another decision similar
to the one with hosted service providers with a twist. Some
of the software and hardware is third-party certified. They
should be operated in a physically controlled environment
by trained personnel at a high price point. The competing set
of lower-priced software runs on commodity hardware and
requires common IT administration skills, but does not offer
comparable security assurances. Which combination would
you choose?

But, wait! Some researchers claimed that it is possible
to securely bootstrap in a “trusted” platform on commodity
hardware [2], [3]. Other researchers claim they have a
method to provide high-assurance hosted and on-premise
services on commodity hardware. Do you really trust applied
researchers for what you really wish existed in a production
environment?

A. Problem Description

We consider this high-level problem: the lack of low-cost,
automated cryptographic key management in large-scale data
centers. We skip the motivation for catering cryptography
and cloud key management, and assume both are necessary.
We justify our assumption with publicly disclosed storage
compromises and private communications with people who
expressed a strong need for higher assurance key manage-
ment and data protection for SaaS, PaaS, and other * as a
Service offerings.

We recognize that one can build a high assurance key
management and data protection with special purpose cryp-
tographic hardware across many servers [4], [5]. These
solutions require special-purpose hardware plugged in to
each participating machine where high assurance crypto-
graphic storage and processing is deemed necessary, such
as top-level CAs. We want to come up with a low-cost
key management alternative substituting special purpose
cryptographic hardware with TPMs. It is also possible to
create a hybrid approach with TPMs and Hardware Security
Modules (HSM): that is not our focus.



In addition to cryptographic and TPM details, there is
the Trust Management question in distributed and decen-
tralized systems [6], [7]. Trust management is an access
control approach in decentralized distributed systems with
authorization decisions based on policy statements made by
multiple principals [8], [9]. We focus on trust management
for cryptographic key management and data protection to
deploy in real-life distributed systems. Examples of such
systems are Microsoft Azure and Amazon EC2.

B. Background

We look at previous trust management, key management,
and public key certification systems. We embrace some of
the public key certificate principles, reject others, integrate
public key certification with SecPal policy language, and
present a policy-based integrated key manager. Our system
binds explicit authorizations to keys similar to SDSI [10].
We use SecPAL instead of SDSI’s canonical S-expressions,
but the authorization anchors remain similar. We qualify
“trust” to mean carrying out actions granted to a principal,
and nothing else. This will make more sense when we define
roles in Section IV.

We don’t associate public keys with identifiers (names)
as in X.509 and PGP; public keys are identifiers them-
selves [11]. We represent a small set of mutable trust
anchors, called Root, by their public keys through decen-
tralized policies. Our policy allows automatic and manual
adjustments to the trust anchor public keys, and avoids the
single-instance X.509 trust anchor frailty. We achieve this
through SecPal delegation.

The public key revocation story is simple: there isn’t any.
We stop granting access instead of revoking existing access.
When a public key (a TPM) is no longer trusted for key
management, we generate new keys, but don’t grant access
to the undesired public key access to the new keys. Existing
keys are marked “Read-Only”: decryption and verification,
only.

SDSI can bind names and keys, but names are mean-
ingless in our arhcitecture, perhaps except for auditing pur-
poses: one might want to put the server name in an audit log
in addition to a TPM key. That approach may prove to be less
useful since names may change in a data center deployment.
A more appropriate audit strategy may utilize the physical
or logical server location. But, we separate human-usable
audit from authorization, and treat it as a seperate mapping
system. We follow the SPKI observation that a TPM public
key is a globally unique identifier [10], which makes this
mapping a bijection. We assume that unalterable TPM public
keys can easily map to more meaningful audit information
than X.509 style name assignment.

We are not going to describe logic based policy languages,
role-base trust management languages, but refer to existing
literature [12], [9], [13]. We describe how we used role-
based access control with TPM keys to create a distributed

key management and data protection system.
We have to comment on the most widely used security

mechanism: Access Control Lists (ACL). It is almost cus-
tomary for anyone to ask this question: “Why can’t you just
put an ACL on it?”. We give a modified list inspired from
Blaze, et.al, in [6],

• Centralized Identity. An ACL requires that the identi-
ties be globally recognized in the system. We have a
distributed and decentralized topology where existing
identities vanish due to failures or reinstallation, and
new identities are introduced frequently. We can’t rely
on a centrally-managed identity system with ACLs
attached to objects.

• Authentication. We can’t rely on an existing authenti-
cation system: our system is designed to form a basis
of trust for authentication. Servicing a key management
request requires some sort of authentication, and a pub-
lic key-based authentication fits naturally with TPMs.

• Delegation is required for fault tolerance and scala-
bility in a distributed system. One of the tenets is
the automatic trust adjustment by shifting within the
same role. For example, in a failover cluster, the same
request can be serviced by any role instance (assuming
a role based cluster service model). Another aspect is
the automatic role assignment to assure a minimum
number of role instances in the distributed network or
a subnetwork. Delegation makes the automation easy
and allows unattended operation.

• Expressive Policy. ACLs are traditionally live out their
expressiveness, and policies are hard-coded frequently
in code. Our system requires dynamic and frequent
changes to the authorization policy.

C. Contributions

Our cryptographic high-assurance key management uses
commodity TPM hardware as tamper-resistant key storage
and processing units. We give the role-based security model
of our network key management. Our authorization approach
combines previous decentralized and distributed trust man-
agement concepts with a security policy assertion language,
and makes role-based access control decisions.

We define mappings between cryptographic keys and
roles, objects for cryptographic key management, crypto-
agile data protection, and object access permissions for roles.
We also present a network service architecture based on
these roles and observe principle of least privilege to reduce
exposure to security threats.

Additionally, we achieve all of this with commodity hard-
ware at significantly lower cost than special cryptographic
hardware. As a demonstration, we discuss two sets of imple-
mentations. The first is a Windows C/C++ implementation
that implements TPM interfacing, cryptography, network
services and protocols, and data protection parts. The second
software component implements security policy language,
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claims and policies, policy decision and enforcement points
in C#. We present the software architecture and design, Sec-
Pal base policies, SecPal assertions in authorization tokens
for roles, and give SecPal authorization proof graphs.

II. TPM BACKGROUND

The main output of the Trusted Computing Group (TCG)
is a set of specifications of a hardware chip: Trusted Platform
Module (TPM) [14]. A TPM is a security hardware with a
public-private key-pair, secure memory locations for Plat-
form Configuration Registers (PCR), a secure cryptography
engine, and a programmatic interface to carry out pre-
defined functions. The TPM v1.2 specification requires that
TPM hardware to prevent disclosure of the private key
against software attacks. Recent results showed that TPM
hardware security measures aren’t on par with assurances
against software attacks [15]. As a design principle, we
assume that TPM provides adequate protection for private
keys within their bounds. In other words, our security value
propositions are limited by what TPMs offer.

Each TPM is equipped with a special key-pair, an RSA
key-pair, Endorsement Key (EK), that is either generated
by the TPM manufacturer, or by the user when taking
ownership of the TPM. We use K(i)

p and K(i)
r to represent

the public and private Endorsement Keys of TPM i. We use
K

(i)
p to build multiple trust rings.
TPM can generate additional key-pairs for different pur-

poses. Every key in the TPM has a parent key. The private
portion of a key-pair can’t be exported from the TPM in
cleartext form; but it can be encrypted with its parent key
when stored externally to the TPM. The root of the parental
tree of keys sits the Storage Root Key (SRK). The SRK never
leaves the TPM, and forms the root of trust for externally
stored TPM keys.

All of the keys mentioned above are local to one TPM.
Any data encrypted with these keys can only be decrypted by
that TPM. We extend TPM security assurances to a network,
and create a large-scale key management architecture. As we
elaborate below, we require that each computer be equipped
with a TPM.

Assume that a set of TPM public keys T = ∪i{K(i)
p }

exist. One can establish secure channels between the TPMs
represented by their public keys K(i)

p and K
(j)
p , i 6= j. If i

is the requestor and j is the responder, we encrypt requests
with K(j)

p and sign with K(i)
r . We encrypt and sign responses

with K(i)
p and K(j)

r , respectively.
We considered using TPM keys to establish a TLS session.

Unfortunately, non-legacy TPM keys can’t be used with
PKCS#1 formatting, and makes it impossible to do a TLS
handshake. We considered defining a custom TLS cipher-
suite, but saved it for a later project. Since out communica-
tion protocol is stateless, we did not create a stateful session,
but instead relied on message security (both encryption and
signature) with TPM keys.

III. PRINCIPLES AND AXIOMS

A data center forms the baseline for hosted services,
sometimes collectively known as “the cloud”. This project
exploits gaps in both hardware and software utilization to
increase the security of cryptographic keys in the cloud, and
provides a distributed cryptographic key management and
arbitrary data protection. The hardware gap is the under-
utilized TPM (Trusted Platform Module), and the software
gap is the distributed cryptographic key management and
data protection.

Our trust management approach is based on he following
principles:

• Cryptographic Processing and Storage Security. We
previously utilized an existing secure repository and
communications channel for cryptographic key man-
agement and data protection [16]. Long-term secrets
and policies can be stored in an access-controlled
repository in cleartext, and a network protocol can
protect them while in transit. We want to further
strengthen cryptographic storage and processing secu-
rity to address misplaced or stolen storage, minimize
adverse impacts due to configuration problems, reduce
liabilities of repository administrators, and minimize
damage from rogue software. We must eliminate cleart-
ext storage of secrets and release encrypted secrets only
to authorized parties.
While TPM encryption and storage of TPM-encrypted
secrets address the plaintext storage threats, crypto-
graphic processing with long-terms secrets occurs in
software outside the TPM boundary. This is in contrast
with an HSM that provides both: secure storage and
processing. We strive to reduce HSM costs in large
data centers by selectively replacing them with TPMs.
Runtime code integrity can be provided by TPM style
measurements or shielding key management and data
protection code in a secure execution environment.
We avoid discussing secure execution environments,
and focus on trust management, cryptography, security
policy, and crypto-agile data protection.

• Fault Tolerance. We assume that at any time, any
machine may fail, network may fail and partition, and
any TPM may irrepairably fail. Despite such failures,
the system should eventually recover. We don’t assume
a globally consistent state. The state of a machine may
differ from others, and inconsistencies may result in
intermittent decryption failures. One of our goals is to
minimize decryption failures without manual interven-
tion.
Despite the lack of a global and decentralized topol-
ogy, an authorization decision must not change from
“Allowed” to “Denied”. We recognize that an entity
may be granted access to a resource, but we don’t
want reversion in the other direction. We make two
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observations on revocation and monotonicity [17]. We
don’t have the equivalent of “certificate revocation
lists”. Access removal is equivalent to removal of a
role assignment to a TPM public key.

• Commodity Hardware-Based Trust. We aim at pro-
viding higher assurance security properties than a
software-only solution at a much lower cost. We don’t
intend to offer equivalent security properties of Hard-
ware Security Modules (HSM). On the contrary, once
can view this as an untried disruptive technology.

• Decentralized Trust Management. Each machine in
the network must be able to make an authorization
decision whether to accept an incoming request. For
scalability and to expand beyond single hierarchy of
trust, we avoid the need of a globally known, mono-
lithic hierarchy of certification authorities.

• Flexibility. Our policies are rich enough to express
complex network trust relationships, but simple enough
to design, implement, and evaluate for higher security
assurance. We don’t want comprehensiveness-through-
complexity: we want KISS (Keep It Simple Stupid)
with enough expressiveness for sound engineering. For
instance, we have no ambitions to translate existing
X.509, PGP, SDSI/SPKI certificates for our use.

• Cryptographic Agility. Cryptographic properties for
data protection must be configurable and separable
from those employed in authorization. We don’t spend
as much time on cryptographic agility details in this
paper, but carry forward existing research into this
architecture [18], [19].

IV. ARCHITECTURE AND ABSTRACTIONS

Our topology is comprised of multiple, possibly thousands
of, computers in one or more data centers. In particular, we
target large data centers with many racks of computers.

This project utilizes TPMs to encrypt long-term secrets.
As a stretch goal, we also use DRTM to determine autho-
rized parties to release TPM-encrypted secrets.

The distributed network topology contains machines each
equipped with a TPM chip. The cryptographic algorithms
and key sizes are constrained by TPM’s cryptographic
capabilities. We expand the set of supported cryptographic
algortihms at the data protection level to use contemporary
strong cryptographic algorithms, and also provide crypto-
graphic agility.

We use configurable cryptographic algorithms for arbi-
trary data protection. TPM keys protect data protection
keys, and cryptographic processing for data protection is
carried out on the CPU. We don’t directly use TPM’s
cryptographic keys and processing for data protection due
to (a) lack of cryptographic algorithm agility, (b) limited
processing latency and throughput. We make this seemingly
futile compromise, but describe a TPM-provided integrity
mechanism to alleviate some of the concerns.

A. Authorization

We employ a role-based access control mechanism ex-
pressed in a logic-based security policy language that is
suitable for distributed environments. We used a policy
language that allows delegation and fine-grained expression
of capabilities: SecPAL [12], [20]. This apporoach removes
the need to have access control information attached to
objects. It is a claims-based approach and removes the need
to maintain and replicate authorization lists.

Our architecture requires that each request and response is
validated for proper authorization before an action is taken
on them. In this sense, we have a reference monitor with
a few subcomponents: TPM public keys, roles, actions, and
policies. We use the term action instead of permission in
role-to-permission mapping [21]. Our authorization does not
use names or location.

Let T represent the set of authorized TPM public keys
K

(i)
p for TPM i, R be the role set, P be the policy set, and

A be the action set. In order to grant permissions to TPM
keys, or allow TPM keys to carry out certain actions, we
assign actions to roles, and assign roles to TPM keys. A
surjective function φA : A → R maps permissions (actions)
to a role, and a surjective function φR : R → T maps a
role to a TPM public key. The φR and φA mappings are
the authorization policy. Section V describes the SecPAL
statements to express the authorization tokens.

In RFC2693 style, we define an authorization mapping
as follows where the first mapping is φA and the second
mapping is φR [10].

Authorization → Roles → Key

If a name is needed for audit purposes or punishment for
some reason, a key may be mapped to a location (MAC
address, rack location, etc.) to have:

Authorization → Roles → Key → Location

We only use the first mapping, and rely on operational
procedures for secure location discovery. In SecPAL par-
lance, an authorization decision is the result of a query to
the datalog engine with the authorization tokens from the
incoming request and authorization policies P .

B. Roles

Our TPM-based key management architecture defines
three roles: R = {Root,Store,Node} (Figure 1). Table I
tabulates role descriptions.

• Root. Root role establishes the root of trust, similar
to the Certificate Authorities in traditional PKI. Ad-
ministrators can create and modify configuration data,
setup and operation policies, lists of machines, and their
TPM keys and roles on a machine in Root role. In
order to do that, Administrators sign the updated data
with the TPM Signing Key and distribute the signed
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Figure 1. Roles and data flow between role implementations.

Role Description
Root Root of Trust for TPM public keys

Role assignment to TPM public keys
Push configuration to Stores
Sync between Roots

Store Repository: keys, policies, and configuration
Network responder (HTTP)
Synchronization and replication between stores

Node Cryptographic operations
Client API
Sends requests to Stores
In-memory encrypted key caching

Table I
DESCRIPTION OF ROLES.

manifests to machines in Server role. Other machines in
root role retrieve the latest configuration from machines
in Server role with an automated background daemon,
or an administrator can push the new configuration to
the machines in root role.

• Store. Machines in Store role provides policy, key,
and configuration storage, synchronize them among
other machines in store role, and respond to queries
from machines in root, store, and node roles. The
Store class machines form the distributed repository
and automated key lifecycle management backbone.
They are not directly callable by applications: that role
belongs to the node role discussed next.

• Node. Nodes are the application class machines and
expose data protection APIs to applications. Node class
machines retrieve keys, policies, and configuration from
Stores, protect them with local TPMs, and store them
locally for caching purposes. Nodes can send various
requests to Stores tabulated on Table II. They also get
updated configuration data from Stores.

C. Actions and Resources

Table II defines SecPal verbs and resources.
The verbs define actions A on resources S: a
group identifier IDg a key identifier IDk, and
configuration data file:///Config. From the table,
A = {create,delete,read,send,write,update},

and S={file:///Config, [policy:IDg],
[keyId:IDk], [groupName:IDg]}.

Without loss of generalization, we use
[policy:Global] to refer to the global policy
instead of the group-specific policy [policy:IDg].
The latter indicates a policy resource of group IDg . For
brevity, we use the resource name [policy:Global],
[keyId:IDk], and [groupName:IDg]in our SecPal
statements instead of adding a possess constraint claim with
an identifier IDg , IDk, and IDg , respectively.

One can think of resources as function parameters, and
the verb as the name of a function in the traditional sense.
For instance, a Node would call the create function with
parameters IDg and IDk, the function would packet the
request, attach authorization claims to the request, and send
the signed request to a Store machine. After authorization
checks, the Store machine would process the request and
respond back.

Our verbs don’t require a state; an important protocol
design principle for scalability. All requests are simple
request-response type calls and can easily be encoded in
popular formats: SOAP, JSON, and others. The requestor
split a large semantic process into multiple requests, and
sends each one in order. For instance, when deploying a
new group, the requestor first creates the group container
IDg , creates a default policy in the group, and creates a new
key with IDk in group IDg , and updates the group policy
with the new IDk.

D. Permission Assignment

Permission assignment is one of the core tenets in a role-
based access control system [21]. We allow ourselves a great
deal of flexibility with the claim-based SecPal approach
instead of deciding on a fixed and globally-recognized set
of permissions. An ACL-based approach would not offer
this level of extensibility, should we have chosen a more
traditional approach.

Permissions are not directly assigned to principals; we
assign permissions to roles by way of granting certain
actions to roles. Another interesting aspect is the resource
the permission is granted: that is not encoded in principal
SecPal claims, either. Instead, our policies grant a role in
R one or more permissions to resources via actions A. Our
SecPal assign permissions by “r CanDo a on s”, and roles
by “t possess r”, where r ∈ R, a ∈ A, s ∈ S, t ∈ T . The
permission assignment are in the base policy assertions, and
the role assignment claims are in tokens issued to principals.

E. TPM Key Hierarchy

We define a fairly flat key hierarchy that ultimately
anchors in a root of trust, a node in a Root role. This trust
begins with a small configuration file deployed with software
to each machine. The initial configuration file contains the
DNS names and TPM public keys of at least one Root and
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Table II
VERBS AND RESOURCES THE KEY MANAGEMENT SCHEME RECOGNIZES.

Verb Resource Description

create
IDg Create a new group [groupName:IDg]
IDg , IDk Create a new key IDk in group [groupName:IDg]
IDg Create a new default policy in group [groupName:IDg]

delete
IDg Delete group [groupName:IDg]
IDg , IDk Delete key IDk in group [groupName:IDg]

read
IDg , IDk Read key IDk in group [groupName:IDg]
IDg Read policy and group metadata in group [groupName:IDg]
file:///Config Read configuration

send
IDg , IDk Send key IDk in group [groupName:IDg]
IDg Send policy in group [groupName:IDg]
file:///Config Send configuration

write
IDg , IDk Write key IDk in group [groupName:IDg]
IDg , [policy:IDg] Write policy in group [groupName:IDg]
file:///Config Write configuration

update IDg Update key in group [groupName:IDg]

at least one Store machine. Rest of the configuration is
automated and is pushed out from one of the Root machines
to Store nodes declared in the initial configuration file.
This approach allows minimal configuration at deployment
time, and hands-off and self-adjusting configuration at run-
time. However, setting up an automated roots of trust en-
vironment doesn’t say anything about data protection. For
that, we define a TPM key hierarchy.

The Endorsement Key identifies a TPM and forms the
basis of trust. But, EK is of limited use for network request
authentication and data encryption: we need additional keys.
Figure 2 depicts our key hierarchy. Keys in red are unique in
our architecture. There is one signing key, one key wrapping
key, and one TLS key per TPM; although the last key is not
strictly required. The signing key signs all outgoing requests,
and wrapping key protects keys and other sensitive data
coming in and going out of TPM. The signing key, wrapping
key, and TLS key are asymmetric native TPM keys. There
is one or more “DKMK” symmetric keys protected with
the wrapping key. The “DKMK” keys are symmemtric keys
and are processed in computer memory once decrypted by
the TPM. The “DKMK” keys are cached in memory, and
software cryptographic libraries provide high-performance
data protection. We also create a TLS key, but that key is not
used due to incompatibilities of TPM v1.2 RSA operations
and the TLS algorithm.

V. SECURITY POLICY

In the policy descriptions below, we assume that the
organization running the key management service is the trust
anchor, and delegates trust to one or more administrators.
The flow of trust continues with a trusted person authorizing
one or more TPM public keys as trusted, and delegating
trust machinations to those set of TPM hardware. Later
on, we remove the key management trust anchor from the
organization and transfer to a customer.

We express security policies using SecPAL [12]. The
security policies include SecPAL facts, verbs, predicates, and

Figure 2. TPM Key Hierarchy.

conditions [20].
The trust anchor is the Organization principal that

runs the data center. Admin represents the principal the
Organization delegates a minimal set of privileges to
make trust decisions. The Admin trust decisions are limited
to defining the set of TPM public keys for each role: root,
server, and node. Once those public keys are determined, the
Root and Store roles are responsible for key management
in the data center in an hands-off fashion. We will describe
delegation in more detail using SecPal claims later on [12].

It is important to observe that the policies presented later
in this section don’t allow Organization and Admin
principals to have access to the keys and data protected by
those keys. We acknowledge that malicious organizations
may find ways to defeat such policies. However, as we
present later on, TPMs offer unique advantages over tra-
ditional HSMs when combined with run-time measurement
facilities.

Let us map the abstract principals, Organization
and Admin, to meaningful descriptions in a canonical
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hosted services scenario: e-mail. The Admin is the e-mail
service provider running e-mail servers and sells hosted
e-mail services to businesses. A business corresponds to
Organization that delegates key management decisions
to the provider as it relates to e-mail services. The group IDg

is the unique identifier of the business, essentially a tenant
identifier for the business customer in the e-mail service
provider’s account database.

A. Security Assertions

Table IV enumerates the set of assertions for the Root
role. The Store and Node roles need additional assertions
listed on Table V and Table VI.

ROOT ASSERTIONS. The first SecPal claim on Table IV says
that the Admin can assign the Root role to any public
key. In our proposal, we claim that all public keys must be
TPM EK public keys. This is the first level delegation from
Admin to the Root role to assign root of trust to TPM
public keys.

The second claim says that any machine with a TPM in
the Root role can assign Root, Store, and Node roles
to any other TPM. This is the second level delegation from
Root role to any of the other roles, and relieves Admin
from dealing with lower level role assignments.

The remaining claims allow Root to carry out config-
uration actions: create, delete, read, send, and write. We
elaborate on the remaining claims in Section V-C. In the
remaining parts of this paper, we assume that the optional
parts are not present in the configuration.

Our SecPal implementation doesn’t yet support verb
groups to express claims 3 through 7 on Table IV in one
claim. We would like to create one assertion to address all
five cases: “LA says k1 can v file:///Config :- k1
possess [roleName:Root], v ∈ A” which also grants
update permission in one assertion.

STORE ASSERTIONS. Root assertions say nothing about
cryptography, keys, policies, storege, distributed repository,
and data protection. They simply assert which TPMs are
allowed to assign roles to accomplish worker tasks Store
and Node. Table V gives a list of claims to allow Store
TPMs to work with [keyId:IDk], [policy:Global],
and file:///Config resources.

Claims 1 through 5 grant cryptographic key management
capability to the Store role.

NODE ASSERTIONS. Nodeassertions are not cryptographic,
either. They only grant a TPM key in Node role to read
configuration, policy, and keys.

B. Key and Group Separation

We have not yet describe finer-grain access controls that
makes our system multi-tenant aware. When we say multi-
tenant aware, we refer to the ability to non-verlapping
use of different cryptographic policies and keys. This is

Table III
CONFIGURATION STRUCTURE.

Item Description
Root List TPM EK public key list in Root role.
Policy Default cryptographic policy
Store List TPM EK public key list in Store role

(optional).
Node List TPM EK public key list in Node role (op-

tional).

Table IV
ROOT POLICIES. LOCAL AUTHORITY SAYS ...

1. Admin canSay k1 possess [roleName:Root]
2. k1 canSay k2 possess a :-

k1 possess [roleName:Root], where
a matches roleName:”Root|Store|Node”

3. k1 can create file:///Config :-
k1 possess [roleName:Root]

4. k1 can delete file:///Config :-
k1 possess [roleName:Root]

5. k1 can read file:///Config :-
k1 possess [roleName:Root]

6. k1 can send file:///Config :-
k1 possess [roleName:Root]

7. k1 can write file:///Config :-
k1 possess [roleName:Root]

Table V
STORE POLICIES. LOCAL AUTHORITY SAYS ...

1. k1 can create [keyId:IDk] :-
k1 possess [roleName:Store]

2. k1 can delete [keyId:IDk] :-
k1 possess [roleName:Store]

3. k1 can read [keyId:IDk] :-
k1 possess [roleName:Store]

4. k1 can send [keyId:IDk] :-
k1 possess [roleName:Store]

5. k1 can write [keyId:IDk] :-
k1 possess [roleName:Store]

6. k1 can create [policy:Global] :-
k1 possess [roleName:Store]

7. k1 can delete [policy:Global] :-
k1 possess [roleName:Store]

8. k1 can read [policy:Global] :-
k1 possess [roleName:Store]

9. k1 can send [policy:Global] :-
k1 possess [roleName:Store]

10. k1 can write [policy:Global] :-
k1 possess [roleName:Store]

11. k1 can send file:///Config :-
k1 possess [roleName:Store]

12. k1 can read file:///Config :-
k1 possess [roleName:Store]

Table VI
NODE POLICIES. LOCAL AUTHORITY SAYS ...

1. k1 can read file:///Config :-
k1 possess [roleName:Node]

2. k1 can read [policy:Global] :-
k1 possess [roleName:Node]

3. k1 can read [keyId:IDk] :-
k1 possess [roleName:Node]
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where we introduce the concept of group and tie it to the
abstract [groupName:IDg]representation. A group is an
independent entity with a cryptographic policy and one or
more cryptographic keys. We assume a bijection to map a
tenant to a group without losing generality in the following
security assertions.

C. Configuration

Claims 3 through 7 on Table III gives Root ability
to manage configuration. This statement requires further
drilling down on configuration. Table III enumerates the item
list in the configuration. As opposed to traditional X.509
certificates and certificate chains that require one or more
Certificate Authorities, our approach begins with a list of
public keys that represent Root roles. The initial Root
public keys can extend this list by delegating the Root
role to other TPM public keys, essentially spawning their
equals. It is possible to put delegation restrictions, such as
controlling the depth, we don’t think that such a restriction
is realistic in an otherwise flexible (some might call this
elastic) computing, but recognize that it has an academic
benefit. We will not elaborate on suhc restrictions in this
paper, but simply note that SecPal is able to express various
restrictions.

The third and fourth claims on Table III are optional.
We would recommend them for small deployments when
the total number of Root, Store, and Node machines is
small, updates are infrequent but reliable. We would omit
them when the number of machines grows, the network
topology becomes more dispersed across multiple geoloca-
tions, and rate and duration of failures increase. In general,
when configuration updates become problematic, we want to
reduce the number and frequency of configuration updates.
Removing the configuration parts that change often would
reduce our exposure to update failures.

VI. IMPLEMENTATION

We implemented SecPal policies, role functions, network
protocol, and cryptographic functionality, and data protec-
tion in C# and C++ languages. We give a few SecPal
authorization query evaluation results, and describe them in
detail.

SecPal query engine accepts three inputs: policies, tokens,
and an authorization query. It generates a logical answer and
a proof graph if there is one. Tables IV, V, and VI are the
SecPal policies serialized in human-readable text form. The
requestor attaches SecPal claims to a request token and signs
them together. A query is an authorization request expressed
as a SecPal claim. We give human-readable serialized SecPal
logic statements in the examples below.

We look at the evaluation of a few scenaria and SecPal
datalog engine answers to understand how assertions come
into play in an authorization decision.

Table VII
CLAIMS IN THE FIRST QUERY TOKEN.

1. Admin says Root possess [roleName:Root]

Admin says Root possesses [roleName:Root].
Admin says Root possesses [roleName:Root].

LA says Admin can say Root possesses [roleName:Root].
LA says Admin can say k1 possesses [roleName:Root].

Figure 3. Query: LA says Root possesses [roleName:Root].

EXAMPLE 1. We begin with an easy authorization query:
“Does Kp possess [roleName:Root]?” We use “LA”
to represent the Local Authority; all claims from this local
trusted entity are treated as facts. Figure 3 shows the LA says
Root possesses [roleName:Root] query, the resolved “yes”
answer proof graph in an ordered set of logical claims.

The innermost (most indented) statements on Figure 3
are base facts, and are either in a base policy (Tables IV, V,
VI) or in the query token (Table VII). The first statement,
Admin says Root possesses [roleName:Root], is a candidate
proof for the query. It is resolved to the only base fact
in the token in the indented second line. But, this is still
not a proof: it is not connected to LA. This is where the
third and fourth statements in the proof graph come in. The
third statement connects the second statement to LA, and the
fourth statement connects it to a base fact in the base policy.
This concludes the proof by substituting k1 with Root.

EXAMPLE 2. The second example is more complicated
query: “Can Kp read a key?” Token claims are on Table VIII,
and the SecPal proof graph is on Figure 4. As simple as the
query is, the proof deserves some explanation. Here is a short
logical recital of Figure 4 annotated for statement ranges.

1 It is enough to possess the Store role to read a
[keyId:IDk].

2-4 Store possess the Store role, because Root says so.
Thus, we need to establish a fact to show that Root
can say so.

5-6 LA says that any principal in the [roleName:Root]
can assign any of the three roles to another prin-
cipal. So, can we show that Root is in the
[roleName:Root]?

7-9 Admin says that Root is in the [roleName:Root].
Now, we need to prove that Admin can say it.

10-11 LA says that Admin can assign any one of the three
roles to another principal. This forms the base fact
supporting the chain.

12 This is the regular expression matching constraint and
satisfies conditions in claims 6 and 11.

EXAMPLE 3. The third and final example is a failed autho-
rization query: “Can a [roleName:Root] create a key?”
The token claims are given on Table IX. There is no proof
graph, because there is no affirmative answer to satisfy the
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Table VIII
CLAIMS IN THE SECOND QUERY TOKEN.

1. Admin says Root possess [roleName:Root]
2. Root says Root2 possess [roleName:Root]
3. Root says Store possess [roleName:Store]
4. Root says Store2 possess [roleName:Store]
5. Root2 says Store possess [roleName:Store]

1 LA says k1 can Read digitalContent:file:///Keys :-
k1 possesses [roleName:Store].

2 LA says Store possesses [roleName:Store].
3 Root says Store possesses [roleName:Store].
4 Root says Store possesses [roleName:Store].
5 LA says Root can say Store possesses [roleName:Store].
6 LA says k1 can say k2 possesses a :-

k1 possesses [roleName:Root], where
a matches roleName:”Root|Store|Node”.

7 LA says Root possesses [roleName:Root].
8 Admin says Root possesses [roleName:Root].
9 Admin says Root possesses [roleName:Root].
10 LA says Admin can say Root possesses [roleName:Root].
11 LA says Admin can say k1 possesses [roleName:Root].
12 [roleName:Store] matches roleName:”Root|Store|Node”

Figure 4. LA says Store can Read digitalContent:file:///Keys

query LA says Root can Create digitalContent:file:///Keys.
This is intentional and demonstrates one of the principles of
least priviledge in our architecture: Root class nodes can’t
create keys, but can only assign roles to other principles.

It is trivial for a Root machine to assign a Store role to
itself, effectively granting access to keys. We avoid the naive
“unless” clause to plug this “hole” to deny access to keys
if the principal is in the Root role; that would undermine
the decentralized nature. As previously discussed, we don’t
want a yet unknown or witheld claim to negate an otherwise
granted authorization request.

It is easy to see that our policies and claims in this
section don’t permit authorization in group granularity.
The most straightforward approach to add group separa-
tion is to augment SecPal claims and policies by adding
a possess claim constraint. We would add “k1 possess
[groupName:IDg]” constraint to the policy claims on
Table V and Table VI.

VII. CONCLUSIONS

We described the principles, architecture, and imple-
mentation of a policy-based cryptographic key manager.

Table IX
CLAIMS IN THE SECOND QUERY TOKEN.

1. Admin says Root possess [roleName:Root]
2. Root says Root2 possess [roleName:Root]
3. Root says Store possess [roleName:Store]
4. Root2 says Store possess [roleName:Store]
5. Root says Node possess [roleName:Node]
6. Root2 says Node possess Node

We chose a logic-based policy language, SecPal, created
a role-based framework, and defined base policy claims
for authorization. We assigned permissions to roles with
the same policy language, and took advantage of SecPal’s
constrained delegation properties. We gave three results from
our implementation: a simple role check, a more complicated
permission check, and a failed authorization request.

Our three-role architecture is minimalistic in base policy,
but yet allows decentralized authorization decisions by local
evaluation.

As authorization future work, we want to employ an
abduction-based algorithm to specify missing role member-
ships and verb grants without interacting with the resource
guard [22]. We also want to look at using abduction as a
policy verification tool.
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