
A Preview of Pencil Code
A Tool for Developing Mastery of Programming

David Bau
Google

davidbau@google.com

D. Anthony Bau
Phillips Exeter Academy
dab1998@gmail.com

Abstract
Pencil Code is an educational programming tool designed to help
students overcome common obstacles to advancing to open-ended
work with real world languages and libraries.

It transitions from visual code to text code with a dual-mode
block and text editor; it smooths the leap from guided to open-
ended work by integrating tutorials with a general-purpose pro-
gramming tool; and it bridges the gap from educational functions to
standard APIs by including a turtle library that subclasses jQuery.

1. Introduction
Educational programming tools generally use one of two methods:

1. They help beginners achieve satisfying results quickly in a way
that minimizes frustration.

2. Or they introduce beginners directly to programming systems
used by professionals.

Pencil Code is designed to bridge the two styles of learning. It is
welcoming to beginners, with simple touch-enabled drag-and-drop
UI, tutorials with hints, and a turtle graphics canvas. At the same
time, it introduces idioms used by professional web developers:

• The tutorial system (”Gym”) transfers work to an IDE where
students can create larger projects and build their own websites.

• Blocks in the visual programming editor are equivalent to state-
ments in the mainstream text language CoffeeScript, and stu-
dents can freely switch between text and block modes.

• The turtle graphics library is an extension of the popular library
jQuery. Students exploring the limits of turtle graphics will
discover that they have been using jQuery all along.

The goal of Pencil Code is to build enough confidence in beginning
programmers so that they can create programs without Pencil Code.

2. From the Gym to the Web
New users of Pencil Code are brought to a tutorial area called
the Pencil Code Gym, which provides guidance on how to create

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-part components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPLASH ‘14 Compantion October 20-24, 2014, Portland, Oregon, USA
ACM 978-1-4503-3208-8/14/10

specific projects involving turtle graphics, music, and storytelling.
Projects in the gym focus attention on a few concepts at a time.

The Gym analyzes programs and shows explanations, hints, and
suggestions based on the context. For example, if a program draws
two dots in a way that produces a result that might be hard to
understand, it shows a hint like the following:

Pencil Code is designed to help students make the transition to a
less scaffolded development environment when they are ready to
share their work. The ”Save to your own website” button brings
them to an editor that strips away the tutorial interface.

By transferring programs from the tutorial page, Pencil Code in-
troduces an open-ended workspace while avoiding the intimidating



step of facing a blank page. The general-purpose workspace allows
students to build a portfolio and build more complex projects.

3. From Blocks to Code
Another hurdle for students is the transition from visual program-
ming to using a text programming language.

(a) Scratch (b) Pencil Code

As illustrated above, the Pencil Code Block editor is inspired
by the visual programming languages Scratch[1] and Blockly[2].
However, there are two notable differences:

• Instead of natural language text and icons, each block is labelled
with function names, arguments, and syntax from the text lan-
guage CoffeeScript.

• Instead of being arranged freely in two dimensions, blocks
are snapped into a single main program in linear order. The
program is labelled with line numbers.

These differences mean that, when a beginner is building a program
with blocks, they are also learning to use a text language. The mode
can be switched between blocks and text at any time.

The Pencil Code block editor is a component called Droplet,
which is a new mulitlanguage editor that supports switching be-
tween blocks and text code. Droplet shows a smooth animation,
illustrated above, when switching modes.

• Droplet can show any CoffeeScript program as blocks, so be-
ginners can load any program that had originally been written
text and work with it using drag-and-drop.

• The switch between blocks and text can be done freely without
losing any formatting, so students can use blocks as an aid
even when they are learning text programming. Blocks allow
students to experiment with unfamiliar language constructs,
then switch back to text to see the syntax.

• The ability to support both modes with the same programs
makes it possible for students at different levels to collaborate
and participate in the same classroom.

The Droplet block editor is not a new programming language. It is
a visual code editing library that can be used as a component of any
web-based code editing tool. It can support any text language given
an appropriate parser adapter.

4. From Turtles to jQuery
The third hurdle addressed by Pencil Code is the gap between
simplified turtle functions and professional programming idioms.
Since Pencil Code uses CoffeeScript, a full-featured and popular
language used by web developers, it is a good tool for learning
about functions, objects, classes, closures, recursion, networking,
and data structures. It is also a good tool to use to learn about
mainstream programming APIs and libraries.

The most popular Javascript library used on the web is jQuery,
used on more than 60%[3] of top websites in 2014. The turtle func-
tion library used by Pencil Code is designed as a jQuery extension.

In the Pencil Code turtle library, every turtle is a jQuery object,
and the base jQuery functions are extended with turtle functions.
That allows students to learn to use jQuery by analogy with turtles:

The program above uses the standard jQuery function css to
add a border around a Turtle created using new Turtle. It uses
the same function to set the color of the contents of an HTML
<h1> element selected using jQuery; and it moves both objects
with turtle motion.

Teaching with jQuery and CSS has several advantages:

• Popular programming technologies can motivate students be-
cause they are seen as ’authentic’.

• Learning with technologies that have a large professional com-
munity means that students can learn to learn using online re-
sources like forums, tutorials, and references.

• Popular languages and libraries have direct vocational value.

5. Related Work
The tutorial structure and hints used in the Pencil Code Gym are
inspired by the programming tutorials on learn.code.org[4] and
Kahn Academy[5].

Because the focus of the Pencil Code Gym is to encourage stu-
dents to work creatively, the Pencil Code Gym emphasizes an open-
ended canvas with ideas and reference material, and the ability to
publish work on the web.

Alice[6] and Scratch[1] pioneered the type of visual pro-
gramming idiom used by Pencil Code’s visual block editor. App
Inventor[7] brought this idiom to the world of mobile application
development, and Blockly[2] brought this idiom to the web with a
modular Javascript and SVG-based implementation.

These visual tools have some support for text code. Scratch
supports the ability to write extensions in text languages, although
it does not translate between blocks and text code. App Inventor has
a text language that can represent the same logic as blocks. Blockly
and Alice support generation of text code from blocks, however
they do not provide students with the ability to work in text and
then switch to blocks.

Text-to-block translation was recently implemented in the Tiled
Grace[8] project. Tiled Grace provides an animated transition be-
tween blocks and text.

The Droplet editor used in Pencil Code differs from Tiled Grace
in its full support for all text syntax: for example, it preserves
comments and white space when switching modes. That capability



means that students using Pencil Code can switch between blocks
and text without losing any of the formatting of their work.

Several previous systems have implemented educational li-
braries in general-purpose professional programming languages.
For example, Python’s built-in turtle package[9] provides a Tk-
based implementation of turtle graphics in that language. Another
notable library is Processing[10], which bridges the gap between
beginner and professional idioms by providing a beginner-friendly
API in a Java language variant that is intended for use by creative
professionals.

Previous work to bring turtle graphics to Javascript includes
Papert[11], a Javascript implementation of Logo, and Turtlewax[12],
a lightweight turtle library. Pencil Code’s turtle library differs from
these implementations because it is designed to help teach jQuery:
in Pencil Code, each turtle is a jQuery object.

6. Future Work
Pencil Code is being tested in classrooms, with planned efforts
to test the tool with middle-school, high-school, and college-age
students. The goal of the testing is to find effective ways to apply
the dual-mode text and block editor in classes; and to determine
whether the tool is effective in helping attract, teach, and motivate
students towards mastery of computer science.

Support for other languages is being added to Pencil Code.
Work to add Javascript support is underway: Javascript support
will allow students to directly apply a large body of online tutorial
material. Similarly, HTML and CSS support is planned, as well as
support for other widespread educational programming languages
such as Java.

Pencil Code capabilities are being made available as modules:
for example, work is ongoing to make the Droplet text-and-block
editor usable as a module for code.org and other educational code
development environments.

Interactive visual debugging capabilities are planned, to allow
students to use Pencil Code to understand unseen state in their
programs.

Integration with professional tools such as Github and JsFiddle
are planned, to encourage students to move from Pencil Code to
more flexible and powerful tools.

Acknowledgments
Thanks to Hal Abelson and the teachers of CSTA whose discus-
sions and suggestions inspired the design of Pencil Code; to Google
for its support; to the teachers and students at Dever-McCormack,
Beaver Country Day, Worcester Tech, AMSA, Lincoln School,
Phillips Exeter, and other schools who have done early testing; and
to the open source contributors to Pencil Code and its components.

References
[1] John Maloney, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman,

and Mitchel Resnick. 2004. Scratch: A Sneak Preview. Proceedings
of the Second International Conference on Creating, Connecting and
Collaborating through Computing (C5 ’04), 104-109.

[2] Neil Fraser. Google blockly - a visual programming editor. URL:
http://code.google.com/p/blockly. Accessed Aug. 2014.

[3] John Resig. The state of jQuery 2014. URL:
http://blog.jquery.com/2014/01/13/the-state-of-jquery-2014/. Ac-
cessed Aug. 2014.

[4] Code.org. Hour of Code Tutorial. http://learn.code.org/ hoc/1. Accessed
Aug. 2014.

[5] Kahn Academy. Computer Programming Tutorials.
https://www.khanacademy.org/computing/cs/programming. Accessed
Aug. 2014.

[6] S. Cooper, W. Dann, and R. Pausch, Teaching objects-first in
introductory computer science. SIGCSE Bulletin, vol. 35, no. 1, 2003.

[7] H. Abelson. App Inventor for Android. Google Research Blog, July
2009. http://googleresearch.blogspot.com/2009/07/app-inventor-for-
android.html. Accessed Aug. 2014.

[8] M. Homer, J. Noble, A tile-based editor for a textual programming
language. Proceedings of the First IEEE Working Conference on
Software Visualization, Sept. 2013.

[9] Gregor Lingl, New Turtle Module. Python issues database, June 2006.
http://bugs.python.org/issue1513695. Retrieved Aug. 2014.

[10] Reas, Casey, and Ben Fry. 2006. ”Processing: programming for the
media arts.” AI and Society 20.4: 526-538.

[11] Thomas Figg and contributors. 2008. ”Papert: a Logo interpreter in
Javascript”, https://code.google.com/p/papert/. Retrieved Aug. 2014.

[12] Dave Balmer. 2010. ”Turtlewax: Logo-style tur-
tle graphics in JavaScript using HTML5 Canvas.”
https://github.com/davebalmer/turtlewax. Retrieved Aug. 2014.


