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Abstract
While many technologies for gesture-based interaction have been
proposed and implemented, few focus on core software engineer-
ing principles that are commonplace in traditional programming
languages. The lack of such principles restricts the applicability
of those technologies when developing large scale gesture enabled
systems. This paper describes the software engineering challenges
associated with developing multitouch gesture-based interaction,
and proposes a solution in the form of the Midas declarative ges-
ture specification language. Midas embeds concepts of logical pro-
gramming languages and complex event processing to ease the de-
velopment of gesture based applications. We show how it can be
applied to multitouch gesture recognition, and evaluated our solu-
tion in real-world applications.

Categories and Subject Descriptors D.2 [SOFTWARE ENGI-
NEERING]; H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Input devices and strategies

Keywords Gesture Recognition, Multitouch, Declarative specifi-
cation

1. Introduction
Gesture-enabled devices make up the bulk of the computers sold
nowadays. Whether through multitouch trackpads, multitouch
screens, or depth-sensing cameras, the human-device-interaction is
shifting towards a gesture-centric approach. Many gestures are the
direct descendant of previous methods of interaction: a ‘tap’ dif-
fers little from a mouse click, and swipe gestures resemble the use
of scroll-wheels which have been in use for quite some time. But
with increasing sensor capabilities, and with increasing processing
power allocated for handling user-interactions, increasingly com-
plex gestures need to be programmed.

As we shall argue further in this paper, the state of the art in
software engineering is not keeping up with the pace of improve-
ments in the hardware. Programmers designing user interactions
are largely left to their own devices, given the choice between either
picking highly restrictive off-the-shelf gesture frameworks, or man-
ually maintaining gesture state. This hampers the ability of soft-
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ware developers to design new ways of interaction, for instance in
games with custom, game-setting-specific interaction and UI be-
havior, or for pioneering developers wishing to create content for
novel device types for which no standard, well-defined UI behavior
exist.

A gesture is defined as “a movement of the hands, face or other
parts of the body in time” [1]. In a computing device, a gesture
is reified as a series of events specifying those movements. To pro-
gram gesture-based interaction hence comes down to programming
software systems which extract meaningful data from series of
events. This task is complicated by a number of issue. For starters,
using traditional programming languages the boilerplate code to
set up event handlers is tedious to write and error-prone. The same
holds true for the code to maintain the “context”, i. e., the set of
variables representing the state of a gesture as it is being recog-
nized.

The complexity is even exacerbated in the absence of constructs
for modularization, abstraction, and composition of gesture spec-
ifications. Lacking such constructs, gesture programmers require
deep knowledge of the existing gesture definitions when adding
new gestures or modifying existing ones, as overlaps in the defi-
nitions need to be handled.

Furthermore, to support for instance both tap and double tap
gestures, temporal reasoning is required. This reasoning is compli-
cated by the inherent concurrency of multitouch gestures.

Even without temporal aspects, gesture definitions may overlap.
This is the case for e. g. two-finger “pinch” and “rotate” gestures.

Finally, identifying which events relate to which finger is dif-
ficult, yet necessary to distinguish even simple gestures, or ignore
unrelated events like those from hand palms resting on the touch
sensitive surface.

This paper explains the software engineering challenges associ-
ated with developing multitouch gestures, and proposes a solution
in the form of a declarative framework providing software engi-
neering abstractions. This framework and its accompanying declar-
ative domain specific language, Midas [2], has been extended with
improved support for abstraction and modularization. The software
engineering challenges and the merits of the Midas gesture specifi-
cation language are presented by first introducing an example of a
multi stroke touch gesture (subsection 2.1). Using this example ges-
ture, the general software engineering challenges of programming
gesture-based interaction are demonstrated (subsection 2.2). Next,
the Midas declarative gesture specification language is proposed
as a solution to the problems (section 3). The example gesture in-
troduced earlier is revisited, demonstrating how Midas tackles the
software engineering challenges (subsection 3.2). Finally, we dis-
cuss how Midas relates to the state of the art (section 5).
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void handleEvent(Event e) {
   switch (e.type) {
   case “Finger”:
      FingerEvent fe = // Cast…
      if (fe.isDown()) {
         if (/* matches A */) {
            // Start swipe right
         } else if (/* matches N */) {
            // Start swipe diagonally
         } else if (/* matches E */) {
            // Fail swipe right
         }
      } else if (fe.isUp()) {
         // …
      }
   break;
   case “Orientation”:a) Spatial representation

b) Temporal representation

c) Code representation
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Figure 1: Events of a “swipe z” gesture spatially overlaid over a Z-
shape (a) and situated on a temporal axis (b), together with a code
snippet depicting the outline of recognition code in a traditional
imperative style (c)

2. Motivating Example
2.1 A Three-Stroke Gesture
Consider the task of a programmer to implement a gesture for an
application on a touch-enabled mobile device. The requirements
document specifies the gesture as follows:

“A finger swipes right, swipes down diagonally to the left,
and finally swipes right again. Subsequent strokes start near
the end of the preceding stroke.”

The gesture forms a “Z” shape, and will hence be called “swipe
z”. “swipe z” is conceptually defined in terms of two more gestures,
“swipe right” and “swipe diagonally”. The “swipe right” gesture is
specified as follows:

“A finger touches the device, and over time progresses at
least 50mm to the right, and deviates from the horizontal
line at most 20mm vertically. The swipe ends when the finger
is removed from the surface.”

Information on primitive events, such as a finger touching, mov-
ing on, or leaving the touch-sensitive surface, is assumed to be
made available by a low level API.

Figure 1 illustrates the gesture graphically from a spatial (a) and
temporal (b) perspective, and as a code snippet (c) in imperative
pseudocode. The gray dashed lines in (a) depict the Z-shape to
be recognized. The circles represent registered touch events. After
the appearance of a finger (marked in the image as A), more finger
movements may be registered to the right. If a finger is lifted early
(E), i. e., before it moved 50mm to the right, the gesture should not
be recognized. If the finger movements sway too far (F) vertically,
i. e., more than 20mm up or down, the gesture is invalid as well. If
the finger disappears (D) and no invalidating events occurred, the
“swipe right” gesture is completed.

If the next event (N) is the start of a series of events satisfying the
“swipe diagonally” gesture, and N is near the first stroke’s endpoint
(D), the recognition of the “swipe z” gesture continues. While these
requirements may seem reasonably straightforward on the surface,
translating this to actual software reveals a number of issues. The
following section discusses the challenges software engineers face
when developing even simple gesture-based interactions.

2.2 Software Engineering Challenges
Even with simple gestures, handling is not straightforward. Mostly,
all information about events’ types, locations, timestamps, etc. are
squeezed through the funnel of a single event-handler function,
which has to unpack and sort through all data. The view the pro-
gram gets resembles much more to Figure 1 (b) than Figure 1 (a).
We categorize the challenges software engineers face when design-
ing gesture-based interaction as overhead, modularization, tempo-
ral constraints, concurrency and conflicts, and event identification.
Each of these categories is described in more detail below.

Overhead and context maintenance Reacting to (series of) events
implies setting up detection code and handlers. The detec-
tion code and handlers have to cooperate with each other and
with the code for other events. The inversion of control [3] of
the “callback hell” associated with event handlers have well-
documented nefarious effects on programmer effectivity [4].
For example, to share data between the handlers cooperating to
recognize an event, this data has to be stored in the scope of all
handlers. In traditional programming languages, this tends to
imply the data is stored in class-level or even global variables.
The code snippet in Figure 1 (c) skims over the complexity of
this task: the set of events constituting the gestures needs to be
stored temporarily as the matching is taking place, so that new
events arriving later can take into account what happened be-
fore. This data needs to be visible to all gesture handling code,
and also needs to be discarded when the gesture is completed
or cannot be completed anymore.
Straightforward solutions to clean up this gesture state fail to
work even for our simple Z-shape. At two points during the
gesture, no fingers are required to be touching the surface, yet
the initial two strokes need to be remembered for the entire ges-
ture to be correctly recognized. Resetting the system whenever
all fingers are released from the surface, as done in the gesture
frameworks libTISCH [5] and SparshUI [6], is hence not suffi-
cient.

Modularization, composition, and abstraction Since gestures
are recognized from the combination of multitudes of event
states, code that jointly defines one single gesture is easily scat-
tered over the codebase. This becomes clear when implement-
ing even simple gestures. The deep nesting in Figure 1 (c)
is archetypical of gesture programming using traditional soft-
ware languages, yet leads to an unmaintainable codebase. Deep
knowledge of existing gestures is required to add new gestures.
The clear cut hierarchy and modularity from the specification is
lost in translation; with code for the “swipe right” and “swipe
diagonally” code intermingled, and code for “swipe z” unintel-
ligibly dissolved into the lower levels.

Temporal constraints A gesture exists out of a number of events.
Recognizing the event hence means correlating events in time.
Often this is rather straightforward, but more complicated sit-
uations arise even with very common gestures. The difference
between a tap and a double tap lies in the absence of a second
tap after some waiting period. This implies the gesture recogni-
tion system needs to maintain timers allowing the tap gesture to
trigger if no double tap gesture triggers in a certain timespan.
Furthermore, events which might be relevant for multiple ges-
tures are scattered within a continuous input stream. Determin-
ing start- and endpoints of gestures, commonly called “segmen-
tation”, needs to be tackled. In the preceding example, this is-
sue does not arise, as strokes have explicit start and endpoints in
form of “appear” and “disappear” states of the fingers’ motion
events.



Concurrency and conflicts The defining property of multitouch
gestures is that multiple touches may overlap in time. Multi-
touch gesture recognition is hence inherently concurrent. The
situation is further complicated since multiple gestures may
overlap in definition, causing conflicts. A common example
is found in “pinch” and “rotate” gestures as executed on a
multi-touch surface using two fingers. Both gestures start with
two fingers in roughly the same organisation, and differ in
whether the inter-finger rotation or distance is modified. In prac-
tice, however, most executions of the “rotate” gesture will also
slightly scale the inter-finger distance, and most executions of
the “pinch” gesture will include a rotation of the fingers’ coor-
dinates. If proper care is not taken, both gestures would hence
erroneously be recognized at the same time.
The events forming a “swipe z” gesture are explicitly sequen-
tial. Still, the gesture description does not explicitly prohibit
other gestures to be going on at the same time. Other touch
events which do not explicitly invalidate the constraints of the
swipe gestures should not interfere with the recognition of the
swipes. However, that does not mean those other touches should
be ignored. Any gesture performed elsewhere, which does not
explicitly prohibit the swipe gestures, should be recognized nor-
mally 1.

Identification Events are by design isolated data points. The ges-
ture programmer needs to figure out whether two events orig-
inate from the same finger or from two different fingers. For
instance, the description of the “swipe diagonally” gesture in-
dicates the gesture should be performed with one finger. This
implies the system should track finger ids. Yet, the gesture may
be executed with any finger. The “swipe diagonally” gesture
should only match when the swipe is performed with a finger
that just finished a “swipe right”. However, a second “swipe
right” gesture might be executed with the same finger – com-
pleting the current Z-shape – or be executed with a different
finger – possibly starting a different, valid Z-shape. To make
matters worse, the second “swipe right” stroke could both be
the last stroke of the current Z-shape and the first stroke of
another valid “swipe z” gesture. The gesture specification lan-
guage should be able to describe whether in such situations both
gestures should be recognized, only the first, only the second,
or none at all.
Finally, elements of the graphical user interface often need to
be identified as well. To allow application logic to work with
events and gestures, events and gestures require an identity,
such that they may be referenced. This is for instance required
to allow incremental updates in response to a gesture that is still
being executed, as the application logic receives multiple data
about the same gesture. The other way around, gestures may
depend on the state and bounds of GUI widgets. This entails
that there need to be ways to identify components in application
logic from the gesture recognition logic.

2.3 Discussion
Scholliers et al. [2] and Richardson et al. [7] argue that most frame-
works and libraries have significant shortcomings in their software
engineering characteristics. Furthermore, Hammond and Davis [8]
demonstrated that domain specific languages lend themselves bet-
ter to the problem of specifying gestures. However, a paper by
Hoste and Signer [1] defines 30 criteria for gesture programming

1 The same holds for other input modalities, such as speech or device-
orientation, which are not relevant to the specific gestures described in
subsection 2.1, but in general might be jointly used in a single gesture
specification.

languages, and finds all existing languages come short on a multi-
tude of those criteria. We argue that the most promising approach
for specifying touch and, by extension, gesture input is one based
on declarative specification of patterns of events. A declarative
specification of gestures allows the programmer to describe the
gesture instead of implement the recognition process. An online,
reactive inference engine can then take care of state maintenance,
segmentation, and overlap in gesture definition. An approach based
on a declarative gesture specification language has the additional
advantage of facilitating a separation of concern. The concern of
developing the application, of designing the gestures, and of im-
plementing the gesture recognition system can be tackled indepen-
dently.

Critically to such an approach, however, is that the gesture
recognition system does not simply offer a fixed catalogue of hard
coded gestures. It should instead offer the gesture designer a rich,
extensible set of primitives, e. g. to deal with spatio-temporal rea-
soning and event identification, and offer means to compose those
into new abstractions.

3. Midas and the Mudra Framework
This paper discusses the software engineering principles applied in
Midas [2], a declarative gesture specification language. Its runtime
is embedded into the Mudra [9] gesture-based interaction frame-
work. Events arrive in the Mudra system, and get matched to pat-
terns by an inference engine as soon as the events arrive. Whenever
an entire gesture’s patterns are matched, a reaction is automatically
executed. The pattern matching phase is optionally aided by a set
of temporal and spatial operators and external recognizers such as
template matchers or machine learning based recognizers. The use-
able operators are not limited to the built-in catalog: new operators
can be defined by the developer.

3.1 Main Language Constructs
This section introduces the main language constructs in Midas, as
well as their syntax. A full specification of the semantic entities of
the Midas language can be found in Figure 2.

At the top level, a Midas program consists of “templates”,
“modules” and “rules”. Templates represent a kind of event: a
template forms a ‘blueprint’ which events are instances of. As such,
templates have a name, for identification purposes, and specify
which “slots” events adhering to that template have. For instance,
events adhering to a “FingerTouched” template might have an x
and a y slot.

Where templates can be regarded as equivalent to a class in
object oriented programming, modules are similar to mixins. Pro-
grammers may for instance declare a module CarthesianPoint
with slots x and y, and declare some functions that will work for all
events whose template includes the CarthesianPoint module.

The third and final kind of top-level element, declarative rules,
are used in Midas to describe the actual gestures. Gestures are
described by listing the events that must be present, and the events
that may not be present. When all events required by the rule are
found, an automatic reaction takes place. This can take the form of
either performing some application logic, or creating new derived
events and adding them to the engine’s knowledge base. The latter
allows for composing events into higher-level events.

Within a rule, the description of events is based on two concepts:
condition elements and tests. Condition elements specify what kind
of event they should be matched to (by naming the event template),
and optionally constrain the slots of the event. For instance, a
condition element may require that the event’s fingerCount slot
holds the value three:

SomeEventTemplate {fingerCount == 3}



Condition elements may be bound to logical variables, allowing
to refer to the event captured by the condition element. Capturing
of events from condition elements to variables is designated by a
single equality sign:

var = SomeEventTemplate {fingerCount == 3}

In addition to the simple equality constraints on the slots of
events captured by condition elements, more involved constraints
can be enforced by tests. Tests can enforce (in-)equality of multiple
slots, or call domain-specific predicates, e. g., to perform spatio-
temporal reasoning. For instance, the following line enforces that
event e1 is located more to the left than event e2 by calling the
spatiallyLeftOf domain-specific predicate:

test spatiallyLeftOf(e1, e2)

Predicates can be stored in the scope of a module. For instance,
a module might be created that specifies a rotation slot, and
bundles it with predicates that act on rotation. Or a higher-level
module might deal with the application-level concept of tracking
interaction between multiple users on a wide touch enabled sur-
face. Such a module could define slots like activityCentroid
and maxDistanceFromCenter, together with predicates reason-
ing about the spatial behavior of the group based on those slots.

Modules hence offer a second, complementary form of com-
position to event-composition. Where event composition has the
advantage of creating new ‘normal’ events, which are treated like
any other event adhering to the same event template, they have the
drawback of introducing data entanglement: all information cap-
tured by the lower-level gesture which might be relevant to any
higher-level gesture, must be explicitly packaged into the event
template. If for instance any potential consumer of a “swipe” ges-
ture has to be able to find the position at which the swipe began,
the coordinates of the start point need to be explicitly stored in
all swipe gestures. Predicate composition does not suffer from this
drawback, as the predicate code is expanded as if by macro expan-
sion, meaning that the predicate’s data is injected in the surrounding
codeblock’s scope. Hence, e. g., the start point’s coordinates need
not be stored unless there actually is code present in the lexical
scope which uses this data. Predicate composition does however
suffer from the inverse drawback that duplication in effort in the
runtime cannot necessarily be optimized away. In the event compo-
sition case, the starting point’s coordinates would be computed and
stored once for each swipe regardless of the number of places at
which swipes are used. In the case of predicate composition, each
such place would compute and store the swipe’s starting point in-
dependently.

The condition elements in a rule are in an implicit conjunction.
An event may be bound to any condition element whose conditions
it satisfies. The same event may be bound to multiple (or even all)
condition elements in a rule, and an event may be bound to the
same condition element in different pattern-matching frames. If
the valid candidates for condition element a are a1 and a2, and
similarly b1 and b2 satisfy all constraints of condition element
b, then the set of pattern-matching frames for the conjunction of
condition elements a b is {(a1, b1), (a1, b2), (a2, b1), (a2, b2)},
i. e., the cross product of all valid candidates.

Midas’ gesture specification makes heavy use of what Hoste and
Signer [1] describe as “dynamic binding”. A gesture specification
may require the slots of multiple events to be equal, as follows:

test e1.x == e2.x

This can be viewed as if all affected slots are bound to one and
the same logical variable. The runtime system can hence solve this
constraint by unification of those variables.

Finally, the absence of an event satisfying a condition element
may also be specified, by negating the condition element. Negation

mp ∈ Program ::= t |m | r | p | f PROGRAMS
t ∈ Template ::= template tid TEMPLATES

{ include uid

(γ)sid = v p | f }
m ∈Module ::= module mid MODULES

{ include uid

(γ)sid = v p | f }
r ∈ Rule ::= rule rid { c |m } RULES

p ∈ Predicate ::= predicate pid (lid) { c } PREDICATES

f ∈ Function ::= function fid (lid) { e } FUNCTIONS
c ∈ Condition ::= ce | te | b | sf CONDITIONS
m ∈Modifier ::= assert tid { sid ⇒ e } MODIFIERS

| modify lid { sid ⇒ e }
| retract lid
| call (tid.)fid

ce ∈ Cond. Element ::= tid { sid == cv } CES
te ∈ Test ::= test e <|≤|==|≥|> e TESTS

| test (lid ←)pid(e)
| test (tid ←)pid(e)

b ∈ Bind ::= lid = (ce | e | a) BINDS
sf ∈ Special Form ::= no { c } SPECIALFORMS

| async (tfid ←)pid
| wait lid v

e ∈ Expression ::= (tfid.)fid | lid.sid EXPRESSIONS
| v | b | δ(e) | (e)

cv ∈ Constr. Value ::= v ‖ cv | v && cv | ∼v | v CVS
v ∈ Value ::= nr | string | symbol | lid VALUES

a ∈ Array ::= [ lid | v ] ARRAYS
γ ∈ Type ::= int | float | string TYPES
δ ∈ PrimF ::= + | - | * | / | mod | . . . PRIMITIVES

lid ∈ VariableName
rid ∈ RuleName
sid ∈ SlotName

tid,mid, uid ∈ Template- or ModuleName
tfid ∈ Template-, Module- or FactVariableName

Figure 2: Semantic entities of Midas

is done using a closed world assumption: when Midas cannot find a
matching event in the knowledge base, it is assumed no such event
exists. For instance, when no DeviceOrientationChanged event
may occur with more than 5 degrees rotation, this can be specified
as follows:

no { dOC = DeviceOrientationChanged
test dOC.degrees > 5 }

Whenever all condition elements of a rule are satisfied, and the
bound values pass the constraints imposed by the test, a gesture is
considered recognized. When this happens, the actions forming the
consequent of the rule are executed. Once deployed, a Midas sys-
tem automatically responds to gestures as they are being performed,
making Midas a reactive system.

3.2 Revisiting the Example
Using the syntax introduced above, the “swipe z” and “swipe right”
gestures described in subsection 2.1 can be implemented as demon-
strated below. Sensor-readings of finger movements are modelled
as events of template Finger 2. Event composition is leveraged to
specify the “swipe z” gesture in terms of the “swipe right” and
“swipe diagonally” gestures.

2 The name Finger is used for conciseness of the examples. Better names
for the event might be FingerDetected or FingerChanged.



We chose to progress bottom-up, specifying “swipe right” first.
Inside the rule for this gesture, we opted to start by specifying the
endpoints A and D 3.

1 rule SwipeRightRule {
2 A = Finger {state == "appear "}
3 D = Finger {state == "disappear "}
4 test D.fingerId == A.fingerId
5 test D.x > A.x + 50mm
6 test abs(A.y - D.y) <= 20mm
7 test temporallyAfter(D, A)

Dynamic binding is used in line 4 to allow the gesture to be
performed with any finger, but to ensure that all matching events
originate from the same finger: A’s fingerId is not restricted. The
fingerId of D is restricted. However, it is not fixed to a specific
finger, but only to be equal to the fingerId of A.

To prohibit multiple small strokes to be erroneously recognized
as one long stroke, spurious lifting of the finger has to invalidate the
gesture. We employ negation to express this, by adding the keyword
no to indicate the mandatory absence of an early disappearance
event such as E in Figure 1. The following lines demonstrate this:

8 no { E = Finger {state == "disappear "}
9 test E.fingerId == A.fingerId

10 test temporallyInBetween(E, A, D) }

Similar code restricts the intermediate Finger positions verti-
cally within the 20mm bound, excluding too far events like F in
Figure 1:

11 no { F = Finger
12 test abs(A.y - F.y) > 20mm
13 test F.fingerId == A.fingerId
14 test temporallyInBetween(F, A, D) }

Finally, list-oriented constructs are employed to verify that the
x-value of the time-ordered intermediate Finger events is non-
decreasing. We use the listOf predicate to construct a list of all
Finger events temporally in between events A and B, requiring the
fingerId to be equal to event A’s fingerId:

15 fs = listOf(Finger).after(A)
16 .before(D)
17 .unified (" fingerId",
18 A.fingerId)
19 .ordered(ASCENDING)
20 test allSpatiallyNonDecreasing(fs, "x")

Assuming a definition for “swipe diagonally” is provided, and
using the previous definition for “swipe right”, the “swipe z” ges-
ture can be implemented in terms of the other two. We distinguish
between two ways in which gesture composition and abstraction
might take place:

Compile-time composition and abstraction packs the definition
of a gesture into a named, user defined predicate that can be
expanded into the definition of a more complex gesture.

Run-time composition and abstraction reifies the gesture as an
event, allowing complex gestures to be built by matching these
derived event types.

Both approaches have their merits and drawbacks, and can co-
exist in one system. For this example, we employ the second ap-
proach. To that effect, the SwipeRightRule is extended with a
modifier action which adds a SwipeRight event to the knowledge
base:

3 The variables are named to coincide with the markings in Figure 1, and
are kept short because of the constraints of printed media.

21 assert SwipeRight {
22 startTime ⇒ A.time ,
23 endTime ⇒ D.time ,
24 ... rest omitted ... }
25 }

Notice that, unlike traditional rule-based languages, Midas allows
condition elements and modifier actions to be interleaved. A rule
does not just trigger some actions when it is completely matched;
intermediate actions trigger as soon as all condition elements up
to that action are matched. In the absence of such a system, the
programmer would have to manually ‘lift’ the scope built up while
matching a partial gesture into a custom event, to carry it over to
the rules recognizing the remainder of the gesture.

A rule adding a SwipeDiagonally event should be created
similarly. Subsequently, the “swipe z” gesture can be defined as
follows:

26 rule SwipeZRule {
27 stroke1 = SwipeRight
28 stroke2 = SwipeDiagonally
29 test stroke2.deltaX < 0
30 test stroke2.deltaY < 0
31 test spatiallyNear(stroke2.startX ,
32 stroke2.startY ,
33 stroke1.endX ,
34 stroke1.endY)
35 test temporallyNear(stroke2.startTime ,
36 stroke1.endTime)
37 stroke3 = SwipeRight
38 test spatiallyNear(stroke3.startX ,
39 stroke3.startY ,
40 stroke2.endX ,
41 stroke2.endY)
42 test temporallyNear(stroke3.startTime ,
43 stroke2.endTime)
44 assert SwipeZ {
45 startTime ⇒ stroke1.startTime ,
46 endTime ⇒ stroke3.endTime ,
47 ... rest omitted ... }
48 }

3.3 Evaluation Model
By relying on a declarative domain specific language, the gesture
specifications need only explain what to recognize, and not how
to recognize the gesture. An inference engine can optimize the ac-
tual recognition process. The RETE algorithm [10] provides a way
of doing this. RETE decomposes the problem of matching events 4

to declarative rules by compiling the rules into a directed acyclic
graph (DAG) that guides the recognition. Nodes in that graph repre-
sent data filtering or combination; edges represent the flow of data.
Individual events are propagated to all entry-nodes of a graph, and
subjected to tests to establish whether they satisfy the condition
element represented by that entry-node. Valid candidates for one
condition element are then combined in a cross product with candi-
dates for the next condition elements. Constraints are enforced by
filtering out combinations that violate explicit predicates or whose
slots which should be equal fail to unify.

Figure 3 illustrates part of the RETE graph for the example
from subsection 3.2 up till line 10. The stream of primitive Finger
events is duplicated to all nodes representing condition elements
capturing Finger events. Candidates for A are selected by discard-
ing all events whose state is not "appear". Similarly, candidates
for D and E are selected by filtering out all events whose state
is not "disappear". Next, all candidates for ?A? are combined

4 The RETE algorithm normally acts on logical “facts”. However, “events”
are nothing but facts ‘in time’, i. e., facts which have a temporal component.
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no matching E is found,

ensuring

temporallyInBetween(E, A, D))

temporallyAfter(D, A)

A.fingerId == D.fingerId

E.fingerId == A.fingerId

state == 
“disappear”

Figure 3: Conceptual illustration of the processing of the “swipe
right” gesture, from line 1 to line 10

with all candidates for D. The spatial and temporal constraints on
this pair are verified, and pairs meeting the requirements are prop-
agated, to be combined with the candidates for E. This time, a
negated combination is performed, i. e., only the pairs of candi-
dates for A and D for which no triple with a candidate for E can be
formed given the constraints, are considered for further processing.

When implemented naively the process’s complexity would be
exponential in the number of condition elements. This issue is al-
leviated in RETE by storing intermediate results, so-called “partial
matches”, with the RETE DAG’s nodes. The complexity can be re-
duced from quadratic in the number of events joined in a rule, to
linear in the number of events joined per rule per time an event is
added. In short, the cost is spread over the individual additions of
new events to the knowledge base, instead of fully incurred each
time. Gupta and Forgy [11] demonstrated that the tradeoff of stor-
ing partial matches to reduce the time it takes to recompute the state
pays off in production systems when the state is stable, i. e., when
the majority of the state remains true when new facts arrive. In the
case of gesture recognition this is trivially the case: since events do
not become untrue when more events arrive, the entire event history
remains stable in the presence of new gesture data.

4. Validation
We presented how the Midas declarative gesture programming lan-
guage leverages software engineering principles to improve the
process of designing gesture-based interactions. By reducing boil-
erplate code and abstracting over the context maintenance, Midas
reduces the amount of tedious to write, yet error-prone code that
is required. The tried and tested advantages of modularization are
ported to the the gesture programming domain. Midas further offers
the means to handle domain-specific requirements such as spatio-
temporal reasoning, dealing with concurrency, supporting conflicts
in overlapping gestures, and identifying primitive input.

Midas has been fruitfully demonstrated in a number of real-life
applications, including during live music performances [12], aug-
mented gaming [13] and powerpoint presentations. During a music
performance, many artists rely on projection-based visualisations
and light shows to enhance their live performances. However, the
visualisation and triggering of lights in popular music concerts is
normally scripted in advance and synchronised with the music, lim-
iting the artist’s freedom for improvisation, expression and ad-hoc
adaptation of their show. Therefore, expressive control of indirect
augmented reality during multiple live music performances was
provided to the artists by means of gestures implemented in Mi-
das. Challenging gesture recognition conditions, such as a having
single gesture reference point (i. e., no training data), filtering ex-
cessive similar movements and dealing with multiple artists, were
well handled by our engine. A live performance was showcased in
2012 to an audience of about 1500 people. Midas and Mudra also
enabled a novel interactive two-player water game that allows kids
and young adults to “fight” in a virtual world with actual physical
feedback. Different software policies are provided by the engine
in order to control the rule activations such that the water effects
reflect the user’s intention. Furthermore, Midas has been used as
a compilation target for gesture authoring tools [14] which further
validates the expressiveness of our approach.

The Mudra framework has been deployed for handling multi-
touch gestures, 3D hand gestures using Sun SPOTS 5, as well as
full-body skeleton tracking using Microsoft Kinect 6 technology.
The declarative nature of Midas, coupled with the modular ap-
proach of Mudra has allowed individual parts of the architecture to
be replaced, e. g., to increase performance by enabling the rule en-
gine to employ multithreading [15], or to distribute workload over
multiple machines [16].

5. Related Work
5.1 Gesture-based Interaction Languages
The “Gesture Definition Language”, or “GDL” by Khandkar and
Maurer [17] offers some modularity, in the sense that new gestures
can be added without knowing about the innards of other gestures,
yet composition is not supported. The “Gesture Description Lan-
guage”, also abbreviated to “GDL”, by Echtler et al. [18] suffers
the same limitation. Furthermore, no support for finger identifica-
tion or spatio-temporal relations between fingers exists in GDL.
This issue is not resolved in their follow-up work GISpL, the Ges-
tural Interface Specification Language [19].

The GeForMT [20] declarative gesture specification language
also lacks composition, and makes it impossible to refer to events.
This entails there is no way to specify that e. g. two events should
originate from the same finger.

The Proton [21] language follows a distinctly different ap-
proach, by requiring the gestures to be described as regular ex-
pressions over an event stream. Proton necessarily suffers from the
restrictions of regular languages, but offers an interesting feature:
it is able to detect overlapping gesture specification. Unfortunately,
the only way Proton responds to overlaps is to refuse the overlap-
ping gestures. Furthermore, the plain sequence of Kleene operators
and disjunctions offer no means of modularisation or composition
whatsoever. GestIT [22] extends the Proton language for better han-
dling of partially overlapping gestures. Still, control over temporal
constraints is lacking.

5 Sun SPOT World, Oracle, access date: 18 August 2014 http://
sunspotworld.com/
6 Xbox Kinect: Full Body Gaming and Voice Control, Microsoft Corp.,
access date: 18 August 2014 http://www.xbox.com/kinect/

http://sunspotworld.com/
http://sunspotworld.com/
http://www.xbox.com/kinect/


Finally, Interactive Cooperative Objects (ICO) [23] formally
describes multi-touch and multimodal interaction based on Petri
nets. This greatly improves debugging, reliability, and scalability
in terms of complexity. ICO can handle overlapping and concurrent
gestures through explicit fork and join operations in the Petri net.
Unfortunately, the gesture interaction designer needs to model all
possible transitions. ICO offers a visual editor to help keep track
of the explosion of cases. As we argued before, a language of-
fers more flexibility. Concretely, ICO’s approach does not provide
spatial abstractions.

5.2 Other Gesture Specification Approaches
In addition to gesture definition languages, other approaches exist.
QuickSet [24] is one example. QuickSet is still text-based, though
sacrifice the typability of plain text.

Another category of approaches offers graphical tools to define
the gestures. Tablatures [21] is a graphical tool that creates Pro-
ton [21] expressions. EventHurdles [25] stands on its own, but of-
fers only limited support for multi-touch and multi-stream gestures.

A significantly different approach can be found in template
matching. Techniques such as Rubine [26], Dynamic Time Warp-
ing [27], the $1 recognizer [28], or Protractor Li [29] offer “black
boxes” which return a distance between a set of events and prere-
corded sample sets – the “templates”. Template matchers can only
decide whether a gesture was sufficiently similar to one of the sam-
ples. Distinguishing between two gestures is done by determining
which one was closest. No semantic information of the gesture is
utilized when recognizing it. This makes debugging false positives
and false negatives difficult.

A final category of approaches can be classified as machine
learning. Examples include artificial neural networks, support vec-
tor machines, and Hidden Markov Models [30]. While they offer
the same functionality as template matchers, they differ in the fact
that they form a single model from the annotated sample set. Like
template matchers, machine learning approaches are largely black
boxes. Correct classifications and misclassifications cannot easily
be traced to specific samples in the learning set. A semantic de-
scription of the gestures is not present.
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