
Data-Driven Inference of API Mappings

Amruta Gokhale, Daeyoung Kim, Vinod Ganapathy
{amrutag, daeyoung.kim, vinodg}@cs.rutgers.edu

Abstract
Porting mobile applications (apps) from one platform to
another is one strategy used by developers to write cross-
platform apps. One challenging task in porting is transform-
ing the app so as to use the appropriate platform-specific
APIs. We have proposed a novel approach to extract func-
tionally equivalent API methods of two platforms that sim-
plifies this task. Our approach is inspired by a technique in
natural language processing domain which extracts a trans-
lation dictionary from non-parallel corpora of two natural
languages. We demonstrate a prototype implementation of
the proposed approach.

Keywords API mapping, cross-platform porting, mobile
apps, static analysis, inference, data-driven methods.

1. Introduction
There is a variety of mobile platforms available today such
as iOS, Android, and Windows Phone. Successful adoption
of each of these platforms depends on the availability of a
wide range of apps. Platform providers are therefore keen
to assist mobile app developers [11, 13] who wish to port
their apps to the given platform. App developers are also
eager to port their app to different platforms so as to reach
a larger user base. Thus, there are different players in the
mobile devices’ ecosystem interested in making the porting
process of mobile apps easier.

However, porting a mobile app across different mobile
platforms is challenging. One question faced by develop-
ers during porting is: How do you adapt the app to use
the respective platform-specific API? Identifying function-
ally equivalent methods between two APIs can simplify this
process, but doing so is difficult. It can be done manually
by consulting the documentations of both the APIs, but this
process is time consuming and error-prone. Automatically
building a database of mappings between the source and
target APIs solves this problem. The database contains map-
pings consisting of each source API method paired with a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SPLASH ’14 Companion, Oct 20-24 2014, Portland, OR, USA.
ACM 978-1-4503-3208-8/14/10.
http://dx.doi.org/10.1145/

target API method implementing the same functionality. For
example, one mapping in the database of mappings between
iOS API and Android API can be CGGeometry.CGRectMake
7→ Paint.drawRect (since both methods draw rectangle on
the screen). It is possible to have one source API method
mapped to multiple target API methods, representing dif-
ferent ways of implementing same functionality. Developers
can lookup this database to find equivalent API methods on
the given platform.

We propose to automatically build a database of map-
pings between source and target API methods. Our approach
first collects a set of apps on source and target platforms.
We then statically analyse the reverse-engineered code of the
app to construct program paths. These program paths repre-
sent potential execution steps which the app might undertake
at runtime. The program paths are constructed to contain
only the API method invocations. A few statically derived
paths may be infeasible during actual app execution. How-
ever, in a huge collection of program paths, effects of infea-
sible paths will be suppressed because of being outnumbered
by feasible paths. Each program path forms a sentence in an
unknown language whose words are individual API meth-
ods. A collection of program paths thus form the text corpus
of the unknown language. We feed the two text corpora to an
inference engine which extracts mappings between words of
the two languages. The inference engine is a technique in
natural language processing (NLP) domain [9] that has been
successfully applied to infer mappings between words of two
natural languages.

The technique learns the mappings between words of two
languages via statistical inference. Assuming that the two
given natural languages have some common vocabulary, the
technique works in the following manner. In large corpora
of text from two languages, appearances of words that are
translations of each other exhibit similar attributes (e.g., fre-
quency of words) in the two corpora. The similarity in the
attributes’ values can be attributed to the presence of a com-
mon, hidden concept that can be imagined to have given
birth to the observed attributes. We can compute the map-
pings by applying statistical modelling algorithms that ex-
plain the observed attributes via a generative model.

We believe that the same technique that worked for natu-
ral languages would also work for API corpora. First, given
the vast number of similar kinds of apps available across two
platforms, the APIs exposed to app developers must contain
some common methods. Second, from our previous work
[8], we have some evidence to suggest that the attributes of



appearances of API methods in the apps exhibit similarities.
Thus, the assumptions on which the NLP technique works
are also true in our case of two mobile APIs.

We have built a tool called DDR - Data-Driven Rosetta -
that infers mappings between iOS API and Android API. We
have tested the tool on a small dataset of 13 iOS apps and 13
Android apps. We aim to scale the evaluation on a large set
of apps.

2. Motivation
In our previous work [8], we addressed the problem of infer-
ring mappings between API methods of two different mo-
bile platforms using independently developed mobile apps.
The intuition behind our approach was that if two apps im-
plemented the same high-level functionality (e.g., both are
TicTacToe games), the developers of the two apps must have
used functionally equivalent API methods in implementing
the same high-level functionality. If we exercised similar
functionality while running the apps, the two apps would
take similar execution paths and thus would invoke similar
API methods. The traces generated should therefore contain
some of the functionally equivalent API methods that map
to each other.

Our prototype tool, Rosetta, worked as follows. We col-
lected functionally equivalent pairs of apps on two platforms
(e.g., two independently developed TicTacToe games). We
executed the two apps in each pair independently but in sim-
ilar fashion, e.g., by selecting similar menu options or click-
ing on similar GUI features. We collected the runtime traces
of the apps on both the platforms, consisting of sequences of
API methods invoked by the apps during these executions.
The generated traces served as input to our API mapping in-
ference algorithm. The inference algorithm was based on a
belief propagation method [14] and used factor graphs [10]
to infer mappings between API methods appearing in the
two traces. We repeated the process of trace generation and
inference for each pair of apps and then combined the infer-
ence results to give a final set of mappings.

While we had some success with this approach with a
small set of apps, we realized that it suffers from a number of
shortcomings. First, the technique requires independently-
developed app pairs that implement the same high-level
functionality and have similar GUIs. Since apps implement-
ing the same high-level functionality often differ in features’
richness and GUI, it is not easy to collect such apps. Sec-
ond, the technique requires the user of Rosetta to manually
execute the app pairs in similar manner which is a time-
consuming process. Thus, the technique is not scalable to
experiment with large number of apps. This directly limits
the number of mappings that can be inferred.

We developed a new approach based on static analysis
that overcomes the above drawbacks in following ways:
First, it does not place any requirement on the nature of apps
that we can play with. Second, it analyses the apps’ data
statically instead of at runtime. At a high level, the technique
first generates apps’ data on both the platforms by analysing
the app binaries statically. This data is treated in the same
light as the text from two different natural languages. We use

Figure 1. System design

a method employed previously in the NLP domain to infer
a translation dictionary between independently written text
corpora of two different natural languages. The output is a
set of mappings between API methods of two platforms. We
will explain the technique in more detail in Section 4.

3. Background
We now describe how we reformulate the problem of finding
mappings between API methods of two mobile platforms
into the problem of finding matchings between words of two
natural languages.

In NLP and machine learning community, researchers
have addressed the problem of inducing translation dictio-
nary between two languages from parallel (translated) or
non-parallel (independently written) text in two languages.
In this paper, our focus is to extract mappings between API
methods of two different mobile platforms. For each plat-
form, we analyze apps statically and produce program paths.
Program paths represent possible execution sequences that
the app might take. We filter out all other program elements
except API method invocations during the construction of
program paths. Each program path can be viewed as a sen-
tence from an unknown language whose words are individ-
ual API methods. Thus, a collection of program paths can
be viewed as the text corpus of an unknown language. We
generate two such collections for each of the two mobile
platforms. Further, in order for the approach to be scalable,
we do not want any restriction on the kinds of apps that we
can experiment with. Hence the two sets of program paths
should be treated similar to non-parallel text of two natu-
ral languages. We have thus redefined our original problem
of extracting API mappings as a problem of finding infer-
ring word translations from non-parallel corpora of two lan-
guages.

We leverage one work [9] in NLP that induces trans-
lation dictionary between two languages from non-parallel
corpora. At a high level, the method uses statistical infer-
ence technique with an optional seed set of mappings given
as input. It computes monolingual feature vectors of words
using their attributes in the respective corpora. It establishes
a generative model that iteratively explains the observed data



of feature vectors and the mappings inferred so far (if any).
The model’s parameters are computed by maximizing the
log-likelihood of the observed data. The method casts this
optimization problem as a maximum bipartite graph match-
ing problem. Output of the matching algorithm is given as
its output.

4. System Design
The overall system design is shown in Figure 1 tailored to
iOS and Android as the source and target platforms, respec-
tively. We now describe the design in more details.

Our approach takes two sets of apps developed for two
different mobile platforms as input. We leverage the notion
of category of apps in the mobile app markets to ensure that
the fraction of apps belonging to each category is approx-
imately the same across two platforms. This is easy to en-
sure since app markets of all popular mobile platforms have
similar catgories of apps because of expectations from the
users to have these apps available across each platform. Us-
ing such a dataset of apps helps to ensure that the gener-
ated program path data comes from related domains of apps
rather than completely unrelated domains.
(1) Generate program paths. Given the apps for two plat-
forms, the next step is to collect the program paths. We first
decompile the apps’ binaries using the available decompil-
ing tools for the respective platforms to obtain bytecode rep-
resentation of the apps. We then construct a control flow
graph (CFG) from the decompiled bytecode representation
using static code analysers for the respective languages. The
next step is to traverse the CFG to produce static program
paths of apps. For each function in the source code, we first
construct its CFG representation that contains only the plat-
form API methods, filtering out everything else. Figure 2
shows the generated CFG of an iOS app. We then convert
the CFG into a directed acyclic graph (DAG) by removing
back edges. This step ensures that we do not run into infinite
number of paths. Here’s how the program path generation
would work on the CFG given in Figure 2:
(a) Identify all the entry and exit nodes in the graph. There
is a single entry node I1 and there are two exit nodes, I3 and
I4.
(b) For each pair of (entry, exit) nodes, compute all paths that
start at entry and end at exit. You can use any standar graph
algorithm to find all paths between two nodes of a DAG. For
the pair (I1, I3), there is a single path in between them that
goes via I2. Similarly for the pair (I1, I4), only one path ex-
ists in between them which goes through I2.
(c) For each path, print the sequence of API methods inside
each of the node, in the same order as the nodes appear in the
path. For the given graph, we generated two node sequences:
I1 I2 I3 and I1 I2 I4. These would yield two program paths:
S1 and S2 as shown in Figure 4.

Similarly, for Android platform, program paths would be
T1 and T2 shown in Figure 4.
(2) Infer mappings. The next step is to feed these program
paths composed of sequences of API methods to the infer-
ence engine which gives mappings between API methods.
We directly rely on the MCCA method [9] as our infer-

ence engine which uses a statistical modelling technique.
The MCCA method takes two text corpora, one in source
language and the other in target language as input. The two
corpora can be completely unrelated and can be from differ-
ent domains. At a high level, the method defines a generative
model over the observed data which consists of the feature
vectors of words in the corpora and the mappings generated
so far. The generative model explains the observed data in
terms of vectors in a common, hidden space. Their model
uses canonical correlation analysis [6] which is one way of
measuring the relationships between two sets of variables. If
we view the generated source and target API program paths
as belonging to two unknown source and target languages,
we can feed the program paths to MCCA method to obtain
mappings between API methods.

Let S and T denote the iOS corpus and Android corpus
shown in Figure 4. We feed these two corpora to MCCA
method. The method outputs a set of mappings between
the elements of the corpora which are API methods in our
case. In MCCA model, the objective is to maximize the log-
likelihood of the observed data (feature vectors and the map-
pings generated so far). It casts this optimization problem
as a maximum weighted bipartite matching problem over
a graph consisting of source words and target words. The
weight on the edge between a source word and target word
denotes confidence in the mapping. The default model out-
puts at most one mapping for each API method. We modi-
fied the default model so as to output top 10 mappings for
each source API method corresponding to top 10 weights
on edges originating from the given source API method. We
consider all non-negative weights on edges, in case the given
API method does not have 10 mappings in the final bipartite
matching output.

5. Implementation and Evaluation
We now describe the implementation details of our tool DDR
which currently infers mappings between iOS and Android
APIs.
iOS program paths generation. We decrypt the down-
loaded iOS apps using a tool called Clutch [1]. To disassem-
ble the iOS binaries, we use a popular disassembler called
IDA Pro. Similar to the technique employed in [7], we use
backward slicing [12] to overcome a limitation of IDA Pro
to resolve the actual targets of methods calls. For construct-
ing CFG, we use IDAPython, an IDA Pro plugin that allows
python scripts to run in IDA Pro, and also use NetworkX
library [4] which provides support for graph functions. We
then traverse the CFG as explained in Section 4. If necessary,
we limit ourselves to generate paths upto a certain length for
practical reasons.
Android program paths generation. Due to easy availabil-
ity of tools to analyse Java bytecode, we first retarget An-
droid apps’ Dalvik bytecode to Java bytecode using dare [2]
tool. We analyse the resultant Java bytecode using a pop-
ular static analyser for Java programs called Soot [5]. We
make use of Soot’s API to construct intra-procedural control
flow graph (CFG) of functions defined in the app. We then



Figure 2. Control flow graph of an iOS app. Figure 3. Control flow graph of an Android app.
S (iOS corpus):

S1: CGGeometry.CGRectGetWidth() CGGeometry.CGRectGetHeight() CGGeometry.CGRectMake() CGContext.CGContextFillRect()

S2: CGGeometry.CGRectGetWidth() CGGeometry.CGRectGetHeight() CGGeometry.CGRectMake() CGContxt.CGContextStrokeRect()

T (Android corpus):

T1: Rect.height() Rect.width() Paint.setStyle() Canvas.drawRect()

T2: Rect.height() Rect.width() Canvas.drawRect()

Note: iOS and Android classes are prefixed with /System/Library/Frameworks/CoreGraphics.framework/CoreGraphics/ and android/graphics, respectively. For
brevity, we only refer to method names and not their classes.

Figure 4. iOS corpus and Android corpus

traverse the CFG to produce program paths as explained in
Section 4.
Inference engine. We use MCCA as our inference engine.
We adapted MCCA in order to work with the dataset of
API methods and modified the source code [3] in many
ways. We mention here the major modifications we did:
(1) We changed edit-distance function to compare only the
method names instead of the entire method signatures that
form the words in our corpus. (2) We modified the tool
so as to output a list of top 10 mappings for each iOS
API method. Instead of emitting a single mapping with the
highest edge weight, we find top 10 edges for the same
source API method in decreasing order of the edge weights.
The mappings associated with such top 10 edges are given
as output by our tool DDR.
Evaluation. We collected 13 Android apps and 13 iOS apps
and ran DDR on this set of apps. There are 3,414 unique
iOS API methods and 2,229 unique Android API methods
invoked by the respective apps. Since there is no ground
truth available to verify the output, we are in the process of
designing an evaluation plan to evaluate the mappings and
also evaluate DDR on a bigger set of apps.

6. Conclusion
We have described a novel technique to infer mappings be-
tween APIs of two mobile platforms. At the heart of our
technique lies a method in the NLP domain that learns a
translation dictionary from non-parallel corpora of two natu-
ral languages. We believe that the same technique works well
for the case of mobile platform APIs. Our work to devise an
evaluation plan of the resultant mappings is in progress. We
see the proposed approach a promising one to infer map-
pings between two APIs.

References (URLs verified on October 6, 2014)

[1] Clutch: High-speed ios decryption system. https://
github.com/KJCracks/Clutch.

[2] Dare: Dalvik retargeting. http://siis.cse.psu.edu/
dare/.

[3] MCCA software. http://cs.stanford.edu/˜pliang/
software/unsuplex.zip.

[4] Networkx graph library. https://networkx.github.io/.
[5] Soot: a java optimization framework. http://www.sable.
mcgill.ca/soot/.

[6] F. R. Bach and M. I. Jordan. A probabilistic interpretation of
canonical correlation analysis. Technical report, University of
California, Berkeley, 2005.

[7] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detect-
ing privacy leaks in iOS applications. NDSS, 2011.

[8] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring
likely mappings between APIs. ICSE, 2013.

[9] A. Haghighi, P. Liang, T. Berg-kirkpatrick, and D. Klein.
Learning bilingual lexicons from monolingual corpora. ACL,
2008.

[10] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs
and the sum-product algorithm. IEEE Trans. Inf. Theory, 47
(2), 2001.

[11] Qt. Qt API mapping for iOS developers. http:
//www.developer.nokia.com/Develop/Porting/
API_Mapping.

[12] M. Weiser. Program slicing. ICSE, 1981.
[13] Windows. Windows phone interoperability: Win-

dows phone API mapping. http://windowsphone.
interoperabilitybridges.com/porting.

[14] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding
belief propagation and its generalizations. Exploring artificial
intelligence in the new millennium, 2003.

https://github.com/KJCracks/Clutch
https://github.com/KJCracks/Clutch
http://siis.cse.psu.edu/dare/
http://siis.cse.psu.edu/dare/
http://cs.stanford.edu/~pliang/software/unsuplex.zip
http://cs.stanford.edu/~pliang/software/unsuplex.zip
https://networkx.github.io/
http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/
http://www.developer.nokia.com/Develop/Porting/API_Mapping
http://www.developer.nokia.com/Develop/Porting/API_Mapping
http://www.developer.nokia.com/Develop/Porting/API_Mapping
http://windowsphone.interoperabilitybridges.com/porting
http://windowsphone.interoperabilitybridges.com/porting

	Introduction
	Motivation
	Background
	System Design
	Implementation and Evaluation
	Conclusion

