
Programming by Demonstration Framework
applied to Procedural Math Problems ∗

Erik Andersen
University of Washington
eland@cs.washington.edu

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Zoran Popović
University of Washington
zoran@cs.washington.edu

Abstract
K-12 mathematics includes many procedures to be learned, such
as addition and subtraction, and there are many “buggy” or incor-
rect procedures that students demonstrate during this learning pro-
cess. Learning such procedures (both correct and incorrect) from
demonstration traces has various applications in computer-aided
education. We formalize mathematical procedures as spreadsheet
programs, involving loops and conditionals over a given set of base
operators, and present a novel algorithm for synthesizing such pro-
cedures from demonstrations. Our algorithm is based on dynamic
programming and leverages ideas from version-space algebras and
template-based program synthesis. Our implementation efficiently
synthesized programs to solve 20 common math procedures and re-
produce 28 different kinds of bugs that were demonstrated by real
students across 9 procedures. Our implementation significantly out-
performs SKETCH, a state of the art program synthesizer, on these
tasks. We also demonstrate the applicability of our generic program
synthesis technology to spreadsheet table transformations, an im-
portant domain in end-user programming.

1. Introduction
Many educational objectives in K-12 mathematics require the stu-
dent to learn a step-by-step deterministic procedure. Examples of
such algorithms include addition, subtraction, prime factorization,
and finding the greatest common factor (GCF) of two numbers. Ex-
pressing such procedures as imperative programs allows for many
applications. We can generate sample solutions for practice prob-
lems. We can use test-input generation tools like Pex [27] or FShell
[8] to explore possible execution pathways and automatically gen-
erate problem sets with good coverage. We can also use procedural
traces to assemble practice problems into progressions that start
easy and grow more difficult [1].

In order for educators to provide accurate and individualized
feedback for each student, they need to understand exactly what the
student is and is not doing correctly. Thus, incorrect variations of
a correct procedure are also important. Many students demonstrate
systematic errors across multiple problems [2, 28]. These “bugs”
range from small operator swaps, such as using multiplication
instead of addition, to large-scale confusion where the structure of
the student’s algorithm differs greatly from the correct algorithm.
If we can describe an incorrect or “buggy” process as a program,
we can automatically identify these bugs in student data [28] and
give feedback that is specific to that bug. We can identify classes
of problems that the student will probably solve incorrectly and
design progressions of practice problems in this space. We can
demonstrate the error to a teacher in a step-by-step manner, to help
the teacher understand exactly what the student is doing wrong.

Gathering all of these programs, both correct and incorrect, is
challenging. Educators who interact with students most closely of-
ten lack programming skills. There are many variations of K-12

∗Microsoft Research Technical Report
Number: MSR-TR-2014-61, Year: 2014

math algorithms found in practice, including differences in nota-
tion and graphical representation such as underlining and coloring,
variation within an algorithm such as whether carries in addition
are written explicitly, and multiple approaches for the same task
such as the three different procedures for GCF that we encountered
(Figure 1). The space of “buggy” algorithms is massive and con-
tinually expanding; Van Lehn has identified over 100 bugs that stu-
dents demonstrate in subtraction alone [28]. Error diagnosis is typ-
ically done by hand and is repeated individually for each student.
Therefore, automating the synthesis of such programs is useful.

There have been many attempts to use computation to automate
the diagnosis of student errors [23, 28]. Such approaches typically
begin with the procedure to be learned and model errors as small
preturbations of that procedure. However, a buggy procedure can
potentially involve any combination of base concepts and arith-
metic operators, assembled into any possible configuration of con-
trol structures such as loops and conditionals. In order to capture
all of these bugs, we need an effective and automatic way to build
hypotheses from the ground up. There is some work on learning
“buggy” production rules from incorrect student behavior in intel-
ligent tutors [17], but this cannot capture all of the important char-
acteristics of full imperative procedures.

Ideally, we would be able to synthesize K-12 math programs
from a set of representative demonstrations provided by a teacher
and “buggy” variations from a set of demonstrations produced by a
student who misunderstands the correct procedure. The most rel-
evant techniques in this area are version space algebra [13, 19]
and template-based approaches [24–26]. However, they cannot ef-
ficiently synthesize programs with nested loops and conditionals,
necessitating a novel approach. Existing version space algebras
can only handle regular loops without any conditionals and require
the user to indicate loop boundaries. Existing template-based tech-
niques require templates to have first-order holes (i.e. integers) so
they can be reduced to SAT/SMT constraints.

In contrast, we introduce a novel framework that can synthesize
programs with (possibly nested) loops and conditionals. Our algo-
rithm uses dynamic programming and several novel ideas to effi-
ciently search the state space of all programs whose loop-free sub-
structures match a given set of templates, which can be expanded
iteratively and automatically until synthesis succeeds. Our system
is semi-automatic in the sense that it requires the user to provide the
base operators and predicates, although we have found that a small
set of operators is sufficient to capture all of our testing bench-
marks. Given the correct operators, our system can synthesize pro-
grams with arbitrarily nested loop and conditional structures.

The goal of our system is to synthesize any program in our
procedural language that is consistent with a given set of examples.
It is always possible that the synthesized program is not what a
teacher intended to demonstrate or what a confused student is really
doing, but this is still useful. A teacher can know if the program is
correct through testing. If our system learns an incorrect program
from a set of correctly-solved practice problems, this is evidence
that the practice problem set is not sufficiently complete to resolve
ambiguity, possibly leading to misconceptions. If there are multiple

explanations for a student’s error, then any of these explanations are
possible, and this knowledge is valuable for the teacher.

We present a set of benchmarks showing that our algorithm is
able to synthesize 20 correct procedures ranging from 2-14 lines
of code. We also demonstrate that our system can synthesize
28 “buggy” procedures that capture 28 different bugs across 9 top-
ics identified by Ashlock [2] from real student data. We show the
generality of our method by applying it to spreadsheet table trans-
formations [7], an important domain in end-user programming [6].

The paper makes the following contributions:
• We diagnose misconceptions in student data through program

synthesis. Explaining a misconception as a program enables
the use of test input generation techniques to generate progres-
sions of practice problems that highlight differences between the
buggy program and the correct program.
• We present a generic programming by demonstration frame-

work that can synthesize programs with arbitrary nested loops
and conditionals over a given set of operators.
• We present experimental evidence showing that our program

synthesis technique can synthesize both correct procedures and
buggy procedures demonstrated by real students for a variety of
mathematical concepts, and that it outperforms SKETCH [24],
a state-of-the-art program synthesis tool, for these examples.
• We apply our generic program synthesis technology to spread-

sheet table transformations, an important domain in end-user
programming.

2. Motivating Examples
We want to learn both correct and “buggy” K-12 math procedures.

2.1 Correct Procedures
Figure 1 shows three different algorithms for finding the greatest
common factor (GCF) of two numbers. These programs vary in
terms of their program structure. The first algorithm, Euclid’s Al-
gorithm, can be implemented as a single loop with a conditional
inside. The true and false branches of this conditional both have
two statements. The second algorithm, which we found in an In-
dian math textbook and we refer to as Successive Division, consists
of a single loop with four statements. The third algorithm, which is
an adaptation of a different algorithm found in that same textbook
that we refer to as Simultaneous Division, has an outer loop and an
inner loop. The inner loop consists of a single statement, and the
outer loop consists of a computation and the inner loop.

Alought these algorithms contain complex structures such as
nested loops and conditionals, the body of any particular loop or
conditional is not very complex and typically only contains a few
statements. If nested loops are treated as a single statement, then
the control-flow skeletons of each loop contain four statements
or fewer. This property is true for the majority of grade-school
mathematical procedures that we studied. We exploit this structural
similarity by defining a small set of template loop skeletons, such
as “one statement,” “four statements,” and “a conditional with two
statements in both the true and false branches.”

2.2 “Buggy” Procedures
Student errors fall into multiple categories, including careless mis-
takes, incorrect fact recall, and systematic misconceptions in which
the wrong algorithm is used [2, 28]. We focus only on this last class
of systematic errors. As our definition of correctness is to synthe-
size any program in our procedural language that is consistent with
all provided examples, we assume that the student has solved all of
the provided demonstrations in exactly the same way. Being robust
to inconsistent student behavior is certainly important for identifi-
cation of bugs in the wild, but is beyond the scope of this paper.

GCF: Euclid’s Algorithm(Sheet T, int I1, int I2)
Assume T [0, 0] contains I1 and T [0, 1] contains I2.

1 for (j := 0; T [j, 0] 6= T [j, 1]; j := j + 1):
2 if (T [j, 0] > T [j, 1]):
3 T [j + 1, 0] := T [j, 0]− T [j, 1]; T [j + 1, 1] := T [j, 1];
4 else:
5 T [j + 1, 0] := T [j, 0]; T [j + 1, 1] := T [j, 1]− T [j, 0];
6 return T [j, 0];

GCF: Successive Division(Sheet T, int I1, int I2)
1 Assume T [0, 0] contains I1 and T [0, 1] contains I2.
2 for (j := 0; T [2j, j] 6= 0; j := j + 1):
3 T [2j, j + 2] := Floor(T [2j, j + 1]÷ T [2j, j]);
4 T [2j + 1, j + 1] := T [2j, j + 2]× T [2j, j];
5 T [2j + 2, j + 1] := T [2j, j + 1]− T [2j + 1, j + 1];
6 T [2j + 2, j + 2] := T [2j, j];
7 return T [2j, j + 1];

GCF: Simultaneous Division(Sheet T, int[] I1)
Assume that T [0, (0,m)] contains I1[0], ··, I1[m].

1 for (j := 0; ¬Coprime(T [j, (0, I1.right)]); j := j + 1):
2 T [j,−1] := LeastPrimeDivisor(T [j, (0, I1.right)]);
3 for (i := 0; i < I1.right; i := i+ 1):
4 T [j + 1, i] := T [j, i]÷ T [j,−1];
5 T [LastRow,−1] := Multiply(T [(0, LastRow − 1),−1]);
6 return T [LastRow,−1];

Figure 1. Example algorithms showing variety. These algorithms
compute the greatest common factor of two numbers or a set of
numbers. Euclid’s Algorithm has a conditional inside a loop, with
each branch of the conditional having two statements. The Suc-
cessive Division algorithm has one loop with four statements. The
Simultaneous Division algorithm has a nested loop and uses two
spreadsheet properties: the rightmost column and the bottom row.

Even if a student is inconsistent, we can examine subsets of prac-
tice problems solved by the student to identify if there is a error
pattern common to that particular subset.

Ashlock [2] identifies a set of buggy computational patterns for
a variety of algorithms that are based on real student data, and
this dataset formed the basis for our experiments. For each bug,
Ashlock provides a set of 5-8 demonstrations that show the error.
We attempted to synthesize a program that could solve all of the
provided demonstrations in the way that is shown in the book. We
do not seek to explain why the student made this error.

We will describe here the four bugs that Ashlock describes
for addition. These bugs are defined for problems in which two
addends, a1 and a2, are added.
• A W 1 (page 34 in [2]): Add each column and write the sum

below each column, even if it is greater than nine.
• A W 2 (page 35): Add each column, from left to right. If the

sum is greater than nine, write the tens digit beneath the column
and the ones digit above the column to the right.
• A W 3 (page 36): Only applies to problems in which a1 has

two digits and a2 has either two digits or one digit. If a2 has one
digit, then add all three visible digits and write the sum. If a1
and a2 both have two digits, add each column normally.
• A W 4 (page 37): Only applies to problems in which a1 has

two digits and a2 has one digit. Add in a manner similar to
multiplication. For each column, moving from right to left, add
the digit of a1 in that column to a2. Carry if the sum is greater
than nine and include in the next sum.
All of these bugs have a clear procedural meaning and can

be captured as a program. They all use the same operators as
the correct addition algorithm (add, add and take the ones digit,
add and take the tens digit) but differ in terms of their control

structure. A W 3 clearly involves a conditional at the outer level,
while A W 2 involves conditionals inside a loop.

3. Formalism
In this section, we formalize a mathematical problem in §3.1, its
solution in §3.2, a procedural language to automatically compute
such solutions in §3.3, and the inductive synthesis problem to
automatically synthesize such procedures from examples in §3.4.

3.1 Mathematical Problem Instance
Our examination of textbooks for K-12 math has revealed that
many topics can be expressed as computation between cells of a
spreadsheet. Although this abstraction does not cover problems that
include text, geometric shapes, and symbolic computation (such as
algebra), we found it to be very useful as a basis for synthesis and
widely applicable. Therefore, we abstract a mathematical problem
as a spreadsheet T partitioned into a tuple of rectangular regions
(I1, ··, Im), each of which contain the corresponding original in-
puts formatted appropriately. A spreadsheet T is a two-dimensional
array of integers that stretches infinitely in all directions. A region
I has four integral attributes: top, left, bottom, right. These at-
tributes denote the row and column coordinates of the top-left cor-
ner and bottom-right corner respectively. We fix the origin of the
spreadsheet to be the top-left corner of the first input region I1.

These regions have one of the following types depending on the
kind of content they hold. A 0-dimensional region (a single cell)
has the type “int” and holds an integer. A 1-dimensional region can
either be of type “array int” if it holds an array of integers or “digits
int” if it holds the digits of an integer. A 2-dimensional region can
either be of type “matrix int” if it holds a matrix of integers or
“digits array int” if it holds the digits of the integers from an array.
Regions are typically aligned with each other; for example, addition
problems have two right-justified 1-dimensional regions.

Although copying inputs to appropriate regions in the spread-
sheet is an important part of the problem solving experience, we
omit this phase for simplicity of presentation. We note that we
can extend our framework to incorporate it by learning straight-line
code that uses array copy operators and type convertors to convert
an integer into an array of digits and vice-versa.

For example, if we use GCF: Successive Division to find the
GCF of 762 and 1270, the input is a spreadsheet with the following
two regions (of type “int”) indicated in blue and green:

 762 1270 1
 762
 508 762 1
 508
 254 508 2
 508
 0 254

The variable values of these regions are as follows:
Input top left bottom right
762 0 0 0 0

1270 0 1 0 1

3.2 Solution to a Mathematical Problem Instance
In our framework, the solution to a mathematical problem instance
is expressed as a trace Tr and a highlighted region J . A trace is
a demonstration of the steps required to generate the final result.
It is sequence of steps in which each step identifies a spreadsheet
cell, a value to be written in that cell, and any enumerated tags
associated with that value, such as font color, emphasis, or anima-
tion. More formally, a trace is an array of tuples (row, column,
value, emphasis). The index of each tuple in the array represents
its timestamp. The trace for the above problem is as follows:

Time 1 2 3 4 5 6 7 8 9 10 11 12
place (0,2) (1,1) (2,1) (2,2) (2,3) (3,2) (4,2) (4,3) (4,4) (5,3) (6,3) (6,4)
value 1 762 508 762 1 508 254 508 2 508 0 254
emph Div Sub Div Sub Div Sub

The highlighted region J is an indication of where the answer
was written in the spreadsheet. This is similar to “circling” the

Program P := Sequence(S1, S2, ··, Sm)

Statement S := Update(k1, k2, e, w) | Loop(j, b, P) | Cond(b, P1, P2)

Integer Expression e := F(a1, ··, am)

Argument a := Select(k1, k2) | SelectRow(k1, k2, k3)
| SelectColumn(k1, k2, k3)

Boolean Expr. b := j relop k | j relop Select(k1, k2) | G(a1, ··, am)

Emphasis w := Enumerated type
Integer Linear Expression k := c+ c1v1 + · ·+cmvm

Figure 2. Syntax of Programs.

answer, a common practice when practice problems are worked out
on paper. This output region is defined in the same way as input
regions in §3.1. The state of the spreadsheet after the above problem
has been solved is shown below, with the answer highlighted in red:

 762 1270 1
 762
 508 762 1
 508
 254 508 2
 508
 0 254

3.3 Procedure
In this section, we introduce a fairly general-purpose language that
can be used to compute the kind of solutions specified in §3.2, when
given as input the kind of problem specification specified in §3.1.
The types in our language are scalars such as digits and numbers,
and vectors such as arrays of digits and arrays of numbers.

Our language includes a set of base operators that take as input
either an integer, an array of integers, or a matrix of integers and
output an integer or a Boolean. The values of array types are
constructed using a standard spreadsheet range construct so that all
arguments to base operators are integers. We provide a set of base
operators that are common across many mathematical procedures
such as addition and subtraction. Once our system learns a new
procedure, this procedure can become an operator for learning
future procedures. The basic constructs of our language are the
operators mentioned above, as well as conditionals, loops, and
emphasis such as color, annotations, and animations.

Figure 2 describes the syntax of our language. Programs P
contain a Sequence of statements S. Statements can take one of
three forms. One is Update(k1, k2, e, w), which writes the value
computed by e into the grid cell at row k1 and column k2 with
emphasis w. w is an enumerated type such as “make bold”, “draw
line below and over and italicize”, “flash red”, etc. Another is
Loop(j, b, P), which represents a loop over program body P that
continually iterates and increments a loop iterator variable j, which
starts at 0, until Boolean expression b evaluates to false. Finally, it
can be Cond(b, P1, P2), which represents a conditional branch that
executes P1 if b evaluates to true or P2 if b evaluates to false.

Integer expressions e are defined as F(a1, ··, am) where F is a
function that returns an integer and takes a1, ··, am as input. Ex-
amples of these functions include addition and subtraction. An ar-
gument a reads from a spreadsheet cell and has three forms. The
first, Select(k1, k2), reads the value from the spreadsheet T in
scope located at T [k1, k2]. SelectRow(k1, k2, k3) reads an array
of integers from T in row k1 from column k2 to k3. Similarly,
SelectColumn(k1, k2, k3) reads an array of integers in column
k3 from row k1 to k2. Boolean expressions b have three types.
The first type is j relop k, where relop is a relational opera-
tor ∈ {≤, <,=, >,≥}, and this operator compares a loop itera-

Angelic Program P̃ := Sequence(S̃1, S̃2, ··, S̃m)

Angelic Statement S̃ := {Ṽ1, ··, Ṽm} | W̃

Angelic Conditional St. Ṽ := Cond(b̃, P̃1, P̃2)

Angelic Non-conditional St. W̃ := {R̃1, ··, R̃m} | ⊥
where R̃ := Update(k̃1, k̃2, Ẽ, w)

| Loop(j, b̃, P̃)

Angelic Boolean Expression b̃ := {h̃1, ··, h̃m} | ⊥
Angelic Boolean Constant h̃ := {(σ1, d1), ··, (σm, dm)}

Angelic Expression Ẽ := {ẽ1, ··, ẽm}
where ẽ := F(ã1, ··, ãm)

Angelic Argument ã := Select(k̃1, k̃2)

| SelectRow(k̃1, k̃2, k̃3)

| SelectColumn(k̃1, k̃2, k̃3)

Angelic Integer Constant k̃ := {(σ1, c1), ··, (σm, cm)}

[[Sequence(S̃1, ··, S̃m)]] = {Sequence(S1, ··, Sm) | S1 ∈ [[S̃1]] , ··, Sm ∈ [[S̃m]] }

[[{Ṽ1, ··, Ṽm}]] =
m⋃
i=1

[[Ṽi]]

[[Cond(b̃, P̃1, P̃2)]] = {Cond(b, P1, P2) | b ∈ [[b̃]] , P1 ∈ [[P̃1]] , P2 ∈ [[P̃2]] }

[[{R̃1, ··, R̃m}]] =
m⋃
i=1

[[R̃i]]

[[Update(k̃1, k̃2, Ẽ, w)]] = {Update(k1, k2, e, w) | k1 ∈ [[k̃1]] , k2 ∈ [[k̃2]] , e ∈ [[Ẽ]] }

[[Loop(j, b̃, P̃)]] = {Loop(j, b, P) | b ∈ [[b̃]] , P ∈ [[P̃]] }

[[{ẽ1, ··, ẽm}]] =

m⋃
i=1

[[ẽi]]

[[F(ã1, ··, ãm)]] = {F(a1, ··, am) | a1 ∈ [[ã1]] , ··, am ∈ [[ãm]] }
[[Select(k̃1, k̃2)]] = {Select(k1, k2) | k1 ∈ [[k̃1]] , k2 ∈ [[k̃2]] }

[[{(σ1, c1), ··, (σm, cm)}]] = {M | M is a linear function over loop iterators in
σ such that M(σi) = ci for all 1 ≤ i ≤ m}

[[{(σ1, d1), ··, (σm, dm)}]] = {N | N is a Boolean function over loop iterators in
σ such that N(σi) = di for all 1 ≤ i ≤ m}

Figure 3. Syntax & semantics of angelic programs. [[SelectRow(k̃1, k̃2, k̃3)]] & [[SelectColumn(k̃1, k̃2, k̃3)]] look like [[Select(k̃1, k̃2)]] .

tor variable j and an integer linear expression k. The second is
j relop Select(k1, k2), which compares a loop iterator variable
j to a value read from the spreadsheet. The last type is G(a1, ··, am),
in which G is a function that returns a boolean value and takes
a1, ··, am as input. Note that G also includes binary relop oper-
ators. Integer linear expressions k are linear functions over the in-
teger variables in scope, expressed as a sum of an integer constant
c and a set of variables vi with integer coefficients ci. These vari-
ables can be either a loop iterator variable like j or a property of
one of the input regions described in §3.1 such as I.right.

To make our examples easier to read, we write them
in pseudocode instead of the syntax described in Figure 2.
We write Loop(j, b, P) as for (j := 0; b; j := j +
1) { P } . Similarly, we write Cond(b, P1, P2) as if (b)
{ P1 } else { P2 }. Select(k1, k2) is written as T [k1, k2],
where T is the Sheet in scope. SelectRow(k1, k2, k3) and
SelectColumn(k1, k2, k3) are written as T [k1, (k2, k3)] and
T [(k1, k2), k3], respectively. We write Update(k1, k2, e, w) as
T [k1, k2] := e. If F is addition, we write F(a1, a2) as a1 +
a2, and do the same for similar operators. Figure 1 con-
tains statements of the form Return(e); these are written as
Update(0, 0, Return(e), none).

3.4 Synthesis Problem
The previous sections formally defined an input problem (§3.1)
and an output solution (§3.2) for a mathematical procedure (§3.3).
We now seek to synthesize such procedures from input-output
examples. More formally, given a set of examples {Z1, ··, Zm},
where each example consists of an input tuple (Sheet, I1, ··, Im)
and an output tuple (Tr, J), the goal is to synthesize a procedure
P that is consistent with each of these examples. More formally,
the procedure P should map the input tuple in each example to
the corresponding output tuple. The synthesizer also needs two
other inputs: a set of base operators that apply as a single step in
the computation, and a set of loop-free control structure templates
(§4.2). As templates can be enumerated in an iterative manner, the
user does not need to provide them. The user does need to provide
the operators or select from many that we have implemented.

4. Synthesis
We present an algorithm for the synthesis problem introduced in
§3.4. We first describe the key ideas before providing details.

Efficient Data Structure For each example, our algorithm learns
the set of all programs that are consistent with that example. Our
algorithm then intersects all these sets. Since the number of pro-
grams in these sets is typically huge, Section §4.1 introduces a data
structure that can succinctly represent these programs and support
an efficient Intersect operation. The key idea behind this data
structure is the sharing of common fragments between programs.

Learning Conditionals Section §4.2 describes how our algorithm
restricts the set of all consistent programs to those that fit a given
set of templates, which are loop-free skeletons with explicit control
flow and holes for statements (Update or Loop). Our algorithm
iteratively expands the set of templates until it finds a valid program
that is consistent with all examples. This approach is motivated by
the observation that loop-free templates tend to have a small size,
even inside large procedures. A good example of this is the GCF:
Simultaneous Division algorithm, described in Figure 1. Although
this procedure has complex stuctures like nested loops, the loop-
free skeleton only consists of a single statement in the case of the
inner loop, and two statements in the case of the outer loop (note
that the inner loop is treated as a single statement).

Learning Loops Our dynamic programming algorithm learns the
set of all Loop statements that are consistent with a given example,
as described in Section §4.3. We first learn the set of all loop-free
programs, then the set of all programs that have loops of depth
at most 1, followed by the programs that have loops of depth at
most 2, and so forth. We compute this set for all contiguous subse-
quences of the example trace; we compute the set of all programs
that are consistent with a given subsequence of the output trace af-
ter having computed the set of all programs that are consistent with
smaller subsequences. In particular, the key inductive step of the
synthesis algorithm is to compute the set of all programs of a given
loop depth v and that are consistent with a given subsequence of the
output trace, after having computed programs of loop depth v − 1
for each subsequence of the output trace.

Learning integer linear expressions and Boolean expressions
As described in §4.1, our algorithm learns integer linear expres-

Intersect(Sequence(S̃1, ··, S̃m), Sequence(S̃′1, ··, S̃′m)) = Sequence(Intersect(S̃1, ··, S̃m), ··, Intersect(S̃′1, ··, S̃′m))

Intersect(Cond(b̃, P̃1, P̃2), Cond(b̃
′, P̃ ′1, P̃

′
2)) = {Cond(Intersect(b̃, b̃′), Intersect(P̃1, P̃

′
1), Intersect(P̃2, P̃

′
2)),

Cond(Intersect(b̃, b̃′), Intersect(P̃1, P̃
′
2), Intersect(P̃2, P̃

′
1))}

Intersect({Ṽ1, ··, Ṽm}, {Ṽ ′1 , ··, Ṽ ′m′}) =
⋃

1≤j≤m,1≤j′≤m′
Intersect(Ṽj , Ṽ

′
j′)

Intersect({R̃1, ··, R̃m}, {R̃′1, ··, R̃′m′}) =
⋃

1≤j≤m,1≤j′≤m′
Intersect(R̃j , R̃

′
j′)

Intersect(Update(k̃1, k̃2, Ẽ, w), Update(k̃
′
1, k̃
′
2, Ẽ
′, w)) = Update(Intersect(k̃1, k̃

′
1), Intersect(k̃2, k̃

′
2), Intersect(Ẽ, Ẽ

′), w)

Intersect(Loop(j, b̃, P̃), Loop(j, b̃′, P̃ ′)) = Loop(j, Intersect(b̃, b̃′), Intersect(P̃ , P̃ ′))

Intersect({ẽ1, ··, ẽm}, {ẽ′1, ··, ẽ′m′}) =
⋃

1≤j≤m,1≤j′≤m′
Intersect(ẽj , ẽ

′
j′)

Intersect(F(ã1, ··, ãm), F(ã′1, ··, ã′m)) = F(Intersect(ã1, ã
′
1), ··, Intersect(ãm, ã′m))

Intersect(Select(k̃1, k̃2), Select(k̃
′
1, k̃
′
2)) = Select(Intersect(k̃1, k̃

′
1), Intersect(k̃2, k̃

′
2))

Intersect(k̃, k̃′) = Let temp := (k̃ ∪ k̃′) in if ([[temp]] = ∅) return > else return temp

Figure 4. Intersect function. Intersect(SelectRow(k̃1, k̃2, k̃3), SelectRow(k̃′1, k̃′2, k̃′3)) and Intersect(SelectColumn(k̃1, k̃2, k̃3),

SelectColumn(k̃′1, k̃
′
2, k̃
′
3)) are very similar to Intersect(Select(k̃1, k̃2), Select(k̃

′
1, k̃
′
2)). For any other case not listed here, Intersect

returns >. Additionally, in cases in which Intersect would return ∅, it will return > instead.

sions and Boolean expressions in a lazy manner since a required
loop variable may not be in scope until the dynamic programming
based algorithm reaches the corresponding loop depth. For exam-
ple, in the GCF: Simultaneous Division algorithm described in Fig-
ure 1, the inner loop statement T [j+1, i+1] := T [j, i+1]÷T [j, 0]
depends on both j and i. The linear functions in this statement can-
not be fully realized until the synthesis algorithm has made two full
passes. Therefore, we learn integer expressions lazily instead of ea-
gerly. At all times, we maintain the set of constraints imposed by
previous invocations of that integer expression, for example, that it
evaluated to 0 when i = 0 and 1 when i = 1.

Since the number of consistent Boolean expressions can be
large and maintaining them can be expensive, we delay learn-
ing them until the very end. Every time a potential Boolean ex-
pression is evaluated, we store the program context, the state of
the spreadsheet, and whether the expression evaluated to true or
false. In cases where the Boolean expression depends on values
in the spreadsheet, the arguments for these expressions are typ-
ically found within the substructures of the corresponding loop
or conditional. For example, consider the Boolean expressions in
GCF: Euclid’s Algorithm described in Figure 1: T [j, 0] 6= T [j, 1]
and T [j, 0] > T [j, 1]. The arguments for both of these expres-
sions, T [j, 0] and T [j, 1], are found in the substructures of the loop
and conditional. Therefore, we restrict the search for arguments of
Boolean expressions to those that occur in the body of the loop or
branches of the conditional. This intuition makes sense: if program
branching behavior depends on spreadsheet values, the program
probably reads or writes to those locations with Update statements.

We define a materialization procedure to find a solution for in-
teger and Boolean constraints. The goal of this process is to take
these constraints and generate a program that satsfies them, if one
exists. For integer constraints, we use Gaussian elimination to solve
the system of linear equations represented by these constraints. For
Boolean expressions, we use brute force search that is restricted to
arguments that occur in conditional or loop substructures, as de-
scribed in the previous paragraph. In particular, for Loop(j, b, P),
we learn Boolean expressions b by gathering all of the arguments
a found in P , and trying all available Boolean operators G for all
variations of those arguments. For Cond(b, P1, P2), we learn b in
the same way by looking inside P1 and P2.

4.1 Angelic Programs
We present a data structure that allows for succinct representation
of a set of programs that share various fragments at multiple levels.
We refer to such a set representation as angelic programs, moti-
vated by the fact that all programs in this set are consistent with
the example observations that induced them and are candidates for
the final result. The syntax of the angelic program structure is de-
scribed in Figure 3. The syntax of angelic programs is similar to
the syntax of programs, with a few key differences. First, as the an-
gelic program structure represents a huge set of programs instead
of a single program, several angelic structures contain sets of sub-
structures in order to maintain these sets as efficiently as possible.
This sharing occurs at four levels: angelic statement S̃ contains a
set of Ṽ , angelic non-conditional statement W̃ contains a set of
R̃, angelic boolean expression b̃ contains a set of h̃, and angelic
expression Ẽ contains a set of ẽ. > represents no program and ⊥
represents any possible program.

The semantics of angelic programs are described in Fig-
ure 3, which precisely formalizes the set of structures that are
represented by a corresponding angelic structure. This seman-
tics shows how the angelic program structure represents huge
sets of programs efficiently. For example, a sequence of an-
gelic statements Sequence(S̃1, ··, S̃m) represents the set of se-
quences that can be constructed by taking one statement each from
S̃1, ··, S̃m, which themselves represent sets of programs. Thus, if
S̃1 contains n1 statements, S̃2 contains n2 statements, etc., then
Sequence(S̃1, ··, S̃m) represents a set of size n1 × n2 × · · ×nm

but uses space proportional to n1 + n2 + · ·+nm.
Two particularly important components are the angelic integer

constant k̃ and angelic boolean constant h̃, which represent a not-
yet-determined linear or Boolean expression as a set of constraints
over possible expressions. Each k̃ holds a set of constraints (σi, ci)
that record key information for a particular invocation of that ex-
pression. For each invocation, σi is the set of variables in scope
and their values, including loop iterators and properties of the input
regions I , and ci is the integer value that the function returned. For
example, if k̃ = (i = 0, 2), (i = 1, 3), k̃ represents the set of linear
functions M that evaluate to 2 when i = 0 and 3 when i = 1, which
contains the function i+ 2. Angelic Boolean constants are defined
similarly, except that di is of type Boolean.

Program Template P := Sequence(S1,S2, ··,Sm)

Statement Template S := <p> ∗W | <p> Cond(∗b,P1,P2)

Figure 5. Syntax of Templates

This data structure supports an efficient Intersect operation
shown in Figure 4. Intersect(P̃1, P̃2) takes two angelic pro-
grams P̃1 and P̃2 and returns an angelic program P̃ ′ such that
P̃ ′ = P̃1 ∩ P̃2. Intersect is similarly defined for all of the other
substructures in the angelic program syntax. Note that two con-
ditionals can be semantically the same in two cases: when the
boolean expression and the two branches match exactly, and when
they match after the true and false branches of one of the condi-
tionals are flipped and the boolean expression of that conditional
is negated. Intersect(Cond(b̃, P̃1, P̃2), Cond(b̃

′, P̃ ′1, P̃
′
2)) checks

both of these cases. In cases where an initialized angelic structure
is intersected with an uninitialized structure ⊥, as is the case in
Intersect({R̃1, ··, R̃m},⊥), Intersect returns the initialized
structure. In any case not listed here, Intersect returns>. Addition-
ally, in cases in which Intersect would return ∅, it returns> instead.

When we intersect two angelic integer constants k̃ and k̃′, we
take the union of the set of constraints (σi, ci) contained within
each constant. Similarly, when we intersect two angelic Boolean
constants h̃ and h̃′, we take the union of the constraints (σi, di).
As an optimization, we check if it is still possible to materialize the
constants after intersection. If not, then Intersect returns >.

4.2 Templates and Co-templates
A template is a program structure whose Update and Loop instruc-
tions have been replaced by non-conditional statement holes ∗W
and whose Boolean expressions have been replaced by Boolean
holes ∗b. Thus, a template is a loop-free skeleton with explicit
control flow and holes Hole for each non-conditional statement
(Update and Loop) and for each Boolean expression. More for-
mally, a template is recursively defined as shown in Figure 5.
There are two kinds of templates: Program templates P and State-
ment templates S. Program templates P have a sequence of state-
ment templates S. Statement templates S have two forms. The
first, <p> ∗ W , contains a program location <p> that immedi-
ately precedes a non-conditional statement hole ∗W . The second,
<p> Cond(∗b,P1,P2), is a program location <p> that immediately
precedes a conditional Cond(∗b,P1,P2) where ∗b is a Boolean
hole and program templates P1,P2 represent the true and false
branches of that conditional, respectively.

We observe that the template structure of a program or
of any loop body in that program in the mathematical pro-
cedural examples that we consider usually consists of very
small number of statement holes, and the number of such
templates is also relatively small. For example, the tem-
plate for the loop of GCF: Euclid’s Algorithm in Figure 1
is Cond(∗b, Sequence(∗W, ∗W), Sequence(∗W, ∗W)). In GCF:
Successive Divison it is Sequence(∗W, ∗W, ∗W, ∗W), and in
GCF: Simultaneous Division the inner loop is Sequence(∗W) and
the outer loop is Sequence(∗W, ∗W). The algorithm thus restricts
its search to programs that fit a set of templates that is provided as
input. As enumeration of possible templates is straightforward, this
set of templates can be iteratively and automatically increased until
the synthesis algorithm succeeds.

A Co-Template, Val , of a given template P is a mapping from
holes in P to a set of angelic statements. We define the function
P[Val], which returns an angelic program P̃ obtained by replacing
each Hole hole in P by Val(hole). Statement holes ∗W are
mapped to angelic non-conditional statements W̃ , and Boolean
holes ∗b are mapped to angelic Boolean expressions b̃. We use the

SynthesizeFromExample(Trace Tr, Maximum

loop depth k:int, Templates Ps)
1 Let ProgA be a three-dimensional array of R̃.
2 Let ProgA[v, i, j] contain all programs with loop depth
≤ v that can generate trace Tr from node i to node j.

3 Initialize every entry of ProgA[v, i, j] to ⊥.
4 for i← 1 to Length(Tr):

5 ProgA[0, i− 1, i] := {Convert(Update(k̃1, k̃2, Ẽ, w),
State(Tr, i)) s.t. Update(k̃1, k̃2, Ẽ, w) computes the ith

element in Tr from previous entries in T}.
6 for v ← 1 to k:
7 foreach P ∈ Ps:
8 for n← 0 to Length(Tr)− 1:
9 AddLoopPrograms(ProgA, v, n,P, Tr);

10 return ProgA[k];

Figure 6. Procedure SynthesizeFromExample.

notation Val [∗b ← b̃] to indicate when a Boolean hole ∗b in a Co-
template is filled with an angelic Boolean expression b̃. Similarly,
Val [∗W ← W̃] indicates that the statement hole ∗W is filled with
an angelic non-conditional statement W̃ .

4.3 Dynamic Programming
Now, for each subsequence of an example trace, we learn the
set of all loops with bounded depth, represented as angelic
structures, that fit one of the given templates. The procedure
SynthesizeFromExample, defined in Figure 6, performs this task
using a dynamic programming based approach. This procedure
takes as input a Trace Tr, a maximum desired loop depth k, and
a set of loop-free templates Ps, and outputs a two-dimensional
array Prog such that Prog[n1, n2], for 0 ≤ n1 ≤ n2 ≤
Length(Tr), contains the set of all loop programs of depth ≤ k
that are consistent with the subsequence of Tr from index n1 to
index n2. This array represents a directed acyclic graph (DAG)
in which nodes are timestamps and edges are programs that ex-
plain the changes to the spreadsheet between two nodes. Inter-
nally, SynthesizeFromExample uses a three-dimensional array,
ProgA, to represent this DAG. The added third dimension is used
to store the loops of a particular loop depth in the learning process.
All entries of ProgA are initialized to ⊥ on line 3.

For each step in the trace, SynthesizeFromExample tries to
explain the value written to the spreadsheet on that step, by com-
puting the set of operations that produce that value from the input
and values generated in previous steps (lines 4-5). It does this with
the Convert function, which takes a program structure and a state
σ as input and it attaches that state to all the constants that occur
in that program, in order to convert those integer constants into an-
gelic integer constants. State calculates the state σ of the trace Tr
at a particular timestamp. SynthesizeFromExample then stores
each set of operations in ProgA. The operations learned in this
initial phase can only compute one step ahead; therefore, after this
phase the only edges in ProgA that are not⊥ are edges of the form
ProgA[0, i, i+ 1], 0 ≤ i < Length(Tr).

We learn loops on lines 6-9 by iterating over the set of templates
and learning the set of all programs that fit each template. In each
synthesis pass, we call a separate procedure AddLoopPrograms
in order to find the set of loops that fit a particular template
and that start at a particular timestamp. Within a single loop-
learning pass, for each template in the set of templates, we call
AddLoopPrograms for all possible start times mi, 1 ≤ i ≤
Length(Tr). We then learn a second set of loops by iterating again
over the set of templates, including loops learned in the previous
step as statements in this outer-loop learning process.

AddLoopPrograms(DAG ProgA, current loop depth v:int,
start time n:int, Template P, Trace Tr)

1 Let j be a fresh variable.
2 Let p0 and pend denote the start and end of P.
3 Let ∗b0 be a fresh boolean expression hole.
4 Let Val0 map every hole in P to ⊥.
5 b̃0 := Extend(Convert(true, State(Tr, n)), j, 0);

6 Worklist := {(Val0[∗b0 ← b̃0], 0, p0, n)}; Processed := ∅;
7 while Worklist 6= ∅:
8 Pick and remove (Val , z, p,m) from Worklist;
9 Switch (Successor(p)):

10 case (∗W,p′):
11 foreach m′ where ProgA[v − 1,m,m′] 6= ∅:
12 W̃1 := Extend(ProgA[v − 1,m,m′], j, z);
13 W̃1 := Intersect(Val(∗W), W̃1);

14 if W̃1 6= > then:

15 add (Val [∗W ← W̃1], z, p′,m′) to Worklist;
16 case (∗b, p1, p2):
17 b̃1 := Extend(Convert(true, State(Tr,m)), j, z);

18 b̃1 := Intersect(Val(∗b), b̃1);
19 if b̃1 6= > then:

20 add (Val [∗b← b̃1], z, p1,m) to Worklist;

21 b̃2 := Extend(Convert(false, State(Tr,m)), j, z);

22 b̃2 := Intersect(Val(∗b), b̃2);
23 if b̃2 6= > then:

24 add (Val [∗b← b̃2], z, p2,m) to Worklist;
25 case (p = pend):

26 b̃1 := Extend(Convert(true, State(Tr,m)), j, z + 1);

27 b̃1 := Intersect(Val(∗b0), b̃1);
28 if b̃1 6= > ∧m < Length(T) then:

29 add (Val [∗b0 ← b̃1], z + 1, p0,m) to Worklist;

30 b̃2 := Extend(Convert(false, State(Tr,m)), j, z + 1);

31 b̃2 := Intersect(Val(∗b0), b̃2);
32 if b̃2 6= > then:

33 add (Val [∗b0 ← b̃2], z, p,m) to Processed;
34 foreach (Val , z, p,m) ∈ Processed:
35 Prog[v, n,m] := Prog[v, n,m] ∪ {Loop(j,Val(∗b0),P[Val])};

Figure 7. Procedure AddLoopPrograms.

4.3.1 AddLoopPrograms
AddLoopPrograms, shown in Figure 7, takes as input an integer
n that indicates the timestamp from which we are trying to learn
loops, a templateP , and a Trace Tr. The goal is to compute the set
of programs that match P and explain the trace starting at time n.
AddLoopPrograms does this by stepping through P , continually
filling the statement and Boolean holes in the template with an-
gelic statements that represent the programs that match that hole.
AddLoopPrograms maintains a worklist of tuples (Val , z, p,m)
that contain a Co-template Val , the value of the loop iteration vari-
able z, a program location variable p that indicates the current po-
sition in the template, and a timestamp m representing the current
location in Trace Tr. Each time the main loop (line 7) iterates,
AddLoopPrograms calls a successor function Successor on line
9 that returns the hole in the template that immediately follows p.
Successor can return a non-conditional statement hole ∗W (line
10), a Boolean hole ∗b (line 16), or signal that it has reached the
end of the template (line 25).

If Successor returns a non-conditional statement hole ∗W
(line 10), we consider all previously computed statements in the
DAGProgA that could fill that hole (lines 11-15). We therefore con-
sider every m′ for which ProgA[v,m,m′] 6= ⊥ and hypothesize
that this statement might be the next statement in the loop. On line
12, we use the Extend function to update the angelic integer con-
stants within that loop to reflect that this statement is being called
with the loop iterator variable set to the value of that iteration. This

Synthesize(Examples {Z1, ··, Zm}, Maximum loop depth

k:int, Templates Ps)
1 for (i := 0 to m):
2 Progi := SynthesizeFromExample(Zi.T race, k,Ps);
3 temp2 := ∅;
4 foreach (P in Ps):
5 Let Val0 map every hole in P to ⊥;
6 result := {Val0};
7 for(i := 0 to m):
8 newResult := ∅; temp := Unify(Progi,P, Zi);
9 foreach (Val ′ in temp):

10 foreach (Val in result):
11 fail := false;
12 foreach (Hole hole in P):
13 Val ′′[hole] := Intersect(Val ′[hole],Val [hole]);
14 if(Val ′′[hole] = >):
15 fail := true; break;
16 if (not fail):
17 newResult := newResult ∪Val ′′;
18 result = newResult;
19 foreach (Val in result):
20 P := P[V al]; temp2 := temp2 ∪ {P};
21 Materialize all integer and Boolean angelic constants

in temp2.
22 return temp2;

Figure 8. Procedure Synthesize.

function takes as input an angelic program P̃ , a fresh loop iterator
j that does not occur in P̃ , a non-negative integer z, and returns
another angelic program where the state σ in each angelic constant
occuring in P̃ is extended with the assignment j := z. We then in-
tersect this program with anything stored for previous invocations
of ∗W and add it to the worklist (lines 13-15).

If Successor returns a Boolean hole ∗b (line 16), then we add
two hypotheses to the worklist: one in which execution goes into
the true branch (lines 17-20), and one in which execution goes
into the false branch (21-14). On lines 17 and 21, we use the
Extend and Convert functions to create new angelic Boolean ex-
pressions b̃ that represent both possible hypotheses for the behav-
ior of the Boolean expression represented by this hole: true and
false. After intersecting this angelic Boolean expression with pre-
vious invocations of this expression (lines 18 and 22), we add these
hypotheses to the worklist (lines 29 and 33). Hypothesizing that
conditionals can branch either way leads to a combinatorial ex-
plosion in the number of entries in the worklist; however, since
AddLoopPrograms uses the Intersect function to ensure that
there actually is a solution to the set of linear constraints over loop
iterator variables that we maintain in the angelic integer constants
k̃, many infeasible loop hypotheses quickly die out.

If Successor signals that we reached the end of the template
(line 25), then we maintain two hypotheses: that the loop contin-
ues (lines 26-29), and that it ends now (lines 30-33). To hypothe-
size that the loop continues, we record that the loop continuation
Boolean expression evaluated to true (lines 26-27) and add a tuple
to the worklist in which the template location is returned to the ini-
tial program location of the template (line 29). To hypothesize that
the loop ends, we record that the loop continuation Boolean expres-
sion evaluated to false (lines 30-31) and add the filled co-template
to the Processed list to be added to the DAG (line 33).

4.4 Overall synthesis algorithm
Figure 8 defines the overall synthesis algorithm, Synthesize,
which takes as input a set of examples {Z1, ··, Zm}, a maximum
loop depth k, and a set of templates Ps, and returns a (non-angelic)
program P . The key idea is to compute the set of angelic programs
for each example and then intersect all of these programs. How-
ever, we cannot just naı̈vely intersect them because we need to

Procedure L C S Templates T(s) ST(s)
Addition: Count On 1 0 2 [S] <1 6
Addition: Standard 1 1 6 [C{2S}{S}],[S] 21 fail
Division: Repeated Subtraction 1 0 3 [2S],[S] 2 32
Div.: Repeated Subt. Remainder 1 0 2 [S] <1 4
Fraction Multiplication 0 0 2 [2S] <1 1
Fraction Division 0 0 4 [4S] <1 25
Fraction Reduction 1 0 5 [4S],[S] 8 fail
Fraction Reciprocal 0 0 2 [2S] <1 1
GCF: Euclid’s Algorithm 1 1 7 [C{2S}{2S}],[S] 7 fail
GCF: Simultaneous Division 2 0 5 [S],[2S] 4 fail
GCF: Successive Division 1 0 5 [4S],[S] 14 fail
Matrix Addition 2 0 3 [S] 112 fail
Matrix Subtraction 2 0 3 [S] 52 fail
Matrix Scalar Multiplication 2 0 3 [S] 6 fail
Pattern Continuation: Addition 1 0 2 [S] <1 3
Pattern Continuation: Subtraction 1 0 2 [S] <1 3
Pattern Contin.: Explicit Add. 1 0 2 [S] <1 3
Pattern Contin.: Explicit Subt. 1 0 2 [S] <1 3
Prime Factorization 1 0 3 [2S],[S] 1 fail
Subtraction: Count Back 1 0 2 [S] <1 4

Figure 9. Summary of target algorithm benchmarks. L, C, S, show
the number of loops, conditionals, and statements, respectively,
for each intended procedure. The next column shows the tem-
plates used to construct the target procedure. We abbreviate tem-
plates here; for example, 2S is a template with two statements and
C{2S}{2S} is a conditional with two statements in each branch. T
shows the number of seconds taken by our algorithm to generate
a program solving all of the provided demonstrations. ST reports
the number of seconds taken by SKETCH to synthesize the pro-
gram when given the exact supertemplate (see Section §7). “fail”
indicates that no program was synthesized within 10 minutes.

learn Boolean conditionals. To do this we make use of our tem-
plates. The initial loop on lines 1-2 computes the DAG for each ex-
ample. Then, for each template, we initialize a set of co-templates
result to a single co-template in which all holes are mapped to
⊥ (lines 4-6). We iterate through each trace and compute the set
of all programs that fit that template and are consistent with that
trace. We do this with the Unify procedure on line 8, which is
not included in the paper but follows the same basic process found
in AddLoopPrograms: step through the templates and return the
set of matches, a set of co-templates. The algorithm then intersects
these co-templates with everything we have found so far in result
(line 14) to see if anything is in common. If so, this co-template
survives to the next iteration (lines 16-18). The result is the union
of all intersections for each template (lines 19-20). The last step is
to materialize the integer and Boolean constants (line 21).

The following theorem holds:

THEOREM 1. Our algorithm synthesizes all programs in our lan-
guage for the set of templatesPs consistent with provided examples
{Z1, ··, Zm}, integer operators F, and Boolean operators G.

4.5 Optimizations
We apply a set of heuristics to cut down on the number of loops.
We delete a loop if we have computed another loop that starts or
ends at the same time but iterates longer. We delete conditionals in
which both branches are the same. We delete a co-template if it is
a subset of another co-template. These heuristics can delete correct
programs; however, they greatly improved efficiency.

5. Evaluation
We evaluated the effectiveness of our data structure and synthesis
algorithm by testing it on correct demonstrations of 20 K-12 math
procedures and 28 buggy demonstrations of some of those proce-

Bug P L C S Templates T(s) ST(s)
Addition 34 1 0 2 [S] <1 1
Addition 35 1 1 6 [C{2S}{S}],[S] 15 fail
Addition 36 1 1 6 [S],[C{2S}{S}] <1 fail
Addition 37 1 1 8 [C{2S}{2S}],[2S] <1 fail
Subt. 38 1 1 5 [C{S}{S}],[S] <1 fail
Subt. 39 1 0 4 [S],[3S] <1 fail
Subt. 40 1 1 5 [C{S}{S}],[S] 7 fail
Subt. 41 1 2 10 [C{C{S}{S},2S}{S}],[S] 24 fail
Subt. 42 1 1 7 [C{S}{S}],[3S] <1 fail
Mult. 44 1 1 6 [C{2S}{S}],[S] <1 fail
Mult. 45 0 0 4 [4S] <1 fail
Division 47 1 1 5 [C{S}{S}],[S] <1 62
Frac. Red. 51 0 0 2 [2S] <1 1
Frac. Red. 52 1 3 11 [C{S}{C{S}{C{S}{S}}}],[S] 4 32
Frac. Red. 53 0 1 6 [C{2S}{2S}] <1 4
Frac. Add. 54 0 0 2 [2S] <1 1
Frac. Add. 55 1 0 5 [2S],[3S] <1 fail
Frac. Add. 56 1 0 5 [2S],[3S] <1 49
Frac. Add. 57 1 0 5 [2S],[3S] <1 fail
Frac. Subt. 58 0 3 14 [C{S}{S},C{2S}{C{2S}{2S}}] <1 fail
Frac. Subt. 59 1 1 12 [3S],[S,C{3S}{S},2S] 127 fail
Frac. Subt. 60 1 0 3 [S],[2S] <1 2
Frac. Subt. 61 2 1 10 [S],[3S],[S,C{S}{S},S] 41 fail
Frac. Mult. 63 1 0 6 [S],[5S] <1 fail
Frac. Mult. 64 1 0 2 [S] <1 1
Frac. Div. 65 1 0 2 [S] <1 1
Frac. Div. 66 1 0 6 [S],[5S] <1 2
Dec. Add. 67 0 1 5 [C{2S}{S}] <1 2

Figure 10. Summary of “buggy” benchmarks from Ashlock [2]. P
shows the page number on which each bug appeared. See Figure 9
for description of other columns. These results show that our algo-
rithm can efficiently learn programs to describe students’ errors.

dures. For each benchmark, we selected a set of operators and pred-
icates related to that algorithm. These operators represent concepts
that are taught in previous chapters and are expected to be applied
as a single step. Many of these operators were simple, like addi-
tion, subtraction, and less than. Some were more complex, such as
finding the lowest prime divisor of a set of numbers.

We picked a set of templates for learning inner and outer loops
by studying the examples and trying to come up with a representa-
tive set. The inner loop templates were all templates with no more
than 5 statements, 3 conditionals, and 3 statements per conditional.
The conditionals could be nested. The outer loop templates were
Sequence(∗W1) and Sequence(∗W1, ∗W2). The templates pro-
vided to the Unify procedure were a set of 164 templates, repre-
senting all possible templates with a maximum of 8 statements, 1
conditional and 3 statements per conditional branch. Instead of try-
ing all templates at once, we used an iterative, phased strategy that
tried various subsets of templates until synthesis succeeded.

5.1 Correct programs
For each correct procedure, we collected a set of problems from a
variety of textbooks and tried to pick a set that explored the full
range of pathways through the procedure. For each procedure, we
first provided a single example to the synthesizer. If the synthesized
program solved all of the example problems, we stopped. If there
were examples that the learned solution procedure did not solve
correctly, we added the first such incorrect problem and tried again.
We continued this process until the synthesized program was able
to solve all of the programs correctly.

Our results are listed in Figure 9. For each problem, we report
a few metrics: the number of loops, conditionals, statements, and
the set of loop templates needed for the synthesized program. Note
that the same set of templates were used for all of our benchmarks;
this column reports the templates needed to construct the program

Figure 2 in [7]. Example input table:
Qual 1 Qual 2 Qual 3

Andrew 01.02.03 27.06.08 06.04.07
Ben 31.08.01 05.07.04
Carl 18.04.03 09.12.09

Example output table:
Andrew Qual 1 01.02.03
Andrew Qual 2 27.06.08
Andrew Qual 3 06.04.07
Ben Qual 1 31.08.01
Ben Qual 2
Ben Qual 3 05.07.04
Carl Qual 1
Carl Qual 2 18.04.03
Carl Qual 3 09.12.09

Figure 8 in [7].
Example input table:
Name Color Price
Toyota Red 2000
Nissan White 4000

Example output table:
Toyota Red
Toyota 2000
Nissan White
Nissan 4000

Figure 9 in [7]. Example input table:
3099 905 A4CA
NO.14 NO.14 Full Copies 6.78 2 * * 0
3200 906 AHG
9-Jun 9-Jun Covers Only 4.74 1 * * 0

Example output table:
3099 905 A4CA NO.14 Full Copies 6.78 2
3200 906 AHG 9-Jun Covers Only 4.74 1

Figure 11. Our system learned a program to compute these three
spreadsheet table transformations from Harris and Gulwani [7].

we intended to find, not the set of templates that were tried. This
set of examples shows considerable variety in terms of loop and
conditional structures. We report the time it took to synthesize the
procedure that solves 100% of the practice problems.

5.2 Buggy procedures
Ashlock [2] identifies a set of 40 buggy computational patterns for
a variety of algorithms. We focused on a large subset of these algo-
rithms: addition, subtraction, multiplication, division, fraction re-
duction, fraction addition, fraction subtraction, fraction multiplica-
tion, and fraction division. Our bug results are listed in Figure 10.
Our system is able to synthesize programs consistent with all of
the examples provided for 28 of the 40 bugs in the book (excluding
those in the appendix), which is about 70% coverage.

The bugs that we were not able to capture fell into three cate-
gories. First, some of the bugs involved base operators that were
quite unrelated to the operators used in the correct algorithm. For
example, one of the bugs for multiplying two fractions f1 and f2
required a base operator defined as f1.num ∗ f2.denom + (10 ∗
f1.denom + f2.num). Although our system could capture such
a bug if provided such a non-standard operator, this was too im-
practical to include as a successful benchmark. Second, some algo-
rithms, particularly those for division, involved traces that were too
long and complicated for our system to handle. Better heuristics for
pruning operators and template search strategies would likely help
us capture such bugs. Third, some bugs involved word problems.

6. Other Applications
Although our system was designed to learn K-12 mathematical pro-
cedures, we believe it can advance the state-of-the-art for program-
ming by demonstration in other domains as well. One such domain
is layout transformations on spreadsheet tables [6, 7]. In this do-
main, the input is a 2D table of entries with type string. The out-
put is another table containing a rearrangement of the cells in the
input. Figure 11 shows three motivating transformations from [7]
that from an online help forum for Excel macro programming.

We used our synthesizer to learn a program for each of these ta-
ble transformations. Since our algorithm requires a full step-by-step
demonstration, we simulated entering information into the spread-

sheet in a way that seemed natural. We provided a single opera-
tor, “move”. For each of the three transformations, we provided the
demonstration shown in Figure 11, and another similar example of
a different size. In all three cases, the synthesizer took about 10 sec-
onds to learn the correct program. These examples show how our
general approach can apply to domains other than math. In con-
trast, the technique presented in [7] is specialized for table layout
transformations and cannot synthesize any of our math programs.

7. Comparison to SKETCH
We compared our tool to SKETCH [24], a state-of-the-art general-
purpose program synthesis tool that is the closest existing system
to our work. SKETCH takes as input an incomplete program with
first-order holes (integers, Booleans) and tries to fill in these holes
in a way that satisfies all assertions for all possible inputs. We
encoded our demonstration-based specifications by asserting “if the
input is X , then the output is Y .” We used version 1.6.4, released
on May 15th, 2013.

Harris and Gulwani [7] reported that SKETCH could not suc-
cessfully solve their table transformation benchmarks. Therefore
we tried SKETCH on all our math benchmarks, as shown in Fig-
ures 9 and 10. For each benchmark, we report how long SKETCH
took to synthesize a program or “fail” if no program was synthe-
sized within 10 minutes. We found that SKETCH could synthesize
some of the simpler benchmarks. However, it failed to efficiently
solve larger programs with more complex control structures be-
cause it cannot process the large number of required holes. We gave
SKETCH the full conditional and loop structure for each bench-
mark, with all other statements and Boolean expressions replaced
by holes. We refer to this as a supertemplate. We note that the tim-
ings reported for SKETCH are very optimistic because in reality
one would have to try out all possible supertemplates of which
there is a very large number. We conclude that, since SKETCH
is designed to synthesize programs when most of the program is
known, it is not so well suited for our benchmarks in which the
entire program is essentially unknown. This makes our template-
based dynamic programming approach necessary.

8. Related Work
We review related work in two areas: program synthesis and edu-
cational technology.

8.1 Program Synthesis
Recent approaches to program synthesis have focused on two areas:
version space algebras and template-based synthesis techniques.
Neither approach can synthesize most of our benchmarks, as ex-
isting version space algebras are not designed to learn nested loops
and conditionals, and existing template-based approaches cannot
scale. Our framework draws inspiration from both these areas: it
borrows the idea of manintaining multiple hypotheses from the for-
mer, and templates from the latter. It combines these general ideas
in a non-trivial manner using a novel dynamic programming algo-
rithm and angelic inference of atomic expressions.

Version Space Algebras Version space algebra based techniques
have been used to synthesize programs from trace demonstrations
or input-output examples. The key idea is to efficiently compute
and succinctly represent a large number of hypothesis in an un-
derlying domain-specific language. The original concept was pio-
neered by Mitchell [19] for refinement-based learning of Boolean
functions. It was later extended by Lau et.al. [13] to learn simple
loops in the SMARTedit system, which learns text editing com-
mands with base operations such as moving the cursor to a new
position or inserting and deleting text. Recently, Gulwani extended

these ideas to learn functions with simple loops in a more sophisti-
cated Programming by Example setting [3]. Version space algebras
have been applied to a wide variety of application domains includ-
ing text manipulation [13], string manipulation [18], table transfor-
mations [9], repetitive robot programs [20], shell scripts [14], and
Python programs [15].

These techniques cannot solve our math benchmarks because
they are specialized for individual domains. More significantly,
they are not sufficiently robust to learn programs with complex
loop and conditional structures. Prior techniques can only handle
simple loops, without nested loops or conditionals inside loops.
They also require the user to explicitly indicate each iteration of
a loop inside a demonstration. These kind of restrictions make such
systems less useful and usable [12]. Our approach does not have
these restrictions. It can learn nested loops, thanks to the novel dy-
namic programming based algorithm that iteratively learns loops
of increasing depth and uses angelic expressions to deal with yet
unknown loop iterators. Furthermore, the use of templates facili-
tates learning of conditionals, even inside loops. Our technique is
general purpose and is parameterized by a set of base operators.

Template-based Program Synthesis Since program synthesis is
a hard combinatorial problem, many program synthesis techniques
require the user to specify the control-flow structure of a program
with templates [24–26]. These methods use a variety of techniques
for the underlying combinatorial search, such as brute-force search
with A*-style heuristics [5], SAT solvers [24], SMT solvers [4, 11],
and probabilistic inference. Most of these techniques are inapplica-
ble to our setting since they are either specialized to specific do-
mains such as loop-free programs [4], geometry constructions [5],
progam inverses [26], or require complete functional specifica-
tions [25]. The most closely related work to our setting is that of
SKETCH [24], which is a general purpose template-based pro-
gram synthesizer and can accept various forms of specifications.
SKETCH, which is based on reducing the synthesis problem to
solving SAT/SMT constaints, works well in an interactive setting
where programs are mostly complete (with insight from the pro-
grammer) and have a small number of holes. SKETCH is not well
suited for our domain becuse it does not fully utilize specifications
expressed as demonstrations and fails to synthesize most of our
benchmarks. In contrast, our template-based technique can fully
take advantage of user demonstrations, and it scales better because
it leverages insights from version space algebras and uses a novel
dynamic programming algorithm.

8.2 Educational Technology
Training of procedural tasks has been realized in intelligent tutor-
ing systems [10, 21] primarily through manual crafting of produc-
tion rules. These production rules check if a particular condition is
true about the problem state and perform an operation. This pro-
cess is time-intensive, motivating automatic approaches. Recently,
Li et al. showed how a machine learning agent, SimStudent, can
learn production rules for a target educational procedure from in-
put data [16]. In our work, we extend the expressive capability of
synthesized procedures to full imperative programs. Recently, pro-
gram synthesis was applied to automatically generate algebra proof
problems [22] and solutions to geometry construction problems [5],
but these approaches only work on restricted domains.

9. Conclusion
We have presented a novel programming language and synthesis
framework that uses programming by demonstration to learn K-12
mathematical procedures, both correct and incorrect. Our frame-
work can learn complex structures such as loops and conditionals
by defining a set of template loop skeletons and learning sets of

programs that match each of these templates. We successfully used
our system to synthesize programs from demonstrations of 20 cor-
rect procedures and 28 “buggy” versions of 9 procedures.

References
[1] E. Andersen, S. Gulwani, and Z. Popović. A trace-based framework

for analyzing and synthesizing educational progressions. In CHI ’13.
[2] R. Ashlock. Error Patterns in Computation: A Semi-Programmed

Approach. Merrill Publishing Company, 1986.
[3] S. Gulwani. Automating string processing in spreadsheets using input-

output examples. In POPL, 2011.
[4] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-

free programs. In PLDI, 2011.
[5] S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry

constructions. In PLDI, pages 50–61, 2011.
[6] S. Gulwani, W. Harris, and R. Singh. Spreadsheet data manipulation

using examples. Communications of the ACM, 2012.
[7] W. R. Harris and S. Gulwani. Spreadsheet table transformations from

examples. In PLDI, pages 317–328, 2011.
[8] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith. How did you

specify your test suite. ASE ’10, pages 407–416, 2010.
[9] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interac-

tive visual specification of data transformation scripts. In CHI, 2011.
[10] K. Koedinger and A. Corbett. Cognitive tutors: Technology bringing

learning science to the classroom. The Cambridge handbook of the
learning sciences, 2006.

[11] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In PLDI, pages 316–329, 2010.

[12] T. Lau. Why PBD systems fail: Lessons learned for usable AI. In CHI
2008 Workshop on Usable AI, 2008.

[13] T. Lau, S. Wolfman, P. Domingos, and D. Weld. Programming by
demonstration using version space algebra. Machine Learning, 53(1-
2), 2003.

[14] T. Lau, L. Bergman, V. Castelli, and D. Oblinger. Programming shell
scripts by demonstration. In Workshop on Supervisory Control of
Learning and Adaptive Systems, AAAI, 2004.

[15] T. A. Lau, P. Domingos, and D. S. Weld. Learning programs from
traces using version space algebra. In K-CAP, pages 36–43, 2003.

[16] N. Li, W. Cohen, K. Koedinger, and N. Matsuda. A machine learning
approach for automatic student model discovery. In EDM, 2011.

[17] N. Matsuda, A. Lee, W. W. Cohen, and K. R. Koedinger. A computa-
tional model of how learner errors arise from weak prior knowledge.
Annual Conference of the Cognitive Science Society, 2009.

[18] R. C. Miller and B. A. Myers. Interactive simultaneous editing of
multiple text regions. In USENIX Annual Technical Conference, 2001.

[19] T. M. Mitchell. Generalization as search. Artif. Intell., 18(2), 1982.
[20] M. Pardowitz, B. Glaser, and R. Dillmann. Learning repetitive robot

programs from demonstrations using version space algebra. In RA ’07.
[21] K. Schulze, J. Shapiro, R. Shelby, D. Treacy, and M. Wintersgill. The

andes physics tutoring system: Lessons learned. International Journal
of Artificial Intelligence in Education, 15:147–204, 2005.

[22] R. Singh, S. Gulwani, and S. Rajamani. Automatically generating
algebra problems. In AAAI, 2012.

[23] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback
generation for introductory programming assignments. In PLDI, 2013.

[24] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A. Saraswat, and
S. A. Seshia. Sketching stencils. In PLDI, pages 167–178, 2007.

[25] S. Srivastava, S. Gulwani, and J. Foster. From program verification to
program synthesis. In POPL, 2010.

[26] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based
inductive synthesis for program inversion. In PLDI, 2011.

[27] N. Tillmann and J. de Halleux. Pex-white box test generation for .net.
In TAP, pages 134–153, 2008.

[28] K. VanLehn. Mind Bugs: The Origins of Procedural Misconceptions.
MIT Press, Cambridge, MA, USA, 1991.

