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ABSTRACT
We consider the problem of privately releasing a low dimensional
approximation to a set of data records, represented as a matrix A
in which each row corresponds to an individual and each column
to an attribute. Our goal is to compute a subspace that captures the
covariance of A as much as possible, classically known as princi-
pal component analysis (PCA). We assume that each row of A has
`2 norm bounded by one, and the privacy guarantee is defined with
respect to addition or removal of any single row. We show that the
well-known, but misnamed, randomized response algorithm, with
properly tuned parameters, provides nearly optimal additive qual-
ity gap compared to the best possible singular subspace of A. We
further show that when ATA has a large eigenvalue gap – a reason
often cited for PCA – the quality improves significantly. Optimal-
ity (up to logarithmic factors) is proved using techniques inspired
by the recent work of Bun, Ullman, and Vadhan on applying Tar-
dos’s fingerprinting codes to the construction of hard instances for
private mechanisms for 1-way marginal queries. Along the way we
define a list culling game which may be of independent interest.

By combining the randomized response mechanism with the well-
known following the perturbed leader algorithm of Kalai and Vem-
pala we obtain a private online algorithm with nearly optimal re-
gret. The regret of our algorithm even outperforms all the previ-
ously known online non-private algorithms of this type. We achieve
this better bound by, satisfyingly, borrowing insights and tools from
differential privacy!

1. INTRODUCTION
In areas as diverse as machine learning, statistics, information

retrieval, earth sciences, archaeology, and image processing, given
a data set represented by a matrix A ∈ Rm×n, it is often desir-
able to find a good approximation to A that has low rank. Working
with low-rank approximations improves space and time efficiency.
Other benefits include removal of noise and extraction of corre-
lations, useful, for example, in (approximate) matrix completion
from a small set of observations – an impossible task if A is arbi-
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trary but potentially feasible if A enjoys a good low rank approxi-
mation. The problem of low-rank approximation has also received
substantial attention in the differential privacy literature [4, 13, 24,
21, 9, 17, 18]. If we think of the matrix A ∈ Rm×n as contain-
ing information about n attributes of m individuals, the goal is to
learn “about” A (we intentionally remain vague, for now) without
compromising the privacy of any individual. That is, the literature
focuses on being able to do, in a differentially private way, whatever
is achieved by low-rank approximation in the non-private literature.
Our work continues this line of research.

Existing differentially private algorithms can have errors with an
unfortunate dependence on the ambient dimension n of the data.
This bad dependence may sometimes be due to the suboptimality
of our algorithms, sometimes due to the inherent difficulty of the
problem. A driving motivation for our work is to extract better per-
formance from these algorithms when the inherent dimensionality
of the input is much lower than the ambient dimension. For ex-
ample, the data may be generated according to a low dimensional
model and the measurements may be noisy.

The standard method of the principal component analysis (PCA)
for low rank approximation is to compute a best low-dimensional
eigen-subspace B of the matrix ATA =

∑m
i=1 a

T
i ai (recall that

the ai are row vectors). The underlying intuition is that the projec-
tion onto B preserves the important features of the data rows while
projecting away the noise. We will focus on a private mechanism
for computing B. By (1) privately finding a low-rank subspace B
capturing most of the variance in A, and then (2) running the exist-
ing differentially private algorithm on the projection of A onto B,
the hope is that poor dependence on the dimension in the second
step is mitigated by the dimension reduction obtained in the first.

Because it was found in a privacy-preserving fashion, B can
safely be made public. A key point is that the two-step procedure
just described does not require publication of the projection. This,
then, will be our approach: the projector (ΠB) will be public, the
projection (ΠB(A)) will not be released. 1.

The literature sometimes focuses on the case of m � n, and
at other times assumes m � n. In the first case, the rows of the
data matrix are often assumed to be normalized to have norm at
most 1, as is done here; when m � n the row norms may be
unbounded [17, 18]. The literature also varies in terms of granu-

1This was exploited by McSherry and Mironov in their work on
differentially private recommendation systems [24]: in many non-
private recommendation systems, recommendations made to indi-
vidual i depend only on the item covariance information and the
individual’s own item ratings. In our terms, the recommendations
to user i depend only on row i of the input matrix A and on ATA.
It makes no sense to hide the user’s own ratings from himself, so
it is sufficient that ATA be approximated in a privacy-protective
fashion.



larity of the privacy guarantee, protecting, variously, the privacy of
each row in its entirety [4, 13, 21, 9], which is what we do here,
or individual entries [24, 18], or norm 1 changes to any row [17].
Finally, the literature varies on the nature of differential privacy of-
fered: so-called pure, or (ε, 0)-differential privacy [13, 21, 9] and
approximate, or (ε, δ), differential privacy [4, 24, 17, 18], which is
the notion used in our work.
Refined Randomization: Blum et al. were the first to suggest pri-
vately releasing ATA by adding independent noise to each of the
n2 entries of this matrix [4]. The data analyst is then free to com-
pute best rank k approximations to the privacy preserving, noisy,
ÂTA for any and all k. This naïve noising approach, which has
somewhat erroneously become known as randomized response, was
refined in [13] to add less noise; our main algorithmic result is a
careful analysis of a version of this refinement. Specifically, we
will use the Gaussian mechanism [11], which adds independently
chosen Gaussian noise to each entry of ATA. When there is a
gap in the singular values of A, or even a gap between singu-
lar values whose indices are not adjacent (formally σ2

k − σ2
k′ ∈

ω(
√
n/(k + k′))), we see a clear improvement, in captured vari-

ance, over previously published results. In this case, the analysis
further shows, the space spanned by the top k right singular vectors
of the (refined) noisy version of ATA is very close to the space
spanned by the top k right singular vectors of A, with the spectral
norm of the difference in projector matrices actually independent
of k.

When there is no gap the algorithm performs no worse than the
best in the literature; when m � n we do expect such a gap: the
more data, the better the algorithm’s utility. The algorithm ap-
proaches the correct subspace of ATA at a rate faster than 1/m,
meaning that as we increase the number of samples the total error
decreases.
Optimality: Our version of the refined noisy release of ATA is,
up to logarithmic factors, optimal for approximate differential pri-
vacy. Pursuing a connection between differentially private algo-
rithms and cryptographic traitor-tracing schemes [15], Bun, Ull-
man, and Vadhan [6] established lower bounds on errors for ap-
proximately differentially private release of a class of counting queries
that are tight to within logarithmic factors. Their query class is
based on a class of fingerprinting codes [5] due to Tardos [32].
We show that their result translates fairly easily to a lower bound
for private approximation of the top singular vector. We also ex-
tend this to obtain lower bounds for rank k subspace estimation
even for k ∈ Ω(n), a much more challenging task. Intuitively,
for k > 1, we construct k “clusters” of fingerprinting codes. We
have to overcome some difficulties to show that these clusters do
not interfere much and to identify a “privacy-violating” vector hid-
den in a subspace. For the first we prove a stronger property of
Tardos’s codes, and for the second we introduce a game, called the
list culling game, in which one player, using “planted questions”,
has to identify a good answer promised in a large set of answers
provided by the other player. We propose a strategy for discov-
ering the good answer with high success probability and apply it
to constructing the privacy lower bound. Both results might be of
independent interest.
Online Algorithms: Our third contribution merges two lines of
research: differentially private regret minimization in online algo-
rithms [14, 28] inspired by the Follow the Perturbed Leader (FPL)
algorithm of Kalai and Vempala [20], and non-private online al-
gorithms for principal components analysis [33]. A folk theorem
says that differential privacy provides stability and hence reduces
generalization error. We make this connection explicit in the online

setting.
In the online model, computation proceeds in steps. At each

time step t a rank k subspace Vt is output, a single data row At
of A is received, and a reward is earned equal to ||AtVt||22. Re-
gret is the difference between the sum of the earned rewards and
the corresponding quantity for the best rank k matrix V chosen
in hindsight (call it OPT). It is known, thanks to the pioneering
work of [22], that the stability of an online algorithm is useful
for achieving the low regret bound2. In [20], the FPL algorithm
achieves stability by the addition of Laplace noise and is shown
to have low regret. This technique has been successfully applied
to several online algorithms. Indeed, for the online PCA problem,
the previously best known FPL algorithm [33, 19] achieves a regret
bound of Õ(

√
knOPT). Our main observation is that a differen-

tially private algorithm achieves similar stability to that of the FPL
algorithm. With this insight, and borrowing tools from differen-
tial privacy, we show that, rather than adding Laplace noise, which
might be unnecessarily large, one can instead add Gaussian noise,
leading to an improved regret bound of only Õ(

√
kOPTn1/4). In

addition, by adding carefully correlated noise as in [14], we can
make the entire algorithm private by incurring only a polylogarith-
mic factor in regret.
Granularity of Privacy: Two works of Hardt and Roth aim to
exploit low coherence of the data matrix, a phenomenon of sub-
stantial interest in the (non-private) compressed sensing and matrix
completion literature [7, 8, 26, 30, 25], to (privately) obtain good
low rank approximations to the data matrix [17, 18]. There are sev-
eral definitions of matrix coherence; roughly speaking coherence
measures the extent to which the singular vectors are correlated
with the standard basis. In the case of matrix completion, where
the samples are intimately tied to the basis in which the data ma-
trix is naturally represented, low coherence says that information
is holographically embedded throughout the rows. The two def-
initions in [17] deal with row norms, either of the data matrix A
or of U , when expressing A = UΣV T in its singular value de-
composition. There is an interplay between the granularity of the
privacy guarantee and the specific coherence measure. The algo-
rithms in [17], which are interesting when n ≥ m, protect the rows
in A up to any perturbation of Euclidean norm at most one. In this
case the coherence conditions and the privacy granularity are rota-
tionally invariant. In contrast, in [18] the coherence notion deals
with the maximum entries of U and V , and the privacy granularity
is for changes of magnitude at most one to a single entry of the data
matrix. In this case neither the coherence condition nor the privacy
granularity is rotationally invariant.

In our privacy definition, we protect the privacy against any in-
dividual row change. This is a natural choice for us as in many
applications of PCA, each row corresponds to an individual. But
for such a strong privacy notion (compared to single entry change
or change of bounded norm), it is also more challenging to pro-
vide good utility. Indeed, we cannot achieve meaningful utility if
we allow arbitrary A, for instance if one row has arbitrarily large
norm. But in practice, allowing such “overpowering” individuals
often goes against the purpose of PCA for discovering the global
structure of many data records, and row normalization is often rec-
ommended before applying PCA. For example, in face recognition
each individual image (a row in A) is typically normalized to have
unit variance [2, 34]. Motivated by such practical considerations,

2Roughly speaking, in this context stability means that the output
of the online algorithm does not change significantly between ad-
jacent steps.



we assume each row to have at most unit `2 norm3.

2. PRELIMINARIES

2.1 Notations and definitions
We treat vectors as column vectors (unless explicitly mentioned).

For a given matrix A ∈ <m×n, we denote the i-th row of A by Ai,
which in this case is a row vector. For a vector x ∈ <n, ‖x‖ denotes
the `2 norm. For a matrix A ∈ <m×n, the spectral norm is defined
as ‖A‖2 = max

x∈<n,‖x‖2=1
‖Ax‖2; the Frobenius norm is defined as

‖A‖F =
√ ∑
i∈[m],j∈[n]

a2
ij , where aij are the entries of the matrix

A. For a square matrix, the trace tr(·) is defined as the sum of its
diagonal elements. So ‖A‖2F = tr(ATA) = tr(AAT ). Slightly
abusing terminology we will refer toATA as the covariance matrix
of A.

For a matrix A, the singular value decomposition of A is de-
fined as A = UΣV T , where U ∈ <m×m and V ∈ <n×n are
unitary matrices and called the left and right singular subspaces,
respectively. The matrix Σ ∈ <m×n is a diagonal matrix with non-
negative entries σ1, . . . , σmin(m,n) along the diagonal, called the
singular values. In this paper, we assume they are ordered decreas-
ingly, i.e σ1 ≥ σ2 ≥ . . .. Suppose that V = (v1, . . . , vn). We de-
fine Vk = (v1, . . . , vk) and call it the principal (or top) k right sin-
gular subspace. It is well known that ‖A‖2 = σ1, ‖A‖2F =

∑
i σ

2
i ,

and ‖AVk‖2F =
∑k
i=1 σ

2
i = maxP∈Pk ‖AP‖

2
F .

Each row ai ∈ <n, 1 ≤ i ≤ m, of the data matrix A ∈ <m×n
represents the attributes of a single user. As discussed above, we
assume each row has at most unit `2 norm. The set of all such
matrices is denoted A.

Given the data matrix A, our objective is to output a subspace
that preserves privacy and captures the variance of A as much as
possible. To define privacy, we call two matricesA,A′ ∈ A neigh-
bors if they differ in exactly one row, as each row inA corresponds
to an individual user. We will ensure (ε, δ)-differential privacy.

DEFINITION 1 (DIFFERENTIAL PRIVACY [13, 11]). A random-
ized mechanism M is (ε, δ)-differentially private if for every two
neighboring matricesA,A′ ∈ A and for all eventsO ⊆ Range(M),
Pr[M(A) ∈ O] ≤ eε Pr[M(A′) ∈ O] + δ .

Let f : A → <p be a vector-valued function operating on
databases. The `2-sensitivity of f , denoted ∆f , is the maximum
over all pairs A,A′ of neighboring datasets of ||f(A) − f(A′)||2.
The Gaussian mechanism adds independent noise drawn from a
Gaussian with mean zero and standard deviation slightly greater
than (∆f) ln(1/δ)/ε to each element of its output.

THEOREM 2 (GAUSSIAN MECHANISM [11, 16]). Let f : A →
<p be a vector-valued function. Let τ = ∆f

√
2 ln(1.25/δ)/ε.

The Gaussian mechanism, which adds independently drawn ran-
dom noise distributed asN (0, τ2) to each output of f(A), ensures
(ε, δ)-differential privacy.

We are interested in the function f(A) = ATA, which may be
viewed as an n2-dimensional vector. Because we ensure that ||ai||2 ≤
1, the sensitivity of f is at most one.

2.2 Summary of main results
For the purposes of brevity, throughout the paper, we use Õ(·), Ω̃(·)

to hide factors of 1/ε and polynomial dependence on log(1/δ), logm,
3To enforce this condition, an offending row can be divided by its
own norm; this will not affect privacy.

and logn, and “with high probability” means with probability 1−
1/nΩ(1), under the internal randomness of the mechanism. Our
first result (Main Result 1) is that the Gaussian mechanism is nearly
optimal in the worst case4. We further show (Main Result 2) that,
under natural assumptions on the data matrix A, this mechanism
has even stronger utility guarantees.

MAIN RESULT 1 (THEOREMS 3 AND 18 INFORMAL VERSION).

1. For any ε, δ > 0 and 1 ≤ k ≤ n, the Gaussian mecha-
nism described in Thoerem 2 ensures that for any A ∈ A,
with high probability over the coin tosses of the mechanism,
‖AM(A)‖2F ≥ ‖AVk(A)‖2F − Õ(k

√
n).

2. The Gaussian mechanism is nearly optimal: for any 1 ≤ k ≤
n and any (ε, 1/n2)-differentially private mechanism M,
there existsA ∈ A such that ‖AM(A)‖2F ≤ ‖AVk(A)‖2F−
Ω̃(k
√
n).

MAIN RESULT 2 (THEOREMS 4 AND 6 INFORMAL VERSION).
Let σ1 ≥ · · · ≥ σn be the singular values of A ∈ A. Assuming
σ2
k − σ2

k′+1 = ω(
√
n), with high probability the Gaussian mecha-

nismM satifies

‖AM(A)‖2F ≥ ‖AVk‖2F − Õ

(
k′n

σ2
k − σ2

k′+1

)
.

Additionally, when k′ = k,

‖M(A)M(A)T − VkV Tk ‖2 = Õ

( √
n

σ2
k − σ2

k+1

)
.

Finally, we consider the online version in which at arrives in
a stream for t = 1, · · · ,m, and the mechanism M is required
to compute a k-dimensional subspace Mt = M(a1, · · · , at−1)
before seeing at. Define OPT = maxP∈Pk

∑m
t=1 ‖P

T at‖22. The
regret ofM is defined as Regret(M) = OPT−

∑m
t=1 ‖M

T
t at‖22.

We show (in main Theorem 3) that by adding carefully calibrated
noise, the Following the Perturbed Leader algorithm in [20] can be
made both private and with low regret. And the regret bound is
nearly optimal for any online private PCA algorithm.

MAIN RESULT 3 (THEOREM 8 INFORMAL VERSION). When
OPT = Ω̃(k

√
n/ε2), we can obtain an (ε, δ)-differentially private

online mechanismM such that E[Regret(M)] = Õ(
√
kOPTn1/4).

This bound is nearly optimal for OPT = Õ(k
√
n).

Due to the space limit, we will omit from this abstract many
proof details. They can be found in the full version.

3. PRIVATE SINGULAR SUBSPACE COM-
PUTATION VIA THE GAUSSIAN MECH-
ANISM

The Gaussian mechanism (with symmetric noise matrix) is straight-
forward: just release Ĉ = ATA + E where E is a symmetric
noise matrix, with each (upper-triangle) entry drawn i.i.d. from
Gaussian distribution with sufficiently high variance. Algorithm 1
describes such a mechanism, a variation of those in [4, 13] that en-
joys smaller noise, and in which the noise matrix is symmetric. Set
∆ε,δ =

√
2 ln(1.25/δ)/ε.

4We will tweak the mechanism slightly by ensuring that the matrix
of noise values added to ATA is symmetric. We abuse notation by
referring to this symmetric version simply as the Gaussian mecha-
nism.



Algorithm 1 The Gaussian Mechanism: releasing the covariance
matrix privately

Input: matrix A ∈ <m×n, and privacy parameters ε, δ > 0.
1: E ∈ <n×n be a symmetric matrix where the upper triangle

(including the diagonal) is i.i.d. samples from N
(
0,∆ε,δ

2
)
,

and each lower triangle entry is copied from its upper triangle
counterpart.

2: Output Ĉ ← ATA+ E.

That Algorithm 1 provides (ε, δ)-differential privacy is immedi-
ate from Theorem 2, using the fact that the `2 sensitivity of f(A) =
ATA, when viewed as an n2-dimensional vector, is 1.

Differential privacy is closed under post-processing, so the data
analyst can run any post-processing algorithm on Ĉ with no fur-
ther erosion of privacy. In particular, the analyst can compute the
singular decomposition of Ĉ to obtain any k-dimensional principal
singular subspace V̂k of Ĉ. But how useful is such a V̂k? In this
section, we will show that V̂k can actually be a quite good approx-
imation to the principal rank-k right singular subspace Vk of A (or
equivalently the principal singular subspace of ATA.) In particu-
lar, we consider three measures: 1) How well does V̂k capture the
variance of A compared to Vk? 2) How close is V̂k to Vk? and
3) How well does the best rank-k approximation of Ĉ approximate
ATA?

Our analyses come in two flavors. One is on the worst case guar-
antee, where no assumption is made on A. Most of these results
follow relatively easily from random matrix theory. As we will
show later by our lower bound, one cannot expect to outperform
these bounds in the worst case. The other set of results depend on
the spectrum of ATA. We show, by using tools from matrix per-
turbation theory, that when the spectrum of ATA has large drop
in its eigenvalues, V̂k′ can be a much better approximation to Vk
when k′ ≥ k. For example, when the data are drawn from a dis-
tribution with an eigengap, the error will go to 0 as the number of
samples m → ∞! Since the presence of such drop is one of the
rationales for principal components analysis, these results are prob-
ably more interesting in practice. We emphasize that this improved
data dependent bound holds for the same algorithm; the gain comes
entirely from the analysis.

3.1 Variance guarantee
We now consider how well V̂k captures the variance of A. We

first provide a worst case bound.

THEOREM 3 (WORST CASE UTILITY GUARANTEE). Let Vk
be the principal rank-k right singular subspace of A and let V̂k be
the principal rank-k subspace of the matrix Ĉ (output by Algorithm
1). Then with high probability,

‖AV̂k‖2F ≥ ‖AVk‖2F −O
(
k
√
n∆ε,δ

)
.

As we will see in Section 5, the above bound is nearly tight in the
worst case. Now, suppose there is a large eigengap, so that σk −
σk+1 ∈ ω(

√
n). In this case we will see that V̂k can provide utility

that beats the worst-case lower bound. Moreover, an analagous
claim holds even if there is not a precipitous drop between adjacent
eigenvalues.

THEOREM 4 (SPECTRUM SEPARATION GUARANTEE). Let
σ1 ≥ · · · ≥ σn be the singular values of the data matrix A. Let Vk
be the principal rank-k right singular subspace of A. Let V̂k′ be

the principal k′ ≥ k-dimensional subspace of the matrix Ĉ (output
by Algorithm 1). Assuming σ2

k − σ2
k′+1 = ω(

√
n∆ε,δ), with high

probability,

‖AV̂k′‖2F ≥ ‖AVk‖2F −O

(
k′n∆ε,δ

2

σ2
k − σ2

k′+1

)
.

PROOF. The basic tool in our analysis is a sin-θ theorem, which
is a generalization of the classic Davis-Kahan sin-θ theorem [10].
By the optimality of V̂k′ and using k′ ≥ k, we have,

tr(V̂ Tk′ (ATA)V̂k′ ) ≥ tr(V Tk (ATA)Vk) + tr(V Tk EVk)− tr(V̂ Tk′EV̂k′ )

= tr(V Tk (ATA)Vk) + tr
((
VkV

T
k − V̂k′ V̂

T
k′

)
E
)
.

For the ease of notation, let Π = VkV
T
k and Π̂ = V̂k′ V̂

T
k′ . To

bound tr
((

Π− Π̂
)
E
)

, we use Von Neumann’s trace inequality:

For two matrices X ∈ <n×n and Y ∈ <n×n, let σi(X), σi(Y )
be the decreasingly ordered singular values of X,Y , respectively.

Then |tr(XY )| ≤
n∑
i=1

σi(X)σi(Y ). Hence, we have

|tr
((

Π− Π̂
)
E
)
| ≤

n∑
i=1

σi

(
Π− Π̂

)
· σi(E) .

Since
(

Π− Π̂
)

is of rank at most k + k′ ≤ 2k′, at most 2k′ of
the σi are non-zero. So we further have

|tr
((

Π− Π̂
)
E
)
| ≤ ‖E‖2

2k′∑
i=1

σi

(
Π− Π̂

)
≤
√

2k′‖E‖2
∥∥∥Π− Π̂

∥∥∥
F

(1)

We now have the following.

Π− Π̂ = Π(I− Π̂)− (I−Π)Π̂ = ΠΠ̂⊥ −Π⊥Π̂ . (2)

Plugging (2) in (1), we have the following.

|tr
((

Π− Π̂
)
E
)
| ≤
√

2k′‖E‖2
∥∥∥ΠΠ̂⊥ −Π⊥Π̂

∥∥∥
F

≤
√

2k′‖E‖2
(∥∥∥ΠΠ̂⊥

∥∥∥
F

+
∥∥∥Π⊥Π̂

∥∥∥
F

)
=
√

2k′‖E‖2
(∥∥∥ΠΠ̂⊥

∥∥∥
F

+
∥∥∥Π̂Π⊥

∥∥∥
F

)
(3)

≤
√

2k′‖E‖2
(
‖ΠΠ̂⊥‖2 + ‖Π̂Π⊥‖2

)
, (4)

where (3) follows because Π⊥, Π̂ are symmetric matrices (since
they are projectors), and for symmetric E,F , ‖EF‖F = ‖FE‖F .

Let X,Y ∈ <n×n be two symmetric matrices, and let λ1(X) ≥
· · · and λ1(Y ) ≥ · · · be the corresponding eigenvalues of X and
Y . Let Π

(i)
X be the projector to the subspace spanned by the top

i singular vectors of X , where i ≤ n. To bound ‖ΠΠ̂⊥‖2 and
‖Π̂Π⊥‖2, we will use the following result from matrix perturbation
theory, which generalizes [10]:

THEOREM 5 (SIN-Θ THEOREM [23] (COROLLARY 8)). For
any 1 ≤ i, j ≤ n,

(λi(X)− λj+1(Y ))‖Π(i)
X (I−Π

(j)
Y )‖2 ≤ ‖X − Y ‖2 .

Now to bound ‖ΠΠ̂⊥‖2 in (4), we use Theorem 5 with X = ATA
and Y = ATA+E. Notice that ‖Y −X‖2 = ‖E‖2, and sinceE is
a symmetric Gaussian ensemble, by Corollary 2.3.6 from [31], with
high probability, ‖E‖2 = O (

√
n∆ε,δ). Also by Weyl’s inequal-

ity it follows that λj+1(Y ) ≤ λj+1(X) + ‖E‖2. Plugging these



bounds in Theorem 5 and recalling that σ2
k−σ2

k′+1 = ω(
√
n∆ε,δ)

(by assumption), we get ‖ΠΠ̂⊥‖2 = O

( √
n∆ε,δ

σ2
k
−σ2

k′+1

)
.

Using the same argument as above, and selectingX = ATA+E

and Y = ATA in Theorem 5, we get ‖Π̂Π⊥‖2 = O

( √
n∆ε,δ

σ2
k
−σ2

k′+1

)
.

Theorem 4 follows now follows from these bounds.

While the bound in Theorem 3 may not be useful when σ2
k −

σ2
k′+1 is small, in many cases (even for k′ = k) the gap is quite

large, especially when the number of samples m is large. Here we
give two examples. In the first example, suppose that ai’s are drawn
i.i.d. from some distribution with a specturm gap, say α, between
σ2
k and σ2

k+1. Then by the matrix concentration bound, it is easy
to see that when m �

√
n logn/α, the gap is Ω(αm) with high

probability. In this case, Theorem 4 provides a better bound than
Theorem 3. In the second example the ai’s are random Gaussian
vectors, where there is no eigengap (in this case the usefulness of
PCA is problematic but we use it as an illustration). For m random
samples, the gap between two consecutive eigenvalues is expected
to be Ω(

√
m/n2), so in this case, Theorem 4 provides a better

upper bound whenever m = Ω(n5). In both cases, the error gap of
Algorithm 1 goes to 0 when m→∞!
Bounds on residual variance. We observe that by Pythagorean
theorem, ‖A−A(VkV

T
k )‖2F = ‖A‖2F−‖AVk‖2F . Since the bounds

in Theorem 3 and 4 are additive, the same error guarantees hold
if we are to minimize the total variance projected in the residual
space.

3.2 Closeness to the right singular subspace
Another consequence of Theorem 4 is that when there is a spec-

trum gap in ATA, V̂k not only captures large amount of variance,
but is also close to the top k right singular subspace Vk of A. In
Theorem 6, we provide the closeness between them, measured by
the ‖ · ‖2 norm. We note that the spectrum gap is necessary for
such a bound as otherwise the top k-singular space is not uniquely
defined.

THEOREM 6 (SUBSPACE CLOSENESS). Let σ1 ≥ · · · ≥ σn
be the singular values of the data matrixA. Assuming σ2

k−σ2
k+1 =

ω(
√
n∆ε,δ), then with high probability,∥∥∥VkV Tk − V̂kV̂ Tk ∥∥∥

2
= O

( √
n∆ε,δ

σ2
k − σ2

k+1

)
.

We note that the above bound implies an upper bound in terms
of the Frobenius norm∥∥∥VkV Tk − V̂kV̂ Tk ∥∥∥

F
= O

( √
kn∆ε,δ

σ2
k − σ2

k+1

)
.

3.3 Low-rank approximation to the covariance
matrix

Ĉ also provides a good low rank approximation to ATA in the
settings considered in seveal earlier works [17, 21, 18] (see Section
1 for comparison).

THEOREM 7 (LOW RANK APPROXIMATION). LetA ∈ <m×n
be the input data matrix and let Ck be the best rank-k approxima-
tion to ATA. Let Ĉk be the rank-k approximation to Ĉ (output by
Algorithm 1). Then with high probability,

• ‖ATA− Ĉk‖F ≤ ‖ATA− Ck‖F +O (∆ε,δk
√
n).

• ‖ATA− Ĉk‖2 ≤ ‖ATA− Ck‖2 +O (∆ε,δ

√
n).

In the above, the spectral norm bound can be derived immedi-
ately from [1] (Lemma 1.1). For the Frobenius norm bound, com-
pared to the bound there, we need to prove a strengthened version
with a better dependence on the spectrum of C = ATA.
Data-dependent Noise Addition algorithm. While releasing a per-
turbed covariance matrix allows great flexbility for the data analyst,
it requires releasing an n×nmatrix, which can be computationally
expensive.This motivates another noise addition algorithm: apply
SVD first toA and then release the top singular subspace by adding
noise calibrated to its gap-dependent sensitivity. This yields im-
proved running time when the matrix A is sparse. But we need to
be careful not to violate the data privacy in the process. This can
done by employing a variant of the propose-test-and-release (PTR)
framework of [12]. We present such an algorithm in the full version
of this paper.

4. PRIVATE ONLINE SINGULAR
SUBSPACE COMPUTATION

The design of the private online algorithm turns out to be clos-
edly related to the class of follow the perturbed leader (FPL) al-
gorithms of [20]. Such algorithms add regularization noise to the
problem to reduce generalization error and hence the regret. This
noise also reduces the dependence of the algorithm outcome on
individual data items and therefore is aligned with the goal of pro-
viding privacy. Recall that Pk denotes the set of k-dimensional
orthogonal projectors in <n. Define OPT = max

P∈Pk

∑m
t=1 ‖Pat‖

2.

We show that by using the Gaussian noise for the regularization
noise, we can achieve the regret bound (defined in Section 2.2) of
Õ(
√
kOPTn1/4).

THEOREM 8 (REGRET GUARANTEE). If δ < 1/m2, ε < 0.1,
m = O(polyn) and OPT > k

√
n log2(m/δ)

ε2
, then there exists an

(ε, δ)-differentially private online learning algorithm whose regret
guarantee is the following.

E[Regret] = O
(√

kOPTn1/4 log2(m/δ)
)
.

As can be shown from the lower bound for the offline problem, the
Õ(
√
kOPTn1/4) bound is nearly optimal for OPT = O(k

√
n).

Therefore the n1/4 gap between the regret of the non-private and
private algorithms is essentially tight.

The above theorem is proved in two steps. We first present an
FPL algorithm that gives regret of Õ(

√
kOPTn1/4). The analysis

of the algorithm borrows techniques from differential privacy but
the algorithm itself is not private. We then show that, by using the
tree based aggregation technique [3, 14], we can obtain a private
online mechanism with similar regret bound, at a cost of only a
logO(1)(m/δ)) factor.

Algorithm 2 is the formal description of our basic FPL algorithm.
The algorithm is simple: at each step t ∈ [m] it executes Algorithm
1 and output the result. One can provide the following regret guar-
antee (Theorem 9) for Algorithm 2.

THEOREM 9 (REGRET GUARANTEE). For ε < 1, δ < 1/m,
the regret guarantee for Algorithm 2 is the following.

E[Regret] = O

(
k
√
n logm

ε
+ εOPT + 1

)
.

While each step in Algorithm 2 is (ε, δ)-differentially private,
overall it is not. This is easily remedied with a classical tree-based
technique [3] applied in [14] for ensuring differential privacy under
continual observation.



Algorithm 2 Online singular subspace computation.
Input: Vectors a1, . . . , am ∈ <n where ‖at‖ ≤ 1, rank parame-

ter: k, regularization parameter: ε, δ.
Output: k-dimensional subspaces V̂1, . . . , V̂m.
1: Choose an arbitrary rank k subspace V̂1.
2: for t← 1 to m do
3: Get a reward Rt = ‖V̂ Tt at‖22 = tr(aTt V̂tV̂

T
t at) and receive

input at.

4: Compute Ct =
t∑

τ=1

aτa
T
τ

5: Compute Ĉt = Ct + Et, where Et is sampled as in Algo-
rithm 1 using the parameters ε, δ.

6: Compute V̂t+1 as the top k singular subspace of Ĉt.
7: end for

The technique is simple. Assume m is a power of 2. We will
divide the input stream into the natural set of intervals correspond-
ing to the labels on a complete binary tree withm leaves, where the
leaves are labeled from left to right, with the intervals [0, 0], . . . , [m−
1,m − 1] and each parent is labeled with the interval that is the
union of the intervals labeling its children. (Note that we have
indexed the inputs starting with zero.) The idea is to run and re-
lease the results of Algorithm 1 for each label [s, t]; that is, the
released result corresponding to the label [s; t] is the output of Al-
gorithm 1 on the data items as, . . . , at, that is, an approximation to∑t
i=s a

T
i ai (recall that the ai are row vectors). Let Mt denote the

matrix whose rows are (row vectors) a1, . . . , at for t ∈ [0,m− 1].
To obtain an approximation to MT

t Mt =
∑m
i=1 a

T
i ai, the analyst

uses the binary representation of t to determine a set of at most
log2 m disjoint intervals whose union is [0, t]. These intervals cor-
respond to internal nodes in the tree. The outputs corresponding to
these nodes are summed to obtain the desired approximation. The
key point for privacy is that each element in the stream affects only
1 + log2 m invocations of Algorithm 1.

At each step t we obtain Ĉt = Ct + E′t, where E′t is a sym-
metric matrix whose upper triangular entries are i.i.d. with variance
log3(m/δ)∆ε,δ

2. (Note that Ĉt denotes the output at step t, and
not a rank t subspace of anything!) Plugging this into Algorithm 2
and using the standard doubling trick from the online learning lit-
erature (see Section 2.3.1. in [27]), we obtain the bound as claimed
in Theorem 8.

5. LOWER BOUNDS
Bun, Ullman and Vadhan [6] recently showed that the existence

of fingerprinting codes can be used to prove lower bounds on the
error of (ε, δ)-differentially private mechanisms. We next show that
using some of their tools, with some extra effort, one can derive a
lower bound for private subspace estimation that nearly matches
our upper bounds.

Fingerprinting codes were introduced by Boneh and Shaw [5]
for watermarking. Informally, a fingerprinting code is a (distribu-
tion over) collection of codewords, one to each agent which has
the property that no coalition of agents with access only to its own
codewords will be able to produce a valid-looking codeword with-
out at least one coalition member being identified. Formally, we
have a pair of (randomized) algorithms Gen and Trace. Gen out-
puts a codebook C consisting of t vector c1, . . . ct ∈ {−1, 1}n
with ci representing the codeword given to user i. Given a subset

S ⊆ [t] of agents, let cS ∈ {−1, 0, 1}n be defined as

cSj =

 +1 if cij = +1∀i ∈ S
−1 if cij = −1∀i ∈ S
0 otherwise

Let F+(S) = {j ∈ [n] : cSj = 1} and similarly F−(S) = {j ∈
[n] : cSj = −1}. Let F (S) = F+(S) ∪ F−(S) denote the set of
unanimous coordinates in S where all codewords in S agree. We
say that a vector c′ ∈ {−1, 1}n is β-valid for S if c′j agrees with
cSj in at least a (1 − β)|F (S)| of the locations in F (S). In other
words, Prj∼F (S)[c

′
j = cSj ] ≥ 1 − β. (Robust) Fingerprinting

codes have the property that given a c′ that is β-valid for a coalition
S, the tracing algorithm Trace outputs a member of the coalition
with high probability. We use the following definition (essentially)
from [6].

DEFINITION 10 (WEAKLY ROBUST FINGERPRINTING CODES).
Let t, n, f be integers and let ξ, β ∈ [0, 1]. A pair of algorithms
(Gen,Trace) is a (t, n, f, β, ξ)-fingerprinting code ifGen outputs
a codebook C = {c1, . . . , ct} ⊆ {−1, 1}n and for every possible
(possibly randomized) adversary Apirate, and for every coalition
S ⊆ [t],

1. Pr[Trace(C, c′) ∈ S | c′ is β-valid for S] ≥ 1− ξ.
2. Pr[Trace(C, c′) ∈ [t] \ S] ≤ ξ.
3. Pr[|F (S)| ≥ f ] ≥ 1− ξ.

where c′ = Apirate(ci : i ∈ S) and the probability is taken over
the coins of Gen,Trace and Apirate.

Bun et al. [6] show that the fingerprinting codes construction of
Tardos [32] is weakly robust.

THEOREM 11. For every n ∈ N and ξ ∈ [0, 1], the construc-
tion of [32] gives an (t, n, f, 1

20
, ξ) fingerprinting code such that

t = Ω(
√
n/ log(n/ξ)) f = Ω(t

3
2 )

Finally, the following theorem, essentially from [6] shows how
fingerprinting codes lead to lower bounds for differentially private
mechanisms (by setting ξ, δ = O(1/n2)).

THEOREM 12. LetM : Dm → D be an (ε, δ)-DP mechanism
with D = {−1, 1}n. If (m + 1, n, f, β, ξ)-weakly robust finger-
printing codes exist with security ξ ≤ 1

2
, then

Pr[M(C|S) is β-valid for S] ≤ m(2ξ exp(ε) + δ).

PROOF. Let M′(C|S) = Trace(M(C|S)), and let p denote
Pr[M(C|S) is β-valid for S]. Then by the first property of finger-
printing codes, Pr[M′(C|[m]) ∈ [m]] ≥ p(1 − ξ). Thus there
exists an i ∈ [m] such that Pr[M′(C|[m]) = i] ≥ p(1−ξ)

m
.

Let S′ = [m + 1] \ {i}. Then by the second property of fin-
gerprinting codes, Pr[M′(C|S′) = i] ≤ ξ]. Since M′ satisfies
(ε, δ)-DP, it follows that

p(1− ξ)
m

≤ exp(ε)ξ + δ.

Rearranging gives the result.

Because Differential Privacy is closed under post-processing, this
says that a differentially private mechanism M cannot even pro-
duce a vector in <n whose sign agree with C|S in a (1 − β) frac-
tion of the locations in F (S) (or else we could round this vector
and contradict the theorem).



5.1 Lower bound for eigenvector computation
We say a unit vector v is an α-useful eigenvector for a matrix A

if ‖Av‖22 ≥ ‖Av′‖22−α for every unit vector v′. The main result of
this section says that no differentially private mechanism can out-
put a v that is o(m)-useful on any m×n matrix, if (m,n, f, β, ξ)-
fingerprinting codes exist for appropriate f, β, ξ. At a high level,
we construct a hard matrix by taking a fingerprinting codes matrix,
padding it with many 1s, and suitably scaling to make rows norm
1. For the top eigenvector v1 of this matrix, either v1 or −v1 must
agree with C|S in sign on all the consensus locations, and we can
use the padding bits to pick between v1 and −v1. Lemma 14 is a
robust version of this statement. The padding also ensures a large
gap between the first and the second eigenvalue (Lemma 15), so
that any o(m)-good vector must be very close to v1. Thus we can
use any o(m)-good vector to construct a β-valid vector for appro-
priate β. We next give the details.

THEOREM 13. There is a universal constant K such that the
following holds. Suppose there is an (ε, δ)-DP mechanism that for
any matrix A ∈ <m×16n with each row having norm at most 1
outputs an γm-useful eigenvector of A with probability p. Then
there is an (ε, δ)-DP mechanism that on input S = {c1, . . . , cm}
from a (m + 1, n, f, β0, ξ)-fingerprinting code outputs a c′ that is
Kγ-valid for S with probability p− ξ − exp(−Ω(γ2f)).

The proof of this result uses a padding approach similar to the
strongly robust fingerprinting codes construction in [6].

Algorithm 3 Pirate algorithm Apirate

Input: Set of codewords S = {c1, . . . , cm} with ci ∈ {−1, 1}n.
Oracle access to Mechanism M for privately computing top
right singular vector.

1: Let pad← 115n.
2: for i = 1, . . . ,m do
3: Let c(1)

i ← ci ◦ pad.
4: Let c(2)

i ← c
(1)
i /
√

16n.
5: end for
6: Let P be a random permutation matrix. Replace each 1 in P

by a −1 with probability 1
2

.
7: Let A be the m × n matrix with the transposes of c(2)

i ’s as its
rows.

8: Let A′ ← AP .
9: Let v ←M(A′) be the γm-useful right singular vector output

byM.
10: Let w ← Pv.
11: if

∑15n
j=n+1 wj ≤ 0 then

12: w ← −w.
13: end if
14: for j = 1 . . . n do
15: c′j = sgn(wj).
16: end for
17: return c′

PROOF. LetM be a differentially private mechanism that out-
puts a γm-useful eigenvector for any input matrixA. We will use it
as a subroutine to construct a differentially private mechanismM′
that outputs a β-valid codeword for an appropriate β.

The mechanism M′ works as follows. Let c1, . . . , cm be the
input vectors to M′. We first set pad to the vector 115n append
it to each of the ci’s to get c(1)

i ∈ <16n. We then scale each c(1)
i

to get a unit vector, by setting c(2)
i = c

(1)
i /
√

16n. Let A be the

matrix with rows (transpose of) c(2)
i . Finally, we pick a random

permutation matrix P and replace each 1 by −1 with probability
1
2

. We set A′ = AP . Thus A′ is obtained by randomly permuting
the columns of A and randomizing the sign of each column. We
run the mechanismM on A′, to get a γm-useful vector v.

We then postprocess v as follows: we undo the signed permuta-
tion P and without loss of generality, assume that sum of entries of
Pv on the pad locations is non-negative (if not, replace v by −v).
We then strip off the padding and set c′j = sgn((Pv)j) for each
j ∈ [n]. This defines the output ofM′. The privacy ofM′ follows
immediately from the post-processing property of differential pri-
vacy and the fact that pad and P did not depend on the data ci’s.
We next argue that, conditioned on v being γ-useful, c′ is β-valid.

We first establish two useful properties of the eigen-decomposition
of A′. The permutation P does not change the eigen-spectrum so
it suffices to prove the results for A. Let F̂ denote the unanimous
locations in c(1)

i (i.e. the non-zero locations in cS along with the
padding bits). Slightly abusing notation, we extend cS to be a vec-
tor in {−1, 0, 1}16n with cSj = 1 for j ≥ n as all c(1)

i ’s have a
1 in the padding locations. The first lemma says the the top eigen-
vector must agree with cS in sign on F̂ , and moreover must be
non-negligible on these coordinates.

LEMMA 14. Let v1 be the top right singular vector of A such
that

∑16n
j=n+1 v1j ≥ 0. Then for any j ∈ F̂ , sgn(v1j) = cSj and

|v1j | ≥ 1
40
√
n

.

PROOF. Let ai = c
(2)
i ∈ <16n. Since

∑
i〈ai, v1〉2 ≥ 15m

16
, it

follows that at least for one i, it is the case that 〈ai, v1〉2 ≥ 15
16

.
Since ai|[n] has norm 1

4
, it follows that the contribution to the dot

product from the pad bits is at least
√

15−1
4

. This in turn implies
that for all i, 〈ai, v1〉 ≥

√
15−2
4
≥ 1

4
.

Let j ∈ F̂ with cSj = 1 and suppose that v1j ≤ 1
40
√
n

. Let
ej ∈ <16n be a vector with one only in the j-th coordinate. We
will argue that if v1 is nearly orthogonal to ej , then rotating v1

slightly in the ej direction gives a better Raleigh quotient, contra-
dicting the optimaility of v1. Indeed let e′j = ej/100

√
n. Thus

〈e′j , v1〉 ≤ 1
4000n

, which implies that ‖v1 + e′j‖22 ≤ ‖v1‖22 +

‖e′j‖22 + 2〈e′j , v1〉 ≤ 1 + 1
10000n

+ 2
4000n

≤ 1 + 6
10000n

. On the
other hand, 〈ai, e′j〉 ≥ 1

400n
for each i, so that (〈ai, (v1 + e′j)〉2 −

〈ai, v1〉2) ≥ 1
400n

· 1
4
≥ 1

1600n
. In other words ‖A(v1 + e′j)‖22 ≥

‖Av1‖22(1 + 1
1600n

), contradicting the optimality of v1. The case
of csj = −1 is identical.

LEMMA 15. For the matrix A as defined, σ2
1 ≥ 15m

16
. Thus

σ2
1 − σ2

2 ≥ 7m
8

.

PROOF. The vector vpad that is zero of the first n coordinates,
and equals pad/

√
16n on the remaining coordinates has norm less

than 1 and gives ‖Avpad‖22 = 15nm
16n

. This implies the first part of
the lemma. The second part follows from noting that the sum of all
σ2
i is m.

Let v be a γ-useful vector output by the AlgorithmM and let w =
Pv. Let v1 be the top right singular vector of A. From Lemma 15,
it follows that, 〈w, v1〉2 ≥ (1− 4γ/3) so that ‖w− v1‖22 ≤ 8γ/3.
By Lemma 14, every coordinate in F̂ such that sgn(w)j is differ-
ent from cSj contributes 1

1600n
to the squared distance ‖w− v1‖2.

It follows that the sign is wrong on at most (1600n)(8γ/3) =

12800γn/3 of the F̂ ≥ 15n coordinates.



The permutation P being random and unknown to the mecha-
nismM ensures that the fraction of mistakes on F is not too dif-
ferent from that on F̂ . Formally, call a co-ordinate in F̂ bad if
sgn(w)j 6= cSj . Recall that P randomizes both the location and
the sign of the bits in cSj . Thus from the point of view of M,
F is a random subset of F̂ of size |F |. Thus the number of bad
co-ordinates in F is expected to be at most ( 12800γn

3
)(|F |/15n).

Except with probability ξ, |F | ≥ f . Moreover by concentration
bounds for the hypergeometric distribution, the probability that the
number of bad coordinates in F exceeds twice its expectation is at
most exp(− 1

2
( 12800γ

45
)2f). The claim follows.

Combining with Theorems 11 and 12, we get

COROLLARY 16. There is a universal constant γ such that the
following holds for m = γ

√
n/ logn. LetM be a(1, 1/n2)-DP

mechanism that takes as input an m × 16n matrix A with each
row having norm at most 1, and outputs a unit vector v. Then the
probability thatM(A) is γm-useful is at most 1

n
.

5.2 Interlude: The List Culling Game
To help understand the proof for the lower bound for the sub-

space estimation, we introduce the List Culling Game. In this game,
Dave has a vector v ∈ {−1, 1}n. Alice has a version v′ ∈ {−1, 1, ?}n
of v where f of the bits chosen at random have been replaced by
?; we will be interested in the setting where f is o(n). Dave,
without knowing which bits are erased, sends Alice a list L =
{w1, . . . , w|L|} of {−1, 1}n vectors with the promise that at least
one of the wi’s has Hamming distance at most βn from v for a
small constant β < 1/20. Alice wins if she can fill in the ?’s with
error rate smaller than 1

3
, else Dave wins. Clearly if L is allowed

to be size 2n, then Dave can send the list of all binary vector, thus
leaking no information and making it very unlikely that Alice can
win. We will be interested in the question: For what values of L
can Alice win?

The most natural strategy for Alice is the most-agreement-strategy:
find a wi that has the largest agreement on the non-? locations of
v′ and fill in the ?’s using it. We next argue that this strategy fails
for lists size

(
n
f

)
. Indeed consider the list containing all vectors at

Hamming distance exactly f from v. This list contains the vector
w that agrees with v′ on all non-? locations, and hence will be the
one picked by the most-agreement-strategy. However, this vector
w is wrong everywhere on the ? locations!

This most-agreement-strategy for Alice thus fails badly onceL ≥(
n
f

)
. One may conjecture that beyond this threshold, Alice cannot

win and instead Dave has a strategy that wins with non-negligible
probability. We show that this conjecture is false: there is a strategy
for Alice that wins with high probability even when the list size L
is exp(cn) for some constant c.

The somewhat counter-intuitive strategy for Alice is as follows:
she picks a random half of the non-? locations and finds a wi that
maximizes the agreement on this subset. This most-agreement-on-
random-half strategy thus uses only half the information that Alice
has about v! Consider a specific wi that has Hamming distance
more than 2βn from v, and let w∗ be the promised vector in L that
has Hamming distance at most βn from v. Alice testswi andw∗ on
a random n−f

2
subset, and the probability that wi has larger agree-

ment than w∗ on this random subset is at most exp(−Ω(β2n)).
Thus the probability that any wi with Hamming distance larger
than 2βn is chosen by the most-agreement-on-random-half strat-
egy is L exp(−Ω(β2n)). Finally, if the chosen wi has Hamming
distance less than 2βn from v, the probability that it has disagree-
ment more than 5βf on the ? locations is at most exp(−Ω(β2f)).

Thus for list size up to exp(cn) for a constant c, Alice wins with
high probability. We have thus argued that

THEOREM 17. There is an absolute constant γ > 0 such that
for any f and large enough n, the following holds. There is a
strategy for Alice in the list culling game such that for any valid
list L of size exp(γn), Alice wins with probability at least 1 −
exp(−γf).

5.3 Lower bound for subspace estimation
We say a k-dimensional projection matrix Πk v is an α-useful

rank-k subspace for a matrix A if ‖ΠkA
T ‖2F ≥ ‖Π′kAT ‖2F − α

for any rank-k projection matrix Π′k. The main result of this sec-
tion is analagous to the result for private eigenvectors. To get this
result, we combine k of the m × 16n matrices from the previous
section into one km×16nmatrix. When k is small (at most n/m)
we can rotate these k matrices so that their spans are all orthog-
onal and they do not interfere with each other and the “loss” of
about m from each of them results in a total loss of km. For larger
k, some interference is unavoidable, but rotating them in random
directions suffices to make them nearly orthogonal; this is the con-
tent of Lemma 20. Additionally, the eigenvalue separation result
of the previous section is not sufficient any more as we output a
k-dimensional subspace instead of a vector. We end up needing
tighter control on the second (and thus smalller) eigenvalue of A,
which we obtain in Lemma 19 by using the specific construction of
Tardos and results from random matrix theory. A bigger difficulty
comes from the fact that the output is now a k-dimensional sub-
space rather than a vector, and we need to extract a vector in this
subspace that we will round to a β-valid vector for S. In the vector
case, we used the padding bits to pick between w and−w; now we
use them to pick amongst an exp(O(k))-sized net of the subspace.
This is where the List Culling Game is useful: the usefuleness of
the subspace guarantees that one of these net points, appropriately
rounded is β-valid. Using half of the padding bits to pick out the
correct one allows us to complete the proof. Full details follow.

THEOREM 18. There are universal constants K,K′ such that
the following holds for any k ≤ n/K. Suppose there is an (ε, δ)-
DP mechanism that for any matrix A ∈ <m×16n with with each
row having norm at most 1 outputs a γkm-useful rank-k projec-
tion matrix Πk A with probability p. Then there is an (ε, δ)-DP
mechanism that on a sample S = {c1, . . . , cm} from an (m +
1, n, f, β0, ξ)-fingerprinting code outputs a c′ that is Kγ-valid for
S with probability K′γp− ξ − exp(−Ω(γ2f)).

PROOF. LetD be the distribution of the fingerprinting code and
let S1, . . . , Sk−1 be k − 1 fresh independent samples from D and
let Sk = S. Thus the Si’s are identically and independently dis-
tributed. We randomly permute the indices so that S is indistin-
guishable from any other sample Sj . We will show a mechanism
that outputs a Kγ-valid codeword for S with non-trivial probabil-
ity.

Towards that goal, we transform each Si = {ci1, . . . , cim} to a
matrix A(i) in a manner similar to the proof of Theorem 13. We
first set pad = 115n and append it to each of the cij’s to get c(1)

ij .

We then scale each vector to get a unit vector, thus setting c(2)
ij =

c
(1)
ij /
√

16n. Let A(i) be the matrix with rows c(2)
ij . Next, we pick a

random permutation matrix P (i) with a random sign on each entry,
and a random rotation matrix R(i) and set B(i) = A(i)P (i)R(i).
Thus B(i) is obtained by randomly permuting the columns of A(i),
randomly flipping the sign of each column, and then randomly ro-



Algorithm 4 Pirate algorithm Apirate

Input: Set of codewords S = {c1, . . . , cm} with ci ∈ {−1, 1}n.
Oracle access to MechanismM for privately computing top k
subspace of a matrix. Sampling access to distribution D from
which S is sampled.

1: for i = 1 . . . k do
2: Sample Si = {ci1, . . . , cim} from D.
3: end for
4: Pick r uniformly at random from [k] and set Sr ← S.
5: Let pad← 115n.
6: for i = 1 . . . k do
7: for j = 1 . . .m do
8: Let c(1)

ij ← cij ◦ pad.

9: Let c(2)
ij ← c

(1)
ij /
√

16n.
10: end for
11: Let P (i) be a random permutation matrix. Replace each 1

in P by a −1 with probability 1
2

.
12: Let A(i) be the m× n matrix with the transposes of c(2)

i as
it’s rows.

13: Let R(i) be a random n× n rotation matrix.
14: Let B(i) ← A(i)P (i)R(i).
15: end for
16: Let B be formed by vertically concatenating B(i)’s for i =

1, . . . , k in random order.
17: Let Πk ←M(B) be the γmk-useful rank-k projection matrix

output byM.
18: Let Π

(r)
k = Πk(R(r))T (P (r))T .

19: Let θ ← 1
80
√
n

.
20: Let w be the vector in Span(Πr

k) such that∑16n
j=8n+1 1(|wj | ≥ θ) is maximized.

21: for j = 1 . . . n do
22: c′j = sgn(wj).
23: end for
24: return c′

tating the rows of the resulting matrix5. Finally, we set B to the
km× 16n matrix formed by vertically concatenating the B(i)’s.

Let Πk be the γkm-useful rank-k projection matrix returned by
our private mechanism on input B. We will postprocess Πk to
construct a valid pirate codeword. Let S = Sr and let Π

(r)
k =

Πk(R(r))T (P (r))T . For a vector v, a parameter θ, and a location
j, we say that v θ-agrees with cS in location j if cSjvj ≥ θ. Let
H = {8n+ 1, . . . , 16n} be the second half of the indices, all cor-
responding to padding bits. Let w be a unit vector in Span(Π

(r)
k )

such that w 1
80
√
n

-agrees with cS in the maximum number of in-
dices in H . We strip off the padding from w and set c′j = sgn(vj).
We note that this process did not use S except through the differ-
entially private output Πk, and hence the mechanism that outputs
c′ is differentially private. We now argue that c′ is Kγ-valid with
non-trivial probability, for a suitable constant K.

Let v(i)
1 denote the top right singular vector of B(i) and recall

from Lemma 15 that σ1(B(i))2 = ‖B(i)v
(i)
1 ‖22 ≥ 15m

16
. Thus the

projection matrix Π̃k that projects to the span of {v(i)
1 }ki=1 satis-

fies
∑
i ‖Π̃k(B(i))T ‖2F ≥

∑
i σ1(B(i))2 ≥ 15mk

16
. Let lossi =

σ1(B(i))2 − ‖Πk(B(i))T ‖2F . Then the γkm-usefuleness of Πk

implies that Ei[lossi] ≤ γm. Each lossi ∈ [−m/16,m] and so

5While this distribution is identical to that obtained by just applying
R, it will be convenient in our proof to separate out the randomness
in this fashion.

it is easy to check, using arguments similar to Markov’s inequality,
that Pri[lossi ≥ 4γm] ≤ 1− γ. We omit details.

We will in fact need a stronger version of Lemma 15 to bound
σ2(B(i)) = O(1). The proof uses the particular construction of
fingerprinting codes by Tardos [32] and standard results in random
matrix theory.

LEMMA 19. Let B(i) be constructed as above, starting with an
Si = {ci1, . . . , cim} drawn from the fingerprinting code ensemble
of [32]. Then there are universal constants K1,K2 such that for
all s ≥ C1, Pr[σ2(B(i))2 ≥ s2] ≤ K1 exp(−K2sn).

Let us condition on the event that for all i, σ2
2(B(i)) ≤ K1; by

Lemma 19, this event happens except with negligible probability.
The following lemma says that on average over i, the span of B(i)

has a small projection on Πk; in fact it says that the average pro-
jection is small for any k-dimensional subspace. The proof uses
the fact that the rotations R(i) are random and independent, and
standard tail bounds along with a net argument.

LEMMA 20. For i = 1, . . . k, let {vij}mj=1 be a collection of
orthogonal unit vectors in <n and let R(i)’s be a independent ran-
dom rotation matrices. Then for a universal constant K,

Pr[∃Πk :

k∑
i=1

m∑
j=1

‖ΠkR
(i)vij‖22 ≥ Kk(1 + (km/n))] ≤ e−Ω(n) .

Let xi = ‖Πkv
(i)
1 ‖22. Let yi be the total squared projection of

the remaining (m − 1) right singular vectors of B(i) onto Πk, i.e.
yi =

∑m
j=2 ‖Πkv

(i)
j ‖

2. Thus ‖Πk(B(i))T ‖2F ≤ σ2
1xi + σ2

2yi.
Using lemma 20 with vij’s being the eigenvectors of A(i), we

conclude that Ei[xi + yi] = K(1 + (km/n)). Thus by Markov’s
inequality, at least a (1− γ/2) fraction of the i’s satisfy xi + yi ≤
(2K/γ)(1 + (km/n)). It follows that for at least a γ/2 fraction of
the i’s,

1. lossi ≤ 4γm, and
2. xi + yi ≤ (2K/γ)(1 + (km/n)).

Since Sr = S has the same distribution as every other Si, it fol-
lows that this property holds for r with probability at least γ/2.
Let us condition on this event. For the rest of the proof, we will use
A,B, σ1, σ2, x, y, loss, etc. to denoteA(r), B(r), σ1(B(r)), σ2(B(r)),
xr, yr, lossr , etc. Thus as long as k ≤ γ2n/16KK1, and m is at
least some absolute constant,

4γm ≤ loss

= σ2
1 − ‖ΠkB

T ‖2F
≥ σ2

1 − σ2
1x− σ2

2y

≥ (1− x)(15m/16)−K1(2K/γ)(1 + (km/n))

≥ (1− x)(15m/16)− γm/8.

It follows that (1 − x) ≤ 5γ and thus there exists a unit vector
ṽ1 ∈ Span(Πk) such that ‖v1 − ṽ1‖22 ≤ 10γ.

We call a vector v ∈ Span(Π
(r)
k ) (θ, β)-good for a set of indices

I if v θ-agrees with cS in a (1− β)-fraction of the indices in I .

CLAIM 21. If v (θ, β)-agrees with cS on I but v′ does not (θ−
θ′, β + β′)-agree with cS on I . Then ‖v − v′‖2 ≥ θ′2β′|I|.

Using Lemma 14, it follows that v1 ( 1
40
√
n
, 0)-agrees with cSj

on H . Let β = 20002γ. The vector w found by our mechanism
must therefore be ( 1

80
√
n
, β)-good for H .



Let F̂ denote the unanimous locations in cS (i.e. the unanimous
locations F (S) in c1, . . . , cm along with the padding bits). Re-
call that H = {8n + 1, . . . , 16n} is the second half of the lo-
cations. From the point of view of the algorithm, the locations
in H are indistinguishable from those in F̂ \ H and this will al-
low us to use arguments analagous to the list culling game. We
know that w is ( 1

80
√
n
, β)-good for H and we would like to argue

that except with negligible probability, it is ( 1
320
√
n
, 5β)-good for

F̂ \H . Let N be a γ-net of the set of unit vectors in Span(Π
(r)
k ).

For any net point that is ( 1
160
√
n
, 3β)-bad for F̂ , the probability

(taken over the randomness in P ) that it is ( 1
160
√
n
, 2β)-good for

H is no larger than exp(−Ω(β2n)). Taking a union bound over
a exp(O(k log(1/γ))) points in N , we conclude that except with
negligible probability, every v ∈ N that is ( 1

160
√
n
, 2β)-good for

H is also ( 1
160
√
n
, 4β)-good for F̂ \H .

Since w is ( 1
80
√
n
, β)-good forH , then its nearest net point w′ is

( 1
160
√
n
, 2β)-good forH . Thus w′ is ( 1

160
√
n
, 4β)-good for F̂ \H ,

which in turn implies that w itself is ( 1
320
√
n
, 5β)-good for F̂ \H .

Finally, sinceF is itself a random subset of F̂\H ,w is ( 1
320
√
n
, 6β)-

good for F except with probability exp(−Ω(β2f)). This then im-
plies that the output of the mechanism is 6β-valid with probability
Ω(γ)−exp(−Ω(f))−exp(−Ω(n)), completing the proof of The-
orem 18.6

COROLLARY 22. There is a universal constant γ such that the
following holds for any k ≤ γn and for m = γ

√
n/ logn. LetM

be a(1, 1/n2)-DP mechanism that takes as input an km×16n ma-
trix A with each row having norm at most 1, and outputs a rank k
projection matrix. Then the probability thatM(A) is γkm-useful
is at most 1

n
.
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