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Abstract
Despite the hype, the use of Software Defined Network-

ing (SDN) has been limited to simple management tasks.

This results both from the narrow interface between
the data- and control-plane in today’s SDN designs and
from the inherent limitations of enforcing policies at
switches. We propose Swepen, a software-defined edge
architecture for enforcing management policies in closed
environments like datacenters.

SwebpeN enforces the policies at end hosts with minimal
network support. It decomposes administrator specified
policy programs into program fragments that (i) re-
quire global visibility and hence, run at a centralized
controller, (ii) need to be responsive and hence, run at
the end host, (iii) need to be on the data path and
hence, run at the network interface (NIC). For the last
part, Swepen leverages programmable NICs and exposes
a programmable match-action API, thus allowing dele-
gation of control logic and state to the NIC.

Through examples, we show how such end-based man-
agement improves control-plane scalability and respon-
siveness while allowing for richer policies than previous
proposals.

1 Introduction

To manage today’s networks, administrators have to
manually configure both network devices and end hosts.
This is cumbersome and error-prone. To remedy this,
software-defined networking (SDN) argues for a simple
interface between the data- and control-plane which, in
turn, allows switches to be programmed based on high-
level policies. OpenFlow [17] is the de facto interface for
today’s switches, while efforts like Open vSwitch [23]
have extended this programming model to end hosts
too. However, the narrow data-plane interface restricts
a lot of SDN work to simple policies like routing and
reachability.

This paper explores an alternate tact for policy-based
network management. We observe that while switches
have good network layer visibility due to their loca-
tion, they have limited compute and storage resources.
By contrast, end hosts (i.e., compute servers, storage
servers and middleboxes) have plentiful resources and
are aware of high-level semantics for their traffic. Hence,
in closed environments like datacenters, diverse man-
agement policies can be enforced at end hosts with min-
imal support from the network.

We propose Sweben, a software-defined edge architec-
ture for policy-driven programming of end hosts. Swepen
comprises three components: a logically centralized con-
troller, end host control modules and programmable
network interfaces (NICs). Of these, only the NICs are
on the data path. This design has two key features.
First, since end hosts can run actual control programs,
it leads to a natural distribution of the control-plane

between the controller and the ends. Second, the NICs
expose a programmable match-action API with both
programmable matches and actions. This API is the in-
terface between Swepen’s data- and control-plane, and
means that we can delegate requisite control logic and
state to the NICs themselves.

Swepen can enforce management policies and even im-
plement new data-plane functionality. The administra-
tor expresses policies using event-driven programs, writ-
ten in a high-level language, that are to be run at an
idealized controller. This policy program is automati-
cally decomposed into controller, end-host and NIC pro-
grams. Such decomposition leverages the strengths of
each layer— logic requiring global visibility resides at the
controller, logic that needs to be responsive or requires
application-level semantics resides at the end host mod-
ule, and only minimal logic that is necessary on the data
path is on the NIC itself. Through a few example poli-
cies that are either hard or impossible to implement us-
ing SDN, we illustrate the benefits of such an approach:
better scalability since each end is only responsible for
traffic it observes, greater control-plane responsiveness
as control logic resides at the end host itself, a perfor-
mant data-plane since only necessary computation and
state resides on the data path, and the ability to enforce
richer policies that are stateful or require application-
level semantics. We also describe our implementation
efforts and a case study showing that our prototype can
implement a simple per-packet load balancing policy at
line rate.

The observation regarding the benefits of end host
based network management is not new |711/16/23/2728].
However, even with these proposals, the interface to the
end host data plane is still a variant of OpenFlow. In-
stead, Swepen embodies an extreme design point with
a distributed control-plane and a programmable data-
plane that can be programmed to do on-path stateful
computations.

2  Design

In this section, we provide an overview of the Swepen ar-
chitecture and programming abstractions and then de-
scribe the implementation of a few example policies.
SwepeN targets environments in which (some compo-
nents of) end hosts are owned by a single administration
domain and can therefore be trusted. In this paper, we
focus on datacenters, although our approach can also
be applied in other scenarios such as enterprise or home
networks [11]12].

2.1 Design Overview

The design of Swepen has been driven by two main
goals. The first is to have a distributed control plane,
which leverages the global knowledge available at the
controller as well as the large amount of resources and
application-level visibility available at the end hosts.
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Figure 1: The Sweden architecture. Dashed lines repre-
sent control-plane operations while solid lines indicate
data-plane ones.

This is achieved by splitting the control logic between a
centralized controller and a set of control modules run-
ning within the OS or hypervisor at the end hosts.

Second, we want to provide a programmable data plane,
which can implement richer policies than the ones cur-
rently supported by SDN. We leverage recent availabil-
ity of programmable NICs that allow actual programs
to be executed on the NIC. We exploit this capability in
SwepeN by delegating the policy logic that is necessary
on the data path to the NICs. This ensures high perfor-
mance while still retaining a high degree of flexibility.

The Swepen architecture is depicted in Figure [1| Poli-
cies are specified using a policy program, written in a
high-level language, which is conceptually able to ob-
serve all packets sent and received by end hosts in the
network. This allows administrators to focus on the al-
gorithms underlying the policies to be enforced instead
of the details of their implementation. We describe the
programming model used to express the policies in Sec-
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A policy program p is decomposed into program frag-
ments to be run at the controller (p.), at each end host
(pe) and within the NIC (p,). Conceptually, p = p,
+ UecE Pe + UneN Pn, where E and N are the set
of end hosts and NICs governed by the policy. Here,
“=" implies extensional equality — given the same in-
puts, the programs will generate the same output, i.e.
return values and global state. Like the original policy
program, the controller program and the host program
are implemented in a high-level language. For efficiency
reasons the NIC program, instead, uses the restricted
set of API described in Section 2.2.21 Unlike traditional
SDN proposals, since the control logic is implemented
in the centralized controller, Swepen requires only lim-
ited functionality from the switches, which we describe

in Section 2.2.3

In we show how we can leverage existing work to
automatically partition policy programs into program
fragments. In the following section, we rely on a few
manually decomposed examples to illustrate the bene-
fits of our design.

Match —> Action
<match-exp> —>

Table 1: Match-action rules in the NIC

f (pkt, [state parameters])

2.2 Programming Abstractions

Next, we briefly describe the programming model used
by administrators to express their policies in Swepen
and the API that we use to implement the NIC con-
trol modules. We then describe the switch functionality
required.

2.2.1 Policy programming model

We opted for an event-based programming model to ex-
press policy programs. This reduces the complexity for
developers (as they only need to worry about handling
a small set of events) and simplifies the decomposition
process (as the program structure is fixed). We support
a pre-defined set of objects, namely packet, which al-
lows developers to easily access packet fields, topology,
which comprises the link and nodes (end host, switches,
and middleboxes) in the datacenters, and timer, which
enables timeouts or deferred actions. Developers can
also define their own data structures by composing stan-
dard types such as 1ist and hashTable. Instances of
these custom data structures (hereafter called state),
however, must be explicitly listed in the program pream-
ble and cannot be dynamically allocated as doing this
would complicate code static analysis.

We identified four classes of events and defined the
following methods to handle them:

e onPcktRcvdFromApp: invoked when a packet is re-
ceived from the application;

e onPcktRcvdFromNet: invoked when a packet is re-
ceived from the network;

e onTopologyChange: invoked when there is a change
in the topology, e.g., due to a link or server failure;

e onStateChange: invoked when one of the state ob-
ject changes, e.g., a new tenant is admitted into the
network.

A timeout can be created using the primitive cre-
ateTimer, passing as parameters the time at which it
should fire and the callback function to be invoked. We
provide standard primitives to handle packets such as
forward, drop, and duplicate. Beside common fields
such as src and dst, the packet object also contains
some meta-fields such as priority and rateLimiter
that are not mapped to header fields but are used to
indicate how the packet should be queued.

Section [2.3] provides a few examples of implementing
policies using this programming model in pseudo-code.

2.2.2 NICAPI

The challenge with allowing NIC programmability is to
achieve flexibility without sacrificing performance. To
balance this, we expose a restricted NIC programming



model. A NIC program comprises a set of tables con-
taining match-action rules, as shown in Table |1, The
match operation is specified as a matching expression
operating on the packet header. For the action, instead
of a pre-defined set of actions, we allow action functions.
An action function is a loop-free function that takes as
input a packet and returns the set of next hops the
packet should be forwarded to. Here a next hop can be
the host, a NIC port, or even another table. The func-
tion can have other optional state parameters that carry
shared state. The function can manipulate the packet
(header and body), the state parameters, and create,
delete, modify the match-action rules in the NIC.

Match-action programming is a natural fit for two rea-
sons. First, it is possible to efficiently implement lookup
tables in hardware using TCAMs. Secondly, thanks to
the popularity from the OpenFlow community, match-
action programming is already a familiar model for pro-
gramimers.

2.2.3 Network support

Swepen’s end-based approach to network management
requires that end hosts be able to control how their
packets are routed through the network. Recent pro-
posals have shown how existing technologies like MPLS
and VLANs can be used to achieve source routing in
datacenters |7/18]. Here, end hosts specify the path of
a network packet as a label in the packet header, e.g.,
through an MPLS label or VL AN tag, and switches per-
form label-based forwarding.

Such source routing requires the controller to config-
ure the label forwarding tables at switches. For MPLS,
this can be achieved through a distributed control pro-
tocol like LDP [5] while for VLANS, Spain [18] describes
a solution involving multiple spanning trees. Hence, la-
bel based forwarding and the corresponding control pro-
tocol is the primary functionality Swepen requires of the
underlying network. Additionally, most existing switches

already support statistics gathering capabilities (e.g SNMP)

and priority-based queuing. These can be exploited by
SwEDEN to implement richer policies.

2.3 Example policies

We now use four example policies to illustrate Swepen’s
operation. We chose these examples as they are either
difficult or impossible to implement using SDN. The
first three policies can be implemented with an ideal-
ized form of SDN (that is not restricted to the Open-
Flow protocol) but in an approximate form and with
higher latency for new flows and much greater control
overhead. The last policy involves new data-plane func-
tionality that requires application semantics and cannot
be implemented using SDN.
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Figure 2: Example of asymmetric topology.

2.3.1 Weighted Load Balancing

Datacenters today use ECMP to load balance traffic
among multiple equal cost paths. However, ECMP as-
sumes that the underlying topology is balanced and reg-
ular which is often not true in practice [34]. For ex-
ample, in Figure 2], ECMP would distribute the traffic
at switch A evenly across the two upstream links even
though subsequent links along the paths have very dif-
ferent capacities. This can result in unfairness and poor
tail performance. Consequently, Zhou et al. [34] propose
WCMP, a weighted version of ECMP that balances traf-
fic across links in a weighted fashion. In the example in
Figure [2, WCMP can be used to balance traffic across
the two upstream links of A in a 10:1 ratio.

Require: Datacenter topology— topology

//Global program state
1: cachedPaths:[src, dst] -> {[Pathl, Weightl], ...}

//Helper functions
//choose a path in a weighted fashion
2: path weighted_select({[path, weight]|, ...})
//given a src and dst, generate a weighted set of paths
3: {[path, weight], ...} gen_paths(src, dst)

//Event-driven functions

: void onTopologyChange (){

: for Link 1: topology.getLinks() do
1.weight = compute_weight ()

}

void onPcktRcvdFromApp (packet p) {

if [p.src, p.dst| not in cachedPaths then
cachedPaths[p.src, p.dst] = gen_paths(p.src,
p.dst)

11: p.path = weighted_select(cachedPaths[p.src,
p-dst])

12: send(p)

13: 3
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Figure 3: Policy program implementing weighted load
balancing.

Policy program. We consider the following high-
level policy— “Use per-packet WCMP to balance the
traffic across all links”. Figure [3] shows a policy pro-
gram that implements this policy. Note that this an
idealized policy program that is invoked, without any
delay, every time an end host sends or receives a packet.
The key program logic resides in two event functions:
onTopologyChange function that is invoked whenever
the network topology changes and the onPcktRcvd-
FromApp function that is invoked when a host sends a



packet. At a high level, the policy program performs
three operations— (i). It uses knowledge of the datacen-
ter topology, represented by as a graph, to associate a
weight with each link in the graph (onTopologyChange
function). (ii) For each flow, it determines the weight
for each path to the destination. A path’s weight is the
probability with which it should be used and is a prod-
uct of the normalized weights of all links along the path.
This step needs to be responsive to avoid delaying flow
initiation, but the results can be cached for subsequent
packets of the flow (lines 9-10). (iii). For each packet,
it chooses a path in a weighted fashion (line 11).

Program fragments. With Swepen, we can decom-
pose this program into program fragments to be run at
the controller, end host and the data path (i.e. NIC).
The controller program performs the first operation men-
tioned above; it implements the onTopologyChange func-
tion, and informs end hosts of the new topology and
per-edge weights. The host program performs the sec-
ond operation by implementing the gen_paths func-
tion. The NIC program, shown in Figure ] performs
the third operation.

Require: End host implements gen_paths

//Intital Match-Action Table
1: <src:*, dst:*, sport:*, dport:*> -> f(p)

//Helper functions
//Choose a path in a weighted fashion
2: path weighted_select({[path, weight]|, ...})
//Given a path, generate its routing label
: label generate_label_for_path(path)
//Given routing label, determine the next hop
: next-hop next_hop(label)

I

: next-hops f(Pkt p) {

: weightedPaths = HOST.gen_paths(p.dst)

: create_rule(<p.src, p.dst, p.sport. p.dport> ->
g(pkt, weightedPaths))

8: return g(p, weightedPaths)

~J O Ut

10: next-hops g (Pkt p, {[path, weight]} paths) {
11: path = weighted_select (paths)

12: p.label = generate_label_for_path(path)

13: return next_hop(p.label)

14: ¥

Figure 4: NIC program for weighted load balancing.

We detail the operation of the NIC program. It com-
prises a default rule that matches all packets and ap-
plies function f to the packet (line 1). When a new
flow starts, this function is invoked. The function uses
an RPC to the host to obtain the set of paths to the
destination and their weights (line 6). It then inserts a
match-action rule such that subsequent packets of the
flows are processed by function g (line 7). This match-
action rule is ephemeral and times out when the flow
finishes. The state parameter for the function g (i.e.,
paths) contains the flow’s paths and their weights, and

it selects the packet’s path in a weighted fashion .

We note that in this example, there is a straightfor-
ward mapping between functions in the original policy
program and the program fragments. However, in gen-
eral, the decomposition could be more involved.

2.3.2  Rate control

Proposals for congestion control in datacenters can be
roughly divided in three different classes. The first one
contains traditional congestion control algorithms like
TCP and its variants [2/3!30], which operate in a dis-
tributed fashion. At the other end of the spectrum, we
find recent proposals for centralized congestion control
that rely on global knowledge and centrally compute the
rate for each flow [22]. Finally, there are hybrid solutions
that leverage coarse-grained network information, e.g.,
link congestion or utilization, to guide fine-grained rate
allocation at the edge, e.g. [12]19].

Here, we focus on the last class and show how we can
implement in Swepen a simplified version of the hybrid
solution described in [12]. The solution consists of two
phases. In the first one, the centralized controller com-
putes a price p, 0 < p < 1, for each network link based
on its utilization (details in [12]). Next, link prices are
used to estimate a flow’s fair sending rate. A flow’s fair
share across a link A is estimated through following
feedback control loop:

Xa(t+1) < Xa(t) +kXa@®[1 —palt) —pa®ua(®)], (1)

where X 4 is the nominal fair share in link A at time ¢,
k is a gain parameter, and w4 (¢) is the utilization of the
resource A at time t. The sending rate of a flow is the
minimum of its share across all links it traverses.
Policy program. The policy program for this solu-
tion is reported in Figure b} The key program logic re-
sides in two functions that are invoked periodically. The

first function, compute_prices, is invoked at coarse timescales

(seconds) and uses link utilization information to com-
pute link prices. The second function, update_rates, is
invoked at fine timescales (milliseconds) and uses link
prices to update the rates for individual flows.

Program fragments. Swepen can decompose the pro-
gram as follows. The controller runs the compute_prices
function by periodically polling switches for statistics on
link utilization. The host program extracts all resource
information that is relevant for its local flows and pe-
riodically recompute the rates, which are then enforced
by the NIC.

2.3.3 Anycast

The example in Section focused on load balanc-
ing of traffic across multiple paths to a destination.
Here, instead, we consider the complementary policy
of anycasting—load balancing among different destina-
tions. This is typical of web or IO traffic in which re-
quests are usually dispatched to any of the available web



Require: Datacenter topology— topology

//Global program state
1: activeFlows: {Flow} //the set of active flows

//Helper functions
: compute_prices(topology)
. enforce_rate(flow, rate)
: update_rate(flow) //computes the flow rate using Eq.

=N

//Event-driven functions
5: void compute_prices (0{
6: for Link 1: topology.getLinks() do
T l.price = compute_price()
8: createTimer(ls, compute_prices)
9

t}

10: void update_rates (){
11: for Flow f: localhost.getActiveFlows() do
12:  f.rate = update_rate(f)

13: enforce_rate(f, f.rate)
14: createTimer(ims, update_rates)
15: }

16: void onPktSend (Pkt p) {

17: if flow not in activeFlows then
18:  update_rate(flow)

19: send(p)

20: ¥

Figure 5: Policy program implementing centralized con-
gestion control.

servers or storage replicas. Applications interact with
the service using a virtual IP address (VIP), which is
then remapped to the direct IP address (DIP) of the se-
lected destination. This can be achieved using custom
hardware appliances or software load balancers [21].

Conceptually, the policy can be expressed as “given
a request (e.g., HTTP GET or 10 read), forward it to
one of the available destinations in a (weighted) round-
robin fashion”. Due to space constraints, we do not show
the policy program. Instead, we explain the operation
of various program fragments. The controller leverages
global visibility to keep track of the list of available
destinations for each virtual IP and when a change is
detected (e.g., due to a server failure), it immediately
notifies the end hosts. When a new flow starts, the NIC
contacts the host’s control module to retrieve the desti-
nation to use. Next, for each packet belonging to the
flow, the NIC performs a NAT operation, i.e. it re-
places the virtual IP used by the application with the
dynamic IP returned by the host. This process is com-
pletely transparent to applications, which only see the
virtual IP address.

While such anycasting is used prominently by dis-
tributed datacenter applications today, Swepen can also
be used to implement enhanced versions that take into
account application-specific and/or dynamic criteria to
select the destination. For instance, we could select as
destination the server with the lowest number of out-

standing requests in its queue or with the lowest CPU
load. Like in the example above, the controller provides
the end hosts with a list of available destinations, which
are then passed to the NIC. When a new flow is created,
the NIC sends a request to each of them, asking for the
current value of the desired metric (e.g., the CPU load).
The receiving NIC issues an RPC to the local host to
obtain the requested measure and sends it back to the
source NIC. Once all replies have been received (or the
timeout has expired), the source NIC selects the best
destination and establishes a connection to it. Finally,
as described above, the NIC takes care of rewriting the
packet destination address when sourcing a new packet.

2.3.4 Message-awareness

We conclude our list of examples by briefly discussing
a novel policy that takes into account application-level
semantics in network processing.

Traditional network policies operate either at the flow
or packet granularity. Often, however, neither choice is
fully satisfactory. For example, balancing traffic across
multiple paths on a per-packet basis achieves the best
load distribution but it can negatively impact applica-
tion throughput due to high packet reordering. Con-
versely, load balancing on a per-flow basis ensures that
packets are received in order but it can lead to severe
load unbalance in presence of flows with heterogeneous
sizes [1].

We argue, instead, that in many cases a better strat-
egy is to partition packets based on application-level
message boundaries. These can be detected either pro-
grammatically by the end host (e.g., using a custom API
or relying on the socket send () primitive) or inferred at
the NIC by inspecting the content of the socket buffer.
Once the message boundaries have been identified, the
NIC can then enforce the specific policy when sending
a packet. For example, a message-aware traffic policy
could force all packets belonging to the same message
to be routed along the same path. Similarly, the NIC
could assign priorities to packets based on the kind of
message (e.g., data vs. control message) they belong
to, rather than statically assigning priorities based on
packet headers.

2.4 Program decomposition

Automatic program decomposition has been a very ac-
tive research area over the past decade; for web applica-
tions [913233], sensor networks [20], mobile applications
[6110[24], databases [8], and COM applications [15]. Some
of these techniques impose a structure and constraints
on the original program to make it amenable to decom-
position [15/2012432], some are restricted to decompo-
sition at function boundaries [6/10], while some support
general programming models [819]. Merlin [28] also uses
program decomposition for simple reachability and QoS
policies. Instead, we support richer policies and offload



general computations to the data plane.

We leverage these ideas to automatically decompose
SwepeN’s policy programs. The basic idea is to perform
control flow analysis to identify the basic blocks of each
function. Blocks that use global state are executed in
the centralized controller. For the rest, we decide their
execution as follows. We classify blocks that either use
instructions that cannot execute on the NIC or install
flow rules as being on the “slow path” (for the latter we
assume that they will be executed infrequently); oth-
erwise, blocks that forward or process packets belong
to the “fast path”; the rest are assigned as their parent
block. We aim to execute slow path blocks in the end
host control module and fast path blocks in the NIC.
We decompose functions that contain both fast and slow
blocks by using a RPC between the NIC and the host.
During such RPCs, we also need to copy the neces-
sary state to perform the computation. In our examples,
identifying that state has been easy, but, in general, this
is a challenging problem. More broadly, we are investi-
gating techniques that use domain-specific information
to identify the best place to run the user programs de-
pending on the capabilities (and execution cost) of the
NICs, hosts, and controller.

3 Implementation

Our testbed consists of four Intel Xeon E5-1620 ma-
chines running at 3.70GHz with 16GB of installed mem-
ory. Each machine is equipped with a dual-port 10GbE

Netronome NFE-3240 programmable flow processor NIC [35].

The flow processor NICs include a 40 core, 8 way multi-
threaded CPU (320 threads), and 4GB of memory. The
CPU can perform CAM operations on main memory.
The cards are programmed in a variant of C89, with
explicit memory management for DRAM, scratch mem-
ory and general purpose registers. The network switch
is a 40x10Gbps Blade RackSwitch.

We are extending the NIC firmware to be able to exe-
cute control programs and keep state in the NIC. We use
a fast CAM assisted hashtable to implement a match-
action flowtable. In addition, we have implemented a
lightweight Remote Procedure Call (RPC) mechanism
so that the cards can call functions on the host. For
example, the card may need to request assistance from
the host in the case of a flow table lookup failure. Our
action functions are currently written in C and run di-
rectly on the card hardware. In future, we envisage a
micro-interpreter would be used to provide a safe exe-
cution environment for action functions.

4 Weighted load balancing: A case study

As a proof-of-concept, we experimented with the weighted
load balancing policy ( Our testing configura-
tion emulates the arrangement shown in Figure 2] To
do so, we use two hosts. The primary interfaces on each

TCP UDP

100004
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25001

Rate

0-
ECMP WCMP ECMP WCMP

Figure 6: Aggregate throughput for the ECMP and
WCMP scenario.

NIC are connected together at 10Gbps. The secondary
interfaces are connected together at 1Gbps. This cre-
ates two paths with different capacities between the two
machines. The NICs can “source route” between these
paths by choosing which port to forward traffic over. A
single network interface is exposed at the OS level so
that applications are unaware of the multiple paths in
the network.

The NICs run our custom firmware and implement
the NIC fragment of the WCMP policy—which con-
trols how packets are balanced between the two physi-
cal ports. We use per-packet balancing, instead of per-
flow balancing to highlight Swepen’s ability to apply per-
packet policies at high rate. In the default case, we use
the same weights for both paths, thus implementing per-
packet ECMP. When packets arrive at a NIC, they are
equally distributed between both ports. Figure [f] shows
the performance in this case (confidence intervals are
within 1% of the mean values shown). For TCP, the
throughput is dominated by the capacity of the slow-
est link peaking at 2Gb/s as we’d expect. For the UDP
we get a throughput of about 7Gb/s. NIC driver issues
mean that each host is limited to 12Gb/s. When divided
equally between the two paths, we get 6Gb/s through
the 10GbE path plus 1Gb/s through the GbE path.

Next, we apply the weighted select function (see Fig-
ure [3) to enforce a 10:1 ratio between ports. Figure |§|
shows the results. With UDP, we achieve close to the full
11Gb/s which is our topology’s min cut. The TCP per-
formance is lower due to in-network reordering of pack-
ets |13]. Modifying TCP’s congestion control algorithm
can alleviate such issues [25]; however, the goal of our
experiment is to highlight how Swepex can implement
this simple policy and benefit unmodified applications
running vanilla TCP.

5 Discussion & concluding remarks

SwepeN decentralizes the control plane, by allowing end
hosts to actively participate in policy implementation.
At the same time, Swepen envisions a wider data-plane
interface through programmable NICs.

Our existing implementation, though at its early stages,
highlights that such as shift is feasible and can unlock
capabilities that are currently absent in SDNs by i) ex-
tending the programmability of the data-plane through



programmable actions, ii) overcoming a number of in-
herent switch limitations such as the limited compu-
tation capabilities (e.g., compute power, memory), the
absence of visibility on application semantics and the
need to enforce policies for large number of traffic flows
at increasingly higher and higher speeds. Instead, op-
erating at the edge provides application context and
high computation capabilities that can be devoted to a
smaller fraction of the traffic compared to switches.

On the other hand, we recognize that some recent
proposals leverage flow coordination capabilities only
found within (non-standard) switches [4114,31]. We en-
vision that Swepen could support these schemes using
the same decomposition techniques we discussed, with
an additional policy program that runs directly at the
switches.

As a final note, we stress that operating at the edge
can easily extend the set of management policies with
properties that are elusive or hard to guarantee in to-
day’s SDNs; examples here include per-flow consistency
during updates [26], application-aware traffic engineer-
ing or message level routing (see previous section). Tak-
ing this a step further, we believe that Swepen’s archi-
tecture opens up the capability of a cross-resource man-
agement plane by extending programmable control to
resources beyond the network (e.g., storage [29]).
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