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ABSTRACT
Large-scale data centers often adopt more than one type of stor-
age device, each with different storage capacity, I/O capability, and
cost. Optimizing the performance-to-cost efficiency of such het-
erogeneous storage systems is of great practical importance (Cap-
Ex), and it is a classic problem in computer system design. The
Vector-Sum Model (VSM) is a mental model widely-used by sys-
tem administrators for this task, due to its conceptual simplicity.
The model encompasses various commonly-used rules-of-thumb,
such as the five-minute rule or various Knapsack-based heuristics.

In this paper we revisit the vector-sum model and study het-
erogeneous storage using a new form of optimization diagrams.
These diagrams give raise to a near-optimal solution to the prob-
lem, which subsumes the existing rules-of-thumb used in practice.
Our solution also explains that these heuristics are indeed optimal
under their respective assumptions, while they become sub-optimal
in more general cases. Specifically, our analysis implies that the re-
cent adoption of SSD in data centers may challenge the quality of
these commonly-used heuristics, and that our new optimization ap-
proach can sustain data center-scale workloads at lower total pur-
chasing cost. Finally, we show that, although the commonly-used
I/O metrics of storage are non-additive, we can use regression tech-
niques to transform the metric into an additive form. Experiments
using web search production workloads show that the Vector-Sum
Model becomes more accurate after the metric transformation.

1. INTRODUCTION
Large-scale data centers often adopt more than one type of stor-

age devices, each with different storage space, I/O capability, cost,
and other characteristics. For example, storage hierarchies consist-
ing of SSD and HDD have become typical for a variety of large-
scale production workloads in recent years [22]. Given the tremen-
dous cost of building and maintaining data center infrastructure,
optimizing the cost and efficiency of such heterogenous storage
systems has become an area of great concern and interest in indus-
try. Simplifying, we can state that there are two fundamental prob-
lems affecting the efficiency and performance of such large-scale
heterogeneous storage systems: i) How much money should we in-
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vest on each type of storage (capacity planning), and ii) which data
objects should be placed on which storage type (data placement).
The over-arching goal is to satisfy the aggregate resource demands
of the application workload, while minimizing the total purchasing
cost (Cap-EX) of the required storage devices.

Due to the complexity of such large-scale heterogenous storage
systems, storage administrators typically have to rely on “rules-of-
thumb” to optimize the system. In general, these rules-of-thumb are
simple heuristics that are easy to understand and apply, while still
giving reasonably good results in practice. Maybe the most famous
and widely-employed rules of this kind are the five minute rule by
Gray and Putzolu [12] and various Knapsack-based heuristics (e.g.
[5] [4] [23]). These heuristic rules have been derived reflecting a
specific mental model of the target system and workload behav-
ior. Arguably the simplest and most fundamental of these models
is the Vector-Sum Model (VSM), which can be seen as a first-order
approximation of the real system. In VSM, both data and storage
are characterized as vectors of their per-object and per-dollar fea-
tures. The aggregate resource demand (capacity) of a data set (a
storage system) is the sum of these per-object (per-dollar) feature
vectors. A system design is feasible if the aggregate resource ca-
pacity of the storage matches the aggregate resource demand of
the data assigned to it. As mentioned, the Vector-Sum Model has
been widely used by practitioners largely thanks to its conceptual
simplicity (e.g. all the aforementioned rules-of-thumbs have been
devised under this model, either explicitly or implicitly). On the
other hand, there are also longstanding arguments as to the accu-
racy of the Vector-Sum Model, particularly because of the model’s
linearity [2].

In this paper we revisit the Vector-Sum Model in terms of both
optimization rules and model validation. We analyze the optimal-
ity of existing rules-of-thumb under the model. We identify novel
near-optimal optimization rules that not only subsume these classic
rules in those cases in which the rules are indeed optimal, but also
improve on them in more general cases. Moreover, we observe that
the ever-expanding scale of modern storage systems may bring new
opportunities to improve the modeling accuracy of VSM by statis-
tically linearizing the model parameters. Collectively, these results
suggest that the Vector-Sum Model could potentially be an abstrac-
tion featuring both simplicity and effectiveness for large-scale stor-
age system consolidations. Specifically,
• We analyze the optimization problems under the Vector-Sum

Model using a new form of heterogenous storage optimization
diagrams (Section 3). We identify a near-optimal solution of
the problem in these diagrams, which corresponds to the most
“compact” solution when such a solution is feasible, and degen-
erates to the five-minute rule and the knapsack-based rules in
special cases. In particular, this observation suggests that these



widely-used heuristics are indeed optimal in the particular sce-
narios where they have been typically used and for which they
have been designed for. However, our analysis also implies that
the optimality of these rules-of-thumbs crucially depends on
model parameters. In particular, experimental results show that
the adoption of SSD seriously challenges the validity of these
classic rules, rendering them no longer optimal. In these cases
our new solution can serve as a new and more general rule-of-
thumb, yielding substantial cost reduction for cloud-scale pro-
duction systems. (Section 5.3).

• We also present a regression-based approach to make the I/O re-
lated parameters in VSM statistically additive (Section 4). In-
stead of using general-purpose device models, we try to train
workload-specific models directly using the traces from the tar-
get workload. Experimental results on real storage hardware
and real-world workloads show an average prediction error of
less than 4.2% for HDD and 3.0% for SSD (Section 5.2).

2. BACKGROUND
The Vector-Sum Model formulates the problem of finding the

most economic design to host a given set of data objects with stor-
age devices chosen from a given set of storage types. Depending
on the level of system integration, a storage device can be a storage
package (e.g. Hard-Disk Drive, Solid-State Drive, DRAM DIMM),
or alternatively a RAID group, or even a single storage chip. Sim-
ilarly, depending on the application, a data object may be either a
domain-specific data structure (e.g. string, file segment, database
table or row) or a low-level storage management unit such as a
page and a block. 1 In this section we briefly review the Vector-
Sum Model, as well as two standard heuristic rules derived from
the model.

2.1 The Vector-Sum Model
Suppose we want to host N data objects on two different types

of storage devices, say, SSD and Hard Disk Drives (HDD). In the
Vector-Sum Model (VSM), each data object i is characterized by
a feature vector (ci,bi) consisting of its size ci and the expected
I/O demand bi (e.g. throughput, bandwidth, or a function of both).
Accordingly, each storage-type is also characterized by a vector of
its per-dollar resource capacity in the same vector space, denoted
by (C1,B1) and (C2,B2) for the type-1 and type-2 storages, respec-
tively. Common metrics include GB/$, IOPS/$, and so on. Without
loss of generality we consider the type-1 storage to be the more eco-
nomic one in terms of I/O capability (e.g. SSD), while the type-2
storage is more economic in terms of in storage space (e.g. HDD).

To design a storage system using two different types of stor-
age, we need to determine the amount of money invested on each
storage-type, as well as decide on which type of storage each data
object should be placed. 2 In VSM, the aggregate resource demand
of the data set assigned to each storage-type is the vector-sum of
all feature vectors of the data set. On the other hand, the aggregate
resource capacity of a storage type equals the per-dollar-capacity
vector of the storage multiplied by the amount of money invested
on it. See Figure 1a for an illustration of the model. A system de-
sign is feasible in VSM if the aggregate capacity of the storage is no
less than the aggregate demand of the data, for both storage space
and I/O performance. Our goal is to identify the feasible system

1For systems enabling data replication (e.g. for load balancing or
failure recovery), each copy of the same data record should be
treated as a separate data object.
2In this paper we assume that a data object is the atomic unit of
data management, and thus is placed entirely in one storage device.

design having the least purchasing cost.
It is worthwhile distinguishing the Vector-Sum Model thus de-

scribed from another similar model, the bin packing (or vector pack-
ing) formulation, in which the resource demand and capacity are
also modeled as vector sums but each storage unit (rather than a
storage type) is considered as a separate “container” which has a
fixed resource capacity. In contrast, the Vector-Sum Model ignores
the boundary constraints between storage units of the same type
as well as the integral constraint in purchasing these storage units.
In VSM, we consider each storage-type as a whole, investing ar-
bitrary amount of money on it and only calculating the aggregated
resource constraints over all units of this type. This relaxation from
bin packing to VSM is clearly suited for today’s large-scale sys-
tems typically found in cloud data centers, in which the number of
data objects N can be in the millions or billions. In these systems,
the scale of storage units and the whole storage arrays are usually
orders of magnitudes larger than the scales of individual data ob-
jects and the price of individual storage units, respectively.

The Vector-Sum Model is probably the simplest model (and also
among the most widely-used by practitioners) to understand and
reason about. Of course, VSM is a first-order approximation of a
complex real system, and thus can be challenged for being not en-
tirely accurate. For example, it is a longstanding open problem to
accurately characterize the I/O demands of data objects in an ad-
ditive manner [3], as required by VSM. We will discuss the I/O
linearization issue in more details later. In fact, we argue that it
may be possible to statistically linearize the I/O performance given
the ever-expanding scale of modern storage systems. On the other
hand, despite its conceptual simplicity, it can still be challenging
to optimize a large-scale system in the VSM model, since the en-
tirety of the model can easily blow-up to include millions or bil-
lions of decision variables. Thus in practice, system administrators
typically rely on various “rules-of-thumb” to help in their decision
making. In the following we present two of the most well-known
and widely-used heuristics. We use the symbols in Table 1 to de-
note the related model parameters and decision variables.

Table 1: Symbols used in the vector-sum model
(ci,bi) The feature vector of data object i, where ci and bi

stand for the capacity and bandwidth demands, resp.
(C1,B1) The “per-dollar” feature vector of the type-1 storage
(C2,B2) The “per-dollar” feature vector of the type-2 storage

y1,y2 The amount of money spent on the two storage-types
x1 . . .xN The data placement decisions. xi = {1,2} indicates

in which type of storage the data object i is placed.

2.2 The Five Minute Rule
In 1987, Jim Gray and Franco Putzolu [12] proposed a famous

rule-of-thumb to guide capacity planning and data placement in
database systems consisting of DRAM and hard drive. The rule
says that we should place a data object in hard drives if the expected
access interval of the object is longer than a certain threshold. At
the time this rule was proposed, the threshold roughly equaled 5
minutes for 1KB objects, thus the rule was later dubbed the five-
minute rule. Intriguingly, the five-minute rule has been reviewed
by researchers roughly every ten years since then, and it has been
found that the specific threshold of “five minutes” happens to be
quite stable even though the parameters of storage devices have
changed dramatically [11], and even as completely new storage de-
vice like SSD have been employed [10].

In Gray and Putzolu’s paper [12], the five-minute rule was de-
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Figure 1: Optimization diagrams for the heterogeneous storage optimization (HSO) problem: (a) shows the diagram when there is
only one storage type; (b) shows the diagram for two storage types, and illustrates the notion of solution-path; (c) illustrates the
notions of C-B region, C-B curve, and reversed C-B curve in the optimization diagram.

rived exactly from the Vector-Sum Model introduced in the pre-
vious subsection. Specifically, they assume that the type-1 storage
(i.e. DRAM in their context) is bound by storage space and the
type-2 storage (i.e. hard drives) is bound by I/O throughput. Sup-
pose one dollar gives either C1 bytes of type-1 storage or B2 IOPS
of type-2 storage. Then, for a data object with size ci and access
frequency bi, the cost to place this object in type-1 storage is ci

C1
,

and the cost to place it in type-2 storage is bi
B2

. 3 At the break-even
point of this trade-off we have

bi

B2
=

ci

C1
. (1)

DEFINITION 1. (Five-Minute Rule [12]) It is more economic to
place data objects with access frequency bi >

B2
C1

ci in type-1 stor-

age, and to place objects with bi <
B2
C1

ci in type-2 storage.

Note that the five-minute rule optimizes the system based only on a
“context-free” feature of each individual data object: the ratio of its
I/O throughput to its size (i.e., bi/ci). Later in this paper, we will see
that this 30-years-old principle is still valid for the DRAM-HDD
hierarchy today. However, in contrast to the observations in [10],
we argue that the adoption of SSD in large-scale systems will not
only alter the “5-minutes” threshold, but also challenge the basic
principle of the rule.

2.3 Knapsack-based Heuristics
Another widely-used rule-of-thumb for heterogeneous storage

optimization is the Knapsack-based rule. The basic version of the
rule (e.g. see [5] [4] [23]) recasts the data placement problem un-
der a given capacity plan as a classic Knapsack Problem: Suppose
each data object has size ci and throughput bi, we want to direct
as much I/O throughput into type-1 storage as possible, subject to
a pre-determined size limit C for type-1 storage. Standard knap-
sack algorithms are then employed, for example the greedy algo-
rithm, which keeps putting in type-1 storage the data objects with
the highest bi/ci ratio until reaching the space limit C.

Recently, Huang and Xia [14] have applied the Knapsack heuris-
tic in DRAM-SSD hierarchies, and extended the basic Knapsack
formulation by co-optimizing the capacity planning at the same
time (i.e. to determine the optimal value of the space limit C). Based
on the observation that the per-GB price of DRAM is much higher
than SSD, they try to minimize the capacity requirement of DRAM
3The original paper [12] used a slightly different notation from the
ones used here [12]: RI = 1/bi, A$= 1/B2, M$= 1/C1, and B= ci.

C, which is equivalent to maximizing the capacity of SSD for the
given data set, subject to the I/O capability of the SSD of that capac-
ity. The optimization leads to a simple but different rule-of-thumb:

DEFINITION 2. (Knapsack Heuristic [14]) It is more economic
to keep placing data objects with smaller bi

ci
in type-2 storage until

the ratio between the aggregate I/O demand and space demand on
type-2 storage is over the I/O-to-space ratio of the storage, that is,

∑{i in type-2 storage} bi

∑{i in type-2 storage} ci
=

B2

C2
. (2)

Then we place all the rest data objects in type-1 storage.

Note that, instead of using the individual ratio bi/ci as the five-
minute rule does, the knapsack heuristic relies on the cumulative
ratio ∑bi/∑ci to compute the threshold.

3. OPTIMALITY ANALYSIS
Given the five-minute rule and the knapsack heuristic, one may

naturally ask a series of questions about them: Which one of these
two rules-of-thumb should we follow? Is one of them optimal (i.e.
also better than any other possible rule)? If not, what is the optimal
solution in the Vector-Sum Model? And, fundamentally, can the
optimal solution be expressed as a simple rule at all?

In this section, we answer all these questions through a system-
atic analysis of the Vector-Sum Model. Our analysis is based on
optimization diagrams of the underlying vector space. In these op-
timization diagrams, we can identify the existing heuristics, a new
near-optimal solution, as well as the relationship between them.

3.1 The Optimization Diagram
In VSM, both storage and data are characterized as vectors in

the same vector space. The heterogenous storage optimization dia-
grams illustrate this vector space, as Figure 1 shows. By definition,
in a feasible design the aggregate demand vector of a storage-type
must be larger than the sum vector of all data objects assigned to it
(Figure 1a).

Figure 1b illustrates the situation when we have two different
types of storage. In this case, the data in type-1 and type-2 storages
have separate aggregate-demand vectors. The two demand vectors
collectively form a path from the origin to the point representing the
overall resource demand of all the N data objects. Let us call such
a two-segmented path, a solution path. Given a solution path, we
can easily calculate the money needed for each storage type such
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that the capacity vectors of the storage match the demand vectors
of the data assigned to it. The cost of a solution path is the sum of
the money spent on both storage types, and the goal is to find the
solution path with minimal cost.

Given fixed model parameters, all the feasible solution-paths must
be located within a certain convex hull in the vector space. Figure
1c illustrates the convex hull in the optimization diagram, which
is a polygon called C-B region in this paper. Accordingly, the two
boundary curves of the C-B region are called C-B curve and re-
versed C-B curve, respectively. Quantitatively, these geometric ob-
jects can be defined as follows:

DEFINITION 3. Sorting the data objects such that b1
c1
≤ b2

c2
≤

·· · ≤ bN
cN

, and let point Vt = (∑i≤t ci,∑i≤t bi) denote the sum-vector
of the first t data objects in the vector space, the C-B curve is the
linear interpolation curve of the point set {V1,V2, . . . ,VN}. Simi-
larly, the reversed C-B curve is the linear interpolation curve when
data objects are sorted in the descending order of bi

ci
.

DEFINITION 4. For any data set, the C-B curve and the re-
versed C-B curve always intersect at the origin point (0,0) of the
space and the point (∑N

1 ci,∑
N
1 bi). The C-B region is the closed

region surrounded by the C-B curve and the reversed C-B curve.

Since each solution-path contains two segments, which corner
at their intersection point, we can fully represent a solution in the
optimization diagram with this corner point. For example, Figure 2
identifies the points corresponding to the five-minute rule and the
knapsack heuristic. Recall that the basic Knapsack algorithm places
objects with higher bi/ci into type-1 storage subject to a given
space limit C. Such solutions always correspond to a solution-path
with corner point on the C-B curve. The extended knapsack heuris-
tic in Definition 2 further determines C with Eq. (2). One can verify
that the resulting solution corresponds to the intersection point of
the C-B curve with the straight line of slope B2/C2, indicated by the
point vA in Figure 2. On the other hand, since the five-minute rule
(Definition 1) separates data objects between the storage types ac-
cording to the break-even condition bi/ci = B2/C1, it corresponds
to the tangent point of the C-B curve with the straight line of slope
B2/C1, indicated by the point vB in Figure 2.

3.2 Finding the Optimal Solution
In the last section, we have seen that the five-minute rule and

the knapsack heuristic correspond to two special points on the C-B
curve, respectively. In this section we present another simple rule,

which is guaranteed to identify the near-optimal solution in the op-
timization diagram. It turns out that our rule subsumes both the
five-minute rule and the knapsack heuristic in the sense that it de-
generates to these existing rules-of-thumb in different special cases,
while it may provide better solutions in more general situations.

Recall that every solution-path of the problem is located within
the C-B region of the vector space. But the reverse is not true –
there are at most 2N feasible solution-paths among the infinite pos-
sible paths inside the C-B region. It is this discrete nature of the
problem that brings the main difficulty to find the exact optimal so-
lution efficiently. However, observe that in large-scale storage sys-
tems the number of data objects is very large and each data object
only consumes a relatively small fraction of the overall resource ca-
pacity. Consequently, it is reasonable to assume that we can always
group data objects in such a way that the generated solution-path
is “reasonably close” to a arbitrarily chosen (two-segmented) path
in the C-B region. Essentially, the idea is to relax the original high-
dimensional MIP formulation by a nonlinear optimization problem
in the low-dimensional vector space. 4 Solving the relaxed problem
leads to the optimal capacity plan (y1,y2) under an “idealized” data
placement scheme.

Specifically, we have assumed that the type-1 and type-2 storage
types are more economic in I/O capability and storage space, re-
spectively. Formally this means B1 > B2 and C1 <C2, and thus we
have

B2

C2
<

B2

C1
<

B1

C1
and

B2

C2
<

B1

C2
<

B1

C1
. (3)

Now, draw a straight line through the origin point (0,0) with slope
B2/C2 in the vector space, as well as a straight line through the
point (∑N

1 ci,∑
N
1 bi) with slope B1/C1, as Figure 3 shows. We call

the two lines the characteristic lines, as they characterize the per-
dollar capacities of the two storage types (respectively). In gen-
eral, the two characteristic lines divide the C-B region into four
sub-regions (some of which can be empty). The following theorem
shows that the optimal solution of the relaxed optimization problem
over C-B region is simply the best one among the optimal solutions
of four simple “local-optimization problems”, each optimizes a dif-
ferent objective function over a specific sub-region. The theorem is
proved based on the Mixed Integer Programming (MIP) formula-
tion behind the model. See the Appendix for the complete proof.

THEOREM 1. Let A, B, C, D denote the four sub-regions of the
C-B region divided by the characteristic lines (some of the sub-
regions can be empty), as Figure 3 shows. Let vA, vB, vC, vD be
the locally-optimal points in the four sub-regions that optimize (re-
spectively) the objective functions of

max xc over sub-region A (4)
min C1xb−B2xc over sub-region B (5)
max C2xb−B1xc over sub-region C (6)
min xb over sub-region D, (7)

where v = (xc,xb) denote a point of the vector space. Further let
v∗ denote the globally-optimal point among vA, vB, vC, vD such
that the two-segmented path cornered at point v∗ has the minimal
cost among the paths cornered at these locally-optimal points. Then
the path cornered at v∗ is the optimal solution-path of the HSO
problem, if it is feasible.

4We note that this is different from the standard LP relaxation. The
latter only relaxes the domains of the decision variables (for remov-
ing the integrality gap), while our relaxation reduces the number of
the variables (for dimension reduction).
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Interestingly, it turns out that the globally-optimal solution v∗ de-
fined in Theorem 1 has intuitive interpretations in the optimization
diagram. Specifically, consider the problem in two situations:

When the characteristic lines intersect inside the C-B region. In
this case, all of the four sub-regions A, B, C, D are non-empty, as
the case in Figure 3. Observe that the objective functions of the four
local optimization problems have slopes f ′A = 1, f ′B = B2

C1
, f ′C = B1

C2
,

and f ′D = 0, respectively. Also observe that the two characteristic
lines have slopes f ′1 =

B1
C1

and f ′2 =
B2
C2

, respectively. Further incor-
porating Inequalities (3), we know that the four local-optimization
problems must have the same solution in this case, which is the in-
tersection point of the two characteristic lines (see Figure 3). Note
that the intersection point of the characteristic lines corresponds to
a compact plan in which both the type-1 and the type-2 storages are
fully utilized in both storage space and I/O capability.

CONCLUSION 1. When the characteristic lines intersect
inside the C-B region, the optimal heterogeneous storage de-
sign is at the intersection point of the characteristic lines in
the vector space, which corresponds to the most “compact”
solution of the problem.

Quantitatively, let (y∗1,y
∗
2) denote the capacity plan correspond-

ing to v∗, we have

y∗1 =
γ∑− γ2

γ1− γ2
· ∑ci

C1

y∗2 =
γ1− γ∑

γ1− γ2
· ∑ci

C2

where γ1 =
B1

C1
, γ2 =

B2

C2
, γ∑ =

∑bi

∑ci

. (8)

Intuitively, ∑ci
C1

is the cost to place all data objects in type-1 stor-

age, and ∑ci
C2

is the cost to place all data in type-2 storage. The
optimal capacity plan is a linear combination of these two costs,
weighted by γ∑− γ2 and γ1− γ∑. Note that γ1, γ2, and γ∑ are the
throughput-to-space ratios of type-1 storage, type-2 storage, and
data set, respectively, and the fact that the two characteristic lines
intersect inside the C-B region guarantees γ2 < γ∑ < γ1.

When the characteristic lines intersect outside the C-B region.
Without loss of generality we only discuss the cases when the in-
tersection point is below the C-B region, as Figure 4 shows. Such
a situation is usually due to a high throughput-to-space ratio B1

C1
of

the type-1 storage and/or due to a low ratio B2
C2

of the type-2 storage.
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Figure 4: The optimal solution (v∗) when the two characteristic
lines intersect below the C-B region.

In particular, this could be a common scenario when using DRAM
as type-1 storage, such as in DRAM-HDD or DRAM-SSD hierar-
chies. In this case, the two characteristic lines divide the C-B region
into only three sub-regions A, B, and D because there is no feasible
solution in sub-region C at all.

The locally-optimal solutions of the sub-regions A and D cor-
respond to the intersection points of the C-B curve with the two
characterizing lines, respectively. For sub-region B, however, the
locally-optimal point depends on where the objective function of
sub-region B is tangent to the C-B region. For example, Figure 4
illustrates a special case in which the tangent point vB is in mid-
dle of the two intersection points vA and vD. It is obvious that vB
is locally-optimal in sub-region B in this case. Moreover, because
points vA and vD also belong to the sub-region B (or more accu-
rately, at the boundary of B), vB must also be globally optimal over
the whole C-B region. In general, it is not hard to see that

CONCLUSION 2. When the characteristic lines intersect
below the C-B region, the optimal heterogeneous storage de-
sign is always on the C-B curve. Moreover, it is among the
following three points: the two intersection points of the C-B
curve with the characteristic lines, or the tangent point of the
C-B curve with slope B2/C1.

Now, we apply the analysis results presented above to evalu-
ate the existing rules-of-thumb. By comparing Figure 2 and Fig-
ure 4, we immediately see that the five-minute rule and the knap-
sack heuristic correspond to the locally-optimal solution in sub-
regions B and A, respectively. As discussed before, there are in-
deed cases in which they are also globally optimal, respectively.
In these cases, the solution given by Theorem 1 degenerates to the
five-minute rule and the knapsack heuristic. For example, the five-
minute rule (vB) is optimal in the cases of Figure 4. It is also not
hard to see that the knapsack heuristic (vA) is optimal when the
tangent point vB is below the intersection point vA.

On the other hand, Conclusion 1 indicates that when the char-
acteristic lines intersect inside the C-B region the globally optimal
point is not on the C-B curve at all (see Figure 3), so none of these
two widely-used rules can be optimal. In this case, we should in-
stead use the “compact” solution as Eq.(8) suggests. In fact, com-
bining Conclusions 1 and 2 we can see that, we should follow the
five-minute rule or the knapsack-based rules only when such com-
pact solution is infeasible.

Interestingly, experimental results in Section 5 will show that all
the three cases discussed above (i.e. the five-minute rule is optimal,
the knapsack heuristic is optimal, or none of them is optimal) will
occur in heterogeneous systems with common storage devices in
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Figure 5: Illustration of the data placement algorithm that tries to approximate the given (xc,xb) point.

the real world.

CONCLUSION 3. The knapsack-based rules always pro-
vide solutions on the C-B curve, while the five-minute rule
further nails down its solution at the tangent point of the C-B
curve with the objective fucntion of sub-region B. The opti-
mality of these rules-of-thumb depends on model parameters,
and there are cases where both of them are sub-optimal, as
Figure 3 shows.

3.3 Data Placement
In the last section we have assumed that for any given point

v∗ = (xc,xb) in the C-B region, we can find a solution-path that
is cornered at a point nearby (xc,xb). In this section we present a
data placement algorithm that finds such a solution-path.

Denote S2 as the set of data objects placed in type-2 storage, the
algorithm works by adding data objects into S2 in a greedy manner.
More specifically, the algorithm expands the set S2 along the C-B
curve, as illustrated by Figure 5. Recall that C-B curve is essentially
the concatenation of the vectors of all data objects in the ascending
order of bi/ci. The first data object added to S2 is the one whose
individual bi/ci ratio is the closest to xb

xc
. After that, the algorithm

adds data objects into S2 in such a way that the vectors of the data
objects in S2 always form a connected segment in the C-B curve.
In other words, the algorithm always select data objects that are
directly adjacent to the current segment of S2.

The specific data object chosen in each round is the one that
keeps the I/O-to-capacity ratio of the data set S2 as close to the tar-
geted ratio as possible. In other words, the algorithm tries to main-

tain the equation ∑i∈S2
bi

∑i∈S2
ci
≈ xb

xc
throughout the execution. The hope

is that the granularity of individual data objects is small enough
(compared to (xc,xb)) so that we can have a “smooth” expansion
of S2 along the C-B curve. The algorithm terminates when type-2
storage is “full” in some resource dimension. Algorithm 1 gives the
psuedo-code of the algorithm thus described.

As special cases, when (xc,xb) is on the C-B curve – a case when
the characteristic lines intersect below C-B region, as discussed be-
fore – Algorithm 1 is equivalent to the greedy algorithm that simply
places all the data objects at the left side of the point (xc,xb) on the
C-B curve to the type-2 storage. This is also consistent with what
the five-minute rule and the knapsack heuristic asks to do in these
cases (see Definitions 1 and 2).

4. CHARACTERIZING I/O UTILIZATION
In the Vector-Sum Model the resource demand/capacity, if seen

as a set function, is required to be additive in each dimension. For

Algorithm 1: A greedy algorithm for data placement
Input: xc, xb
Output: xi for i = 1, . . . ,N

1 sort data objects in ascending order of bi/ci ;

2 i∗← argmini |bi/ci− xb/xc| ;
3 add i∗ to S2 ;
4 (CS,BS)← (ci∗ ,bi∗) ;

5 while CS < xc and BS < xb do
6 if B/C < xb/xc then
7 i∗←max{i ∈ S2}+1 ;
8 else
9 i∗←min{i ∈ S2}−1 ;

10 add i∗ to S2 ;
11 (CS,BS)← (CS + ci∗ ,BS +bi∗) ;

12 xi← 1 for i 6∈ S2 ;
13 xi← 2 for i ∈ S2 ;

“benign” resource dimensions like storage space this is by-default
true – a 1MB data object plus a 1MB object forms a 2MB data set;
a 1TB hard drive plus a 1TB hard drive forms a 2TB disk array.

On the other hand, the actual I/O performance of modern storage
devices is known to highly depend on the subtle access pattern in
the I/O stream. Generally speaking, it is very challenging to make
accurate prediction about whether a storage device would be satu-
rated by a given I/O trace. Indeed, researchers have proposed vari-
ous nonlinear [27] or even non-close-formed [20] device models to
capture the complexity of storages.

However, to linearize the I/O performance of storage, we may
not have to make such general and a-priori predictions. In this sec-
tion, we argue that it may be possible to have accurate a-posterior
judgments on whether subsets of the given workload can saturate
the device if both the target workload and the target device are
available for us to train a workload-specific model of the device.
The basic idea is to estimate the I/O related parameters (bi’s and B)
via polynomial regression based on measurements collected from
running the specific trace on the specific hardware. The I/O de-
mands thus learned may not be accurate for individual data objects,
but the hope is that when we measure a large group of data objects,
the sum of their I/O demands will be statistically additive. Notice
that what we really want is “only” to predict the critical condition
of whether a storage is saturated by a large data set, and it doesn’t
matter that we don’t know exactly how unsaturated the storage is



under a light workload.
Our parameter estimation approach is based on the effective length

function introduced in Section 4.1. Rather than compressing I/O
traces into a short vector of workload characterization as many pre-
vious approaches do, we only transform each data request in the
trace with the effective length function, and use the whole “trans-
formed” trace as input to compute the I/O demands bi. The workload-
specific parameters in the effective length function and the I/O ca-
pability of the device B are then trained via standard regression
techniques, which is described in Section 4.2.

4.1 The Effective Length Function
To clarify the terminology, we defined an I/O request as a tuple

of (object_id, action, offset, length). In other words, data object
is also the maximal data-access unit. An I/O trace is a sequence
of I/O requests, each associated with an arrival time-stamp. The
duration of the trace is the difference between the minimal and
maximal arrival time. An I/O workload is a stochastic process that
characterizes the data-access demands under given user scenario,
on given data set, and with given system setting. One I/O trace is
considered as a sample of the workload behind.

Given a data-access workload and a storage device, we want to
assign the values of bi’s and B such that the storage device will
work as a stable system 5 when serving the workload if and only if

∑bi ≤ B. (9)

For a given trace, let xi j denote the length of the j-th data request
to data object i in the trace. It is well known that the data length xi j
indeed faithfully reflects the device utilization for sequential I/O
workloads, but the utilization thus calculated may not hit 100% for
non-sequential workloads. In our approach, we assume that each
data request can be attributed with a “dark utilization” such that the
overall utilization of the trace, when counted in these dark utiliza-
tions, always reaches 100% (if the device works under full load).
Specifically, let d denote the duration of the trace, we define

bi =

j
∑ f (xi j)

d
, (10)

where f (x) is called the Effective Length Function (ELF), which
maps the raw data length x to its effective length f (x) when count-
ing in the dark utilization. Intuitively, the effective length of a re-
quest amounts to the data length that the storage device could have
served if it were working at its (fixed) performance limit B. Note
that f (x) is a context-free function, and is essentially a statistical
amortization over all requests of the same length x in the whole
trace. As a special case, for idealized storage device that doesn’t
have any internal parallelism, the effective length of a request is
proportional to the I/O latency of the request. For example, if a de-
vice with maximum data rate of 50 KB/ms serves a 1KB request in
2 ms, then the effective length of the request is 100 KB because in
the same amount of time the device could have served 100 KB if
it were running at the rate 50 KB/ms. Note that real-world storage
devices usually exhibit various built-in parallelism (especially for
SSD), which may lead to nontrivial effective length function f (x).

The specific form of f (x) depends on the specific characteristics
of the storage hardware. Taking hard drive as example, the latency
of a disk I/O consists of data-transfer latency, head-seeking time,
and rotational latency, where the latter two are independent to the

5A queueing system is stable if it has the same average input rate
and output rate, which is the boundary condition to avoid a dramat-
ically increased service latency.

data length of the request [7]. 6 Thus, the effective length function
for hard drives could be in the form of

f (x) = dxeblock +δ , (11)

where dxieblock is the ceiling function that aligns request length up
to the block size of the device, and δ is a constant that amounts
to the initial latency of the request. Note that Eq.(11) degenerates
to data transfer rate and IOPS when the request length x goes to
+∞ and 0, respectively. This is consistent with the standard I/O
capability metric for sequential workloads and random workloads.
The effective length function thus defined can be seen as a gener-
alization of the two common metrics so as to characterize the I/O
capability of storages under mixed workloads.

Despite of its simple form, the ELF function in Eq. (11) turns
out to be surprisingly effective in our experiments, as shown later
in Section 5. Now we focus on how to computationally estimate the
parameters B and δ based on Eq.(10) and (11).

4.2 Statistical Regression
For a trace consisting of n requests and of duration d, by substi-

tuting Eq. (11) and (10) into (9) we obtain

d = (
1
B
)(

i, j

∑dxi je)+(
δ

B
)n (12)

if the storage device is running under full load when serving the
trace. In reality, not every trace saturates the storage device. To
work around this, we ignore the time intervals between requests in
the given trace, and send the data requests by a micro-benchmark
program that issues the next request immediately when the device
completes one. The micro-benchmark program will generate a new
trace, which contains the same set of data requests (i.e., xi j’s and n)
with the original trace, but may have a different duration. Note that
the micro-benchmark program should be properly multi-threaded
so as to push the device to its real limit.

Now, Eq.(12) gives a linear relationship between 1
B and δ

B , where
B and δ are the model parameters we want to estimate. By run-
ning the micro-benchmark program we can calculate a tuple of
(d,∑dxi je,n), which can serve as one training sample of the esti-
mation. By randomly picking up segments from the given trace we
can bootstrap more samples. If the I/O pattern of the whole trace is
statistically stable, all these trace segments should share the same
values of B and δ . Although in theory two such trace-segments are
enough, in practice we usually try much more trace-segments so as
to make the result more robust to statistical instability of the trace.

In this way, we have reduced the parameter estimation problem
to a classic linear regression problem that asks to estimate the val-
ues of 1

B and δ

B from a sequence of (d,∑dxi je,n) observations,
based on the over-determined linear system of Eq.(12). Standard
regression techniques can then be used. For example, we can try
to minimize the vector-norm of the relative errors of the durations
over all trace segments, between the ones measured from the micro-
benchmark program and the ones estimated from Eq.(12). Suppose
we have s trace segments, the resulting optimization problem is

min
λ1,λ2

∥∥∥∥ {
(

∑dxi je
d

)t ·λ1 +(
n
d
)t ·λ2−1

}
t=1...s

∥∥∥∥
B =

1
λ1

, δ =
λ2

λ1

, (13)

6More strictly, there could be other performance overheads that
contribute to the initial latency observed, such as bus contention
or buffer copying. The ELF function in Eq. (11) encompasses all
these factors by assuming that all of them are also statistically in-
dependent to the raw request length.



Table 2: Parameters of the storage types considered for experimentation
Price Capacity Data Rate Capacity/Cost Bandwidth/Cost γ

($) (GB) for Read (MB/s) (GB/$) (MBPS/$) (Bandwidth/Capacity)
SSD (Intel Pro 2500) 120 240 350 2 2.9 1.46
HDD (Seagate ST2000VN001 ) 100 2000 100 20 1.0 0.05
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Figure 6: The web search workload. (a) is the curve of I/O throughput per five minutes. (b) and (c) are the histograms of the sizes
and I/O throughputs of the data objects (i.e. posting lists in this context).

which can be solved by standard optimization routines [24]. The
lower the relative errors we calculate in the test set of trace seg-
ments, the more accurate the estimation is.

Finally, we remark that the training process will be the same if
we model the effective length function with higher-order polyno-
mial functions. While the experimental results in Section 5 show
that the linear function of Eq.(11) can already well capture the cases
of HDD and SSD we tested, the additional degrees of freedom
in higher-order polynomials may help to characterize some more
complex workloads and storage hardware. Also, it is not necessary
to characterize I/O capability as an one-dimensional feature. Alter-
natively, we may learn read I/O capability and write I/O capability
separately, in which case the notion of I/O capability is character-
ized as a vector, and the corresponding heterogeneous storage opti-
mization problem will be solved in high-dimensional vector space.

5. EXPERIMENTS
The evaluations are organized as follows. Section 5.1 describes

the workload and storage hardware used to perform the experi-
ments. Then Section 5.2 examines the accuracy of the parameter
estimation approach in Section 4. Based on the model parameters
thus learned, Section 5.3 verifies how “close” the final solution
found by our data placement algorithm is to the “idealized” opti-
mal solution identified by our capacity planning rule. In addition,
this section shows that the five-minute rule, the knapsack heuris-
tic, and our optimization rule happen to be optimal in the current
DRAM-HDD, DRAM-SSD, and SSD-HDD systems, respectively.

5.1 Experimental Setup
Our research has been triggered by the work to optimize a com-

mercial Web Search system. Web search engines use inverted in-
dex to select relevant web pages for each search query. An inverted
index is essentially a collection of posting lists, and each posting
list stores the occurrence information of one keyword over all the
web pages covered by the index. In the context of web search,
each posting list can be seen as a data object. At this moment,
globe-scale web search engines cover billions of web pages, from
which millions or billions of posting lists (keywords) can be ex-
tracted, resulting in inverted indexes of petabyte-level. Moreover,
major search engines in the market may need to further replicate

the inverted index into multiple copies so as to forking the huge
search traffic on it. Hundreds of thousands of storage devices can
be deployed in these search engines, and the scale of their systems
are still rapidly growing, particularly driven by the development
of mobile and social web. In addition to traditional hard drives,
DRAM is extensively used in large-scale search engines to store
index data at run time, due to its high throughput and low latency.
Furthermore, solid-state storages based on NAND Flash memory
are also adopted by search engines for better trade-offs between
performance and cost [14].

The web search system thus described is a typical example of
the large-scale heterogeneous storage systems considered in this
paper. For experimentation purpose, we collected an inverted-index
partition containing 21.8 millions posting lists. We also collected
an I/O trace on the selected index partition of three consecutive
days from system logs, which consists of 35.8 millions Read I/O
requests. Figure 6(a) shows the I/O curve of the trace over the three
days, from which we can see a clear diurnal pattern. Besides, Figure
6(b) and (c) show that the distributions of both data sizes and I/O
throughput over the posting lists are quite similar between the three
days. These observations imply that we could use the trace of the
current day to estimate parameters for the heterogeneous storage
(re)design of the next day. The goal is to determine a cost-efficient
capacity plan across the HDD and SSD devices listed in Table 2, as
well as a placement scheme for the 21.8 millions posting lists that
matches the aggregate resource capacities of each storage type, in
both storage space and I/O throughput.

5.2 I/O Performance Characterization
First, to verify the effectiveness of our I/O parameter estimation

approach, we use the Day-2 trace of the web search workload as the
training data to estimate B and δ , and test how well the Eq. (11) can
predict the durations of traces in Day-1 and Day-3. Specifically, we
randomly select 80 segments from the Day-2 trace, each with the
duration of around 5 seconds. Then we run those trace segments
on the real storage devices shown in Table 2. Figure 7 and Figure 8
show the plots of the resulting (d,∑dxi je,n) tuples generated by the
micro-benchmark program, for HDD and SSD respectively. We can
see that for both storage devices the data points clearly concentrate
around a straight line, which suggests a strong statistical stability
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of the I/O pattern in the trace.
In order to make robust estimations on B and δ , we set the cost

function of the regression to be the L∞ norm of the relative-error
vector shown in Eq.(13), so that the maximal variance over all ob-
servations is minimized. We obtain the estimation results as fol-
lows.

fhdd(x) = dxe512 +608504.81
Bhdd = 81.93

(14)

fssd(x) = dxe4096 +3164.24
Bssd = 233.97

. (15)

The maximum training errors over all 80 trace-segments is 6.8%
for HDD and 6.1% for SSD, with average training errors of 3.6%
and 2.5%, respectively.

To evaluate the prediction accuracy of the parameters estimated
in Eq.(14) and (15), we randomly choose 18 trace-segments from
the Day-1 trace and Day-3 trace. Figure 7 and Figure 8 show the
prediction results, as well as the actual average request latency by
from the micro-benchmark program. The maximum prediction er-
ror over all 18 trace-segments is 8.0% for HDD, and 8.5% for SSD,
with average training errors of 4.2% and 3.0%, respectively. The
prediction errors in the test set are consistent with the training set.

Notice that δhdd = 608504.81 implies that the effective length of
small disk requests is always close to a constant value around 600
KB, regardless of the real length of the request. This is consistent
with the common sense that IOPS is a good metric for traces full
of small requests. In terms of SSD, we find δssd = 3164.24, which
is comparable to the 4KB page size of the SSD, which means the
SSD can only show an actual I/O rate of 4096/(3164.24+4096) =
56.4% to its maximum rate for 4KB random reads.

5.3 Different Rules for Different Storages
Given Eq.(14) and (15) trained from the Day-2 traces, we can

compute all the model parameters (in particular, the I/O related
parameters) needed to optimize the Vector-Sum Model. Figure 9
shows the resulting C-B region for the web search workload, where

we can observe a strong convexity of the C-B curve. This indicates
that the bi/ci ratio varies significantly between posting lists. Also
notice that the C-B regions are quite similar between the three con-
secutive days.

Recall that the only potential loss of our optimization solution
comes from the data placement algorithm that tries to approximate
the optimal solution-path. So we evaluate the placement error of
Algorithm 1 with the web search workload. Specifically, we ran-
domly sampled 605 points (i.e. (xc,xb) pairs) in the C-B region
(see Figure 9), and measure the placement error for each point. The
placement error is defined as the larger one between the difference
of the planned data size xc with the size of data actually placed by
the algorithm, and the difference of the planned I/O throughput xb
with the throughput actually placed. From Figure 9 we can see that
the average placement error over the 605 samples is 1.95%, and
only 3.47% of the samples (21 out of 605) have placement error
larger than 10%. Moreover, we draw these “bad samples” (i.e. with
error > 10%) in the diagram of Figure 9, where we can see that
most of them are nearby the reversed C-B curve, corresponding to
capacity plans that we are unlikely to make in practice.

We then examined the performance of the five-minute rule and
the knapsack-based rule in three different heterogeneous storage
settings: the DRAM-HDD, DRAM-SSD, and SSD-HDD combina-
tion. Based on Conclusion 3 we can identify the points that these
rules correspond to in the optimization diagram, as Figure 10 shows.

Specifically, Figure 10(a) shows the diagram for the DRAM-
HDD case, in which the characteristic lines intersect outside the C-
B region and the tangent point v5min is above the intersection point
vsack. From Conclusion 2 we know that the five-minute rule is in-
deed globally optimal in this case. This means that the five-minute
rule still works perfectly in the traditional DRAM-HDD hierarchy
even after thirty years since it was proposed!

However, we observed that the adoption of SSD could challenge
the validity of these traditional wisdoms in new heterogeneous stor-
age settings. For example, Figure 10(b) shows the diagram for the
DRAM-SSD case, where we can see that the tangent point v5min
is below the intersection point vsack, meaning that the five-minute
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Figure 10: The optimization diagrams for different storage combinations. The blue point denotes the globally-optimal solution in all
cases. (a) gives the DRAM-HDD diagram, where the five-minute rule v5min is optimal. (b) gives the DRAM-SSD diagram, where the
knapsack-based rule can be better than the five-minute rule. (c) gives the SSD-HDD diagram, in which case both the five-minute rule
and the knapsack-based rule is sub-optimal.

rule is sub-optimal for the DRAM-SSD hierarchy we tested (again
based on Conclusion 2). In fact, according to current model pa-
rameters, the globally-optimal solution is at point vsack, which has
a cost of 16.8% lower than the point v5min derived from the five-
minute rule.

Moreover, Figure 10(c) shows the optimization diagram for the
SSD-HDD case, in which the intersection point of characteristic
lines is not outside the C-B region at all. From Conclusion 1 we
know that in this case the globally-optimal solution is not on the C-
B curve, meaning that not only the five-minute rule is sub-optimal,
but all the knapsack-based rules are sub-optimal, no matter what
the knapsack budget is specified to. Instead, the optimal SSD-HDD
design should correspond to the intersection point of the two char-
acteristic lines, in which case we should try to (and it is possible to)
saturate both the storage space and the I/O capability of SSD and
HDD at the same time.

6. RELATED WORK
The problem of optimizing the performance-to-cost efficiency

of heterogeneous storage systems has been extensively studied in
computer systems research. In early days, researchers have tried to
formulate the systems using microscopic models, such as queuing
network models [6] [26] [9] [15], which try to simulate the internal
dynamics of the target storage under the given workload. However,
it is often difficult to model the modern-day complex systems at
this level and to verify the model thus constructed. Moreover, these
models usually lead to optimization problems with overwhelming
complexity as the number of data objects increases.

Another thread of research formulates heterogeneous storage op-
timization problems by considering the macroscopic constraints in
the target systems. Models of this kind usually consider storage de-
vices as “containers” with certain resource capacity, and consider
data objects as items to be packed into these containers. In particu-
lar, Anderson et al. [2] [3] proposed an automated optimization tool
which essentially models heterogeneous storage optimization as a
“nested” bin-packing problem. In their work, components along the
pathway of data access in the storage system (such as data channels,
controllers) are modeled as containers nested with each other, and
the placement of a data object may increase the resource demands
of the containers in all layers. In the Vector-Sum Model, we focus
on the constraints on the raw storage devices, leaving the optimiza-
tion of the data pathway as a separate (and more detailed) problem.
Moreover, in Anderson et al.’s work the goal is to build independent
software advisors for system administrators [2], based on random-
ized algorithms searching in the configuration space. In contrast, in
this paper we are seeking for optimization rules that are not only ef-
ficient in terms of computational complexity but also conceptually
simple to be applied directly by the system administrators.

Meanwhile, a variety of storage device models have been pro-
posed. “White-box” models can achieve high accuracy by simu-
lating the transient state of the device at run time [8] [17], but
it is hard to conduct analytical analysis of such models. On the
other hand, researchers have also proposed “black-box” models
that take parameterized workload characterizations as input and
output performance predictions without simulating the internals of
the device. Such models include analytical models [27], probabilis-



tic models [16], table-based models [1], and decision-tree based
models [28]. Furthermore, the accuracy of such “absolute” mod-
els can be further improved by modeling the relative fitness be-
tween different storage types [20]. Most of these device models are
nonlinear and typically do not admit simple optimization rules. As
discussed in our paper, to linearize the I/O performance we may
not necessarily generate workload-independent device models. In-
stead, it could be possible to learn workload-specific, rich-input,
and statistically-effective I/O metrics for today’s large-scale stor-
age systems.

The Shapley Value model [21] is a related cost allocation ap-
proach that assigns additive credits to individuals given their col-
lective outputs. The Shapley value is a nonparametric model that
does not depend on a certain regression function as our approach
does. However, note that our approach pursues a different additiv-
ity from Shapley values: The Shapley Value model asks the credits
to be additive over different attributes (such as storage space and
I/O capability, in our language), while in our context we want the
I/O metric to be additive over different individuals (data objects and
storage units).

In this paper we consider cases in which data placement is static.
Of course, there is a substantial body of work on dynamic data
placement, i.e., various caching policies [18] [19]. In these cases,
researchers typically assume an particular analytical function (mostly
the power function) between the capacity demand and the I/O de-
mand of the workload [13]. For example, by assuming such a char-
acteristic function, Sun et al. [25] have proposed a simple capacity
planning rule based on a variant of the Vector-Sum Model for the
heterogeneous memory optimization problem. The functions as-
sumed in their works essentially characterize the equilibrium state
of the system under a “greedy” dynamic data migration that tries
to direct as much I/O traffic to the fast storages as possible. Inter-
estingly, the insights obtained from our analysis suggest that such
greedy data migration may not always be optimal – when the two
characteristic lines intersect inside the C-B region, it may not be
economic to “overload” the fast storage. Instead, the optimal prin-
ciple of data placement (or data migration) in this case is to balance
the capacity and I/O throughput of the data according to the char-
acterizations of the storage types.

7. CONCLUSION
In this paper we have studied the heterogeneous storage opti-

mization problem in its arguably most classic form, the Vector-Sum
Model both in terms of optimization rules and parameter estima-
tion. Our findings indicate that while of course not being com-
pletely accurate (no model ever is), the ever-expanding scale of
modern storage systems is favoring this simple modeling technique
in both aspects, at least with regard to an important subset of to-
day’s data center production workloads. Notice that our optimiza-
tion diagram-based approach may also be useful for cloud comput-
ing tenants to co-optimize their capacity plan and data placement
decisions for the applications storage hierarchy. Finally, it is clear
that the Vector-Sum Model is a simple and simplifying abstrac-
tion. It is an interesting direction for future work to see whether
the model can be made more accurate, while still maintaining the
conciseness that gives raise to the insightful heterogeneous storage
optimization diagrams.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. The key insight is to see that the four sub-regions di-
vided by the characteristic lines correspond to the situations with
different resource bottlenecks. In each situation, the original prob-
lem can be converted to a local optimization problem that can be
easily solved.

Specifically, the Heterogeneous Storage Optimization (HSO) prob-
lem under the Vector-Sum Model can be formulated as

min y1 + y2

s.t. ∑ci ·1[xi = 1]≤C1 · y1

∑ci ·1[xi = 2]≤C2 · y2

∑bi ·1[xi = 1]≤ B1 · y1

∑bi ·1[xi = 2]≤ B2 · y2

, (16)

where 1[e] is the indicator function, which can be seen as a binary
variable that equals 1 if the event e is true, and equals 0 other-
wise. We assume that all the model parameters C1,B1,C2,B2, and
{ci,bi}1...N are known.

Define xc ∈ R and xb ∈ R as the total size and I/O throughput of
the data in type-2 storage, respectively. That is, we have

xc = ∑ci ·1[xi = 2] and xb = ∑bi ·1[xi = 2]. (17)

A (xc,xb) pair is feasible if and only if it corresponds to at least one
assignment of the 0/1-vector {xi} (i.e. a data placement scheme).
Under the assumption that the feasible solutions are well scattered

in the C-B region, and further noticing that

1[xi = 1]+1[xi = 2] = 1 for any object i, (18)

we can recast the original MIP model into the following nonlinear
programming problem by substituting Eq. (17) and (18) into Eq.
(16). Note that the original model has N + 2 variables while the
new model has only four variables: xc, xb, y1, and y2.

min y1 + y2 (19)
s.t. ∑ci−C1y1 ≤ xc ≤C2y2 (20)

∑bi−B1y1 ≤ xb ≤ B2y2 (21)
(xb,xc) ∈ C-B Region

Eq. (20) and Eq. (21) give both upper bounds and lower bounds
to xc and xb. Observe that at least one of the two upper bounds must
be tight in the optimal solution, as y1 and y2 are assumed to be real
numbers in the model. For example, we have

either xc =C2y2 or xb = B2y2 (22)

if the solution (xc,xb,y1,y2) is optimal. Intuitively, Eq.(22) means
the type-2 storage should be bound either in its storage space or in
its I/O throughput. In either case we can remove y2 from the model
by Eq.(22). Similarly one of the two lower bounds in Eq.(20) and
(21) must be tight, depending on the resource bottleneck of type-1
storage, with which we can also remove y1 from Eq.(19). In total,
there are four possible combinations of the tight bounds (resource
bottlenecks). Substituting y1 and y2 by xc and xb in each case yields
four different sub-models:

• Sub-model (A) : both the type-1 storage and type-2 storage
are bound in storage space, in which case we have ∑ci −
C1y1 = xc and xc =C2y2, yielding

max (C2−C1)xc

s.t. xb ≤
B2

C2
xc

xb ≥
B1

C1
xc +(∑bi−

B1

C1
∑ci)

(xb,xc) ∈ C-B Region

(23)

• Sub-model (B) : the type-1 storage is bound in storage space,
and the type-2 storage is bound in I/O throughput, in which
case we have ∑ci−C1y1 = xc and xb = B2y2, yielding

min xb−
B2

C1
xc

s.t. xb ≥
B2

C2
xc

xb ≥
B1

C1
xc +(∑bi−

B1

C1
∑ci)

(xb,xc) ∈ C-B Region

(24)

• Sub-model (C) : the type-1 storage is bound in throughput,
and the type-2 storage is bound in space, in which case we
have ∑bi−B1y1 = xb and xc =C2y2, yielding

max xb−
B1

C2
xc

s.t. xb ≤
B2

C2
xc

xb ≤
B1

C1
xc +(∑bi−

B1

C1
∑ci)

(xb,xc) ∈ C-B Region

(25)



• Sub-model (D) : both the type-1 storage and type-2 storage
are bound in I/O throughput, in which case we have ∑bi−
B1y1 = xb and xb = B2y2, yielding

min (B1−B2)xb

s.t. xb ≥
B2

C2
xc

xb ≤
B1

C1
xc +(∑bi−

B1

C1
∑ci)

(xb,xc) ∈ C-B Region

(26)

We can see that all the four sub-models are constrained by the
same two linear functions of

xb =
B2

C2
xc and ∑bi− xb =

B1

C1
(∑ci− xc). (27)

Notice that the two equations in Eq.(27) correspond exactly to the
two characteristic lines in the optimization diagram, which means
the solution domain of the four sub-models correspond to the four
sub-regions A, B, C, D defined in Theorem 1. We can check that
the objective functions of the four sub-models are consistent with
the ones in Theorem 1, too.


