
Open Solving Library for ODEs (OSLO) 1.0
User Guide

Introduction
OSLO is a .NET and Silverlight class library for the numerical solution of ordinary differential equations (ODEs).

We wrote this library to provide open source access to established equation solving libraries in the .NET

environment. This enables numerical integration to be performed in C#, F# and Silverlight applications. OSLO

implements Runge-Kutta and back differentiation formulae (BDF) for non-stiff and stiff initial value problems

for ordinary differential equations.

This User Guide provides instructions for installation and library usage in addition to some worked examples.

The Getting Started section includes a simple example that shows the basic steps to solve ordinary differential

equations using OSLO.

The OSLO library is distributed as a Visual Studio solution sample source code in C# and F#. Samples visualize

results using DynamicDataDisplay library.

Getting Started
In this section, we demonstrate how to start working with the OSLO library

1. Download zip file with OSLO library and unpack it to the folder of your choice.

2. Start Visual Studio 2010 and create new project using File>New>Project command. Select Visual C#

console application for Windows as shown on the picture below.

Step 2. Create new project dialog window

http://dynamicdatadisplay.codeplex.com/

3. Open Solution Explorer window (you can press Ctrl+W,S). Right click on the References and choose ‘Add

Reference…’ in context menu. Go to Browse tab and add Microsoft.Research.Oslo.dll from the folder

you’ve selected at step 1.

4. Switch to the C# source code file. Go to the Solution Explorer window and double click Program.cs item.

5. Add using statements at the beginning of the file.

using Microsoft.Research.Oslo;

6. As an example, let’s numerically solve the Lotka-Volterra (Predator-Prey) model as an initial value

problem. The predator-prey interactions lead to a time evolution of these populations according to

{

𝑑𝑥

𝑑𝑡
= 𝑥 − 𝑥𝑦,

𝑑𝑦

𝑑𝑡
= −𝑦 + 𝑥𝑦.

where x(t) is the prey population and y(t) is the predator population. We consider the initial conditions

x(0) = 5 and y(0) = 1.

Add the following code to the Main method to define the system we are going to solve using an explicit

Runge-Kutta method. The first parameter of RK547M is the initial time, the second parameter is a 2D

vector with the initial system state and the third parameter is a lambda expression that defines the right

hand side of the equations. Note that we use the Vector constructor with two parameters to construct

2D vectors. More parameters will result in vectors of higher dimension.

var sol = Ode.RK547M(

 0,

 new Vector(5.0, 1.0),

 (t, x) => new Vector(

 x[0] - x[0] * x[1],

-x[1] + x[0] * x[1]));

7. The previous line doesn’t actually solve the ODEs. Instead it defines an enumerable sequence of solution

points. The actual integration occurs when the variable ‘sol’ is being accessed. The next line will request

solution points until time moment 20 and store them with step 1 in an array.

var points = sol.SolveFromToStep(0, 20, 1).ToArray();

8. Now we’ll print solution points to the screen.

foreach (var sp in points)
 Console.WriteLine("{0}\t{1}", sp.T, sp.X);

9. After completing steps 6-8 the source code of Program.cs should look like this:

 static void Main(string[] args)
 {
 var sol = Ode.RK547M(

 0,
 new Vector(5.0, 1.0),
 (t, x) => new Vector(
 x[0] - x[0] * x[1],
 -x[1] + x[0] * x[1]));

 var points = sol.SolveFromToStep(0, 20, 1).ToArray();

 foreach (var sp in points)
 Console.WriteLine("{0}\t{1}", sp.T, sp.X);
 }

Compile and run the application. A console window appears with three columns of numbers. The first
column is time (‘T’ property of solution point), the second and third columns are the solution vectors
(‘X’ property of solution point). You may see how the population of predator and prey go through cycles
of peaks and troughs.

Step 9. Computation results.

Ordinary differential equations (ODE)

Overview
The OSLO library provides subroutines to integrate initial value problems from time 𝑡0 with initial conditions

given by the vector 𝐱0.

{

𝑑𝐱

𝑑𝑡
= 𝐟(𝑡, 𝐱), 𝑡 ≥ 0,

𝐱(𝑡0) = 𝐱0,

where 𝐟(𝑡, 𝐱) = (𝑓1(𝑡, 𝐱), … , 𝑓𝑠(𝑡, 𝐱)).

Runge-Kutta and Gear backward differentiation formulae are supported. Both methods use automatic step

size calculation procedures to satisfy accuracy conditions. The right-hand sides are specified as user defined

methods or lambda expressions with two parameters: time and system state.

Programming model
Numerical integration is initiated by invoking a single method. It is Microsoft.Research.Oslo.Ode.RK547 for

explicit Runge-Kutta method and Microsoft.Research.Oslo.Ode.GearBDF for implicit Gear BDF method

suitable for stiff problems.

Both methods have the same set of parameters that include:

 Time moment to solve from

 Initial values vector

 Right part, specified either as method name or as lambda expression

 Additional options including initial suggested time step, desired accuracy, output time step and

Jacobian matrix.

ODE solution methods return sequence of solution points represented by instances of SolPoint structures

containing time moment T and system state X at this moment.

var sol = Microsoft.Research.Oslo.Ode.RK547M(

 0,

 new Vector(0.5,4.0),

 (t,x) => new Vector(

 x[1] – x[1]*x[0],

 -x[0] + x[1]*x[0]),

 new Options {

 AbsoluteTolerance = 1e-6,

 RelativeTolerance = 1e-6

 });

It is important to note that no integration in performed at the moment of RK547M invocation. Instead the

method returns instance of IEnumerable<SolPoint> that performs actual computation when next point is

requested. This allows to use full potential of LINQ subroutines when working with ODE solution.

For example, following code prints every point produces by numeric integration between time moments 1.0

and 2.5:

foreach(var p in sol.SkipWhile(sp => sp.T < 1.0).TakeWhile(sp => sp.T <= 2.5))

 Console.WriteLine(“{0}, {1}”, sp.T, sp.X);

In additional to standard LINQ methods, several methods are provided to manipulate the solution

sequences produced by OSLO. The extension method WithStep(double dt) returns interpolated solution

points at time moments n * dt , and AddTimeStep() appends a time step between the previous and current

solution points as extra components of the system state.

Because the system is being integrated and every time solution sequence is enumerated, it is advisable to

use ToArray() when the solution is going to be accessed multiple times. In following example numerical

integration will take place twice, inside both ‘foreach’ loops.

var sol = Ode.RK547(0, new Vector(1), (t,x) => -x[0]).TakeWhile(p => p.T <=

5.0);

foreach(var p in sol) // Integrate ODE

 Console.WriteLine(p.X);

foreach(var p in sol) // Integrate ODE again!

 Console.WriteLine(p.X);

One can use the ToArray method to explicitly integrate the system when needed:

var sol = Ode.RK547(0, new Vector(1), (t,x) => -x[0]).TakeWhile(p => p.T <=

5.0).ToArray(); // Сomputations are performed here!

foreach(var p in sol) // Just enumeration of the array

 Console.WriteLine(p.X);

foreach(var p in sol) // Just enumeration of the same array

 Console.WriteLine(p.X);

Numerical methods

Runge-Kutta (Microsoft.Research.Oslo.Ode.RK547M method)

This method is most appropriate for solving non-stiff ODE systems. It is based on classical Runge-Kutta

formulae with modifications for automatic error and step size control. Following Dormand and Prince [1],

define method coefficients 𝑐𝑖, 𝑎𝑖𝑗 , 𝑏�̂�, 𝑏𝑖, where

𝑐𝑖 𝑎𝑖𝑗 𝑏�̂� 𝑏𝑖

0
35

384

5179

57600
1

5

𝟏

𝟓
0 0

3

10

𝟑

𝟒𝟎

𝟗

𝟒𝟎

500

1113

7571

16695
4

5

𝟒𝟒

𝟒𝟓
−
𝟓𝟔

𝟏𝟓

𝟑𝟐

𝟗

125

192

393

640
8

9

𝟏𝟗𝟑𝟕𝟐

𝟔𝟓𝟔𝟏
−
𝟐𝟓𝟑𝟔𝟎

𝟐𝟏𝟖𝟕

𝟔𝟒𝟒𝟒𝟖

𝟔𝟓𝟔𝟏
−
𝟐𝟏𝟐

𝟕𝟐𝟗
−
2187

6784
−
92097

339200

1 −
𝟗𝟎𝟏𝟕

𝟑𝟏𝟔𝟖
−
𝟑𝟓𝟓

𝟑𝟑

𝟒𝟔𝟕𝟑𝟐

𝟓𝟐𝟒𝟕

𝟒𝟗

𝟏𝟕𝟔
−
𝟓𝟏𝟎𝟑

𝟏𝟖𝟔𝟓𝟔

11

84

187

2100

1
𝟑𝟓

𝟑𝟖𝟒
0

𝟓𝟎𝟎

𝟏𝟏𝟏𝟑

𝟏𝟐𝟓

𝟏𝟗𝟐
−
𝟐𝟏𝟖𝟕

𝟔𝟕𝟖𝟒

𝟏𝟏

𝟖𝟒
0

1

40

On the 1st integration step, 𝐱1 = �̂�1 = 𝐱0

Then, if 𝐱n is solution vector on n’st step, ℎ𝑛 is integration step size, we may find 𝐱n+1 in the following way:

1) Find 𝐤1 = ℎ𝑛𝐟(𝑡𝑛, �̂�n), 𝐤i = ℎ𝑛𝐟(�̂�n + ∑ 𝑎𝑖𝑗𝐤j
𝑖−1
𝑗=1), 𝑖 = 2,3, … , 𝑠

2) Find �̂�n+1 = �̂�n + ∑ �̂�𝑖𝐤i
𝑠
𝑖=1 and 𝐱𝐧+𝟏 = �̂�𝒏 + ∑ 𝑏𝑖𝐤i

𝑠
𝑖=1

3) Compute error estimation 휀𝑛+1 = max
𝑖=1,..,𝑠

|xn+1,i− x̂n+1,i|

max(𝐴𝑏𝑠𝑇𝑜𝑙,𝑅𝑒𝑙𝑇𝑜𝑙∙max (|xn+1,i|,|x̂n+1,i|))

where AbsTol and RelTol are absolute and relative tolerance taken from solver options, s is a

dimension of the system and i subscript stands for i-th component of vector.

4) Step size is decreased and n’th step is performed again if 휀𝑛+1 ≥1. Otherwise 𝐱𝐧+𝟏 is accepted as

next solution point.

5) Step size is adjusted to keep 휀𝑛+1 below 1.0. Special procedure is used to avoid step size oscillations

(see PI-filter definition in [2] for details).

Gear’s backward differentiation formulae (Microsoft.Research.Oslo.Ode.GearBDF method)

It is implementation of Gear back differentiation method [4], a multistep implicit method for stiff ODE

systems solving. General back differentiation formula of order q can be written as

𝐱n = ∑𝛼𝑗𝐱n−j + ℎ𝑛𝛽0𝐟(𝐱n)

𝑞

𝑗=1

Coefficients 𝛼𝑗 and 𝛽0 are chosen to ensure that the above formula gives exact solutions for polynomials of

order q.

Nordsieck representation [3,5] of Gear back differentiation formulae is used. On the nth integration step, we

use Nordsieck’s history matrix

𝐙n =

(

𝑥1,𝑛 ℎ𝑛�̇�1,𝑛 ℎ𝑛

2
�̈�1,𝑛
2!

⋯ ℎ𝑛
𝑞 𝑥1,𝑛

(𝑞)

𝑞!

𝑥2,𝑛 ℎ𝑛�̇�2,𝑛 ℎ𝑛
2
�̈�2,𝑛
2!

⋯ ℎ𝑛
𝑞 𝑥2,𝑛

(𝑞)

𝑞!
⋮ ⋮ ⋮ ⋱ ⋮

𝑥𝑠,𝑛 ℎ𝑛�̇�𝑠,𝑛 ℎ𝑛
2
�̈�𝑠,𝑛
2!

⋯ ℎ𝑛
𝑞 𝑥𝑠,𝑛

(𝑞)

𝑞!)

∈ 𝑅𝑠×𝑞+1,

where s is dimension of the system, q is method maximal available order. It is easy to see that the first

column of the Nordsieck matrix is the phase vector, and the second column is the first derivative of the

phase vector multiplied by the time step.

We also use the following matrix of coefficients [5] where each row corresponds to specified method order

q:

𝐋 =

(

1 1
2

3
1

1

3
6

11
1

6

11

1

11
24

50
1

35

50

10

50

1

50
120

274
1

225

274

85

274

15

274

1

274
720

1764
1

1624

1764

735

1764

175

1764

21

1764

1

1764)

At initial time moment t = t0, we take the Nordsieck matrix as

𝐙0 = (
x1(t0) h0ẋ1(t0) 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

xs(t0) h0xṡ(t0) 0 ⋯ 0
), where �̇�(t0) = 𝐟(𝐱(t0), t0).

At each step of integration, we implement the predictor-corrector scheme:

Predictor:

{
𝐙n
[0]
= 𝐀𝐙n−1, Ai,j = (

i
j
) ,

𝐞n
[0]
= 0.

Corrector (multiple iterations):

{

 𝐠n

[m]
= hn𝐟 (𝐱n

[m]
) − hn�̇�n

[0]
− 𝐞n

[m]
,

𝐞n
[m+1]

= 𝐞n
[m]

+ (𝐈 − hnβ𝐉)
−1𝐠n

[m]
,

𝐱n
[m+1]

= 𝐱n
[0]
+ L0,q𝐞n

[m+1]
.

After M iterations of the corrector step we compute the Nordsieck matrix for the next time instance as

𝐙n = 𝐙n
[0] + 𝐂, Ci,j = en,i

[M]
 Lj,q.

Iterational corrector algorithm uses inverted Jacobian J of the system right-hand side. If a Jacobian isn’t
supplied in the Options structure, the following numerical form of the Jacobian is used [5]:

Let 𝛅𝐱 = (√10−6𝑚𝑎𝑥(10−5, |𝑥1|) , … ,√10
−6𝑚𝑎𝑥(10−5, |𝑥𝑠|)) is numerical analogue of x variation.

Then 𝑱 =

(

𝑓1(𝑡,𝛅𝐱
1)−𝑓1(𝑡,𝐱)

𝛿𝑥1
⋯

𝑓1(𝑡,𝛅𝐱
s)−𝑓1(𝑡,𝐱)

𝛿𝑥𝑠

⋮ ⋱ ⋮
𝑓𝑠(𝑡,𝛅𝐱

1)−𝑓𝑠(𝑡,𝐱)

𝛿𝑥1
⋯

𝑓𝑠(𝑡,𝛅𝐱
s)−𝑓𝑠(𝑡,𝐱)

𝛿𝑥𝑠)

,

 where 𝛅𝐱𝑖 = (𝑥1, … , 𝑥𝑖 + 𝛿𝑥𝑖 … , 𝑥𝑠), 𝑖 = 1,… 𝑠.

On every step of integration, the solution accuracy is controlled and step size is changed according

to convergence of corrector iterations. Note that method order can also decrease and increase in

the range 1 to 3. For details about Nordsieck matrix transformations when changing order and/or

step size see [5].

References
[1] Dormand, J. R.; Prince, P. J. (1980), "A family of embedded Runge-Kutta formulae", Journal of

Computational and Applied Mathematics 6 (1): 19–26

[2] Soderlind, G.. Digital Filters in Adaptive Time Stepping. ACM Transactions on Mathematical Software.

[3] E.Hairer, S.P. Nørsett, G.Wanner, Solving ordinary differential equations, Springer, 1993.

[4] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood

Cliffs 1971.

[5] K. Radhakrishnan and A. C. Hindmarsh, "Description and Use of LSODE, the Livermore Solver for Ordinary

Differential Equations," LLNL report UCRL-ID-113855, December 1993

