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ABSTRACT
1 Random samples are lossy summaries which allow queries posed over the
data to be approximated by applying an appropriate estimator to the sam-
ple. The effectiveness of sampling, however, hinges on estimator selection.
The choice of estimators is subjected to global requirements, such as unbi-
asedness and range restrictions on the estimate value, and ideally, we seek
estimators that are both efficient to derive and apply and admissible (not
dominated, in terms of variance, by other estimators). Nevertheless, for a
given data domain, sampling scheme, and query, there are many admissible
estimators.

We define monotone sampling, which is implicit in many applications
of massive data set analysis, and study the choice of admissible nonnega-
tive and unbiased estimators. Our main contribution is general derivations
of admissible estimators with desirable properties. We present a construc-
tion of order-optimal estimators, which minimize variance according to any
specified priorities over the data domain. Order-optimality allows us to cus-
tomize the derivation to common patterns that we can learn or observe in the
data. When we prioritize lower values (e.g., more similar data sets when es-
timating difference), we obtain the L∗ estimator, which is the unique mono-
tone admissible estimator and dominates the classic Horvitz-Thompson es-
timator. We show that the L∗ estimator is 4-competitive, meaning that the
expectation of the square, on any data, is at most 4 times the minimum
possible for that data. These properties make the L∗ estimator a natural
default choice. We also present the U∗ estimator, which prioritizes large
values (e.g., less similar data sets). Our estimator constructions are general,
natural, and practical, allowing us to make the most from our summarized
data.

1. INTRODUCTION
Random sampling is a common tool in the analysis of massive

data. Sampling is highly suitable for parallel or distributed plat-
forms. The samples facilitate scalable approximate processing of
queries posed over the original data, when exact processing is too
resource consuming or when the original data is no longer avail-
able. Random samples have a distinct advantage over other synop-
sis in their flexibility. In particular, they naturally support domain
(subset) queries, which specify a selected set of records. Moreover,
the same sample can be used for basic statistics, such as sums, mo-
ments, and averages, and more complex relations: distinct counts,
size of set intersections, and difference norms.

The value of a sample hinges on the accuracy within which we
can estimate query results. In turn, this boils down to the estimators
we use, which are the functions we apply to the sample to produce
the estimate. As a rule, we are interested in estimators that satisfy
desirable global properties, which must hold for all possible data
in our data domain. Common desirable properties are:

• Unbiasedness, which means that the expectation of the estimate
is equal to the estimated value. Unbiasedness is particularly impor-
tant when we are ultimately interested in estimating a sum aggre-
gate, and our estimator is applied to each summand. Typically, the
1This is a full version of a PODC 2014 paper

estimate for each summand has high variance, but with unbiased-
ness (and pairwise independence), the relative error decreases with
aggregation.

• Range restriction of estimates: since the estimate is often used
as a substitute of the true value, we would like it to be from the
same domain as the query result. Often, the domain is nonnegative
and we would like the estimate to be nonnegative as well. Another
natural restriction is boundedness which means that for each given
input, the set of possible estimate values is bounded.

• Finite variance (implied by boundedness but less restrictive)

Perhaps the most ubiquitous quality measure of an estimator is
its variance. The variance, however, is a function of the input data.
An important concept in estimation theory is a Uniform Minimum
Variance Unbiased (UMVUE) estimator [30], that is, a single esti-
mator which attains the minimum possible variance for all inputs
in our data domain [27]. A UMVUE estimator, however, gener-
ally does not exist. We instead seek an admissible (Pareto variance
optimal) estimator [30] – meaning that strict improvement is not
possible without violating some global properties. More precisely,
an estimator is admissible if there is no other estimator that satisfies
the global properties with at most the variance of our estimator on
all data and strictly lower variance on some data. A UMVUE must
be admissible, but when one does not exist, there is typically a full
Pareto front of admissible estimators. We recently proposed vari-
ance competitiveness [15], as a robust “worst-case” performance
measure when there is no UMVUE. The variance competitive ra-
tio is the maximum, over data, of the ratio of the expectation of
the square of our estimator to the minimum possible for the data
subject to the global properties. A small ratio means that variance
on each input in the data domain is not too far off the minimum
variance attainable on this data by an estimator which satisfies the
global properties. In particular, the UMVUE, when it exists, is 1-
competitive.

We propose the following definition of monotone sampling. In
the sequel we show how it incorporates common sampling schemes.

A monotone sampling scheme (V, S∗) is specified by
a data domain V and a mapping S∗ : V × (0, 1] →
2V. The mapping is such that the set S∗(v, u) for a
fixed v is monotone non-decreasing with u.

The sampling interpretation is that a sample S(v, u) of the input v
(which we also refer to as the data vector) is obtained by drawing
a seed u ∼ U [0, 1], uniformly at random from [0, 1]. The sam-
ple deterministically depends on v and the (random) seed u. The
mapping S∗(v, u) is the set of all data vectors that are consistent
with S (which we assume includes the seed value u). It represents
all the information we can glean from the sample on the input. In
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particular, we must have v ∈ S∗(v, u) for all v and u. The sam-
pling scheme is monotone in the randomization: When fixing v,
the set S∗(v, u) is non-decreasing with u, that is, the smaller u is,
the more information we have on the data v.

In the applications we consider, the (expected) representation
size of the sample S(v, u) is typically much smaller size than v.
The set S∗ can be very large (or infinite), and our estimators will
only depend on performing certain operations on it, such as obtain-
ing the infimum of some function. Monotone sampling can also
be interpreted as obtaining a “measurement” S(v, u) of the data v,
where u determines the granularity of our measuring instrument.
Ultimately, the goal is to recover some function of the data from
the sample (the outcome of our measurement):

A monotone estimation problem is specified by a mono-
tone sampling scheme and a nonnegative function f :
V ≥ 0. The goal is to specify an estimator, which is
a function of all possible outcomes f̂ : S ≥ 0, where
S = {S(v, u)|v ∈ V, u ∈ (0, 1]. The estimator
should be unbiased ∀v, Eu∼U [0,1]f̂(S(v, u)) = f(v)
and satisfy some other desirable properties.

The interpretation is that we obtain a query, specified in the form
of a nonnegative function f : V ≥ 0 on all possible data vectors
v. We are interested in knowing f(v), but we can not see v and
only have access to the sample S. The sample provides us with
little information on v, and thus on f(v). We approximate f(v)

by applying an estimator, f̂(S) ≥ 0 to the sample. The monotone
estimation problem is a bundling of a function f and a monotone
sampling scheme. We are interested in estimators f̂ that satisfy
properties. We always require nonnegativity and unbiasedness and
consider admissibilitiy, variance competitiveness, and what we call
customization (lower variance on some data patterns).

Our formulation departs from traditional estimation theory. We
view the data vectors in the domain as the possible inputs to the
sampling scheme, and we treat estimator derivation as an optimiza-
tion problem. The variance of the estimator parallels the “perfor-
mance” we obtain on a certain input. The work horse of estimation
theory, the maximum likelihood estimator, is not even applicable
here as it does not distiguish between the different data vectors in
S∗. Instead, the random “coin flips,” in the form of the seed u,
that are available to the estimator are used to restrict the set S∗ and
obtain meaningful estimates.

We next show how monotone sampling relates to the well-studied
model of coordinated sampling, that has extensive applications in
massive data analysis. In particular, estimator constructions for
monotone estimation can be applied to estimate functions over co-
ordinated samples.

Coordinated shared-seed sampling
In this framework our data has a matrix form of two or more (r >
1) instances, where each instance (row) has the form of a weight as-
signment to the (same) set of items (columns). Different instances
may correspond to snapshots, activity logs, measurements, or re-
peated surveys that are taken at different times or locations. When
instances correspond to documents, items can correspond to fea-
tures. When instances are network neighborhoods, items can cor-
respond to members or objects they store.

Over such data, we are interested in queries which depend on
two or more of the instances and a subset D of the items. Some
examples are Jaccard similarity, distance norms, or the number of
distinct items with positive entry in at least one instance (distinct
count).

Example 1 Dataset with 3 instances and queries
Instances i ∈ {1, 2, 3} and items k ∈ {a, b, c, d, e, f, g, h}:

a b c d e f g h
v1 0.95 0 0.23 0.70 0.10 0.42 0 0.32
v2 0.15 0.44 0 0.80 0.05 0.50 0.20 0
v3 0.25 0 0 0.10 0 0.22 0 0

Example queries overD ⊂ [a-h]. Lp difference, Lpp: the pth power
of Lp difference and a sum aggregate, Lpp+: asymmetric (increase
only) Lpp. G: example “arbitrary” sum aggregate.

Lpp(D) =
∑
k∈D
|v(k)

1 − v
(k)
2 |

p
Lp(D) = (Lpp(D))1/p

Lpp+(D) =
∑
k∈D

max{0, v(k)
1 − v

(k)
2 }

p

G(D) =
∑
k∈D
|v(k)

1 − 2v
(k)
2 + v

(k)
3 |

2

sum aggregate item function
Lpp RGp(v) = (max(v)−min(v))p

Lpp+ RGp+(v1, v2) = max{0, v1 − v2}p

G g(v1, v2, v3) = |v1 + v3 − 2v2|2

L1({b, c, e}) =|0− 0.44|+ |0.23− 0|+ |0.10− 0.05| = 0.71

L2
2({c, f, h}) =(0.23− 0)2 + (0.50− 0.42)2 + (0.32− 0)2 ≈ 0.16

L2({c, f, h}) =
√
L2
2({c, f, h}) ≈ 0.40

L1+({b, c, e}) =max{0, 0− 0.44}+max{0, 0.23− 0}+
+max{0, 0.10− 0.05} = 0.235

G({b, d}) =|0− 2 ∗ 0.44 + 0|2 + |0.7− 2 ∗ 0.8 + 0.1|2 ≈ 1.18

Such queries often can be expressed, or can be well approxi-
mated, by a sum over items in D of an item function that is applied
to the tuple containing the values of the item in the different in-
stances. Distinct count is a sum aggregate of logical OR and the Lp
difference is the pth root of Lpp, which sum-aggregates |v1 − v2|p.
For r ≥ 2 instances, we can consider sum aggregates of the expo-
nentiated range functions RGp(v) = (max(v)−min(v))p, where
p > 0. This is made concrete in Example 1 which illustrates a data
set of 3 instances over 8 items, example queries, specified over a
selected set of items, and the corresponding item functions.

We now assume that each instance is sampled and the sample of
each instance contains a subset of the items that were active in the
instance (had a positive weight). Common sampling schemes for
a single instance are Probability Proportional to Size (PPS) [24]
or bottom-k sampling which includes Reservoir sampling [26, 36],
Priority (Sequential Poisson) [31, 19], or Successive weighted sam-
ple without replacement [33, 20, 11]. The sampling of items in
each instance can be completely independent or slightly dependent
(as with Reservoir or bottom-k sampling, which samples exactly k
items).

Coordinated sampling is a way of specifying the randomization
so that the sampling of different instances utilizes the same “ran-
domization” [2, 35, 6, 32, 34, 4, 3, 13, 28, 16]. That is, the sampling
of the same item in different instances is highly correlated. This is
in contrast to independent sampling. Alternative term used in the
survey sampling literature is Permanent Random Numbers (PRN).
Coordinated sampling is also a form of locality sensitive hashing
(LSH): When the weights in two instances (rows) are similar, the
samples we obtain are similar.

The method of coordinating samples had been rediscovered many
times, for different applications, in both statistics and computer sci-
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ence. The main reason for its consideration by computer scientists
is that it allows for more accurate estimates of queries that span
multiple instances such as distinct counts and similarity measures
[4, 3, 6, 17, 29, 21, 22, 5, 18, 1, 23, 28, 13, 16]. In some cases, such
as all-distances sketches [6, 10, 29, 11, 12, 8] of neighborhoods of
nodes in a graph, coordinated samples are obtained much more ef-
ficiently than independent samples. Coordination can be efficiently
achieved by using a random hash function, applied to the item key
k, to generate the seed u(k), in conjunction with the single-instance
scheme of our choice (PPS or Reservoir). The use of hashing al-
lows the sampling of different instances to be performed indepen-
dently with very small shared state.

Coordinated PPS sampling of the instances in Example 1 is demon-
strated in Example 2. The same random seed u(k) is used to deter-
mine the sampling of item k across instances.

Sum aggregates
∑
i∈D f(v(i)), such as Lpp, over a domain of

items D are estimated by summing up item function estimators
over the selected items, that is

∑
i∈D f̂(S(v(i), u(i)). The sam-

pling of each item tuple is generally very sparse, with no entries or
almost no entries sampled, and we therefore expect zero estimates
f̂ = 0 for most items and a high variance. We therefore insist
on unbiasedness and pairwise independence of the single-item es-
timates. That way,

VAR[
∑
i∈D

f̂(S(v(i), u(i)))] =
∑
i∈D

VAR[f̂(S(v(i), u(i)))] ,

the variance of the sum estimate is the sum over items in i ∈ D of
the variance of f̂ for v(i). Thus (assuming variance is balanced) we
can expect the relative error to decrease ∝ 1/

√
|D|. Lastly, since

the functions we are interested in are nonnegative, we also require
the estimates to be nonnegative.

Coordinated sampling, when projected on the tuple v of the weights
of the item on the different instances (a column in our matrix) is
a monotone sampling scheme 2 and the estimation problem of an
item-function is a corresponding monotone estimation problem.

More precisely, the data domain in the monotone estimation prob-
lem we obtain is a subset of r ≥ 1 dimensional vectors V ⊂ Rr≥0

(where r is the number of instances in the query specification). The
sampling is specified by r continuous non-decreasing functions on
(0, 1]: τ = τ1, . . . , τr . The sample S includes the ith entry of v
with its value vi if and only vi ≥ τi(u). Note that when entry i
is not sampled, we also have some information, as we know that
vi < τi(u). Therefore the set S∗ of data vectors consistent with
our sample (which we do not explicitly compute) includes the ex-
act values of some entries and upper bounds on other entries. Since
the functions τi are non-decreasing, the sampling scheme is mono-
tone. In particular, PPS sampling of different instances, restricted
to a single item, is expressed with τi(u) that are linear functions:
There is a fixed vector τ ∗ such that τi(u) ≡ uτ∗i .

Therefore, the estimation of the sum-aggregate over coordinated
samples is reduced to monotone estimation.

In [15] we provided a complete characterization of item-function
estimation problems over coordinated samples for which estimators
with desirable global properties exist. This characterization can
be extended to monotone estimation. The properties considered
were unbiasedness and nonnegativity, and together with finite vari-

2Bottom-k samples select exactly k items in each instance, hence
inclusions of items are dependent. We obtain a single-item restric-
tion by considering the sampling scheme for the item conditioned
on fixing the seed values of other items. A similar situation is with
all-distances sketches, where we can use the HIP inclusion proba-
bilities [8], which are conditioned on fixing the randomization of
all closer nodes.

ances or boundedness. We also showed that for any coordinated
estimation problem for which an unbiased nonnegative estimator
with finite variances exists, we can construct an estimator, which
we named the J estimator, that is 84-competitive. The J estima-
tor, however, is generally not admissible, and also, the construction
was geared to establish O(1) competitiveness rather than obtain a
“natural” estimator or to minimize the constant.

Contributions
Our main technical contributions are the derivation of estimators
for general monotone estimation problems. Our estimators are ad-
missible, easy to apply, and satisfy desirable properties. We overview
our results and provide pointers to examples and to the appropriate
sections in the paper.

The optimal range: We start by studying the admissibility play-
ing field for unbiased nonnegative estimators. We define the op-
timal range of estimates (Section 3) for each particular outcome,
conditioned on the aggregate estimate over all “less-informative”
outcomes (outcomes which correspond to larger seed value u). The
range includes all estimate values that are “locally” optimal with re-
spect to at least one data vector that is consistent with the outcome.
We show that being “in range” almost everywhere is necessary for
admissibility and is sufficient for unbiasedness and nonnegativity,
when an unbiased nonnegative estimator exists.

The L* estimator: We study the estimator obtained when requir-
ing the estimate on each outcome to be equal to the infimum of the
optimal range. We name it the L* estimator and study it extensively
in Section 4. The L* estimator can be expressed as the solution of a
respective integral equation, which we solve to obtain a convenient
form:

f̂ (L)(S, ρ) =
f (v)(ρ)

ρ
−
∫ 1

ρ

f (v)(u)

u2
du , (1)

where ρ is the seed value used to obtain the sample S, v ∈ S∗ is
any (arbitrary) data vector consistent with S and ρ, and the lower
bound function f (v)(u) is defined as the infimum of f(z) over all
vectors z ∈ S∗(v, u) that are consistent with the sample obtained
for data v with seed u. Note that the right hand side is the same for
any choice of v ∈ S∗ and can be computed from the information in
S and ρ. Therefore, the estimate is well defined and we can com-
pute it by numeric integration or a closed form (when a respective
definite integral has a closed form). The lower bound function is
presented more precisely in Section 2 and an example is provided
in Example 3. An example derivation of the L* estimator for the
functions RGp+ is provided in Example 4.

We show that the L* estimator has a natural and compelling com-
bination of properties. It satisfies both our quality measures, being
both admissible and 4-competitive for any instance of the mono-
tone estimation problem for which a bounded variance estimator
exists. The competitive ratio of 4 improves over the previous upper
bound of 84 [15]. We show that the ratio of 4 of the L* estima-
tor is tight in the sense that there is a family of functions on which
the supremum of the ratio, over functions and data vectors, is 4. We
note however that the L* estimator has lower ratio for specific func-
tions. For example, we computed ratios of 2 and 2.5, respectively,
for exponentiated range with p = 1, 2 (Which facilitates estimation
of Lp differences, see Example 1).

Moreover, the L* estimator is monotone, meaning that when fix-
ing the data vector, the estimate value is monotone non-decreasing
with the information in the outcome (the set S∗ of data vectors that
are consistent with our sample). In terms of our monotone sam-
pling formulation, estimator monotonicity means that when we fix
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the data v, the estimate is non-increasing with the seed u. Fur-
thermore, the L* estimator is the unique admissible monotone es-
timator and thus dominates (has at most the variance on every data
vector) the Horvitz-Thompson (HT) estimator [25] (which is also
unbiased, nonnegative, and monotone).

To further illustrate comparison with HT, recall that the HT es-
timate is positive only on outcomes that reveal f(v). In this case,
the inverse probability estimate f(v)/p, where p is the probability
of an outcome which reveals f(v). When we have partial informa-
tion on f(v), the HT estimate does not utilize that and is 0 whereas
admissible estimators, such as the L* estimators, must use this in-
formation. It is also possible that the probability of an outcome
that reveals f(v) is 0. In this case, the HT estimator is not even
applicable. One natural such example is the range |v1 − v2| with
coordinated PPS sampling using τ ∗ = (1, 1). When the input is
(0.5, 0), the range is 0.5, but there is 0 probability of revealing
v2 = 0. We can obtain informative lower (and upper) bounds on
the range: When u ∈ (0, 0.5), we have a lower bound of 0.5 − u.
Nonetheless, the probability of knowing the exact value (u = 0) is
0. In contrast to the HT estimate, our L* estimator is defined for
any monotone estimation instance for which a nonnegative unbi-
ased estimator with finite variance exists.

Order-optimal estimators: In many situations we have informa-
tion on data patterns. For example, if our data consists of hourly
temperature measurements across locations or daily summaries of
Wikipedia, we expect it to be fairly stable. That is, we expect in-
stances to be very similar. That is, most tuples of values , each
corresponding to a particular geographic location or Wikipedia ar-
ticle, would have most entries being very similar. In other cases,
such as IP traffic, differences are typically larger. Since there is a
choice, a Pareto front of admissible estimators, we would like to
be able to select an estimator that would have lower variance on
more likely patterns of data vectors, this while still providing some
weaker “worst case” guarantees for all applicable data vectors in
our domain.

Customization of estimators to data patterns can be facilitated
through order optimality [14]. More precisely, an estimator is ≺+-
optimal with respect to some partial order ≺ on data vectors if
any other (nonnegative unbiased) estimator with lower variance on
some data v must have strictly higher variance on some data that
precedes v. Order-optimality implies admissibility, but not vice
versa. By specifying an order which prioritizes more likely pat-
terns in the data, we can customize the estimator to these patterns.

We show (Section 5) how to construct a≺+-optimal nonnegative
unbiased estimators for any function and order ≺ for which such
estimator exists. We show that when the data domain is discrete,
such estimators always exist whereas continuous domains require
some natural convergence properties of ≺.

We also show that the L* estimator is≺+-optimal with respect to
the order ≺ such that z ≺ v ⇐⇒ f(z) < f(v). This means that
when estimating the exponentiated range function, the L* estimator
is optimized for high similarity (this while providing a strong 4-
competitiveness guarantee even for highly dissimilar data).

The U* estimator: We also explore the upper extreme of the opti-
mal range, that is, the solution obtained by aiming for the supre-
mum of the range. We call this solution the U* estimator and
we study it in Section 6. This estimator is unbiased, nonnega-
tive, and has finite variances. We formulate some conditions on
the monotone estimation problem which are satisfied by natural
functions including the exponentiated range with coordinated PPS
sampling , under which the estimator is admissible. The U* estima-
tor, under some conditions, is≺+-optimal with respect to the order

z ≺ v ⇐⇒ f(z) > f(v). In the context of the exponentiated
range, it means that it is optimized for highly dissimilar instances.

Lastly, in Section 7 we conclude with a discussion of future work
and of follow-up applications of our estimators.

2. PRELIMINARIES

Consider monotone sampling, as defined in the introduction.

LEMMA 2.1. For any two outcomes, S∗1 = S∗(u,v) and S∗2 =
S∗(u′,v′), the sets S∗1 and S∗2 must be either disjoint or one is
contained in the other.

PROOF. If there is a common data vector z ∈ S∗1 ∩ S∗2 , then
S∗1 = S∗(u,z) and S∗2 = S∗(u′,z). From definition, if u′ > u
then S∗1 ⊆ S∗2 and vice versa.

LEMMA 2.2. For any v,z ∈ V , the set of u values which
satisfy S∗(u,v) = S∗(u,z) is a suffix of the interval (0, 1].

PROOF. S∗(u,v) = S∗(u,z) implies S∗(u′,v) = S∗(u′,z)
for all u′ > u.

For convenience, we assume without loss of generality that this
interval is open to the left. This assumption is made without loss of
generality since it can be integrated while affecting at most a “zero
probability” set of outcomes for any data point.

∀ρ ∈ (0, 1] ∀v, (2)
z ∈ S∗(ρ,v) =⇒ ∃ε > 0, ∀x ∈ (ρ− ε, 1], z ∈ S∗(x,v)

Example 2 Coordinated PPS sampling for Example 1
We show shared-seed coordinated sampling, where each of the
instances 1,2,3 is PPS sampled with τ∗ = 1. Therefore, each
entry is sampled with probability equal to its value. We draw
u(k) ∈ U [0, 1], independently for different items. An item k is
sampled in instance i if and only if v(k)i ≥ u(k). S∗(k) contains all
vectors consistent with the sampled entries and with value at most
u(k) in unsampled entries.

item a b c d e f g h
v1 0.95 0 0.23 0.70 0.10 0.42 0 0.32
v2 0.15 0.44 0 0.80 0.05 0.50 0.20 0
v3 0.25 0 0 0.10 0 0.22 0 0

u(k) 0.32 0.21 0.04 0.23 0.84 0.70 0.15 0.64

The outcomes for the different items are: S(a) = (0.95, ∗, ∗),
S(b) = (∗, 0.44, ∗), S(c) = (0.23, ∗, ∗), S(d) = (0.7, 0.8, ∗),
S(e) = S(f) = S(h) = (∗, ∗, ∗), S(g) = (∗, 0.2, ∗). The sets
of vectors consistent with the outcomes are S∗(a) = {0.95} ×
[0, 0.32)2 and S∗(h) = [0, 0.64)3.

Estimators: Given a monotone estimation problem, we are inter-
ested in estimating f(v). An estimator f̂ is a function of the out-
come (including the seed) S(u,v). We use the notation f̂(u,v) ≡
f̂(S(u,v)). When the domain is continuous, we only consider f̂
that are (Lebesgue) integrable. Two estimators f̂1 and f̂2 are equiv-
alent if for all data v, f̂1(u,v) = f̂2(u,v) with probability 1,
which is the same as

f̂1 and f̂2 are equivalent ⇐⇒ ∀v∀ρ ∈ (0, 1], (3)

lim
η→ρ−

∫ ρ
η
f̂1(u,v)du

ρ− η = lim
η→ρ−

∫ ρ
η
f̂2(u,v)du

ρ− η .
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An estimator f̂ is nonnegative if ∀S, f̂(S) ≥ 0 and is unbiased
if ∀v, Eu∼U [0,1][f̂(u,v)] = f(v). An estimator has finite vari-
ance on v if

∫ 1

0
f̂(u,v)2du < ∞ (the expectation of the square is

finite) and is bounded on v if supu∈(0,1] f̂(u,v) < ∞. If a non-
negative estimator is bounded on v, it also has finite variance for
v. An estimator is monotone on v if when fixing v and considering
outcomes consistent with v, the estimate value is non decreasing
with the information on the data that we can glean from the out-
come, that is, f̂(u,v) is non-increasing with u. We say that an
estimator is bounded, has finite variances, or is monotone, if the
respective property holds for all v ∈ V.
The lower bound function. For Z ⊂ V, we define f(Z) =
inf{f(v) | v ∈ Z} as the infimum of f on Z. We use the no-
tation f(S) ≡ f(S∗), f(ρ,v) ≡ f(S∗(ρ,v)). When v is fixed,
we use f (v)(u) ≡ f(u,v). Some properties which we need in the
sequel are [15]:

•∀v, f (v)(u) is monotone non increasing and left-continuous.

(4)

•f̂ is unbiased and nonnegative =⇒ (5)

∀v, ∀ρ,
∫ 1

ρ

f̂(u,v)du ≤ f (v)(ρ) . (6)

The lower bound function f (v), and its lower hullH(v)
f , are used to

characterize existence of estimators with desirable properties [15]:

•∃ unbiased nonnegative f estimator ⇐⇒ (7)

∀v ∈ V, lim
u→0+

f (v)(u) = f(v) . (8)

•If f satisfies (8),
∃ unbiased nonnegative estimator with finite variance for v

⇐⇒
∫ 1

0

(
dH

(v)
f (u)

du

)2

du <∞ . (9)

∃ unbiased nonnegative estimator that is bounded on v

⇐⇒ lim
u→0+

f(v)− f (v)(u)

u
<∞ . (10)

Example 3 illustrates lower bound functions and respective lower
hulls for RGp+. Partially specified estimators. We use partial

specifications f̂ of (nonnegative and unbiased) estimators, which
are specified on a set of outcomes S so that

∀v ∃ρv ∈ [0, 1], S(u,v) ∈ S almost everywhere for u > ρv ∧
S(u,v) 6∈ S almost everywhere for u ≤ ρv .

When ρv = 0, we say that the estimator is fully specified for v. We
also require that f̂ is nonnegative where specified and satisfies

∀v, ρv > 0 =⇒
∫ 1

ρv

f̂(u,v)du ≤ f(v) (11a)

∀v, ρv = 0 =⇒
∫ 1

ρv

f̂(u,v)du = f(v) . (11b)

LEMMA 2.3. [15] If f satisfies (8) (has a nonnegative unbiased
estimator), then any partially specified estimator can be extended
to an unbiased nonnegative estimator.

v-optimal extensions and estimators. Given a partially specified
estimator f̂ so that ρv > 0 and M =

∫ 1

ρv
f̂(u,v)du, a v-optimal

extension is an extension which is fully specified for v and mini-
mizes variance for v (amongst all such extensions). The v-optimal
extension is defined on outcomes S(u,v) for u ∈ (0, ρv] and sat-
isfies

min
∫ ρv

0

f̂(u,v)2du (12)

s.t.
∫ ρv

0

f̂(u,v)du = f(v)−M

∀u,
∫ ρv

u

f̂(x,v)dx ≤ f (v)(u)−M

∀u, f̂(u,v) ≥ 0

For ρv ∈ (0, 1] and M ∈ [0, f (v)(ρv)], we define the function
f̂ (v,ρv,M) : (0, ρv]→ R+ as the solution of

f̂ (v,ρv,M)(u) = inf
0≤η<u

f (v)(η)−M −
∫ ρv
u
f̂ (v,ρv,M)(u)du

ρ− η .

(13)
Geometrically, the function f̂ (v,ρv,M) is the negated derivative

of the lower hull of the lower bound function f (v) on (0, ρv) and
the point (ρv,M).

THEOREM 2.1. [15] Given a partially specified estimator f̂ so
that ρv > 0 andM =

∫ 1

ρv
f̂(u,v)du, then f̂ (v,ρv,M) is the unique

(up to equivalence) v-optimal extension of f̂ .

The v-optimal estimates are the minimum variance extension of
the empty specification. We use ρv = 1 and M = 0 and obtain
f̂ (v) ≡ f̂ (v,1,0). f̂ (v) is the solution of

f̂ (v)(u) = inf
0≤η<u

f (v)(η)−
∫ 1

u
f̂ (v)(u)du

ρ− η , (14)

which is the negated slope of the lower hull of the lower bound
function f (v). This is illustrated in Example 3.
Admissibility and order optimality. An estimator is admissible
if there is no (nonnegative unbiased) estimator with same or lower
variance on all data and strictly lower on some data. We also con-
sider order optimality, specified with respect to a partial order ≺
on V: An estimator f̂ is ≺+-optimal if there is no other nonnega-
tive unbiased estimator with strictly lower variance on some data v
and at most the variance of f̂ on all vectors that precede v. Order-
optimality (with respect to some ≺) implies admissibility but the
converse is not true in general [14].

Variance competitiveness [15] An estimator f̂ is c-competitive if

∀v,
∫ 1

0

(
f̂(u,v)

)2

du ≤ c inf
f̂ ′

∫ 1

0

(
f̂ ′(u,v)

)2

du,

where the infimum is over all unbiased nonnegative estimators of
f . When the estimator is unbiased, the expectation of the square
is closely related to variance, and an estimator that minimizes one
also minimizes the other.

VAR[f̂ |v] =

∫ 1

0

f̂(u,v)2du− f(v)2 (15)

3. THE OPTIMAL RANGE
We say that an estimator f̂ is v-optimal at an outcome S(u,v)

if it satisfies (14). For an outcome S(ρ,v), we are interested in the
range of z-optimal estimates at S for all z ∈ S∗, with respect to a
value M , which captures the contribution to the expectation of the
estimator made by outcomes which are less informative than S.
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Example 3 Lower bound function and its lower hull

Consider RGp+(v1, v2) = max{0, v1 − v2}p (see Example 1) over the domain V = [0, 1]2 and PPS sampling with τ∗1 = τ∗2 = 1 (as in
Example 2). The lower bound function for data v = (v1, v2) is

RGp+(u,v) = max{0, v1 −max{v2, u}}p .

The figures below illustrate RGp+
(v)(u) (LB) and its lower hull (CH) for the data vectors (0.6, 0.2) and (0.6, 0) and p = {0.5, 1, 2}.

For u > 0.2, the outcome when sampling both vectors is the same, and thus the lower bound function is the same. For u ≤ 0.2,
the outcomes diverge. For p ≤ 1, RGp+

(v)(u) is concave and the lower hull is linear on (0, v1]. For p > 1, the lower hull co-
incides with RGp+

(v)(u) on some interval (a, v1] and is linear on (0, a]. When v2 = 0, RGp+
(v)(u) is equal to its lower hull.
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The v-optimal estimates are the negated slopes of the lower hulls. They are 0 when u ∈ (0.6, 1], since these outcomes are consistent with
data on which RGp+ = 0. They are constant for u ∈ (0, v1] when p ≤ 1. Observe that for u ∈ (0.2, 0.6], the v-optimal estimates are
different even though the outcome of sampling the two vectors are the same – demonstrating that it is not possible to simultaneously minimize
the variance of the two vectors.

λ(ρ,v,M) = inf
0≤η<ρ

f(η,v)−M
ρ− η (16)

λU (ρ,v,M) ≡ λU (S,M) = sup
z∈S∗(ρ,v)

λ(ρ,z,M) (17)

λL(ρ,v,M) ≡ λL(S,M) = inf
z∈S∗(ρ,v)

λ(ρ,z,M)

= inf
z∈S∗(ρ,v)

inf
0≤η<ρ

f(η,z)−M
ρ− η

=
f(ρ,v)−M

ρ
(18)

To verify equality (18), observe that from left continuity of f(u,z),

inf
η<ρ, z∈S∗

f(η,z) = f(ρ,v)

and that the denominator ρ− η is maximized at η = 0. λ(ρ,v,M)
is the v-optimal estimate at ρ, given a specification of the estimator
f̂(u,v) for u ∈ (ρ, 1] with

∫ 1

ρ
f̂(u,v)du = M . In short, we refer

to λ(ρ,v,M) as the v-optimal estimate at ρ given M . Geometri-
cally, λ(ρ,v,M) is the negated slope of the lower hull of f (v) and
the point (ρ,M). λU (S,M) and λL(S,M), respectively, are the
supremum and infimum of the range of z-optimal estimates at S
given M . Figure 1 illustrates an outcome S and the optimal range
at S given M . We can see how the lower endpoint of the range is
realized by a vector with f value equal to the lower bound at S, as
in equality (18).

When f̂ is provided for seed values u ∈ (ρ, 1], we use M =∫ 1

ρ
f̂(u,v)du. We then abbreviate the notations (we remove M ) to

λ(ρ,v), λU (S), and λL(S).
We say that the estimator f̂ is in-range (in the optimal range ) at

outcome S(ρ,v) if

λL(S) ≤ f̂(S) ≤ λU (S) . (19)

Writing (19) explicitly, we obtain

f̂(ρ,v) ≥ λL(ρ,v) =
f(ρ,v)−

∫ 1
ρ f̂(u,v)du

ρ
(20a)

f̂(ρ,v) ≤ λU (ρ,v)

= sup
z∈S∗

inf
0≤η<ρ

f(η,z)−
∫ 1
ρ f̂(u,v)du

ρ− η
(20b)

w

u

M

 v

z

Figure 1: Lower bound functions for vectors v,z,w. Out-
comes are consistent for all x ≥ u: S(x,v) = S(x,z) =
S(x,w) ≡ Sx. The figure illustrates the y-optimal estimates
λ(u,y,M) at u given M for y ∈ {v,z,w}. The estimates are
the negated slopes of the lower hull of the point (u,M) and the
lower bound function f (y). The optimal range at Su given M
is lower-bounded by w, that is λL(Su,M) = λ(u,w,M), and
upper-bounded by v, λU (Su,M) = λ(u,v,M). The figure il-
lustrates the general property that the optimal range is lower
bounded by thew which satisfies f(w) = f(w, u).
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Two special solutions that we study are the L* estimator (f̂ (L),
see Section 4) and the U* estimator (f̂ (U), see Section 6), which
respectively solve (20a) and (20b) with equalities. For all ρ ∈ (0, 1]

and v, f̂ (L) minimizes and f̂ (U) maximizes
∫ 1

ρ
f̂(u,v)du among

all solutions of (19).
We show that being in-range (satisfying (19) for all outcomes S)

is sufficient for nonnegativity and unbiasedness.

LEMMA 3.1. If f satisfies (8) then any in-range estimator is
unbiased and nonnegative.

PROOF. For nonnegativity, it suffices to show that a solution of
(19) satisfies (6), since (20a) and (6) together imply nonnegativ-
ity. Assume to the contrary that a solution f̂ violates (6) and let ρ
be the supremum of x satisfying

∫ 1

x
f̂(u,v)du > f(x,v). From

(4), which is monotonicity and left-continuity of f(x,v), we have∫ 1

ρ
f̂(u,v)du = f(ρ,v). Since

∫ 1

x
f̂(u,v)du is continuous in x,

and f (v) left-continuous, there must be δ > 0 so that

∀x ∈ [ρ− δ, ρ),

∫ 1

x

f̂(u,v)du > f(x,v) . (21)

Let x ∈ [ρ − δ, ρ) and M(x) =
∫ 1

x
f̂(u,v)du. From (21),

M(x) > f(x,v). We have that

f̂(x,v) ≤ sup
z∈S∗(x,v)

inf
0≤η<x

f(η,z)−M(x)

x− η

≤ sup
z∈S∗(x,v)

inf
0≤η<x

f(η,z)− f(x,v)

x− η

≤ sup
z∈S∗(x,v)

lim
η→x−

f(η,z)− f(x,v)

x− η

= lim
η→x−

f(η,v)− f(x,v)

x− η = −
∂f(x,v)

∂x−

Since this holds for all x ∈ (ρ− δ, ρ), we obtain that∫ ρ

ρ−δ
f̂(x,v)dx ≤ f(ρ− δ,v)− f(ρ,v) .

Therefore,
∫ 1

ρ−δ f̂(x,v)dx ≤ f(ρ− δ,v), which contradicts (21).
We now establish unbiasedness. From (20a) and f(u,v) being

non increasing in u, we obtain that ∀u∀ρ > u,

f̂(u,v) ≥
f(u,v)−

∫ 1

u
f̂(x,v)dx

u

≥
f(ρ,v)−

∫ 1

u
f̂(x,v)dx

u
(22)

We argue that

∀v∀ρ > 0, lim
x→0

∫ 1

x

f̂(u,v)du ≥ f(ρ,v) . (23)

To prove (23), define ∆(x) = f(ρ,v) −
∫ 1

x
f̂(u,v)du for x ∈

(0, ρ]. We show that
∫ x
x/2

f̂(u,v)du ≥ ∆(x)/4. To see this, as-

sume to the contrary that
∫ x
y
f̂(u,v)du ≤ ∆(x)/4 for all y ∈

[x/2, x]. Then from (22), the value of f̂(u,v) for u ∈ [x/2, x]
must be at least (3/4)∆(x)/x. Hence, the integral over the inter-
val [x/2, x] is at least (3/8)∆(x) which is a contradiction. We can
now apply this iteratively, obtaining that ∆(ρ/2i) ≤ (3/4)i∆(ρ).
Thus, the gap ∆(x) diminishes as x→ 0 and we established (23).

Since (23) holds for all ρ ≥ 0, then limu→0

∫ 1

u
f̂(u,v)du ≥

limu→0 f(u,v) = f(v) (using (8)). Combining with (already es-
tablished) (6) we obtain limu→0

∫ 1

u
f̂(u,v)du = f(v).

We next show that being in-range is necessary for optimality. For
our analysis of order-optimality (Section 5), we need to slightly
refine the notion of admissibility to be with respect to a partially
specified estimator f̂ and a subset of data vectors Z ⊂ V.

An extension of f̂ that is fully specified for all vectors in Z is
admissible on Z if any other extension with strictly lower variance
on at least one v ∈ Z has a strictly higher variance on at least one
z ∈ Z. We say that a partial specification is in-range with respect
to Z if:

∀v ∈ Z, for ρ ∈ (0, ρv] almost everywhere,

inf
z∈Z∩S∗(ρ,v)

λ(ρ,z) ≤ f̂(ρ,v) ≤ sup
z∈Z∩S∗(ρ,v)

λ(ρ,z) (24)

Using (3), (24) is the same as requiring that ∀v ∀ρ ∈ (0, ρv], when
fixing the estimator on S(u,v) for u ≥ ρ, then

inf
z∈Z∩S∗(ρ,v)

λ(ρ,z) ≤ lim
η→ρ−

∫ ρ
η f̂(u,v)du

ρ− η
≤ sup

z∈Z∩S∗(ρ,v)
λ(ρ,z)

(25)

We show that a necessary condition for admissibility with respect
to a partial specification and Z is that almost everywhere, estimates
for outcomes consistent with vectors in Z are in-range for Z. For-
mally:

THEOREM 3.1. An extension is admissible on Z only if (24)
holds.

PROOF. Consider an (nonnegative unbiased) estimator f̂ that vi-
olates (24) for some v ∈ Z and ρ. We show that there is an alter-
native estimator, equal to f̂(u,v) on outcomes u > ρ and which
satisfies (24) at ρ that has strictly lower variance than f̂ on all vec-
tors Z ∩ S∗(ρ,v). This will show that f̂ is not admissible on Z.

The estimator f̂ violates (25), so either

lim
η→ρ−

∫ ρ
η
f̂(u,v)du

ρ− η < inf
z∈Z∩S∗(ρ,v)

λ(ρ,z) ≡ L (26)

or

lim
η→ρ−

∫ ρ
η
f̂(u,v)du

ρ− η > sup
z∈Z∩S∗(ρ,v)

λ(ρ,z) ≡ U . (27)

Violation (27), for a nonnegative unbiased f̂ , means that M ≡∫ 1

ρ
f̂(u,v)du < f(u,v). Consider z ∈ Z ∩ S∗(ρ,v) and the z-

optimal extension, f̂ (z,ρ,M) (see Theorem 2.1). Because the point
(ρ,M) lies strictly below f (z), the lower hull of both the point
and f (z) has a linear piece on some interval with right end point
ρ. More precisely, f̂ (z,ρ,M)(u) ≡ λ(ρ,z,M) on S(u,z) at some
nonempty interval u ∈ (ηz, ρ] so that at the point ηz , the lower
bound is met, that is,M+(ρ−ηz)λ(ρ,z,M) = lim

u→η+z
f(u,z).

Therefore, all extensions (maintaining nonnegativity and unbiased-
ness) must satisfy∫ ρ

ηz

f̂(u,z)du ≤ lim
u→η+z

f(u,z)−M (28)

= (ρ− ηz)λ(ρ,z,M) ≤ (ρ− ηz)U .

From (27), for some ε > 0, f̂ has average value strictly higher
than U on S(u,v) for all u in (η, ρ] for η ∈ [ρ − ε, ρ). For
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each z ∈ S∗(ρ,v) we define ζz as the maximum of ρ − ε and
inf{u | S∗(u,v) = S∗(u,z)}. From (2), ζz < ρ. For each
z, the higher estimate values on S(u,z) for u ∈ (ζz, ρ] must be
“compensated for” by lower values on u ∈ (ηz, ζz) (from non-
negativity we must have the strict inequality ηz < ζz) so that (28)
holds. By modifying the estimator to be equal toU for all outcomes
S(u,v) u ∈ (ρ − ε, ρ] and correspondingly increasing some esti-
mate values that are lower than U to U on S(u,z) for u ∈ (ηz, ζz)

we obtain an estimator with strictly lower variance than f̂ for all
z ∈ Z ∩ S∗(ρ,v) and same variance as f̂ on all other vectors.
Note we can perform the shift consistently across all branches of
the tree-like partial order on outcomes.

Violation (26) means that for some ε > 0, f̂ has average value
strictly lower than L on S(u,v) for all intervals u ∈ (η, ρ] for
η ∈ [ρ − ε, ρ). For all z, the z-optimal extension f̂ (z,ρ,M)(u)
has value λ(ρ,z,M) ≥ L at ρ and (from convexity of lower hull)
values that are at least that on u < ρ. From unbiasedness, we must
have for all z ∈ Z∩S∗(ρ,v),

∫ ρ
0
f̂(u,z)du =

∫ ρ
0
f̂ (z,ρ,M)(u)du.

Therefore, values lower than L must be compensated for in f̂ by
values higher than L. We can modify the estimator such that it is
equal to L for S(u,v) for u ∈ (ρ − ε, ρ) and compensate for that
by lowering values at lower u values u < ζz that are higher than
L. The modified estimator has strictly lower variance than f̂ for all
z ∈ Z∩S∗(ρ,v) and same variance as f̂ on all other vectors.

4. THE L* ESTIMATOR
The L* estimator, f̂ (L), is the solution of (20a) with equalities,

obtaining values that are minimum in the optimal range. Formally,
it is the solution of the integral equation ∀v ∈ V, ∀ρ ∈ (0, 1]:

f̂ (L)(ρ,v) =
f (v)(ρ)−

∫ 1

ρ
f̂ (L)(u,v)du

ρ
(29)

Geometrically, as visualized in Figure 2, the L* estimate on an
outcome S(ρ,v) is exactly the slope value that if maintained for
outcomes S(u,v) (u ∈ (0, ρ]), would yield an expected estimate
of f(S). We derive a convenient expression for the L* estima-

cummulative L estimate

u

LB function 

Figure 2: An example lower bound function f (v)(u)
with 3 steps and the respective cummulative L estimate∫ 1

u
f̂ (L)(u,v)du. The estimate f̂ (L) is the negated slope and

in this case is also a step function with 3 steps.

tor, which enables us to derive explicit forms or compute it for any
function f . We show that the L* estimator is 4-competitive and that
it is the unique admissible monotone estimator. We also show it is
order-optimal with respect to the natural order that prioritizes data
vectors with lower f(v).

Fixing v, (29) is a first-order differential equation for F (ρ) ≡∫ 1

ρ
f̂ (L)(u,v)du and the initial condition F (1) = 0. Since the

lower bound function f (v) is monotonic and bounded, it is contin-
uous (and differentiable) almost everywhere. Therefore, the equa-
tion with the initial condition has a unique solution:

LEMMA 4.1.

f̂ (L)(ρ,v) =
f (v)(ρ)

ρ
−
∫ 1

ρ

f (v)(u)

u2
du (30)

(31)

When f (v)(1) = 0, which we can assume without loss of general-
ity3, the solution has the simpler form:

f̂ (L)(ρ,v) = −
∫ 1

ρ

df(v)(u)

du

u
du (32)

We show a tight bound of 4 for the competitive ratio for f̂ (L),
meaning that it is at most 4 for all functions f and for any ε > 0,
there exists a function f on which the ratio is no less than 4− ε.

THEOREM 4.1.

sup
f,v |

∫ 1
0 f̂

(v)(u)2du<∞

∫ 1

0
f̂ (L)(u,v)2du∫ 1

0
f̂ (v)(u)2du

= 4 ,

We present a family of functions for which the supermum of
this ratio is 4. We use the domain V = [0, 1], a PPS sampling
scheme with τ(u) = u, and the function f(v) = 1

1−p −
v1−p

1−p for
p ∈ [0, 0.5). For the data v = 0 we have the following convex
lower bound function

f(u, 0) =
1

1− p −
u1−p

1− p .

Being convex, this lower bound function is equal to its lower
hull. Therefore, by taking its negated derivative, we get f̂ (0)(u) =

1/up. The function f̂ (0) is square integrable when p < 0.5:∫ 1

0

f̂ (0)(u)2du =

∫ 1

0

1/u2pdu =
1

1− 2p
.

From (32), the L* estimator on outcomes consistent with v = 0 for
p ∈ (0, 0.5) is4

f̂ (L)(x, 0) =

∫ 1

x

1

u1+p
=

1

p

(
1

xp
− 1

)
.

Hence,∫ 1

0
f̂ (L)(u, 0)2du =

1

p2

∫ 1

0

(
1

u2p
−

2

up
+ 1

)
du

=
1

p2

(
1

1− 2p
−

2

1− p
+ 1

)
=

2

(1− 2p)(1− p)
.

We obtain the ratio∫ 1

0
f̂ (L)(u, 0)2du∫ 1

0
f̂ (0)(u)2du

=
2

1− p ≤ 4 .

The ratio approaches 4 when p→ 0.5−.
3Otherwise, we can instead estimate the function f(v)− f (v)(1),
which satisfies this assumption, and then add a fixed value of
f (v)(1) to the resulting estimate.
4For p = 0 the estimate is − ln(x).
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We conclude the proof of Theorem 4.1 using the following lemma
that shows that if f̂ (v)(u) is square integrable, that is, (9) holds,
then f̂ (L)(u,v) is also square integrable and the ratio between
these integrals is at most 4.

LEMMA 4.2.

∀v,
∫ 1

0

f̂ (v)(u)2du <∞ =⇒
∫ 1

0
f̂ (L)(u,v)2du∫ 1

0
f̂ (v)(u)2du

≤ 4 .

PROOF. Fixing v, the function f̂ (v) only depends on the lower
hull of the lower bound function f (v)(u). The estimator f̂ (L) de-
pends on the lower bound function f and can be different for dif-
ferent lower bound functions with the same lower hull. Fixing the
lower hull, the variance of the L* estimator is maximized for f such
that f (v) ≡ H(v)

f . It therefore suffices to consider convex f (v)(u),

that is,
d2f(v)(u)

d2u
> 0 for which we have

f̂ (v)(u) = −
df (v)(u)

du
.

Recall that f̂ (v)(u) is monotone non-increasing. From (32), we

have f̂ (L)(ρ,v) = −
∫ 1

ρ

df(v)(u)

du
u

du.
To establish our claim, it suffices to show that for all monotone,

non increasing, square integrable functions g : (0, 1],∫ 1

0
(
∫ 1

x

g(u)
u
du)2dx∫ 1

0
g(x)2dx

≤ 4 (33)

Define h(x) =
∫ 1

x

g(u)
u
du.∫ 1

0

h2(x)dx = −
∫ 1

0

∫ 1

x

2h(y)h′(y)dydx

= −
∫ 1

0

∫ y

0

2h(y)h′(y)dxdy = −2

∫ 1

0

h(y)h′(y)

∫ y

0

dxdy

= −2

∫ 1

0

h(y)h′(y)ydy = 2

∫ 1

0

h(y)
g(y)

y
ydy

= 2

∫ 1

0

h(y)g(y)dy ≤ 2

√∫ 1

0

h2(y)dy

√∫ 1

0

g2(y)dy

The first equality uses h(1) = 0. The third uses h′(x) = −g(x)/x.
The inequality uses Cauchy-Schwartz. Finally, to obtain (33), we

divide both sides by
√∫ 1

0
h2(y)dy.

THEOREM 4.2. The estimator f̂ (L) is monotone. Moreover, it
is the unique admissible monotone estimator and dominates all
monotone estimators.

PROOF. Recall that an estimator f̂ is monotone if and only if,
for any data v, the estimate f̂(ρ,v) is non-increasing with ρ. To
show monotonicity of the L* estimator, we rewrite (30) to obtain

f̂ (L)(ρ,v) = f (v)(ρ) +

∫ 1

ρ

f (v)(ρ)− f (v)(x)

x2
dx , (34)

which is clearly non-increasing with ρ.
We now show that f̂ (L) dominates all monotone estimators (and

hence is the unique admissible monotone estimator). By definition,

a monotone estimator f̂ can not exceed λL on any outcome, that is,
it must satisfy the inequalities ∀v, ∀ρ ∈ [0, 1]:

ρf̂(ρ,v)+

∫ 1

ρ

f̂(u,v)du ≤ inf
z∈S∗(ρ,v)

∫ 1

0

f̂(u,z)du =

inf
z∈S∗(ρ,v)

f(z) = f (v)(ρ) . (35)

Estimator f̂ (L) satisfies (35) with equalities. If there is a monotone
estimator f̂ which is not equivalent to f̂ (L), that is, for some v, the
integral is strictly smaller than the integral of f̂ (L) on some interval
(ρ − ε, ρ) (ε > 0 may depend on v), we can obtain a monotone
estimator that strictly dominates f̂ by decreasing the estimate for
u ≤ ρ− ε and increasing it for u > ρ− ε. The variance decreases
because we decrease the estimate on higher values and increase on
lower values.

Lastly, we show that f̂ (L) is order-optimal with respect to the
order ≺ which prioritizes vectors with lower f(v):

THEOREM 4.3. A ≺+-optimal estimator for f with respect to
the partial order

v ≺ v′ ⇐⇒ f(v) < f(v′)

must be equivalent to f̂ (L).

PROOF. We use our results of order-optimality (Section 5). We
can check that we obtain (29) using (42) and ≺ as defined in the
statement of the Theorem. Thus, a ≺+-optimal solution must have
this form.

Example 4 contains an example derivation of the L* estimator.
Note that it may not be bounded. Another estimator that is both
bounded and competitive (but not necessarily in-range, not mono-
tone, and has a large compettive ratio) is the J estimator [15].

5. ORDER-OPTIMALITY
We identify conditions on f and ≺ under which a ≺+-optimal

estimator exists and specify this estimator as a solution of a set of
equations. Our derivations of ≺+-optimal estimators follow the
intuition to require the estimate on an outcome S to be v-optimal
with respect to the ≺-minimal vector that is consistent with the
outcome:

∀S = S(ρ,v), f̂(S) = λ(ρ,min
≺

(S∗) . (36)

When≺ is a total order and V is finite, min≺(S∗) is unique and
(36) is well defined. Moreover, as long as f has a nonnegative un-
biased estimator, a solution (36) always exists and is ≺+-optimal.
We preview a simple construction of the solution: Process vectors
in increasing ≺ order, iteratively building a partially defined non-
negative estimator. When processing v, the estimator is already
defined for S(u,v) for u ≥ ρv , for some ρv ∈ (0, 1]. We extend it
to the outcomes S(u,v) for u ≤ ρv using the v-optimal extension
f̂ (v,ρv,M)(u), where M =

∫ 1

ρv
f̂(u,v)du (see Theorem 2.1).

We now formulate conditions that will allow us to establish≺+-
optimality of a solution of (36) in more general settings. These
conditions always hold when ≺ is a total order and V is finite.
Generally,

min
≺

(S∗) = {z ∈ S∗|¬∃w ∈ S∗, w ≺ z}

is a set and (36) is well defined when ∀S, this set is not empty and
λ(ρ,min≺(S∗)) is unique, that is, the value λ(ρ,z) is the same for

9



Example 4 L* and U* estimates for Example 3
We compute the L* and U* estimators for RGp+ for the sampling scheme and data in Example 3. For the two vectors (0.6, 0.2) and (0.6, 0),
both the L* and U* estimates are 0 when u ≥ 0.6, this is necessary from unbiasedness and nonnegativity because for these outcomes
∃v ∈ S∗, RGp+(v) = 0. Otherwise, the L* estimate is R̂G

(L)
p+ (S) = (v1 − v′2)p/v′2 −

∫ v1
v′2

(v1−x)p
x2

dx, where v′2 = u when S = {1} and

v′2 = v2 when S = {1, 2}. When p ≥ 1, the U* estimate is R̂G
(U)
p+ (S) = p(v1 − u)p−1 when u ∈ (v2, v1] and 0 when u ≤ v2 < v1.

When p ≤ 1 the U* estimate is vp−1
1 when u ∈ (v2, v1] and (v1−v2)p−v

p−1
1 (v1−v2)
v2

when u ≤ v2 < v1.
The figure also include the v-optimal estimates, discussed in Example 3. When v2 = 0, the U* estimates are v-optimal. The L* estimate is
not bounded when v2 = 0 (but has bounded variance and is competitive).
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all ≺-minimal vectors z ∈ min≺(S∗). A sufficient condition for
this is that

∀ρ ∀v ∀x ∈ (0, f(ρ,v)] ∀z,w ∈ min
≺

(S∗(ρ,v)),

inf
η<ρ

f(η,z)− x
ρ− η = inf

η<ρ

f(η,w)− x
ρ− η (37)

In this case, the respective Equation (36) on u ∈ (0, ρ] are the
same for all z ∈ min≺(S∗) and thus so are the estimate values
f̂(u,z).

We say that Z ⊂ V is ≺-bounded if

∀v ∈ Z ∃z ∈ min
≺

(Z), z � v (38)

That is, for all z ∈ Z, z is ≺-minimal or is preceded by some
vector that is ≺-minimal in Z.

We say that an outcome S is ≺-bounded if S∗ is ≺-bounded,
that is,

∀v ∈ S∗ ∃z ∈ min
≺

(S∗), z � v (39)

When all outcomes S(u,v) are ≺-bounded, we say that a set
of vectors R represents v if any outcome consistent with v has a
≺-minimal vector in R:

∀u ∈ (0, 1],∃z ∈ R, z ∈ min
≺

(S∗(u,v)) .

We now show that we can obtain a≺+-optimal estimator if every
vector v has a set of finite size that represents it. Example 5 walks
through a derivation of ≺+-optimal estimators.

LEMMA 5.1. If f satisfies (8), (37), (39) and

∀v, min{|R| | ∀u ∈ (0, 1],∃z ∈ R, z ∈ min
≺

S∗(u,v)} <∞ ,

then a ≺+-optimal estimator exists and must be equivalent to a
solution of (36).

PROOF. We provide an explicit construction of a ≺+-optimal
estimator for f .

Fixing v, we select a finite set of representatives. We can map
the representatives (or a subset of them) to distinct subintervals
covering (0, 1]. The subintervals have the form (ai, ai−1] where

0 = an < · · · a1 < a0 = 1 such that a representative z that is min-
imal for (ai, ai−1] is not minimal for u ≤ ai. Such a mapping can
always be obtained since from (2), each vector is consistent with an
open interval of the form (a, 1], and thus if≺-minimum at S∗(u,v)
(we must have u > a) it must be ≺-minimum for S∗(x,v) for
x ∈ (a, u]. Thus, the region on which z is in min≺ S

∗(u,v) is
open to the left. We can always choose a mapping such that the left
boundary of this region corresponds to ai.

Let z(i) (i ∈ [n]) be the representative mapped to outcomes
S(u,v) where u ∈ (ai, ai−1]. Since S∗(u,v) is monotone non-
decreasing with u, i < j implies that z(i) ≺ z(j) or that they are
incomparable in the partial order.

We construct a partially specified nonnegative estimator in steps,
by solving (36) iteratively for the vectors z(i). Initially we invoke
Theorem 2.1 to obtain estimate values for S(u,z(1)) u ∈ (0, 1]

that minimize the variance for z(1). The result is a partially spec-
ified nonnegative estimator. In particular for v, the estimator is
now specified for outcomes S(u,v) where u ∈ (a1, 1]. Any mod-
ification of this estimator on a subinterval of (a1, 1] with positive
measure will strictly increase the variance for z(1) (or result in an
estimator that can not be completed to a nonnegative unbiased one).

After step i, we have a partially specified nonnegative estimator
that is specified for S(u,v) for u ∈ (ai, 1]. The estimator is fully
specified for z(j) j ≤ i and is ≺+-optimal on these vectors in the
sense that any other partially specified nonnegative estimator that
is fully specified for z(j) j ≤ i and has strictly lower variance on
some z(j) (j ≤ i) must have strictly higher variance on some z(h)

such that h < j.
We now invoke Theorem 2.1 with respect to the vector z(i+1).

The estimator is partially specified for S(u,z(i+1)) on u > ai
and we obtain estimate values for the outcomes S(u,z(i+1)) for
u ∈ (0, ai] that constitute a partially specified nonnegative estima-
tor with minimum variance for z(i+1). Note again that this com-
pletion is unique (up to equivalence). This extension now defines
S(u,v) for u ∈ (ai+1, 1].

Lastly, we must have f(z(n)) = f(v) because f(z(n)) < f(v)
implies that (8) is violated for v whereas the reverse inequality im-
plies that (8) is violated for z(n). Since at step n the estimator is
specified for all outcomes S(u,z(n)) and unbiased, it is unbiased
for v.
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The estimator is invariant to the choice of the representative sets
Rv for v ∈ V and also remains the same if we restrict ≺ so that it
includes only relations between v and Rv .

We so far showed that there is a unique, up to equivalence, par-
tially specified nonnegative estimator that is ≺+ optimal with re-
spect to a vector v and all vectors it depends on. Consider now all
outcomes S(u,v), for all u and v, arranged according to the con-
tainment order on S∗(u,v) according to decreasing u values with
branching points when S∗(u,v) changes. If for two vectors v and
z, the sets of outcomes S(u,v), u ∈ (0, 1] and S(u,z), u ∈ (0, 1]
intersect, the intersection must be equal for u > ρ for some ρ < 1.
In this case the estimator values computed with respect to either
z or v would be identical for u ∈ (ρ, 1]. Also note that partially
specified nonnegative solutions on different branches are indepen-
dent. Therefore, solutions with respect to different vectors v can
be consistently combined to a fully specified estimator.

5.1 Continuous domains
The assumptions of Lemma 5.1 may break on continuous do-

mains. Firstly, outcomes may not be ≺-bounded and in particular,
min≺(S∗) can be empty even when S∗ is not, resulting in (36) not
being well defined. Secondly, even if ≺ is a total order, minimum
elements do not necessarily exist and thus (39) may not hold, and
lastly, there may not be a finite set of representatives. To treat such
domains, we utilize a notion of convergence with respect to ≺:

We define the ≺-lim of a function h on a set of vectors Z ⊂ V :

≺ - lim(h(·), Z) = x ⇐⇒ (40)
∀v ∈ Z ∀ε > 0 ∃w � v, ∀z � w, |h(z)− x| ≤ ε

The≺-lim may not exist but is unique if it does. Note that when Z
is finite or more generally, ≺-bounded, and h(z) is unique for all
z ∈ min≺ Z), then ≺- lim(h(·), Z) = h(min≺ Z).

We define the ≺-closure of z as the set containing z and all
preceding vectors cl≺(z) = {v ∈ V |v � z}.

We provide an alternative definition of the ≺-lim using the no-
tion of ≺-closure.

≺ - lim(h(·), Z) = x (41)
⇐⇒ inf

v∈Z
sup

z∈cl≺(v)∩Z
h(z) = sup

v∈Z
inf

z∈cl≺(v)∩Z
h(z) = x

We say that the lower bound function ≺-converges on outcome
S = S(ρ,v) if ≺- lim(f(η, ·), S∗) exists for all η ∈ (0, ρ). When
this holds, the ≺ - lim of the optimal values (16) over consistent
vectors S∗ exists for all M =

∫ 1

ρ
f̂(u,v)du ≤ f(ρ,v). We use

the notation

λ≺(S,M) = ≺- lim(λ(ρ, ·,M), S∗)

= inf
0≤η<ρ

≺ - lim(f(η, ·), S∗)−M
ρ− η .

When the partially specified estimator f̂ is clear from context, we
omit the parameter M and use the notation

λ≺(S) = ≺- lim(λ(ρ, ·), S∗)

= inf
0≤η<ρ

≺ - lim(f(η, ·), S∗)−
∫ 1

ρ
f̂(u,v)du

ρ− η .

We can finally propose a generalization of (36):

∀S, f̂(S) = λ≺(S) (42)

which is well defined when the lower bound function ≺-converges
for all S:

∀S = S(ρ,v),∀η ≤ ρ, ≺- lim(f(η, ·), S∗) exists. (43)

Using the definition (41) of ≺-convergence and (3) we obtain
that an estimator is equivalent to (42) if and only if

∀v∀ρ ∈ (0, 1], lim
η→ρ−

∫ ρ
η
f̂(u,v)du

ρ− η = λ≺(ρ,v) (44)

We show that equivalence to (42) is necessary for≺+-optimality.
To facilitate the proof, we express ≺+-optimality in terms of re-
stricted admissiblity:

LEMMA 5.2. An estimator is ≺+-optimal if and only if, for all
v ∈ V , it is admissible with respect to cl≺(v).

PROOF. If there is v such that f̂ is not admissible on cl≺(v),
there is an alternative estimator with strictly lower variance on some
z ∈ cl≺(v) and at most the variance on all cl≺(v) \ {z}. Since
cl≺(v) contains all vectors that precede z, the estimator f̂ can not
be≺+-optimal. To establish the converse, assume an estimator f̂ is
admissible on cl≺(v) for all v. Consider z ∈ V . Since f̂ is admis-
sible on cl≺(z), there is no alternative estimator with strictly lower
variance on z and at most the variance of f̂ on all preceding vec-
tors. Since this holds for all z, we obtain that f̂ is≺+-optimal.

LEMMA 5.3. If f satisfies (8) and (43) then f̂ is ≺+-optimal
only if it satisfies (44).

PROOF. Lemma 5.2 states that an estimator is ≺+-optimal if
and only if ∀w ∈ V it is admissible with respect to cl≺(w). Ap-
plying Lemma 3.1, the latter holds only if

∀v ∈ V ∀ρ ∈ (0, 1] (45)

lim
η→ρ−

∫ ρ
η
f̂(u,v)du

ρ− η ≥ inf
z∈cl≺(v)∩S∗(ρ,v)

λ(ρ,z)

≤ sup
z∈cl≺(v)∩S∗(ρ,v)

λ(ρ,z)

From definition, S(ρ,z) ≡ S(ρ,v) for all vectors z ∈ S∗(ρ,v).
Moreover, for z ∈ S∗(ρ,v) there is a nonempty interval (ηz, ρ]
such that ∀u ∈ (ηz, ρ], S∗(u,z ≡ S∗(u,v). Therefore, for all z ∈
S∗(ρ,v), the limits limη→ρ−

∫ ρ
η f̂(u,z)du

ρ−η are the same. Therefore,
(45) ⇐⇒

∀v ∈ V ∀ρ ∈ (0, 1] (46)

lim
η→ρ−

∫ ρ
η
f̂(u,v)du

ρ− η ≥ sup
w∈S∗(ρ,v)

inf
z∈cl≺(w)∩S∗(ρ,v)

λ(ρ,z)

≤ inf
w∈S∗(ρ,v)

sup
z∈cl≺(w)∩S∗(ρ,v)

λ(ρ,z)

We leave open the question of determining the most inclusive
conditions on f and≺ under which a≺+-optimum exists, and thus
the solution of (42) is ≺+-optimal. We show that any solution of
(42) is unbiased and nonnegative when f has a nonnegative unbi-
ased estimator.

LEMMA 5.4. When f and ≺ satisfy (8) and (43), a solution
f̂ (≺+) of (42) is unbiased and nonnegative.

PROOF. From Lemma 3.1, since all values are in-range, the so-
lution is unbiased and nonnegative.
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6. THE U* ESTIMATOR
The estimator f̂ (U) satisfies (20b) with equality.

∀S(ρ,v), f̂(ρ,v) = sup
z∈S∗

inf
0≤η<ρ

f(η,z)−
∫ 1

ρ
f̂(u,v)du

ρ− η (47)

The U* estimator is not always admissible. We do show, how-
ever, that under a natural condition, it is order-optimal with re-
spect to an order that prioritizes vectors with higher f values (and
hence also admissible). The condition states that for all S(ρ,v)
and η < ρ, the supremum of the lower bound function f(η,z) over
z ∈ S∗ is attained (in the limiting sense) at vectors that maximize
f on S∗. Formally:

∀η < ρ, lim
x→f(S)

sup
z∈S∗|f(z)≥x

f(η,z) = sup
z∈S∗

f(η,z) , (48)

where f(S) = supz∈S∗ f(z).

LEMMA 6.1. If f satisfies (48), then the U* estimator is ≺+-
optimal with respect to the order z ≺ v ⇐⇒ f(z) > f(v).

PROOF. We can show that when (48) holds then (47) is the same
as (42).

The condition (48) is satisfied by RGp and RGp+. In this case, the
conditions of Lemma 5.1 are also satisfied and thus the U* estima-
tor is ≺+ optimal.

7. CONCLUSION
We define monotone sampling, and discuss its applications as a

summarization tool of massive data. We propose general deriva-
tions of estimators with worst-case (competitiveness) or common-
case (customization) guarantees.

Some interesting future research directions are (i) bounding the
universal ratio for monotone sampling: the lowest ratio we can
guarantee when an estimator with finite variances exists. Our L∗ es-
timator implies an upper bound of 4, and we have examples where
the ratio is at least 1.4. (ii) Efficient constructions of estimators
with instance optimal competitive ratio. (iii) Study monotone sam-
pling with several independent seeds, which captures independent
sampling [14].

Finally, we mention applications of our estimator constructions
which include estimating Lp difference from sampled data [7] and
sktech-based similarity estimation in social networks [9].
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Example 5 Walk-through derivation of ≺+-optimal estimators
We derive ≺+-optimal RG1+ estimators over the finite domain V = {0, 1, 2, 3}2. Assuming same sampling scheme on both entries, there are 3 threshold
values of interest, where πi i ∈ [3] is such that entry of value i is sampled if and only if u ≤ πi. We have π1 < π2 < π3.
The lower bounds RG1+

(v) are step functions with steps at u = πi. The table below shows RG1+
(v)(u) for all u and v such that RG1+(v) > 0. When

RG1+(v) = 0, we have RG1+
(v)(u) ≡ 0 and any unbiased nonnegative estimator must have 0 estimates on outcomes that are consistent with v.

RG1+
(v) (1, 0) (2, 1) (2, 0) (3, 2) (3, 1) (3, 0)

(0, π1] 1 1 2 1 2 3
(π1, π2] 0 1 1 1 2 2
(π2, π3] 0 0 0 1 1 1
(π3, 1] 0 0 0 0 0 0

The v-optimal estimate, R̂G
(v)
1+ (u) is the negated slope at u of the lower hull of RG1+

(v). The lower hull of each step function is piecewise linear with
breakpoints at a subset of πi, and thus, the v-optimal estimates are constant on each segment (πi−1, πi]. The table shows the estimates for all v and u. The
notation ↓ refers to value in same column and one row below and ⇓ to value two rows below.

R̂G
(v)
1+ (1, 0) (2, 1) (2, 0) (3, 2) (3, 1) (3, 0)

(0, π1]
1
π1

1
π2

2−(π2−π1)↓
π1

1
π3

2−⇓
π2

3−↓(π3−π2)−⇓(π2−π1)
π1

(π1, π2] 0 1
π2

min{ 2
π2
, 1
π2−π1

} 1
π3

2−↓
π2

min{ 3−↓(π3−π2)
π2

,
2−↓(π3−π2)
π2−π1

(π2, π3] 0 0 0 1
π3

min{ 2
π3
, 1
π3−π2

} min{ 3
π3
, 1
π3−π2

}

The order (2, 1) ≺ (2, 0) and (3, 2) ≺ (3, 1) ≺ (3, 0) yields the L* estimator, which is v-optimal for (1, 0), (2, 1), and (3, 2). The order (2, 0) ≺ (2, 1)
and (3, 0) ≺ (3, 1) ≺ (3, 2) yields the U* estimator which is v-optimal for (1, 0), (2, 0), and (3, 0). Observe that it suffices to only specify ≺ so that the
order is defined between vectors consistent with the same outcome S when RG1+(S) > 0. For RG1+, this means specifying the order between vectors with
the same v1 value (and only consider those with strictly smaller v2). In follows that any admissible estimator is (1, 0)-optimal.
To specify an estimator, we need to specify it on all possible outcomes, where each distinct outcome is uniquely determined by a corresponding set of data
vectors S∗. The 8 possible outcomes (we exclude those consistent with vectors with RG1+(v) = 0 on which the estimate must be 0) are (1, 0), (2,≤ 1),
(2, 1), (3,≤ 2), (3, 2), (3,≤ 1), (3, 1), and (3, 0), where an entry “≤ a” specifies all vectors in V where the entry is at most a.
We show how we construct the ≺+-optimal estimator for ≺ which prioritizes vectors with difference of 2: (3, 1) ≺ (3, 2) ≺ (3, 0) and (2, 0) ≺ (2, 1).
The estimator is v-optimal for (3, 1), (2, 0), and (1, 0). This determines the estimates R̂G

(≺)
1+ on all outcomes consistent with these vectors: The value on

outcome (1, 0) is R̂G
((1,0))((0, π1]), the values on outcomes (2,≤ 1) and (2, 0) are according to R̂G

(2,0) on (π1, π2] and (0, π1], respectively, and value
on the outcomes (3,≤ 2), (3,≤ 1) and (3, 1) is according to R̂G

(3,1) on (π2, π3] and (π1, π2]. These values are provided in the table above. The remaining
outcomes are (3, 0), (3, 2), and (2, 1). We need to specify the estimator so that it is unbiased on these vectors, given the existing specification. We have

R̂G
(≺)
1+ (2, 1) =

1− (π2 − π1)R̂G
(≺)
1+ (2,≤ 1)

π1

R̂G
(≺)
1+ (3, 0) =

3− (π3 − π2)R̂G
(≺)
1+ (3,≤ 2)− (π2 − π1)R̂G

(≺)
1+ (3,≤ 1)

π1

R̂G
(≺)
1+ (3, 2) =

2− (π3 − π2)R̂G
(≺)
1+ (3,≤ 2)

π1
.

Observe that to apply these estimators, we do not have to precompute the estimator on all possible outcomes. An estimate only depends on values of the
estimate on all less informative outcomes. In a discrete domain as in this example, it is the number of breakpoints larger than the seed u (which is at most the
number of distinct values in the domain).
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