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ABSTRACT
Given a class of large number of students, each exhibiting
a different ability level, how can we group them into sec-
tions so that the overall gain for students is maximized?
This question has been a topic of central concern and de-
bate amongst social scientists and policy makers for a long
time. We propose a framework for rigorously studying this
question, taking a computational perspective. We present
a formal definition of the grouping problem and investigate
some of its variants. Such variants are determined by the
desired number of groups as well as the definition of the gain
for each student in the group.

We focus on two natural instantiations of the gain func-
tion and we show that for both of them the problem of
identifying a single group of students that maximizes the
gain among its members can be solved in polynomial time.
The corresponding partitioning problem, where the goal is
to partition the students into non-overlapping groups appear
to be much harder. However, the algorithms for the single-
group version can be leveraged for solving the more complex
partitioning problem. Our experiments with generated data
coming from different distributions demonstrate that our al-
gorithm is significantly better than the current strategies in
vogue for dividing students in a class into sections.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining
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1. INTRODUCTION
That good education is critical for enhancing societal

growth and individual prosperity is a widely accepted
tenet [18, 33]. While the problem of providing high quality
education is multi-faceted and complex [8, 14], one particu-
lar problem that has vexed social scientists and policy mak-
ers for a long time is how to create groupings of students so
that they can augment their learning from the teacher with
cooperative learning from each other [3, 30, 32]. Two pop-
ular strategies are to group students either homogeneously
(stratified by ability level, so low-ability students are in one
section, high-ability students in another) or heterogeneously
(students of all ability levels in one section) [11, 27]. The
verdict from the empirical studies on which of these is more
effective is inconclusive [15, 20, 29]. The public sentiment
toward these strategies has also swayed back and forth over
the years [7, 24].

We endeavour to rigorously study the problem of grouping
students in a class, by taking a computational perspective.
We consider a setting in which groupings are decided on
per subject basis for students within a class. Each student
i is associated with ability θi ∈ [0, 1] in the corresponding
subject. The ability θi can be estimated by administering a
test designed using modern practices such as those based on
item response theory [9, 16]. Students are able to increase
their abilities through interactions and collaborations with
more capable peers [19, 31]. The higher ability members also
gain as teaching others and giving help has been shown to be
positively correlated to increase in ability [5, 32]. We thus
strive to form groups such that the overall gain for students
is maximized.

We present a formal definition of the grouping problem
and describe several of its variants. More specifically, we
consider two high-level problems: the 1-Group and the `-
Groups problem. In the former, the goal is to identify a
single group from a large set of students such that the gains
of the students constituting the group is maximized. In the
latter, the goal is to partition a large set of students into
smaller groups of approximately the same size such that the
sum of the gains of all groups is maximized. Clearly, dif-
ferent definitions of “gain” lead to different instantiations of
the 1-Group and the `-Groups problems.

We consider two types of gain functions – each formal-
izing different viewpoint. The first maximizes the number
of students who improve their abilities by interacting with
the higher ability students, while the second incorporates
the extent of these improvements. Thus, the former maxi-
mizes the number of students that benefit, while the latter



is geared towards pulling up the weakest students as much
as possible. Depending upon the social goal the school is
pursuing, it can accordingly choose the gain function.

For both these functions, we show that the 1-Group prob-
lem can be solved optimally in polynomial time. For lack of
optimum algorithms for the `-Groups version, we provide
effective heuristics. Our experimental evaluation with gen-
erated data demonstrates that our design yields groupings
that beat the current strategies. The experiments with dif-
ferent distributions of abilities of students demonstrate that
this superior performance is independent of the underlying
distribution of the abilities of the students.

Roadmap: The rest of the paper is organized as follows.
After reviewing the related work in Section 2, we formally
define our framework in Section 3. In Sections 4 and 5, we
describe the two problem variants we study and their corre-
sponding algorithms. In Section 6, we describe our experi-
ments. Finally, we conclude with a summary and directions
for future work in Section 7.

2. RELATED WORK
Although their importance in the educational process has

been identified by educators and social scientists alike, to
the best of our knowledge we are the first to introduce the
formulations for computationally addressing the problem of
grouping students. Naturally, the nature of our problem
is related to a large body of work both in the domain of
education as well as computer science. We review some of
this work below.

Cooperative learning: The origins of the cooperative
learning theory can be traced back to at least as early as
the 1937 work of May and Doob who found that people
who worked together were more successful in attaining the
same goals than those who worked independently [26]. Mod-
ern cooperative learning theory is heavily influenced by the
Vygotsky’s idea of co-construction, central to which is the
notion of the zone of proximal development (ZPD) − “...
the distance between the actual developmental level as de-
termined by independent problem solving and the level of
potential development as determined through problem solv-
ing under adult guidance or in collaboration with more ca-
pable peers” [31]. In our formulation, ZPD for a student can
be thought of as the distance between the student’s ability
and that of the group. One of our objective is striving to
maximize the number of students who are able to increase
their ability to the group level, while the other maximizes
the total increase in the ability of the group members.

Forming teams of experts: Recently, there has been a
lot of work on the formation of teams of experts whose goal
is to complete a given project task [1, 2, 12, 21, 22, 25]. In
these settings, experts are viewed as multi-dimensional vec-
tors describing the expertise of individuals across different
aspects. Then the goal is to select a team that best fits the
task at hand. In contrast, our students are described by
1-dimensional values – namely their ability in the subject.
Moreover, our goal is not to find a single team that can com-
plete a specific task, but to partition the given set of students
into teams from which their performance can benefit. These
differences in the respective settings lead to different compu-
tational problems as well, and therefore the algorithms used
for existing team-formation formulations cannot be used for
our setting.

Clustering: At a high level, the `-Groups version of our
problem can be also viewed as a classical clustering prob-
lem [17]; afterall, in both cases the goal is to partition an
input set of objects. Although in many of these clustering
problems each cluster is represented by the average of the
points in the cluster (exactly as in our setting) their goal is to
find a partitioning that minimizes the sum of the distances
of each points to its corresponding average. On the other
hand, in our `-Groups problem the goal is to maximize the
number of students that are below the corresponding aver-
age. This difference in the objective functions makes our
problem distinct from existing work on clustering. Specifi-
cally, many of the existing clustering problems are solvable
in polynomial time for dimensionality 1, while some ver-
sion of our `-Groups problems appear to be NP-hard even
though our input consists of 1-dimensional points.

3. FRAMEWORK
Assume there is a population of n students S = {1, . . . , n},

studying a particular subject. Each student i is associated
with ability θi ∈ [0, 1] (determined using techniques such as
item response theory [9, 16]). For simplicity, we will assume
that the students have distinct abilities and they are ordered
in decreasing order of their abilities, i.e., θ1 > θ2 > . . . > θn.

We will be interested in forming groups of students T ⊆ S,
such that students on average benefit by their participation
in T . In order to quantify the benefit that a group provides

to its members, we need to define the collective ability Θ̂T

of a group T . Following [28], we assume that the collective
ability of a group T ⊆ S is the average ability level of its

members. That is, Θ̂T = 1/|T |
∑
i∈T θi.

We consider the collective ability Θ̂T of a group as being
an important characteristic of the group. More specifically,

the collective ability Θ̂T of a group T partitions the members
of T into two sets: the leaders and the followers. The set of
leaders LT of group T are all the members of T with ability

above Θ̂T . That is,

LT = {i ∈ T | θi ≥ Θ̂T }.

Similarly, the set of followers FT of group T are all the mem-

bers of T with ability below Θ̂T . That is,

FT = {i ∈ T | θi < Θ̂T }.

When the group T is clear from the context, we drop the
subscript T when referring to the set of leaders and followers
of T .

The participation in a group amplifies both the leaders
and the followers. If we use function Af (i, T ) (resp. A`(i, T ))
to denote the gain of a follower (resp. leader) i by partici-
pating in group T , then we define the gain of a group T as
the sum of the gains of its members. That is,

A(T ) =
∑
i∈FT

Af (i, T ) +
∑
i∈LT

A`(i, T ). (1)

The gain of the followers may be a result of the fact that
they are able to increase their abilities through interactions
and collaborations with more capable peers [19, 31]. The
leaders also gain as teaching others and giving help has been
shown to be positively correlated to increase in ability [5, 32].

In this work, we will only focus on the gain of the followers
and leave incorporating the gain of leaders for future work.



That is, the gain of a group T

A(T ) =
∑
i∈FT

Af (i, T ). (2)

We consider two instances of the A(T ) function, namely
the count-based gain Ac and the value-based gain Av.

The count-based gain function: Given a group T with
leaders LT and followers FT , we define the count-based gain
Ac(T ) as:

Ac(T ) =
∑
i∈FT

Acf (i, T ), (3)

where Acf (i, T ) = 1 for every i ∈ FT . In other words, the
count-based gain of group T is simply the number of fol-
lowers in the class. These are the students who are able to
increase their ability through collaboration with more capa-
ble peers [19, 31].

The value-based gain function: A limitation of the
count-based gain function is that it considers all followers
gaining the same by their participation in T . The value-
based gain function takes into consideration the actual val-
ues of the followers’ abilities as well as the collective ability
of the group. More specifically, given a group T with leaders
LT and followers FT , the value-based gain Av(T ) is defined
as:

Av(T ) =
∑
i∈FT

Avf (i, T ), (4)

where Avf (i, T ) = (Θ̂T − θi) for every i ∈ FT . In other

words, students with abilities that are further from Θ̂T gain
more by their participation in T .

The problems: In this paper we are interested in two prob-
lems: the 1-Group and the `-Groups problems. The for-
mer takes as input the set of students and their abilities and
aims to identify a single group T that maximizes the value
of A(T ). The latter focuses on partitioning the input set of
students into groups such that the total gain across groups
is maximized. The formal definitions of these two problems
are given below. We give these definitions in terms of the
generic gain functions, but we also discuss their instantia-
tions for the count and value-based functions.

Problem 1 (1-Group). Given a set of n students S =
{1, . . . , n}, identify a group T ⊆ S of at most k students such
that A(T ) is maximized.

When we use the count-based (resp. value-based) gain func-
tion for computing the gain of the group T , then we refer
to the 1-Group problem as the Count1G (resp. Value1G)
problem. When the form of the gain function is not impor-
tant we use the generic 1-Group term.

Problem 2 (`-Groups). Given an integer k and a set
of n students S = {1, . . . , n} (with n = k`) find a partition
of S into groups T1, . . . T`, where each group is of size k and∑`
i=1A(Ti) is maximized.

As before, when we use the count-based (resp. value-based)
gain function for computing the gain of the group T , then
we refer to the `-Groups problem as the Count`G (resp.
Value`G) problem. When the form of the gain function is
not important we use the generic `-Groups term.

4. COUNT-BASED GROUP FORMATION
In this section we study the computational complexity

of the Count1G and the Count`G problems and we give
algorithms for solving them.

4.1 The Count1G problem
Clearly, the desired group will consist of a set of leaders L

of highest ability who will pull up the group’s overall ability
and a set of followers F whose abilities will be below the
group’s ability yet their abilities will not be as low so as to
decrease the overall ability of the group.

Example 1. Consider a set of five students with the fol-
lowing ability scores: θ1 = 0.9, θ2 = 0.8, θ3 = 0.6, θ4 = 0.5,
and θ5 = 0. Imagine that we need to create a group of
three students with maximum possible gain. If students 1
and 2 are picked together (with any other student as the
third member), only the third member of this group will be a
follower. On the other hand, if we pick students 1, 4 and 5
then the collective group ability would be 0.9+0.5+0

3
= 0.466,

which makes only student 5 a follower. Alternatively, group-
ing student 2, 3 and 4 leads to a collective group ability of
0.8+0.6+0.5

3
= 0.633, which makes students 3 and 4 to be the

followers. This example shows that grouping the strongest
and weakest students together does not necessarily leads to
the maximum possible gain.

Our algorithm for the Count1G problem, which we call
the L&F algorithm, finds an optimal group composition by
efficiently identifying the best sets L and F of leaders and
followers that will compose the group T = L ∪ F . The
pseudocode of the L&F algorithm is shown in Algorithm 1.

Algorithm 1 L&F

Input: Set of students S = {1, . . . , n} with sorted abil-
ities θ1 > θ2 > . . . > θn, Group size k.
Output: Group T with the maximum Ac(T ).

1: T = ∅
2: for i = 1 . . . k do
3: L = top-i ability students
4: for j = i+ 1 . . . n− (k − i) + 1 do
5: F = students with abilities θj , θj+1, . . . ,
θj+k−i−1

6: if F and L satisfy feasibility constraint then re-
turn T = L ∪ F

In order to see the intuition behind L&F and also under-
stand why it is optimal, we start with the following lemma:

Lemma 1 (Feasibility Constraint).
∑
i∈F θi >

(k ×maxi∈F θi)−
∑
i∈L θi.

Proof. Observe that Θ̂T should be larger than the high-
est ability score of a student in the set F . Thus, if θF rep-
resents the highest ability in set F , the following condition
should be satisfied:

Θ̂T =

∑
i∈L θi +

∑
i∈F θi

k
> θF .

A simple rewrite of the above inequality yields the
lemma.

We do not know a priori the number of leaders in set
L. However, since the gain for a group T is defined to



be Ac(T ) = k − |L(T )|, the optimal solution will have the
minimal number of leaders. Our algorithm therefore tries
increasing number of leaders, starting with the student of
highest ability. The reason for preferring higher ability lead-
ers is that the sum of their abilities appears as a negative
term in the right hand side of the inequality in the feasibility
constraint. Note that for any fixed set L, all possible sets
of followers that satisfy the feasibility constraint lead to the
same value of Ac. A computationally efficient way to pick
the followers is to look for them in k − |L| consecutive po-
sitions starting with the first student who is not in L. And
that is what our algorithm does.

Example 2. To clarify the details of Algorithm 1, we re-
visit the students of Example 1. The algorithm starts by
placing a single student (i.e., student 1) in the set of leaders.
Then, the inner loop (lines 4-5) searches for the consecutive
group of students that satisfy the feasibility constraint. First,
students 2 and 3 are considered for the followers set, but they
do not pass the feasibility test. Next, the algorithm tries stu-
dents 3 and 4, who pass the test. Thus, the algorithm returns
the group consisting of students {1, 3, 4}, having Ac = 2.

Complexity: With a preprocessing step of complexity
O(n) for computing the cumulative sums of all the ability
levels of all the students sorted in decreasing ability level,
L&F algorithm has complexity O(nk). If we take a closer look
at Algorithm 1, we can observe that the outer loop (line 2)
searches for the smallest possible number of students that
should be placed in set L to lift students in set F . This linear
search, however, can easily be replaced by a binary search.
Based on this observation, a more efficient implementation
of L&F runs in time O(n log k).

Remark 1: Problem 1 is defined so that the formed group
T is of specific size k. A natural question is whether we
can form a group T of any size. We can observe that the
L&F algorithm can be used for this problem as well. For
example, one can simply run the L&F algorithm for all values
of k ∈ {1, . . . , n} and output the group with the best Ac
score among all those reported for the different values of k.

Remark 2: As stated in Algorithm 1, L&F selects the fol-
lower set in such a way that the relatively high ability fol-
lowers are grouped with the highest ability leaders. We will
sometime refer to this version of L&F as max-L&F to empha-
size that amongst all the feasible follower sets, the group
formed by this algorithm has the highest-ability follower.
One can easily modify Algorithm 1 to select the follower
set to contain the lowest highest-ability follower or for that
matter select a random set amongst all the feasible follower
sets. We will refer to these versions as min-L&F and any-L&F

respectively.

4.2 The Count`G problem
In this section, we first show that the Count`G problem

is NP-complete and then discuss heuristics for solving it.

Lemma 2. When k = n/2 then the Count`G is NP-
complete.

Proof. We prove that Count`G is NP-complete by re-
ducing the Subset Sum problem [13] to this problem. The
Subset Sum problem asks whether a given set of positive
integers W = {w1, w2, · · · , wN} can be partitioned into two
groups W1, W2 such that the sum of numbers in W1 equals

the sum of numbers in W2. In other words, if we use
z =

∑N
i=1 wi to denote the sum of all numbers in W , we

want the sum of the elements in W1 to be equal to the sum
of the elements in W2 and thus equal to z

2
.

Now, given an instance of the Subset Sum problem we
create an instance of the Count`G problem with n = 2N+6
students which we want to partition into 2 groups each of
size k = (N + 3). We create the instance of the Count`G
problem as follows: for each number wi in W , we create
a student with ability θi = −wi. Beside these low ability
students, we create n + 4 students with abilities equal to
0, and two strong students with abilities z

2
+ ε where ε is

a small value. We claim that (under this construction) the
answer to the decision problem of Subset Sum is “yes” iff
the optimal solution to the Count`G would have a total Ac
of (2N + 4).

First, assume that there is a perfect partitioning of W into
W1 and W2. Now, we can create two groups T1 and T2 in
the Count`G problem as follows. First, we place a strong
student with ability z

2
+ε in both T1 and T2. Then, we place

the low ability students that correspond to the numbers in
set W1 (resp. W2) in T1 (resp. T2). Finally, we distribute
the normal students (i.e., those with ability equal to zero)
over T1 and T2 to make both groups of the same size. Note
that the size of each group must be N + 3 and

Θ̂T1 = Θ̂T2 =
− z

2
+ z

2
+ ε

N + 3
=

ε

N + 3
> 0.

Since the collective ability levels of both groups are positive,
all students except the two strongest students are below the
mean. Thus Ac(T1) + Ac(T2) = N + 2 +N + 2 = 2N + 4.

Now, assume that there is an optimal grouping of students
into groups T1 and T2 each of size (N+3) and total Ac equal
to (2N + 4) for Count`G problem. Let z1 and z2 denote
the sum of the negative abilities in T1 and T2 respectively.
We would like to show that z1 = z2 which further implies a
perfect partitioning of the set W . First, observe that due to
the pigeon-hole principle, both groups should have at least
one student with ability equal to zero. Moreover, one can
observe that the two strong students (ability = z

2
+ε) should

be in different groups. This is simply because these are the
highest abilities and they can never be below the mean of any
group. Thus, if they are placed together there would be at
least 3 student above the group average (i.e., the two strong
students and the strongest student of the other group).

Given that each group has exactly one student with ability
z
2

+ ε and at least one student with ability equal to 0, the
collective ability of both groups must be positive in order to
guarantee an overall Ac equal to 2N + 4. Formally,


Θ̂T1 > 0

Θ̂T2 > 0

z1 + z2 = z

⇒


z
2
+ε−z1
N+3

> 0
z
2
+ε−z2
N+3

> 0

z1 + z2 = z

This implies that{
z2
2
− z1

2
+ ε > 0

z1
2
− z2

2
+ ε > 0

⇒ |z1 − z2| < 2ε.

Now, it is easy to see that by picking a small value of ε
one can guarantee z1 and z2 to be equal. As mentioned
earlier, this further implies that the students with negative
abilities in group T1 and T2 define a perfect partitioning



of the elements in set W . Finally, to guarantee that our
reduction take polynomial time, we would like to point that
ε does not require to be arbitrary small, it can simply be
smaller than the precision in which the ability scores are
reported.

Given that the ability scores in an instance of Count`G
problem are bound to be between zero and one, it might
seem that our reduction is incomplete as it creates students
with negative ability scores. However, one can see that the
optimal solution to an instance of Count`G problem would
not change if all the ability scores are shifted (i.e., incre-
mented by a constant) or scaled (i.e., multiplied by a con-
stant). Thus, one can simply renormalize the ability scores
to be between zero and one without affecting the value of
the optimal solution.

IterL&F: Given there is no polynomial-time algorithm for
solving Count`G, we propose IterL&F, which is an iterative
heuristic. In every iteration of IterL&F, one group of size
k is formed. The selection of the group is done using the
L&F algorithm and using as input only those students that
have not yet been assigned to any group. Clearly, there
are n/k iterations of IterL&F, each taking time O(n log k).

Therefore, the overall running time is O(n
2 log k
k

).
Depending upon the version of L&F algorithm employed

(see Remark 2 in Section 4.1), we get three versions
of IterL&F, namely max-IterL&F, min-IterL&F and any-

IterL&F. Our experiments indicate that they obtain simi-
lar overall value of the Ac objective, but the structure of
the groups built by them exhibit differences. Intuitively,
max-IterL&F groups the highest ability leaders with rela-
tively high ability followers, whereas min-IterL&F groups
them with the lowest ability followers, while any-IterL&F

groups them with mixed ability followers.

5. VALUE-BASED GROUP FORMATION
We next study the Value1G and Value`G problems.

5.1 The Value1G problem
We first show that the Value1G problem can be solved

in polynomial time with an algorithm, which we call End-
points. Algorithm 2 provides the pseudo-code of End-

points.

Algorithm 2 Endpoints

Input: Set of students S = {1, . . . , n} with sorted abil-
ities θ1 > θ2 > . . . > θn, Group size k.
Output: Group T with the maximum Av(T ).

1: for i = 1 . . . k − 1 do
2: Li = {1, ..., i}
3: Fi = {(n− i+ 1), ..., n}
4: Θ̂i = ((θ1 + ...+ θi) + (θn−i+1 + ...+ θn))/k

5: if Θ̂i > θn−i+1 then
6: Ti = Li ∪ Fi
7: else
8: Ti = φ

9: return arg maxTi
Av(Ti)

We start with the following lemma:

Lemma 3. Given a group T that maximizes Av(T ) and
consists of x leaders and y = k− x followers, it must be the
case that L = {1, ..., x} and F = {(n− y + 1), ..., n}.

Proof. We definitely need to pick as followers the y stu-
dents with the lowest ability since Av(T ) will be strictly
worse for any other choice of y students. We also need to se-
lect the top-x ability students as the leaders; this is because

the top-x ability students maximize the value of Θ̂T and as
a result also the value of our objective Av(T ).

However, since the values of x and y are not known a pri-
ori, Endpoints iterates over all possible values of x and y
that satisfy x + y = k and reports the optimal solution in
time O(k). The IF condition ensures that the set F under
consideration satisfies the constraint imposed by the defini-
tion of a follower set.

Example 3. For the students of Example 1, Endpoints

returns L = {1, 2} ∪ F = {5}. Contrast this group with
the group formed by L&F in Example 2 for the same set of
students. The latter uses the top student 1 to lift up the stu-
dents 3 and 4, whereas Endpoints uses the two top students
to lift up the very weak student 5.

5.2 The Value`G problem
Determining the exact complexity class of the Value`G

is still unresolved. Meanwhile, we propose two iterative
heuristics for solving the problem: IterEndpoints and
RoundRobin. Their performance characteristics is empiri-
cally studied later in the paper.

IterEndpoints: This heuristic builds upon the Endpoints

algorithm. In each iteration, it identifies a group of size k
by applying Endpoints to the remaining body of students.
The running time of IterEndpoints is O(n), since there are
n/k iterations, each requiring time O(k).

RoundRobin: Clearly, IterEndpoints does a perfect job
of maximizing the gain for the first group. However, the
gains for the subsequent groups can decrease considerably.
RoundRobin tries to balance the gain across all the groups.
It works off the sorted list of student abilities and creates
the first group consisting of k students at positions 1, k+ 1,
(2k + 1), etc. The ith group is formed by students at posi-
tions i, k+ i, (2k+ i), etc. The running time of RoundRobin
for a sorted input consisting of n students is O(n). Intu-
itively, this heuristic mimics how groups are often formed
(particularly in recreational team sports) by first selecting
the leaders and then letting the leaders take turn in adding
members to their respective groups.

Observe that RoundRobin can also be used for solving the
Count`G problem. In fact, we use it as a baseline algorithm
in our experiments with the Count`G problem as well.

6. EXPERIMENTS
Our experimental evaluation focuses on studying the per-

formance of our algorithms for the Count`G and the
Value`G problems. Moreover, we present some illustra-
tive partitions created by different algorithms and highlight
their characteristics.

Datasets: For all the experiments we report here, we ex-
periment with a set of n = 1024 students with ability val-
ues randomly sampled from (a) normal, (b) uniform and (c)
pareto distributions. We refer to the resulting datasets as
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(b) uniform dataset
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Figure 1: Performance of IterL&F, Random, Stratified and RoundRobin for the Count`G problem; x-axis (log-
scale): number of students per group (k); y-axis: sum of the Ac values of the groups.
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Figure 2: Count`G: Structure of the groups of size k = 32 formed by different algorithms for different datasets.
Every row of a plot corresponds to a group and the points within a row represent the ability levels of the
members of the group; dark points are group abilities.
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Figure 3: Count`G: Structure of the groups of size k = 32 formed by different versions of the IterL&F algorithm
for the pareto dataset.

normal, uniform and the pareto datasets respectively. The
abilities of students in the normal dataset are sampled from
a normal distribution with mean 0 and standard deviation 1.
For the uniform dataset the abilities are sampled uniformly
from the interval [0, 1]. Finally, the abilities of the students
in the pareto dataset are samples from a pareto distribution,
having the shape parameter set to 3. After the datasets are
sampled from their respective distributions, we normalize
all values to be in [0, 1]. This normalization is only done for
consistency and plays no role in the conclusions we draw.

Baseline algorithms: In addition to the algorithms we
discussed in Sections 4 and 5, we also experiment with two
baseline algorithms: Stratified and Random.

The Stratified algorithm sorts the students in decreas-
ing order of their abilities. Then, the first group is created by
considering the first k students with the highest abilities and
putting them in a group by themselves. The second group is
created with the subsequent k students, and so on. The run-
ning time of this algorithms for a sorted input consisting of
n students is O(n). This algorithm can be thought of as an
idealized version of the oft-used, ability-based homogeneous
grouping of students [20, 24].

The Random algorithm creates ` groups of size k by ran-
domly assigning students to groups. The running time of
the Random algorithm is O(n), since it is adequate to create
a random permutation of the students and then create the `
groups by considering consecutive members of this permuta-
tion. Note that some approximation of Random is often used
for partitioning a class into heterogeneous sections [27].

6.1 Evaluating algorithms for Count`G
We study the performance of different algorithms for the

Count`G problem by computing the total gain Ac due to
the groups they form. We use the max-IterL&F version of
IterL&F as well as Random, Stratified and RoundRobin in
this evaluation. Figure 1 shows their Ac values as a function
of the group size k ∈ {2, 4, 8, . . . , 512} for each one of the
three datasets (normal, uniform and pareto).

The results (which are averages over 20 random datasets
drawn from the respective distribution) demonstrate that
for all values of k (except for k = 2), IterL&F is significantly
better than any other algorithm. In fact, there are values
of k (e.g., k = 32) for which the IterL&F achieves total Ac
of more than 950, while the maximum possible value is less
than 1024. This means that more than 90% of the students
are assigned into groups in which the group ability is higher
than their ability.

For k = 2, all algorithms have the same total Ac, which is
equal to n/2 = 1024/2 = 512. The reason is that in groups
of size 2 inevitably there is one student who is above and
one who is below the group average and therefore the group
is beneficial for exactly half of the students, independently
of how the group assignment is performed. As k increases,
the ability of IterL&F to make conscious and judicious use
of the high ability students to pull up as many lower ability
students as possible starts to shine and the performance gap
between IterL&F and other algorithms starts to increase.
Beyond some value of k (around 32), the law of diminishing
return sets in and the performance gap starts to reduce.
Note, however, that the x-axis in Figure 1 is in logarithmic
scale and the decrease in performance gap is more gradual
than it might appear from a cursory glance at the plots.

Turning our attention to the baseline algorithms (i.e.,
Random, Stratified, and RoundRobin), we observe that for
normal and uniform datasets the performance of these al-
gorithms is almost constant allowing about half of the stu-
dents to benefit from group participation. The landscape
is different for the pareto dataset. In this case, Random and
RoundRobin are better than Stratified – yet again signifi-
cantly worse than IterL&F. In order to understand that one
has to remember that the pareto dataset has a small num-
ber of exceptionally high-ability students. The Stratified

algorithm by definition puts these students together in one
group and therefore their high abilities cannot be leveraged
to lift up the average abilities of other groups. This phe-
nomenon is not observed in the groups formed by Random

and RoundRobin since these algorithms distribute the high-
ability individuals into different groups allowing more groups
to benefit from them.

Characteristics of groups in Count`G: Although the
plots in Figure 1 demonstrate the superiority of IterL&F

with respect to the objective function (i.e., total Ac), they
do not provide intuition on the types of students that are
brought together into groups by different algorithms. We do
that in Figure 2 for groups of size 32 using the normal, the
uniform and the pareto datasets. The x-axis of all the plots
in this figure corresponds to ability values and the y-axis
takes values {1, 2, . . . , 32}; these y-values correspond to the
group IDs. Thus the points on the same horizontal line in a
plot represent the abilities of the students that are assigned
to the group with ID equal to the value of the y-axis to
which this horizontal line corresponds to. The group ID is
the same as the order in which the group was output by the
corresponding algorithm. For example, the group with ID
equal to 1 is the the first group that was built by IterL&F,
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(a) normal dataset
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(b) uniform dataset

2 4 8 16 32 64 128 256 512
0

20

40

60

80

100

120

140

160

180

Group size (k)

T
ot

al
 G

ai
n 

(A
V

)

 

 

IterEndpoints
Random
Stratified
RoundRobin

(c) pareto dataset

Figure 4: Performance of IterEndpoints, Random, Stratified and RoundRobin for the Value`G problem; x-axis
(log-scale): number of students per group (k); y-axis: sum of the Av values of the groups.
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Figure 5: Value`G: Structure of the groups formed for k = 32 by different algorithms for different datasets.



and group with ID equal to i was built by IterL&F at its i-
th iteration. The gray triangles correspond to the members
of each group while black dots represent the mean of the
abilities within each group. Keep in mind that we are using
the max-IterL&F version of IterL&F in this experiment.

Several interesting observations emerge from this figure.
First of all, there is a clear separation between the “leaders”
and the “followers” in the groups built by IterL&F. We see
that IterL&F judiciously puts together in each group few
strong leaders with followers that are clearly weaker than
them, yet they are not as weak as the followers grouped
with relatively less strong leaders. The groups formed by
Random have a mix of students from all ability levels, with no
clear separation between leaders and followers. The groups
formed by RoundRobin are a more deterministic version of
the groups built by Random. Finally, the groups formed
by Stratified clearly exhibit ability grouping, where the
students with the same ability levels are grouped together.
These differences in group composition underlie the superi-
ority of IterL&F we see in Figure 1.

Finally, we remark that we found that all three versions
of IterL&F, namely max-IterL&F, min-IterL&F and any-

IterL&F, had similar performance but the structure of the
groups they formed differed somewhat. We illustrate in Fig-
ure 3 the composition of the groups built by them for k = 32
for the pareto dataset. As in max-IterL&F, there continues
be a separation between the “leaders” and the “followers” in
the groups constituted by the other two. However, while
max-IterL&F groups strongest leaders with strongest follow-
ers, min-IterL&F initially groups the weakest followers with
the strongest leaders. Subsequently, it groups decreasingly
strong leaders with relatively stronger weak followers until
in the final groups the abilities of the leaders and the follow-
ers converge. The groups built by any-IterL&F are similar
to those yielded by min-IterL&F, but the followers now have
relatively more mixed abilities.

6.2 Evaluating the algorithms for Value`G
Here, we describe our experiments for the Value`G prob-

lem. Our experimental methodology is identical to the one
we followed for the Count`G problem. We study the perfor-
mance of IterEndpoints, Random, RoundRobin and Strati-

fied with respect to the total Av of the groups they form.
We again use normal, uniform and pareto datasets and group
sizes k ∈ {2, 4, 8, . . . , 512}.

Figure 4 shows the results. We see that IterEndpoints,
Random and RoundRobin consistently outperform Strati-

fied. To understand this phenomenon, recall that the goal
of Value`G is to maximize the gain for the students in the
follower sets. The gain for followers in a particular group de-
pends on the gap between the their abilities and the group
ability; the larger the gap the larger will be the value of Av.
Thus, an algorithm that forms groups in such a way that
the ability of leaders is relatively high compared to the abil-
ities of followers will perform better. Finally, since Value`G
aims to maximize the sum of the Av values of all the groups,
the above property needs to hold only in aggregate.

Examine now Figure 5 that illustrates the abilities of stu-
dents in each group formed by the different algorithms for
the normal, the uniform and the pareto datasets for k = 32.
As before, the x-axis of all the plots in this figure corresponds
to ability values and the y-axis takes values {1, 2, . . . , n/k},
which correspond to the group IDs. Clearly, Stratified

forms homogeneous groups such that in every group there
is very little difference in the abilities of the group members
and the individual ability of each of the member is quite
close to the collective ability of the group. Thus, the total
gain for this algorithm is small.

In contrast, the groups formed by Random have greater di-
versity of abilities. It brings together students of varying
abilities that has the effect of creating groups having leaders
and followers at quite different levels of ability. RoundRobin

can be viewed as a deterministic version of Random and hence
its performance characteristics is similar. However, it is in-
teresting to contrast the composition of groups these two
heuristics form with those built by IterEndpoints. Though
they all achieve roughly similar total Av values, particu-
larly for groups of reasonable size, they form very different
types of groups. In some of the groups formed by IterEnd-

points, there is significant difference in the abilities of the
leaders and the followers, while in others the difference is
small. There is some empirical evidence in support of such
structures [23].

7. CONCLUDING REMARKS
We proposed a formal framework for studying the socially

important problem of grouping students in a large class into
sections so that the gain aggregated over all the students
is maximized. Using two different definitions of gain for
students, we studied two distinct optimization problems:
Count`G and Value`G. Intuitively, Count`G aims to
maximize the number of students who can do better by inter-
acting with the higher ability students, while Value`G in-
corporates the extent of these improvements. From the com-
putational viewpoint, we studied the computational com-
plexity of these grouping problems and provided novel poly-
nomial time heuristics for them.

Our experiments indicate that by appropriately choosing
the definition of the gain function, it is possible to achieve
different social goals. For example, the groups reported as
solutions to Count`G, put strong students together with
students who are weaker than them, yet they are not as weak
as the students grouped with less strong students. Thus,
the group members can learn in their zones of proximal de-
velopment [19, 31]. On the other hand, groups reported
as solutions to Value`G put together the weakest with
the strongest students aiming to maximize diversity of the
groups. Such groups may provide larger motivation/benefit
to the weak students while giving room to the strongest stu-
dents to learn by teaching and become role models [5, 23,
32]. It is really up to the school to decide its social goals
and philosophy and as a result its choice of objective.

The gain functions we studied in this paper are just two of
many functions admitted by our framework. In the future,
we would like to study other functions particularly those
incorporating the gains of strong students and non-linear
gains. We would also like to enrich our problem formulation
with constraints due to socio-emotional factors such as in-
terpersonal relations [4, 10]. The group dynamics that sets
in once a group is formed can have major impact on the
outcomes [6]. We would like to explore how to apply com-
putational perspective to studying the group interactions
in an educational setting. Finally, we would like to partner
with some educational institutions to study the performance
characteristics of our work in real-life.
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